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Abstract

We develop easy-to-implement tests for return predictability which, relative to extant tests
in the literature, display attractive finite sample size control and power across a wide range
of persistence and endogeneity levels for the predictor. Our approach is based on the
standard regression t-ratio and a variant where the predictor is quasi-GLS (rather than
OLS) demeaned. In the strongly persistent near-unit root environment, the limiting null
distributions of these statistics depend on the endogeneity and local-to-unity parameters
characterising the predictor. Analysis of the asymptotic local power functions of feasible
implementations of these two tests, based on asymptotically conservative critical values,
motivates a switching procedure between the two, employing the quasi-GLS demeaned
variant unless the magnitude of the estimated endogeneity correlation parameter is small.
Additionally, if the data suggests the predictor is weakly persistent, our approach switches
into the standard t-ratio test with reference to standard normal critical values.
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1 Introduction

A large body of empirical research has been undertaken investigating whether stock returns

can be predicted using publicly available data. A wide range of financial and macroeconomic

variables has been considered as putative predictors for returns, including: valuation ratios such

as the dividend-price ratio, dividend yield, earnings-price ratio, and book-to-market ratio; various

interest rates and interest rate spreads, and macroeconomic variables including inflation and

industrial production; see, for example, Fama (1981), Keim and Stambaugh (1986), Campbell

(1987), Campbell and Shiller (1988a,b), Fama and French (1988, 1989) and Fama (1990).

Empirical evidence on the predictability of returns largely derives from inference obtained

from predictive regressions and, as such, the size and power properties of tests from these regres-

sions are of fundamental importance. These depend on the time series properties of the predictor

used, in particular its degree of persistence and endogeneity. Data analysis presented in, among

others, Campbell and Yogo (2006) [hereafter CY] and Welch and Goyal (2008), suggests that

many of the variables used in predictive regressions are highly persistent with autoregressive

roots close to unity, and that a strong negative correlation often exists between returns and the

predictor’s innovations, such that the predictive regressor is endogenous.

A number of likelihood-based predictability tests have been developed, designed to be asymp-

totically valid when the predictor is strongly persistent and endogenous; see, in particular, Ca-

vanagh et al. (1995), Lewellen (2004), CY and Jansson and Moreira (2006). These approaches

are based on a formulation where the predictor, xt−1 say, is assumed to follow a first-order au-

toregression with a local-to-unity coefficient φ = 1 − c/T , where c is a finite unknown constant

and T is the sample size. Of these, the Q test of CY is widely viewed as the state of the art

methodology in the literature for testing the predictability of stock returns with highly persistent

regressors. A major drawback with these tests, however, is that they are invalid if the predictor is

weakly persistent (stationary). Alternative tests based on instrumental variable [IV] estimation

have also been developed; see, among others, Phillips and Magdalinos (2009), Kostakis et al.

(2015) and Breitung and Demetrescu (2015). Here a stochastic instrument is constructed from

the predictor which, by design, is less persistent than a local-to-unity process. The IV-based

tests are asymptotically valid regardless of whether the predictor is local-to-unity or weakly per-

sistent, but their power is not as high as the likelihood-based tests when the predictor is strongly

persistent. Breitung and Demetrescu (2015) therefore also propose a combined instrument test

using two instruments: the first as described above, the second a trending variable independent

of the predictor. This test is designed such that, in large samples, it selects the second instrument

when the predictor is local-to-unity but reverts to the first instrument otherwise. A significant

drawback, however, is that it can only be implemented as a two-tailed test and so if the direction

of predictability is known, it can have significantly lower power than one-sided tests.

An alternative approach, designed to retain good power regardless of whether the predictor
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is weakly or strongly persistent, is considered in Elliott et al. (2015) [hereafter EMW]. EMW

note that as the local-to-unity parameter c → ∞, the predictive regression essentially reduces

to a standard time-series regression with a weakly dependent regressor. Consequently, standard

likelihood-based inference, in particular a test comparing the regression t-ratio with standard

normal critical values, is an appropriate methodology. They therefore propose a hybrid test

which switches between a test based on a weighted average (local asymptotic) power criterion

valid when c is “small” but reverts to a standard time-series test when c is “large”. In practice the

choice of switching function is necessarily arbitrary; EMW propose a switching rule based on an

estimate of c. The weighted average power criterion test adopted by EMW is computationally

involved, and the test is also based on the assumption that the predictor cannot be locally

explosive (i.e. negative values of c are not allowed), an assumption not required for the tests of

CY, Kostakis et al. (2015) or Breitung and Demetrescu (2015).

In this paper we explore further how one can develop an approach to predictive regression

testing which retains both good size properties and strong power profiles regardless of the degree

of persistence of the predictor. Our approach is focused on easy to implement tests using re-

gression t-ratios. In the near-unit root case, we base our proposed testing strategy on the use of

two t-statistics: the first is the standard t-ratio test discussed above, the second is one where the

predictor has been demeaned using the quasi-GLS demeaning method of Elliott et al. (1996),

rather than OLS demeaning as with the standard t-ratio. The limiting null distributions of these

statistics depend on both the endogeneity correlation parameter and the local-to-unity parameter

characterising the predictor. We therefore propose a feasible method for obtaining asymptoti-

cally conservative critical values and provide response surfaces for practical use. An analysis of

the asymptotic local power functions of the resulting conservative tests shows that in the em-

pirically most relevant case where a significant negative correlation exists between returns and

the predictor’s innovations, the test for positive predictability based on quasi-GLS demeaning is

significantly more powerful than that based on OLS demeaning. This relationship reverses when

testing for negative predictability. Consequently, when testing for positive predictability, our

recommended procedure in the near-unit root environment is to use the conservative standard

t-ratio when the estimated endogeneity correlation is either positive or “small” and negative,

but to use the conservative test based on the quasi-GLS t-ratio otherwise. Further, in common

with EMW, if the data suggest the predictor is weakly persistent, we propose switching into the

standard t-ratio test with reference to standard normal critical values. However, in contrast to

EMW, we do not base our switching function on an (inconsistent) estimate of c, but rather on

the familiar augmented Dickey-Fuller normalised bias coefficient unit root test, with MBIC lag

selection as developed in Ng and Perron (2001). Our approach has the advantage of not needing

to exclude the possibility of locally explosive predictors, and we show that our recommended

procedure delivers effective finite sample size control and attractive power profiles across a wide

range of correlation parameters and degrees of predictor persistence.

2



The remainder of the paper is organised as follows. Section 2 introduces the predictive

regression model which we will consider in this paper together with the assumptions we place on

this data generating process [DGP]. In section 3 we present the details of our hybrid switching-

based test procedure and establish its asymptotic properties. Here we also outline our method for

obtaining asymptotic critical values. In section 4 we investigate the finite sample size and power

properties of our proposed hybrid test, comparing with the leading tests in the literature. These

results suggest that the newly proposed hybrid test performs well and compares very favourably

with extant tests, including its most obvious comparator test from EMW, offering simple yet

highly effective methods for predictability testing. Section 5 contains a short empirical example

using monthly U.S. stock returns data. Section 6 concludes. An on-line supplementary appendix

contains a proof of Theorem 1 and additional material relating to the numerical simulation

studies in sections 3.2 and 4.

2 The Predictive Regression Model

Let yt denote the (excess) stock return in period t and xt−1 denote a scalar variable observed at

time t− 1 which is considered to be a putative predictor for yt. Following Kostakis et al. (2015)

and Jansson and Moreira (2006), among others, the predictive regression model we consider is

specified as

yt = αy + βxt−1 + εyt, t = 2, ..., T (1)

where xt is an observed process, specified according to

xt = αx + st, t = 1, ..., T (2)

st = φst−1 + ψ(L)εxt, t = 2, ..., T (3)

where ψ(L) := 1 +
∑

∞

j=1 ψjL
j satisfying ψ(1) 6= 0 and

∑
∞

j=1 j|ψj| = ψ̄ < ∞, and where it

is assumed that s1 is a mean zero Op(1) random variable. The innovations εt := (εxt, εyt)
′

are assumed to form a (bivariate) martingale difference sequence with respect to the natural

filtration F t = σ(εt, εt−1...), with covariance matrix E(εtε
′

t|F t−1) =

[
σ2x σxy

σxy σ2y

]
, and where

suptE[‖εt‖
2+κ] <∞ for some κ > 0, ‖·‖ denoting the Euclidean norm. We define the correlation

between the innovations to be ρxy := σxy/σxσy.

