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Abstract 
Genome-wide association studies (GWAS) have found hundreds of single nucleotide 
polymorphisms (SNP) associated with increased risk of cancer. However, the amount of 
heritable risk explained by SNPs is limited, leaving most of cancer heritability 
unexplained. Tumor sequencing projects have shown that causal mutations are enriched 
in genic regions. We hypothesized that SNPs located in protein coding genes and 
nearby regulatory regions could explain a significant proportion of the heritable risk of 
cancer. To perform gene-level heritability analysis, we developed a new method, called 
Bayesian Gene HERitability Analysis (BAGHERA), to estimate the heritability explained 
by all genotyped SNPs and by those located in genic regions using GWAS summary 
statistics. BAGHERA was specifically designed for low heritability traits such as cancer 
and provides robust heritability estimates under different genetic architectures. 
BAGHERA-based analysis of 38 cancers reported in the UK Biobank showed that SNPs 
explain at least 10% of the heritable risk for 14 of them, including late onset 
malignancies. We then identified 1,146 genes, called cancer heritability genes (CHG), 
explaining a significant proportion of cancer heritability. CHGs were involved in hallmark 
processes controlling the transformation from normal to cancerous cells. Importantly, 60 
of them also harbored somatic driver mutations, and 27 being tumor suppressors. Our 
results suggest that germline and somatic mutation information could be exploited to 
identify subgroups of individuals at higher risk of cancer in the broader population and 
could prove useful to establish strategies for early detection and cancer surveillance. 
 
Significance 
This study describes a new statistical method to identify genes associated with cancer 
heritability in the broader population, creating a map of the heritable cancer genome with 
gene-level resolution. 

   



Introduction 

Decades of research have shown that inherited genomic mutations affect the risk of 
individuals of developing cancer (1). In cancer syndromes, mutations in susceptibility 
genes, such as the tumor protein 53 (TP53) (2), and the BRCA1/2 DNA Repair 
Associated (BRCA1, BRCA2) genes (3,4), confer up to an 8-fold increase in cancer risk 

in first degree relatives (1). However, these inherited mutations are rare and highly 
penetrant and explain only a small fraction of the relative risk for all cancers (5). 

It has been hypothesized that part of cancer risk could be apportioned to high-frequency 
low-penetrant variants, such as single nucleotide polymorphism (SNPs). Genome-Wide 
Association Studies (GWAS) have been instrumental in identifying SNPs associated with 
increased risk of cancer in the broader population (6), including breast (7), prostate (8), 
testicular (9), and blood malignancies (10,11). However, the vast majority of SNPs 
account only for a limited increase in cancer risk (1) and are usually filtered out by 
multiple hypotheses correction procedures applied in GWAS analysis (12), which 
ultimately leaves most of the cancer risk unexplained. 

Although most SNPs have only subtle effects, there is mounting evidence suggesting 
that they still contribute to the risk of developing cancer (6,13). Recently, we have shown 
that low-penetrant germline mutations in p53 pathway genes can directly control cancer 
related processes, including p53 activity and response to chemotherapies (14). 
Moreover, the Pan-Cancer Analysis of Whole Genomes (PCAWG) study found that 17% 

of all patients have rare germline variants associated with cancer (15). It is now 
becoming apparent that quantifying the contribution of low-penetrance but high-
frequency inherited mutations could further improve our understanding on how inherited 
mutations mediate cancer risk and tumorigenesis. 

Heritability analysis provides the statistical framework to estimate the contribution of all 
common SNPs to cancer risk regardless of their statistical significance and effect size 
(16). Studying heritability is now becoming a crucial step in cancer GWAS studies and 
has provided insights on the risk of developing many malignancies (17), including 
prostate (18), cervical (19), testicular germ cell tumor (20) and breast cancer (21,22). 

However, since the functional impact of the SNPs is context-dependent (23), it is 
important to quantify the amount of heritability explained by genomic regions associated 
with well-characterized biological functions (24,25). Recently, the PCAWG study has 
shown that driver mutations are mostly located in protein-coding rather than regulatory 
regions (26), albeit few mutations in cis-regulatory regions, such as the TERT promoter, 
can still mediate cancer phenotypes. Thus, we reasoned that estimating the heritability 
of SNPs in protein-coding genes and proximal regulatory regions could provide novel 
insights into the etiology of this disease. However, developing analytical methods for 
estimating heritability at the gene-level has been challenging, and current methods allow 
only the estimation of heritability for large functional regions or SNP categories, such as 
histone marks or expression Quantitative Trait Loci (eQTL) (25,27). 

Here we developed a new method, called BAyesian Gene HERitability Analysis 
(BAGHERA), which, to the best of our knowledge, is the first method to enable 
heritability analysis both at genome-wide and at gene-level resolution. We performed 
extensive simulations to validate the robustness of BAGHERA estimates and assess 
whether our method was prone to false discoveries. Comparison with other state-of-the-
art methods (27,28) clearly showed that BAGHERA provides significantly more accurate 
heritability estimates for traits with heritability lower than 10%, such as cancer. 