Our interest in this paper centres on developing tests of the null hypothesis that yt is not

predictable by xt−1, i.e. H0 : β = 0 in (1). The alternative hypothesis is that yt is predictable by

xt−1, in which case β 6= 0. Moreover these tests need to allow the shocks driving the predictor,

εxt in (3), to be correlated with the unpredictable component of stock returns, εyt in (1), as

occurs when ρxy 6= 0. As discussed in the Introduction it is important for practical purposes

that the tests we develop are efficacious without knowledge of whether the predictor variable xt
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in (1) is weakly or strongly persistent. Formalizing, we therefore allow φ in (3) to satisfy one of

the following two assumptions:

Assumption S. Strongly persistent predictor: The autoregressive parameter φ in (3) is local-to-

unity with φ := 1− cT−1 where c is a fixed constant.

Assumption W. Weakly persistent predictor: The autoregressive parameter φ in (3) is fixed and

bounded away from unity, |φ| < 1.

Remark 1. Many commonly used predictors are strongly persistent, exhibiting sums of sample

autoregressive coefficients which are close to or only slightly smaller than unity. Near-integrated

asymptotics have been found to provide better approximations for the behaviour of test statistics

in such circumstances; see, inter alia, Elliott and Stock (1994). However, not all (putative)

predictors are strongly persistent and a large part of the literature works with models which take

xt to be generated from a stable autoregressive process; see, for example, Amihud and Hurvich

(2004). We therefore allow for either of these possibilities to hold for xt. �

Remark 2. Assumption S also allows for the case where c > 0 such that xt is locally explosive.

While some predictive regression tests in the literature, including the tests proposed in EMW

and Lewellen (2004), impose the condition that c ≤ 0 (equivalently, φ ≤ 1), CY, p.54, provide a

discussion on why it might not be sensible to restrict c to be non-positive in practice. Moreover,

in their empirical analysis CY find that many of the predictors they consider, most notably the

dividend-price ratio, have confidence intervals for φ that include values greater than 1. This may

well be a result of local explosivity in the price series, as is well documented in the literature on

financial bubbles; see, among others, Phillips et al. (2011, 2015). �

Remark 3. The conditions placed on the errors above essentially coincide with Assumption

INNOV(i) of Kostakis et al. (2015, p.1512) and impose conditional homoskedasticity on εt.

This is done to simplify our presentation, but it would be possible to allow for conditional

heteroskedasticity of the form considered in Assumption A.1 of CY without altering the large

sample results which follow under Assumption W . Under Assumption S, as in Kostakis et al.

(2015, p.1516), an assumption of the form given in their INNOV(ii), op. cit., p.1512, would

be needed and the predictive regression t-ratios we discuss in the section 3 would need to be

implemented using White standard errors rather than OLS standard errors. �

3 Regression-Based Predictability Tests

The simplest possible regression-based test for H0 : β = 0 is based on the t-ratio associated with

the OLS estimate of β from (1). Defining α̂y := (T −1)
−1
∑T

t=2 yt and α̂x := (T −1)
−1
∑T

t=2 xt−1
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this is identical to the t-statistic associated with the OLS estimate of β in the regression

(yt − α̂y) = β(xt−1 − α̂x) + vt, t = 2, ..., T (4)

which is therefore defined as

T :=

∑T
t=2(xt−1 − α̂x)(yt − α̂y)√
σ̂2v
∑T

t=2(xt−1 − α̂x)2
(5)

where σ̂2v is the usual OLS residual variance estimate from (4).

The representation in (4) serves to make clear two very important aspects of the basic statistic

T . First, T is based on separate OLS demeaning of both yt and xt−1. Under weak persistence of

xt, α̂x is a consistent estimator of αx, while α̂x = Op(T
1/2) under strong persistence. Second, T is

based on estimation that takes no account of the endogeneity present between the predictor and

the regression error in (1) and, as we will see in Theorem 1, has a limiting null distribution that,

under Assumption S, depends on both c and on ρxy when c 6= 0. In contrast, under Assumption

W , where xt is weakly persistent, T has a standard normal limiting null distribution and is

asymptotically optimal under Gaussianity; see Jansson and Moreira (2006,p.704).

Under strong persistence, the literature to date has largely focused on the endogeneity issue.

As discussed in the Introduction, analogous tests to T based on instrumental variable estima-

tion of (1) have been considered in, among others, Kostakis et al. (2015) and Breitung and

Demetrescu (2015). Other approaches which are more powerful when xt is strongly persistent,

including Lewellen (2004) and CY, fall within the general control variable approach outlined in

Elliott (2011). Here (1) is augmented by an additional regressor used as a proxy for the current

period innovation driving the predictor, εxt.
1 As discussed in Jansson and Moreira (2006,p.691),

such procedures are asymptotically biased (so power can fall below the nominal level for alter-

natives sufficiently close to the null) as a result. The most popular example of this approach is

CY’s Q test. This is based around the infeasible t-statistic on β when (xt − φxt−1) is added as

a regressor to (1). CY develop a feasible version of this test, using the approach of Cavanagh

et al. (1995), based on a Bonferroni confidence interval for β formed from the sequence of such

statistics across φ and a confidence interval for φ (equivalently c) formed from the well-known

quasi-GLS demeaned augmented Dickey-Fuller [ADF] unit root statistic of Elliott et al. (1996).

While Jansson and Moreira (2006) develop asymptotically uniformly most powerful tests which

are asymptotically unbiased, their simulation results show that the Q test of CY has higher

power in finite samples for most alternatives.

As noted above, the standard t-ratio T is based on OLS demeaning of both yt and xt−1.

1A proxy is needed because εxt is unobservable as both αx, the unconditional mean of xt in (2), and the
autoregressive parameter, φ, in (3) are unknown. These parameters cannot be estimated at a sufficiently fast rate
such that a proxy based on an estimate of εxt delivers (under Gaussianity) an asymptotically efficient test with
a standard normal limiting null distribution, as would obtain if αx and φ were known.
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It is, however, well known in the literature that where a series is strongly persistent it can

be advantageous to quasi-GLS demean it, as proposed in Elliott et al (1996), rather than use

OLS demeaning. Indeed, CY adopt the quasi-GLS demeaned ADF statistic in constructing

the Bonferroni-type confidence interval for c that forms the basis of their predictability test,

arguing that they do so because of the superior power local power properties of the quasi-GLS

demeaned ADF test relative to the standard OLS demeaned ADF test. In particular, Elliott et

al. (1996,p.814) comment that “... where a deterministic mean or trend is present, power can be

improved considerably over the standard Dickey-Fuller test by modifying the method employed

to estimate the parameters characterizing the deterministic term.” Elliott et al. (1996) develop

a class of feasible near-efficient unit root tests. But the asymptotic local power functions of

these tests are essentially indistinguishable from the asymptotic local power function of an ad

hoc quasi-GLS demeaned regression-based ADF test despite this test not being based on any

formal optimality criterion; see, in particular Figures 2 and 3 of Elliott et al. (1996,pp.823-4).

Similarly, the MZGLSα test of Ng and Perron (2001), although again not based on any formal

optimality criterion, also has an asymptotic local power function that is indistinguishable from

the near-efficient tests of Elliott et al. (1996) and superior power than the corresponding MZα

test based on OLS demeaning considered in Stock (1999) and Perron and Ng (1996).

One may therefore conclude that it is largely the quasi-GLS method of demeaning that brings

about this power advantage over the standard OLS demeaned unit root tests. Indeed, as El-

liott et al. (1996,p.823-24) argue “Since the difficulties with the standard tests are associated

with inefficient estimates of the trend parameters, it is reasonable to expect that modified es-

timates could improve their performance.” It therefore seems worth investigating whether the

same applies in the current situation. Consequently, rather than focusing on predictive tests

in the strongly dependent case that are driven by a formal asymptotic optimality property, we

will explore whether, and if so in what settings, using quasi-GLS demeaning of the persistent

predictor can deliver tests with good power. Indeed, as will be shown in Theorem 1 below,

under strong persistence the limiting distribution of T features a component which is a weighted

combination of two distributions, the first of which is the local alternative limit distribution of

the OLS-demeaned Dickey-Fuller statistic and the second is standard normal. The Dickey-Fuller

component dominates the standard normal component when the degree of endogeneity |ρxy| is

large. Where the degree of endogeneity is small the reverse holds and so here we might not

necessarily expect to see any gains from using a test based on quasi-GLS demeaning the pre-

dictor. As we will see in section 3.2, an exploration of the asymptotic local power functions of

(asymptotically) conservative implementations (needed to account for the dependence on c and

ρxy under the null) of the tests shows that quasi-GLS demeaning of the persistent predictor can

indeed deliver power gains relative to T for moderate to large ρxy in the strongly persistent case.

To define the t-ratio from the predictive regression where the predictor regressor is quasi-

GLS demeaned, we first need to define the quasi-GLS estimate of αx. This is obtained from the
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OLS regression of (x1, x2 − φ̄x1, ..., xT − φ̄xT−1) on (1, 1− φ̄, ..., 1− φ̄) where φ̄ := 1− c̄/T with

c̄ = 7; see Elliott et al. (1996) for further details. We denote this estimator α̃x. Under strong

persistence α̃x = Op(1) and, hence, it is not divergent, unlike its OLS counterpart α̂x. Based on

the quasi-GLS demeaned predictor, we can define the corresponding t-statistic associated with

the OLS estimate of β in regression

(yt − α̂y) = β(xt−1 − α̃x) + vt (6)

which is, hence, defined as

T ′ :=

∑T
t=2(xt−1 − α̃x)(yt − α̂y)√
σ̃2v
∑T

t=2(xt−1 − α̃x)2
(7)

where σ̃2v is the OLS residual variance estimate from (6). Notice that we retain OLS demeaning

of yt because, under the null, yt = αy + εyt is not strongly persistent and so GLS demeaning

would not be appropriate.

3.1 Asymptotic Distributions of T and T ′

In this subsection we consider the asymptotic behaviour of the T and T ′ statistics. Predictive

regressions for stock returns typically exhibit a small R2 and low signal-to-noise ratios (see, inter

alia, Campbell, 2008, and Phillips, 2015) so that departures from the null, should predictability

be present, are likely to be small. Consequently, we will establish the large sample behaviour of

the tests under local alternatives such that the slope parameter β in (1) is local-to-zero. The

localization rate (or Pitman drift) will need to be such that β is specified to lie in a neighbourhood

of zero which shrinks with the sample size, T . The appropriate Pitman drift is dictated by

whether xt is strongly or weakly persistent. Where xt is strongly persistent, such that Assumption

S holds, the appropriate local alternative is given by H1,S : β = gT−1
√
σ2y/ω

2
x, where g is a

finite constant and where ω2x := σ2xψ(1)
2 is the long run variance of xt. For weakly persistent

xt, such that Assumption W holds, the appropriate local alternative is given by H1,W : β =

gT−1/2
√
σ2y/ψ

2
x, where ψ

2
x is the short run variance of xt, and g is again a finite constant. The

different localization rates reflect the fact that near-integration implies a much stronger signal

from the predictor xt−1.

In Theorem 1 we now report the asymptotic distributions of the T and T ′ statistics under

both the null and local alternatives for the case where xt is strongly persistent. In Theorem 2,

the proof of which is entirely straightforward and is therefore omitted, we subsequently present

the corresponding limit for T for the case where xt is weakly persistent.

Theorem 1. Let yt and xt be generated according to the model in (1) -(3) under the conditions

stated in Section 2 and let Assumption S hold. Let the regression t-statistics T and T ′ be as
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defined in (5) and (7), respectively. Then, as T →∞, under H1,S:

(i) T ⇒ g

√∫ 1
0
W̄1c(r)2dr +

∫ 1
0
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2xyW2(r)

}
√∫ 1

0
W̄1c(r)2dr

=: S(g, ρxy, c)

(ii) T ′ ⇒ g

∫ 1
0
W̄1c(r)

2dr
√∫ 1

0
W1c(r)2dr

+

∫ 1
0
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2xyW2(r)

}
√∫ 1

0
W1c(r)2dr

=: S ′(g, ρxy, c)

where “⇒” denotes weak convergence and where W1(r) and W2(r) are independent standard

Brownian Motions, W̄1c(r) := W1c(r)−
∫ 1
0
W1c(s)ds with W1c(r) :=

∫ r
0
e−(r−s)cdW1(s).

Remark 4. Theorem 1 highlights that for both the statistics considered the offset seen in their

limiting distributions under the local alternative H1,S, and hence their asymptotic local power, is

a function of the drift parameter g and a different statistic-specific stochastic offset term. Under

the null hypothesis, H0, the asymptotic distributions of both statistics are non-standard and

depend on ρxy and c. When ρxy = 0, T has a N(0, 1) limiting distribution under H0.

Remark 5. The limiting null distribution of T is seen from the representation in Theorem

1 to be a weighted average of two components, the first
∫ 1
0
W̄1c(r)dW1(r)/(

∫ 1
0
W̄1c(r)

2dr)1/2

is the local alternative limit of the OLS-demeaned Dickey-Fuller statistic, while the second
∫ 1
0
W̄1c(r)dW2(r)/(

∫ 1
0
W̄1c(r)

2dr)1/2 is, as noted in Remark 4, a standard N(0, 1) distribution.

The former dominates this weighted average when |ρxy| is large, while the latter dominates when

|ρxy| is small. Consequently, and as discussed earlier, where the degree of endogeneity is small we

would not anticipate the possibility of any gains from quasi-GLS, rather than OLS, demeaning of

the predictor, but where significant endogeneity is present this possibility exists. We will explore

this further in section 3.2 by comparing the asymptotic local power properties of (asymptoti-

cally) size controlled tests based on T and T ′ under strong persistence, across a range of values

of the endogeneity parameter ρxy.

Theorem 2. Let yt and xt be generated according to the model in (1) -(3) under the conditions

stated in Section 2 and let Assumption W hold. Then, as T →∞, under H1,W , T ⇒ N(g, 1).

Remark 6. The result in Theorem 2 demonstrates that, under AssumptionW , T has a standard

normal limiting null distribution. Notice that, unlike under Assumption S, the local power offset

under H1,W is deterministic and equals the drift parameter, g. Indeed, as noted in Jansson

and Moreira (2006,p.704), under Assumption W the test based on T is asymptotically optimal

under Gaussianity. We do not present the corresponding limiting distribution for T ′ under

Assumption W because it can be shown to depend on the distribution of s1. The hybrid testing

scheme, denoted Thyb, that we will subsequently develop in section 3.3, is designed such that it

never selects T ′ in large samples under Assumption W and, hence, we will not need the limiting

distribution of T ′ to establish the limiting distribution of Thyb under Assumption W .

8



3.2 Asymptotic Size and Local Power Comparisons of T and T ′ under

Strong Persistence

Under strong persistence, we can use the limiting representations given in Theorem 1 to compare

the asymptotic sizes and asymptotic local powers of tests based on the T and T ′ statistics for

a range of values of the relevant nuisance parameters on which these depend, ρxy and c. For

a given value of ρxy, the main issue is that the asymptotic critical values of T and T ′ depend

on c, which is unknown, but, unlike ρxy, is not consistently estimable. To make asymptotic size

and, subsequently, asymptotic power comparisons meaningful, we adopt a scheme for simulating

critical values that will, by design, deliver asymptotically conservative tests. We will illustrate

this in the context of a one-sided upper-tailed test for the alternative of β > 0, but the same

approach can be used in an obvious way for lower-tailed and two-tailed tests.