We then used BAGHERA to analyze all the 38 histologically different malignancies 

reported in the UK BioBank cohort (29). Our genome-wide heritability analysis showed 
that SNPs account for at least 10% of the heritable risk of 14 tumors, including late onset 

malignancies, such as prostate and bladder, which are not thought to be driven by high-
frequency inherited mutations. We then used gene-level heritability analysis to build a 
panel of 1,146 genes, called cancer heritability genes (CHGs), that have a significant 
contribution to the heritability of at least one cancer. Interestingly, a significant proportion 
of CHGs are known tumor suppressors or are directly involved in the hallmark processes 
controlling the transformation from normal to cancer cells. 

Our study provides new methods to analyze GWAS data and genetic evidence of a 
causal role for high-frequency inherited mutations in cancer. 



Materials and Methods 

Estimation of heritability at the gene level 

Narrow sense heritability, ℎ2, is defined as the amount of phenotype variance explained 

by additive genetic effects. Genome-wide association studies (GWAS) provide unique 
opportunities to study heritability of many diseases; in particular, with the advent of high-
density arrays, where more than 500,000 SNPs are genotyped, the heritability explained 

by these variants, ℎ𝑆𝑁𝑃
2 , represents a reasonable estimate for ℎ2. 

Our goal is to identify the amount of ℎ𝑆𝑁𝑃
2  explained by a protein-coding gene and its 

proximal regulatory regions. To obtain unbiased heritability estimates and control the 
number of false positives, we require SNPs to be uniquely assigned to genes. 

Hereby, we denote as genome-wide heritability the amount of heritability explained by all 
genotyped SNPs, 𝑀, whereas we refer to the amount of heritability explained by the 

SNPs in a gene as gene-level heritability. In a model where each SNP has equal 

contribution to the genome-wide heritability, the per-SNP heritability is ℏ2 = ℎ𝑆𝑁𝑃
2 𝑀⁄ . 

Conversely, if variants can have varying contribution to the genome-wide heritability, we 

can model the per-SNP heritability as a random variable, ℏ𝑀
2 , whose expectation is ℏ𝑀

2 =

E[ℏ𝑗
2]

𝑗=1,⋯,𝑀
, where 𝑀 denotes the number of SNPs used to average the per-SNP 

contribution to heritability. 

We hereby demonstrate that the genome-wide heritability can be expressed as the sum 
of the gene-level contribution and that the per-SNP genome-wide heritability is the 
expectation of the per-SNP gene-level heritability. Let 𝐾 be the number of non-

overlapping genes in the human genome, each of them with 𝑀𝑘 SNPs, the genome-wide 

heritability can be expressed as ℎ𝑆𝑁𝑃
2 = ∑ ∑ ℏ𝑗

2
𝑗∈𝑘

𝐾
𝑘=1 = ∑ 𝑀𝑘

𝐾
𝑘=1 ℏ𝑀𝑘

2  where 𝑀𝑘ℏ𝑀𝑘

2  is the 

amount of heritability explained by all the SNPs in the 𝑘-th gene. Thus, let the number of 
SNPs in each gene and the gene-level per-SNP heritability be independent random 
variables, it is straightforward to prove that the expectation of the gene-level per-SNP 

heritability is the per-SNP genome-wide estimate ℎ𝑆𝑁𝑃
2 𝑀⁄ = 𝐸[ℏ𝑀𝑘

2 ]
𝐾

. However, 

estimating ℎ𝑆𝑁𝑃
2  only from SNPs assigned to genes would lead to biased estimates, 

since the contribution of the SNPs in intergenic regions would be neglected; thus, SNPs 
outside genic regions are assigned to a single intergenic locus, such that the heritability 
is correctly estimated from all genotyped SNPs. 

A hierarchical Bayesian model for heritability estimation 

The estimation of heritability can be modelled as a hierarchical Bayesian regression 
problem, which provides a robust approach to simultaneously estimate the genome-wide 

heritability, ℎ𝑆𝑁𝑃
2 , and the gene-level heritability, ℎ𝑘

2, from the observed data 𝑌. Our base 

Bayesian regression model can be defined as follows: 

ℎ𝑆𝑁𝑃
2 ∼ 𝐹1( ) 𝑤𝑖𝑡ℎ 𝑠𝑢𝑝𝑝(𝐹1( )) ∈ [0,1]

ℎ𝑘
2| ℎ𝑆𝑁𝑃

2 ∼ 𝐹2(ℎ𝑆𝑁𝑃
2 )

𝑌| ℎ𝑘
2 ∼ 𝐹3(ℎ𝑘

2)

 (1) 

where 𝐹1, 𝐹2, 𝐹3 are suitable distributions. 

SNP heritability, ℎ𝑆𝑁𝑃
2 , is the ratio of the variance of the additive genetic effects, 𝜎𝑔

2, and 

the phenotypic variance, 𝜎𝑃
2. Let 𝜎𝑃

2 = 𝜎𝑔
2 + 𝜎𝑒

2, where 𝜎𝑒
2 are the non-additive and 

environmental effects, these quantities can be modelled as random variables with 𝜎𝑔
2 ∼

𝛤(𝛼, 𝜃) and 𝜎𝑒
2 ∼ 𝛤(𝛽, 𝜃), respectively. Since 𝛤 (𝛼, 𝜃) (𝛤(𝛼, 𝜃) + 𝛤(𝛽, 𝜃))⁄ ∼ Beta(𝛼, 𝛽), a 

suitable distribution for 𝐹1, in Eq. 1, would be an uninformative Beta distribution, e.g. 