The steps to obtaining asymptotically conservative critical values for tests based on T and

T ′ are as follows:

1. For a given value of ρxy, simulate the null distributions S(0, ρxy, c) and S
′(0, ρxy, c) for

different c across an interval c ∈ [cmin, cmax].

2. At each value of c, compute the respective λ-level upper-tail critical values, cvλ(ρxy, c) and

cv′λ(ρxy, c) say.

3. Set the λ-level critical values for T and T ′ equal to cvλ(ρxy) := maxc∈[cmin,cmax] cvλ(ρxy, c)

and cv′λ(ρxy) := maxc∈[cmin,cmax] cv
′

λ(ρxy, c).

Using cvλ(ρxy) and cv
′

λ(ρxy) will yield correct λ-level sized tests based on T and T ′ in the

case where c = argmaxc∈[cmin,cmax] cvλ(ρxy, c) and c = argmaxc∈[cmin,cmax] cv
′

λ(ρxy, c), respectively,

and give conservatively sized tests for all other values of c. We simulated critical values in

this manner for a significance level λ = 0.05, approximating the Brownian motion processes

in the limiting functionals using IIDN(0, 1) random variates, with the integrals approximated

by normalised sums of 1,000 steps based on 10,000 Monte Carlo replications. This was carried

out for cmin = −5 and cmax = 50 on the grid c ∈ {cmin, cmin + 1, ..., cmax − 1, cmax}, thereby

covering the locally explosive, unit root and local to unit root cases. For ρxy we consider the

grid ρxy ∈ {−0.950,−0.925,−0.900, ..., 0.900}. We will refer to the two tests where T and T
′ are

compared with their asymptotically conservative critical values as Tcon and T
′

con, respectively.

Figure 1 graphs the asymptotic sizes (i.e. g = 0) and asymptotic powers for g = 10 for Tcon

and T ′con. Sizes are plotted across c ∈ {−5,−4, ...49, 50} and powers across c ∈ {0, 1, ...49, 50}

(we do not include negative values of c here to prevent them dominating the local power plots).

Panels (a)-(b), (c)-(d), (e)-(f) and (g)-(h) report results for the representative values ρxy =

−0.9, −0.5, 0 and 0.5, respectively, while Figure S1 in the Supplementary Appendix reports

results for the larger set of values ρxy = {−0.9,−0.7,−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5, 0.7, 0.9}.
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For future reference, we also show the asymptotic size of T evaluated at its 0.05-level critical

value appropriate under weak persistence or when ρxy = 0, i.e. −1.645; this is denoted TN .

Consider first the case where ρxy = −0.9. Regarding the asymptotically conservative tests,

Tcon and T
′

con, we observe that Tcon maximises its asymptotic size (i.e., has asymptotic size of

0.05) for c just below 0. Importantly, it is also generally very undersized for positive c. In

contrast, T ′con, which maximises its asymptotic size at c = 0, has a very flat size profile across

c, never dropping much below 0.05. The pattern of asymptotic size behaviour in TN essentially

magnifies the pattern observed with Tcon, but with very bad oversize for small c. In terms of

local power, between Tcon and T
′

con, it is clear that T
′

con offers substantially more power unless

c is very small, with Tcon suffering due to its undersize outside of the small c range. The local

power plot for TN is not meaningful here because of its severe oversize.

When ρxy = −0.5, the main feature we observe is that Tcon is now less undersized for positive

c compared to when ρxy = −0.9 (and consequently TN is less oversized), while the size behaviour

of T ′con is little changed. On comparing the powers, we see that Tcon remains somewhat less

powerful than T ′con unless c is small, although the deficit is somewhat reduced.

Results for ρxy = 0 show that Tcon has size independent of c and coincides exactly with that

of TN at 0.05, however T ′con tends towards undersize unless c is large. In terms of power, this

behaviour translates into Tcon (i.e. TN) being more powerful than T
′

con unless c is large, where

the powers of Tcon and T
′

con are very close to each other.

Finally, when ρxy = 0.5, both Tcon and T
′

con tend to be undersized for smaller c, with T
′

con

slightly more so. However, the power gains of Tcon over T
′

con remain evident for the smaller values

of c. Also, we see that TN always has slightly lower size than Tcon, and so as a consequence its

powers are always slightly lower.

One obvious feature is the substantial asymmetry of the size and power profiles of Tcon (and

TN) and T
′

con between ρxy = 0.5 and ρxy = −0.5. For ρxy = −0.5, T
′

con clearly possesses a better

power profile than Tcon while the opposite is true for ρxy = 0.5. This pattern of T
′

con displaying

better overall power properties for substantially negative ρxy and Tcon outperforming T
′

con for

positive ρxy extends to the expanded set of ρxy results reported Figure S1 of the Supplementary

Appendix, and on the basis of these it appears that T ′con has arguably the better power properties

whenever ρxy < −0.1 and that Tcon is better otherwise. While these results and conclusions are

drawn for the single point g = 10 under the alternative, similar patterns of relative power

performance arise for other values of g, as seen in Figure S2 of the Supplementary Appendix

where results for g = 5 and g = 20 are reported, reinforcing the general result that T ′con has

better power when ρxy < −0.1 and Tcon better otherwise. In unreported simulations, we also

found that similar relative power patterns are obtained when using the 0.10 and 0.01 significance

levels.

While we have focused the foregoing analysis on upper-tail testing against the alternative

β > 0, lower-tail testing of the alternative β < 0 can be carried out in an analogous fashion.
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To test β < 0, for Tcon and T
′

con we simply replace cvλ(ρxy) and cv
′

λ(ρxy) with −cvλ(−ρxy) and

−cv′λ(−ρxy), respectively. Consequently, an identical pattern of asymptotic sizes and powers

obtains for lower-tailed tests but with ρxy replaced with −ρxy. That is, for lower-tailed tests,

T ′con has better overall power when ρxy > 0.1 with Tcon superior otherwise. Two-sided λ-level

tests can be conducted by taking the union of rejections of the lower-tail and upper-tail tests,

each conducted at the (λ/2)-level.

3.3 A Hybrid Testing Procedure

We now propose a hybrid testing procedure that is designed to capitalize on the power optimality

of the standard t-test TN under weak persistence, and the relative local power advantages of Tcon

and T ′con under strong persistence for different values of ρxy. Specifically, we consider an approach

that, for upper-tail testing (lower-tail testing), (i) uses Tcon under strong persistence if ρxy > −0.1

(ρxy < 0.1), (ii) uses T
′

con under strong persistence if ρxy < −0.1 (ρxy > 0.1), (iii) uses TN under

weak persistence (for both upper- and lower-tail testing). Below we detail how to operationalise

such an approach for practical implementation. We require the use of two switching mechanisms.

Part (iii) involves a switching approach similar to that of EMW, whereby the standard test TN

is selected when evidence of a weakly persistent predictor is present. In the absence of such

evidence, a secondary switching mechanism is needed to determine whether Tcon or T
′

con should

be applied, this time on the basis of a consistent estimate of ρxy.

In the first switching mechanism, we determine whether the predictor variable is strongly or

weakly persistent on the basis of a standard unit root test. For the unit root test we use the

augmented Dickey-Fuller normalised bias coefficient unit root test

ADFπ :=
T π̂

1−
∑p

i=1 γ̂i,p

where π̂ and γ̂i, i = 1, ..., p are obtained from the estimated OLS ADF regression equation

∆xt = µ̂+ π̂xt−1 +

p∑

i=1

γ̂i∆xt−i + ε̂xt. (8)

The lag truncation parameter, p, in (8) needs to satisfy the standard rate condition that as

T →∞, 1/p+p3/T → 0. In practice, the lag length p can be selected by any suitable information

criterion. In the numerical work which follows we will use the modified Bayes information

criterion [MBIC] of Ng and Perron (2001) as we found this to deliver the best finite sample

performance among popularly used lag selection rules. In the context of the MBIC rule, we used

the modification suggested by Perron and Qu (2007), and the maximum permitted lag order p

was set to pmax =
⌊
12(T/100)1/4

⌋
(b.c denoting the integer part), as in Ng and Perron (2001).

Under Assumption S, ADFπ = Op(1), while under Assumption W , ADFπ diverges to minus
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infinity. Consequently, employing any fixed critical value for ADFπ, cv
ADF say, would ensure

that TN would be selected asymptotically under weak persistence since Pr(ADFπ < cvADF )→ 1.

However, in finite samples we found such a cut-off rule can lead to TN being selected too often

under strong persistence, leading to over-sizing of the resulting hybrid procedure. We therefore

implement Thyb with a sample size dependent critical value, cv
ADF
T = −4T 1/2, a choice motivated

from extensive Monte Carlo simulation evidence for a range of values of T , ρxy and c. Under

weak persistence, ADFπ diverges to infinity at a rate faster than T 1/2, hence TN is selected

asymptotically under weak persistence since Pr(ADFπ < cvADFT )→ 1.

In the second switching mechanism, which is operational whenever weak persistence is not

detected, selection between Tcon and T
′

con is made on the basis of the ρxy estimator

ρ̂xy :=

∑T
t=2 ε̂xtε̂yt√∑T

t=2 ε̂
2
xt

∑T
t=2 ε̂

2
yt

where the ε̂yt are the OLS residuals from regressing yt on a constant and xt−1, and ε̂xt are the ADF

residuals from (8). This estimator is consistent for ρxy under either Assumption S or Assumption

W . In practice then, for Tcon and T
′

con we use the critical values cvλ(ρ̂xy) and cv
′

λ(ρ̂xy) as estimates

of cvλ(ρxy) and cv
′

λ(ρxy). To automate selection of an appropriate critical value we calculated a

response surface by OLS regressions of cvλ(ρxy) and cv
′

λ(ρxy) on [1, ρxy, ρ
2
xy, ..., ρ

8
xy] for the grid of

values ρxy = {−0.90,−0.85, ..., 0.9} (37 data points). The response surface coefficient estimates

are given in Table 1 for the usual values of λ (the R2 from the response surface regressions

exceeded 0.999 in all cases), and the response surface critical value is obtained as the fitted value

from the corresponding estimated regression.

To summarise, our suggested hybrid double switching-based testing procedure, which we

denote by Thyb, is defined as follows:

1. If ADFπ < −4T
1/2 perform TN (T with a standard normal critical value).

2. Otherwise:

(a) For upper-tail tests against the alternative β > 0,

if ρ̂xy > −0.1 perform Tcon (T with conservative critical value cvλ(ρ̂xy))

if ρ̂xy < −0.1 perform T ′con (T
′ with conservative critical value cv′λ(ρ̂xy))

(b) For lower-tail tests against the alternative β < 0,

if ρ̂xy < 0.1 perform Tcon (T with conservative critical value − cvλ(−ρ̂xy))

if ρ̂xy > 0.1 perform T ′con (T
′ with conservative critical value − cv′λ(−ρ̂xy))
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In the next section we explore the efficacy of this hybrid testing approach in delivering a

procedure with reliable size and attractive power, relative to existing tests in the literature,

across a wide range of correlation parameters ρxy and degrees of predictor persistence.

4 Finite Sample Size and Power

We examine the finite sample size and power properties of the Thyb procedure and compare these

with the prominent tests in the predictive regression testing literature. Specifically, the tests

we employ as comparators are CY’s Q test; BD, the instrumental variable test of Breitung and

Demetrescu (2015) using their recommended sine and fractional instruments (denoted BD); the

test of Kostakis et al. (2015) (denoted IV X), and the test of EMW (denoted EMW ). Note

that we compare with the original Q test of CY, rather than a modified variant that can control

size under weak persistence, because EMW find in their supplement that the modified test has

lower power than the original test for moderate values of c, and is dominated by the EMW test,

and also because the original Q test is the one implemented by practitioners, hence it presents

a more useful point of comparison. We do not report the test of Jansson and Moreira (2006)

because, as noted earlier, the Q test has higher power than this test in finite samples for most

alternatives.

We generate data for a sample size T = 200 from the model (1)-(3) with (εxt, εyt)
′ ∼

IIDN (0, I2), ψ(L) = 1 and drawing s1 as a standard normal variate. We set αy = αx = 0

as all the tests considered are invariant to these constant terms. We examine rejection frequen-

cies for φ ∈ {1.025, 1, 0.975, 0.95, 0.875, 0.75, 0.5, 0}, thereby varying xt between an explosive and

white noise process, for ρxy = {−0.9,−0.5, 0, 0.5, 0.9}, with β = 0 and β > 0 corresponding to

size and power respectively. The reported results are based on 10,000 Monte Carlo replications.

We conduct a 0.05-level upper tail test for Thyb, Q and EMW ; a 0.10-level two-tailed test

for BD (recall that this test can only be run as a two-tailed test) and consider two variants of

IV X: a 0.05-level upper tail test and a 0.10-level two-tailed test, denoting these as IV X1 and

IV X2 respectively. The Q tests were computed using the code provided by CY.2 To implement

EMW , we adopt their switching function so that the standard test T based on (4) is applied if a

(non-consistent) estimate of the local offset c is at least 130, while their weighted average power

criterion-based test is applied otherwise, using the sample statistics and long run correlation

estimator specified on p.697 of Jansson and Moreira (2006), together with the routines provided

by EMW.3 For the estimate of c we use the natural estimator from (8), −T π̂, and when the

standard T test is used in EMW , we follow EMW’s approach of setting the critical value to the

usual value of 1.645 for non-negative estimates of the long run correlation parameter, but to set it

2The CY routines are downloadable from: http://jfe.rochester.edu/data.htm.
3The EMW routines are downloadable from: https://www.econometricsociety.org/content/supplement-

nearly-optimal-tests-when-nuisance-parameter-present-under-null-hypothesis-0.
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to 1.7 for negative estimates. In calculating the IV X1 and IV X2 tests we implemented the finite-

sample correction factor outlined in Kostakis et al. (2015, p.1516). Although the innovations in

(3) are generated without serial correlation, we do not assume knowledge of this when running

the tests (as would be the case in practical applications). For Q we set pmax =
⌊
12(T/100)1/4

⌋
,

in line with the pmax setting used in Thyb, while for IV X and EMW , long run variances are

calculated using a Bartlett kernel with lag truncation
⌊
T 1/3

⌋
(BD requires no serial correlation

correction).

The simulation results are shown in Figures 2-6. Considering first the sizes of the tests across

the different φ and ρxy settings, the newly proposed Thyb test displays excellent finite sample size

control across the full range of persistence and correlation parameters, with very little deviation

from nominal size, apart from some undersize for positive ρxy in the more persistent cases. Of

the existing competitor tests, BD and IV X2 also demonstrate decent size behaviour, while

the remaining tests can be badly size distorted. Specifically, EMW does not control size for

explosive processes, e.g. size is close to one for ρxy = −0.9 and close to zero for ρxy ≥ 0; also

EMW displays substantial oversize for moderate and small values of φ when ρxy > 0. On the

other hand, Q is severely oversized when φ = 0 and also suffers severe undersize when φ = 1.025

and ρxy = 0.5, and IV X1 can be badly oversized for more persistent series when ρxy is negative.

That EMW does not control size for explosive processes and Q does not control size for white

noise processes is not surprising given that these tests are not designed to be valid in such

circumstances. However, the severe size distortions displayed for these settings highlight the

sensitivity of these tests to departures from the persistence assumptions under which they were

derived, and the contrast with tests such as Thyb, which offer robustness to a much broader set

of persistence parameters, is stark.

Turning attention to the power performance of the procedures, for ρxy = −0.9 (Figure 2),

we find that for the explosive setting φ = 1.025, the correctly sized tests Thyb and IV X2 have

very similar power profiles, lying only a little below those of BD and IV X1 which are modestly

oversized in this case. The power of Q is very low in comparison to the other tests here, while

comparison with EMW is not meaningful due to it having a size close to one. In the unit root

case φ = 1, EMW dominates all other tests in terms of power; it appears that exclusion of

robustness to the case of explosive predictors affords the EMW test the opportunity of greater

power in the unit root setting. Of the other tests, Thyb is next best for small departures from the

null while Q offers some gains over Thyb for larger β, while both of these tests offer significant

power advantages over IV X2 and BD (IV X1 is oversized and hence cannot be compared in

terms of power). As the process becomes less persistent, the power advantages of EMW are

very quickly eliminated, with Thyb offering the best power profile (of the correctly sized tests)

even for φ = 0.975. For ρxy = −0.9, the overall picture is one of Thyb offering the best power

profile for all values of φ except φ = 1 where EMW dominates.

When ρxy = −0.5 (Figure 3), similar comments apply to the explosive and unit root cases,
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although in the unit root case, the power gains of EMW over Thyb are not as marked. For

φ = 0.975, 0.95 and 0.875, the power profiles of EMW , Thyb and Q essentially coincide, and are

the best performing tests for these degrees of persistence. When φ = 0.75 and 0.5, power gains of

Thyb over EMW and Q are seen, the magnitude of which can be quite substantial in the φ = 0.5

case. For the white noise setting φ = 0, Thyb and EMW again coincide while Q is badly oversized

and has poor power. In the case of ρxy = 0 (Figure 4), with the exception of the explosive case

(where EMW has very low size and power), the Thyb, EMW , Q and IV X2 tests share very

similar properties (EMW offers some small power gains for the most persistent settings), while

IV X1 and BD lag behind in terms of power performance. When ρxy = 0.5 (Figure 5), Thyb

performs best for an explosive predictor, with EMW and Q displaying considerably lower power

here, while EMW offers the best power profile for φ = 1, 0.975 and 0.95. However, as the

persistence parameter decreases further, EMW first becomes oversized (as noted above) with

Thyb providing the best power of the correctly sized tests, until φ = 0 when the power profiles of

EMW and Thyb again coincide. Finally, for ρxy = 0.9 (Figure 6), a generally more exaggerated

picture of the ρxy = 0.5 results is seen, with Thyb dominant for φ = 1.025, EMW markedly

best for φ = 1 and 0.975, but then EMW suffering from oversize for smaller φ with Thyb being

the best performing test of those correctly sized. Across Figures 3-6, Thyb and EMW arguably

emerge as the tests with the best overall power profiles, with each test offering relative power

advantages over the other in different settings. However, of these two procedures, Thyb is alone

in also offering reliable size control across the full range of persistence and correlation settings.

In the Supplementary Appendix, Figures S3-S20 report results for cases where additional

serial correlation is permitted in the predictor series, with st of (2) specified as st = φst−1 + ut,

ut = δut−1 + εxt − θεx,t−1, with simulations conducted for θ = ±0.5 and δ = ±0.5. We find that

Thyb retains its feature of never being subject to large upward size distortions, in contrast to Q

and EMW whose sizes can vary dramatically for different combinations of φ, ρxy, δ and θ. For

example, Q can now display substantial oversize for φ = 1.025 across all values of ρxy, as well as

an increased range of less persistent φ cases, especially when ρxy > 0, while the oversize seen for

EMW in Figures 2-6 for small and moderate φ when ρxy > 0 can now extend to the φ = 0 case

and sometimes become more pronounced. When the tests are approximately correctly sized so

that meaningful power comparisons can be made, the same broad patterns emerge as in Figures

2-6, albeit with some differences in the magnitudes of the relative power gains/losses.

Based on our simulation results, we conclude that Thyb offers appealing size and power proper-

ties when compared to the leading currently available testing procedures. It would be fairly naïve

to believe, a priori, that any one test procedure would have the best finite sample size and power

properties across the full constellation of settings that we have examined, i.e. a wide spectrum of

values of the persistence level in the predictive regressor and the correlation coefficient between

the innovations in the model. However, Thyb does appear to perform consistently well in terms

of both size and power across these settings, never seemingly showing a substantial weakness in
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either dimension, something which appears to be rather less true of its extant competitors.

5 An Empirical Illustration

To illustrate the use of our proposed test in practice, we apply it, together with its competitors, to

the monthly U.S. annual equity series analysed inWelch and Goyal (2008), using updated data for

the period 1980:1-2017:12 (T = 456) which is available at http://www.hec.unil.ch/agoyal/.

Our dependent variable, yt, is the S&P 500 value-weighted log excess return and for xt we consider

thirteen putative predictor variables: the dividend price ratio, earnings-price ratio, dividend-

payout ratio, dividend yield, default yield spread, long-term yield, default return spread, stock

variance, net equity expansion, inflation rate, Treasury bill rate, term spread and the book-to-

market value ratio. Detail of the construction of these predictors can be found in Welch and

Goyal (2008). The test procedures are all applied with the same settings and serial correlation

corrections as used in section 4 above. We conduct one-sided upper-tail tests for Thyb, EMW ,

Q and IV X1 (with the exception of the stock variance predictor for which we apply lower-tail

tests), and two-sided tests for BD and IV X2; the tests are implemented at the 0.10, 0.05 and

0.01 significance levels for Thyb, BD, IV X1 and IV X2, and at the 0.05-level for EMW and Q

(again using the code provided by EMW and CY, respectively).

The results are presented in Table 2, along with the values of ρ̂xy and ADFπ (in this appli-

cation, cvADFT = −4T 1/2 = −85.4). There are three cases where one or more of the tests reject

at the 0.10-level or above: the dividend yield, default return spread and stock variance. For the

dividend yield, only Thyb and Q reject; here ρ̂xy is close to zero so we would expect Thyb and Q to

give similar results, although interestingly none of the other tests reject, including EMW . Due

to the persistence in this predictor, as evidenced by the small value of ADFπ, Thyb is here using

Tcon. In the case of the default return spread, all tests but BD exhibit rejections, while for the

stock variance all the tests reject. The values of ADFπ for these two predictors suggests very

low levels of persistence, with Thyb using TN and EMW also switching into the standard t-test.

In summary, fairly limited evidence of return predictability is found across the set of predictors

considered, but it is clear that Thyb uncovers at least as much evidence for predictability as any

of its comparator tests.

6 Conclusions

We have developed new and easy to implement tests for predictability based on computationally

simple regression t-ratios and a switching rule based on a conventional normalised bias ADF

statistic implemented with the MBIC lag selection rule of Ng and Perron (2001). In particular,

together with the standard t-ratio from the OLS regression of returns on a constant and a

lagged predictor, we have discussed a t-ratio from a variant of the standard predictive regression
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where the OLS demeaned returns are regressed on the quasi-GLS demeaned lagged predictor.

Where the predictor is strongly persistent, we have proposed a feasible method for obtaining

(conservative) asymptotic critical values for tests based on each of these statistics and associated

response surfaces have been provided. An analysis of the asymptotic local power functions

of the resulting (asymptotically) conservative tests in the case where the predictor is strongly

persistent showed that these vary considerably with the endogeneity correlation parameter. We

consequently suggest applying either the conservative standard t-ratio or its quasi-GLS variant,

according to the magnitude of the estimated endogeneity correlation parameter. Where the

predictor is weakly persistent the standard t-ratio compared to standard normal critical values

is optimal under Gaussianity. We therefore propose a switching testing procedure, similar in

approach to that considered in Elliott et al. (2015), whereby one of the two conservative tests

is performed, as outlined above, unless the normalised bias ADF statistic indicates that the

predictor is weakly dependent, in which case we compare the standard t-ratio with standard

normal critical values. Monte Carlo simulations presented suggest that our hybrid test compares

very favourably with the leading tests for predictability in the literature, offering arguably the

best trade-off of in terms of overall finite sample size and power properties across a broad diversity

of persistence and endogeneity settings.

We conclude with a suggestion for further research. Like the vast majority of the published

tests in this literature we have considered the case of a single predictor. Some published papers

have considered multiple predictors simultaneously, most notably the IV-based tests of Kostakis

et al. (2015) and Breitung and Demetrescu (2015). Both of these, however, assume that either

all of the predictors are weakly persistent, or all of the predictors are strongly persistent, thereby

disallowing sets of predictors with mixed orders of persistence. The bootstrap tests of Bauer and

Hamilton (2018) also allow for multiple predictors, but again make the same assumption. Amihud

et al. (2009) also allow for multiple predictors but these must all be weakly dependent. Under

the assumption of a common order of persistence, it may be possible to generalise the approach

outlined in this paper to accommodate multiple predictors. Investigating this possibility and

how well it works in practice compared to the other tests mentioned above is beyond the scope

of the present paper but would constitute an interesting topic for further research.

References

Amihud, Y. and C. M. Hurvich (2004). Predictive regressions: A reduced-bias estimation method.

Journal of Financial and Quantitative Analysis 39, 813—841.

Amihud, Y., C. M. Hurvich, and Y. Wang (2009). Multiple-predictor regressions: Hypothesis

testing. Review of Financial Studies 22, 413—434.

17



Bauer, M. D. and J. D. Hamilton (2018). Robust bond risk premia. Review of Financial

Studies 31, 399—448.

Breitung, J. and M. Demetrescu (2015). Instrumental variable and variable addition based

inference in predictive regressions. Journal of Econometrics 187, 358—375.

Campbell, J. Y. (1987). Stock returns and the term structure. Journal of Financial Eco-

nomics 18, 373—400.

Campbell, J. Y. (2008). Viewpoint: Estimating the equity premium. Canadian Journal of

Economics/Revue canadienne d’économique 41, 1—21.

Campbell, J. Y. and R. J. Shiller (1988a). Stock prices, earnings, and expected dividends. The

Journal of Finance 43, 661—676.

Campbell, J. and R. J. Shiller (1988b). The dividend-price ratio and expectations of future

dividends and discount factors. Review of Financial Studies 1, 195—228.

Campbell, J. Y. and M. Yogo (2006). Efficient tests of stock return predictability. Journal of

Financial Economics 81, 27—60.

Cavanagh, C. L., G. Elliott and J. H. Stock (1995). Inference in models with nearly integrated

regressors. Econometric Theory 11, 1131—1147.

Elliott, G. (2011). A control function approach for testing the usefulness of trending variables

in forecast models and linear regression. Journal of Econometrics 164, 79—91.

Elliott, G., U. K. Müller and M. W. Watson (2015). Nearly optimal tests when a nuisance

parameter is present under the null hypothesis. Econometrica 83, 771—811.

Elliott, G., T. J. Rothenberg, and J. H. Stock (1996). Efficient tests for an autoregressive unit

root. Econometrica 64, 813—836.

Elliott, G. and J. H. Stock (1994). Inference in time series regression when the order of integration

of a regressor is unknown. Econometric Theory 10, 672—700.

Fama, E. F. (1981). Stock returns, real activity, inflation, and money. American Economic

Review 71, 545—565.

Fama, E. F. (1990). Stock returns, expected returns, and real activity. Journal of Finance 45,

1089—1108.

Fama, E. F. and K. R. French (1988). Dividend yields and expected stock returns. Journal of

Financial Economics 22, 3—24.

18



Fama, E. F. and K. R. French (1989). Business conditions and expected returns on stocks and

bonds. Journal of Financial Economics 25, 23—49.

Jansson, M. and M. J. Moreira (2006). Optimal inference in regression models with nearly

integrated regressors. Econometrica 74, 681—714.

Keim, D. B. and R. F. Stambaugh (1986). Predicting returns in the stock and bond markets.

Journal of Financial Economics 17, 357—390.

Kostakis, A., T. Magdalinos, and M. P. Stamatogiannis (2015). Robust econometric inference

for stock return predictability. Review of Financial Studies 28, 1506—1553.

Lewellen, J. (2004). Predicting returns with financial ratios. Journal of Financial Economics 74,

209—235.

Ng, S. and P. Perron (2001). Lag length selection and the construction of unit root tests with

good size and power. Econometrica 69, 1519—1554.

Perron, P. and S. Ng (1996). Useful modifications to some unit root tests with dependent errors

and their local asymptotic properties. Review of Economic Studies 63, 435—463.

Perron, P. and Z. Qu (2007). A simple modification to improve the finite sample properties of

Ng and Perron’s unit root tests. Economics Letters 94, 12—19.

Phillips, P. C. B. (2015). Pitfalls and possibilities in predictive regression. Journal of Financial

Econometrics 13, 521—555.

Phillips, P. C. B. and T. Magdalinos (2009). Econometric inference in the vicinity of unity.

Working paper, Singapore Management University.

Phillips, P. C. B., S.-P. Shi and J. Yu (2015). Testing for multiple bubbles: Historical episodes

of exuberance and collapse in the SP500. International Economic Review 56, 1043—1078.

Phillips, P. C. B., Y. Wu and J. Yu (2011). Explosive behavior in the 1990s Nasdaq: When did

the exuberance escalate asset values? International Economic Review 52, 201—226.

Stock, J. H. (1999). A class of tests for integration and cointegration. In R. F. Engle and

H. White, eds, Cointegration, Causality and Forecasting: A Festschrift in Honour of Clive

W.J. Granger , pp.137—167. Oxford University Press.

Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of equity

premium prediction. Review of Financial Studies 21, 1455—1508.

19



Table 1. Response surface coefficient estimates for Tcon and T ′

con

cvλ(ρxy) cv′λ(ρxy)
Regressor λ = 0.1 λ = 0.05 λ = 0.025 λ = 0.01 λ = 0.1 λ = 0.05 λ = 0.025 λ = 0.01

1 1.346 1.707 2.004 2.434 1.293 1.648 1.950 2.377
ρxy −0.819 −0.802 −0.765 −0.726 −0.242 −0.225 −0.285 −0.382
ρ2xy 1.928 2.314 1.947 1.257 −0.055 0.323 0.200 −0.171

ρ3xy −0.402 −0.377 −0.602 −0.736 −0.316 −0.275 −0.186 0.414

ρ4xy −5.008 −6.970 −5.131 −2.385 0.493 −1.447 −0.559 0.209

ρ5xy 0.825 1.013 0.965 1.448 0.401 0.432 −0.005 −0.984

ρ6xy 7.040 10.279 6.692 1.972 −0.808 2.603 0.224 −0.504

ρ7xy −0.470 −0.705 −0.350 −0.762 −0.200 −0.290 0.219 0.693

ρ8xy −3.607 −5.417 −3.154 −0.479 0.459 −1.581 0.236 0.434

Table 2. Application to monthly U.S. S&P 500 returns, 1980:1-2017:12

Predictor ρ̂xy ADFπ Thyb = Thyb BD IV X1 IV X2 Q EMW

Dividend payout ratio −0.07 −39.84 Tcon 0.19 0.46 0.14 0.02
Earnings-price ratio −0.58 −16.22 T ′

con 0.68 0.91 1.06 1.12
Dividend-price ratio −0.99 −3.92 T ′

con 0.91 0.32 0.85 0.72
Dividend yield −0.04 −4.15 Tcon 1.80∗∗ 0.76 0.96 0.93 ∗∗

Default yield spread −0.13 −23.81 T ′

con −0.01 0.07 −0.31 0.09
Long-term yield −0.13 −2.92 T ′

con 0.08 0.19 −0.25 0.06
Default return spread 0.24 −280.05 TN 1.98∗∗ 2.37 1.80∗∗ 3.25∗ ∗∗ ∗∗

Stock variance −0.36 −126.52 TN −3.19∗∗∗ 12.94∗∗∗ −3.32∗∗∗ 11.00∗∗∗ ∗∗ ∗∗

Net equity expansion 0.03 −17.51 Tcon 0.09 0.96 0.14 0.02
Inflation rate 0.00 −44.76 Tcon −0.41 0.29 −0.87 0.76
Treasury bill rate −0.02 −7.87 Tcon 0.01 0.08 −0.53 0.28
Term spread −0.02 −28.33 Tcon 0.26 0.06 0.45 0.20
Book-to-market value ratio −0.66 −5.77 T ′

con 0.38 0.02 0.23 0.05

Notes: ∗, ∗∗ and ∗∗∗ denotes rejection at the 0.10-, 0.05- and 0.01-levels, respectively. The column labelled “Thyb =”
states which of the constituent tests is selected in the hybrid test Thyb.
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(a) g = 0, ρxy = −0.9 (b) g = 10, ρxy = −0.9

(c) g = 0, ρxy = −0.5 (d) g = 10, ρxy = −0.5

(e) g = 0, ρxy = 0 (f) g = 10, ρxy = 0

(g) g = 0, ρxy = 0.5 (h) g = 10, ρxy = 0.5

Figure 1. Asymptotic size (g = 0) and local power (g = 10) of nominal 0.05-level tests based on the
model in equations (1)-(3) with innovation correlation ρxy; Tcon: , T ′

con: , TN :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure 2. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure 3. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :

F.3



(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure 4. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure 5. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure 6. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :

F.6



On-Line Supplementary Appendix

to

“Simple Tests for Stock Return Predictability
with Good Size and Power Properties”

by

D.I. Harvey, S.J. Leybourne and A.M. Robert Taylor

Summary of Contents

This supplement to the paper “Simple Tests for Stock Return Predictability with Good Size

and Power Properties ” contains two sections. In section S.1 a proof of Theorem 1 is provided.

Section S.2 reports additional supporting Monte Carlo results to those reported in sections 3.2

and 4. of the paper.

S.1 Proof of Theorem 1

The result given for T in part (i) of Theorem 1 is well known and is given in, for example,

Equation (3.11) p.1140 of Cavanagh et al. (1995).

To show part (ii) of Theorem 1, we first note that

T∑

t=2

(xt−1 − α̃x)(yt − α̂y) =
T∑

t=2

(xt−1 − α̂x)(yt − α̂y)

since
∑T

t=2(yt − α̂y) = 0. We thus find that T
′ and T are related according to

T ′ =

√
σ̂2v
∑T

t=2(xt−1 − α̂x)
2

σ̃2v
∑T

t=2(xt−1 − α̃x)
2
T .
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Then, under Assumption S,

T−2
T∑

t=2

(xt−1 − α̂x)
2 ⇒ ω2x

∫
1

0
W̄1c(r)

2dr,

T−2
T∑

t=2

(xt−1 − α̃x)
2 = T−2

T∑

t=2

(xt−1 − x1)
2 + op(1)

⇒ ω2x
∫
1

0
W1c(r)

2dr

and since it is straightforward to demonstrate that σ̂2v = σ
2

y + op(1) and σ̃
2

v = σ
2

y + op(1), we find

that

T ′ ⇒

√√√√
∫
1

0
W̄1c(r)2dr

∫
1

0
W1c(r)2dr

S(g, ρxy, c)

= S ′(g, ρxy, c).

S.2 Additional Monte Carlo Results

In this section we report additional supporting Monte Carlo results to those reported in sections

3.2 and 4. of the paper. Specifically:

• Figures S1 and S2 report the asymptotic size and local power of the Tcon, T
′

con and TN tests for an

augmented set of values of the non-centrality parameter, g, and the endogeneity correlation pa-

rameter, ρxy, to those reported in Figure 1 in section 3.2. Specifically, for g = 0 and g = 10, Figure

S.1 reports the full set of results for ρxy = {−0.9,−0.7,−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5, 0.7, 0.9}.

Figure S2 reports the corresponding set of results for g = {5, 20} and ρxy = {−0.9,−0.7,−0.5,

−0.3,−0.1, 0, 0.1, 0.3, 0.5, 0.7, 0.9}. All computational aspects are as detailed in section 3.2 in

the context of the results in Figure 1.

• Figures S3-S22 report finite sample power curves analogous to those reported in Figures 2-6 in

section 4 in the case where additional serial correlation is permitted in the predictor series, with

st of (2) specified as st = φst−1 + ut, ut = δut−1 + εxt − θεx,t−1, with simulations conducted for

θ = ±0.5 and δ = ±0.5. All computational aspects are as detailed in section 4 in the context of

the results in Figures 2-6.
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(a) g = 0, ρxy = −0.9 (b) g = 10, ρxy = −0.9

(c) g = 0, ρxy = −0.7 (d) g = 10, ρxy = −0.7

(e) g = 0, ρxy = −0.5 (f) g = 10, ρxy = −0.5

(g) g = 0, ρxy = −0.3 (h) g = 10, ρxy = −0.3

Figure S1. Asymptotic size (g = 0) and local power (g = 10) of nominal 0.05-level tests,
Tcon: , T ′

con: , TN :
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(i) g = 0, ρxy = −0.1 (j) g = 10, ρxy = −0.1

(k) g = 0, ρxy = 0 (l) g = 10, ρxy = 0

(m) g = 0, ρxy = 0.1 (n) g = 10, ρxy = 0.1

(o) g = 0, ρxy = 0.3 (p) g = 10, ρxy = 0.3

Figure S1 (continued). Asymptotic size (g = 0) and local power (g = 10) of nominal 0.05-level
tests, Tcon: , T ′

con: , TN :
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(q) g = 0, ρxy = 0.5 (r) g = 10, ρxy = 0.5

(s) g = 0, ρxy = 0.7 (t) g = 10, ρxy = 0.7

(u) g = 0, ρxy = 0.9 (v) g = 10, ρxy = 0.9

Figure S1 (continued). Asymptotic size (g = 0) and local power (g = 10) of nominal 0.05-level
tests, Tcon: , T ′

con: , TN :
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(a) g = 5, ρxy = −0.9 (b) g = 20, ρxy = −0.9

(c) g = 5, ρxy = −0.7 (d) g = 20, ρxy = −0.7

(e) g = 5, ρxy = −0.5 (f) g = 20, ρxy = −0.5

(g) g = 5, ρxy = −0.3 (h) g = 20, ρxy = −0.3

Figure S2. Asymptotic local power (g = 5 and g = 20) of nominal 0.05-level tests,
Tcon: , T ′

con: , TN :
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(i) g = 5, ρxy = −0.1 (j) g = 20, ρxy = −0.1

(k) g = 5, ρxy = 0 (l) g = 20, ρxy = 0

(m) g = 5, ρxy = 0.1 (n) g = 20, ρxy = 0.1

(o) g = 5, ρxy = 0.3 (p) g = 20, ρxy = 0.3

Figure S2 (continued). Asymptotic local power (g = 5 and g = 20) of nominal 0.05-level tests,
Tcon: , T ′

con: , TN :
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(q) g = 5, ρxy = 0.5 (r) g = 20, ρxy = 0.5

(s) g = 5, ρxy = 0.7 (t) g = 20, ρxy = 0.7

(u) g = 5, ρxy = 0.9 (v) g = 20, ρxy = 0.9

Figure S2 (continued). Asymptotic local power (g = 5 and g = 20) of nominal 0.05-level tests,
Tcon: , T ′

con: , TN :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S3. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9, θ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S4. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5, θ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S5. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0, θ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S6. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5, θ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S7. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9, θ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S8. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9, θ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S9. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5, θ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S10. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0, θ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S11. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5, θ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S12. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9, θ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :

S.18



(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S13. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9, δ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S14. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5, δ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S15. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0, δ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S16. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5, δ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S17. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9, δ = 0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S18. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9, δ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S19. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5, δ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S20. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0, δ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S21. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5, δ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :
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(a) φ = 1.025 (b) φ = 1

(c) φ = 0.975 (d) φ = 0.95

(e) φ = 0.875 (f) φ = 0.75

(g) φ = 0.5 (h) φ = 0

Figure S22. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9, δ = −0.5;
Thyb: , Q: , BD: , IV X1: , IV X2: - - - , EMW :

S.28