Beta(1,1). In practice, the use of a Beta distribution as prior for ℎ𝑆𝑁𝑃
2  allows us to obtain 

accurate heritability estimates in the unit range even for low-heritability diseases, where 
classical methods are usually inaccurate (28). 

The gene-level heritability, ℎ𝑘
2, can be modelled as a random variable following a 

Gamma distribution with shape 𝛼 = ℎ𝑆𝑁𝑃
2  and rate 𝛽 = 1. It is worth noting that ℎ𝑘

2 𝑀⁄  is 

the per-SNP heritability of gene 𝑘, whereas the amount of heritability explained by the 

gene is 𝑀𝑘(ℎ𝑘
2 𝑀⁄ ), where 𝑀𝑘 are the SNPs in gene 𝑘. While theoretically the Gamma 

distribution is unbounded, in practice, for 𝑀𝑘 ≪ 𝑀, the likelihood of obtaining an estimate 

ℎ𝑘
2 s.t. 𝑀𝑘(ℎ𝑘

2 𝑀⁄ ) > 1 is negligible. Therefore, for 𝐹2 = 𝐺𝑎𝑚𝑚𝑎(ℎ𝑆𝑁𝑃
2 , 1), the expectation 

would be ℎ𝑆𝑁𝑃
2 , which is an unbiased estimator of the genome-wide heritability. 



Finally, our model requires a suitable estimator to regress ℎ𝑘
2 from the observed data. 

Recently, many methods have been proposed to estimate heritability from GWAS data 
(30); however, the vast majority requires genotype data, which are both difficult to 
obtain, due to privacy concerns, and computationally taxing to analyze, because of high 
dimensionality. Thus, we adopted the LD-score (LDsc) regression model (28), which 
allows estimation of heritability from GWAS summary statistics, such as regression 
coefficients and standard errors, which are readily available (12). 

Thus, for 𝐹3, we rewrote the LDsc model to estimate gene-level heritability, from 

summary statistics of 𝑀 SNPs in a GWAS with 𝑁 subjects, as follows: 

𝜒𝑗𝑘
2 ∼ 𝑁(𝑁𝑙𝑗 ℎ𝑘

2 𝑀⁄ + 𝑒, √𝑙𝑗)   (2) 

where 𝜒𝑗𝑘
2  and 𝑙𝑗 are the 𝜒2 statistic and LD score associated with SNP 𝑗 in gene 𝑘, 

respectively. The LD score is a quantity defined as 𝑙𝑗 = ∑ 𝑟𝑗𝑧
2

𝑧 , where 𝑟𝑗𝑧
2  is the linkage 

disequilibrium between variant 𝑗 and variant 𝑧 within a certain genomic window (e.g. 

1Mb) in a given population. Importantly, LD scores can be conveniently computed from 
large scale genetic studies, such as the 1000 Genomes project. 

Finally, setting the standard deviation to the LD score of the 𝑗-th SNP allows us to 

control for heteroskedasticity of the test statistics due to linkage disequilibrium, somehow 
similar to the weighting scheme used in LDsc, and a term 𝑒 accounting for confounding 

biases, which is modelled using an uninformative normal prior. 

The Bayesian Gene HERitability Analysis (BAGHERA) software 

We implemented our hierarchical model (see Eq. 3) as part of the BAGHERA software, 

which allows simultaneous estimation of genome-wide and gene-level heritability, also 

called heritability loci, which are genes and proximal regulatory regions with a per-SNP 

heritability higher than the genome-wide estimate (see Fig. 1). Since fitting the Beta-

Gamma model is computationally taxing, we relaxed our requirements by modelling ℎ𝑘
2 

as a random variable following a Normal distribution whose mean is the genome-wide 

heritability, ℎ𝑆𝑁𝑃
2 , and the standard deviation is controlled by an uninformative Inverse-

Gamma prior. While this formulation might provide gene-level heritability estimates 

outside the unit domain, we found this problem to be well controlled in practice. 

𝑒 ∼ 𝑁(1,1)

𝑊 ∼ Inv-Gamma(1,1)

ℎ𝑆𝑁𝑃
2 ∼ Beta(1,1)

ℎ𝑘
2|ℎ𝑆𝑁𝑃

2 , 𝑊 ∼ 𝑁(ℎ𝑆𝑁𝑃
2 , 𝑊2)

𝜒𝑗𝑘
2 |ℎ𝑘

2, 𝑒, 𝑙𝑗 , 𝑁, 𝑀 ∼ 𝑁(𝑁𝑙𝑗 ℎ𝑘
2 𝑀⁄ + 𝑒, √𝑙𝑗)

     (3) 

BAGHERA predicts heritability genes by computing the posterior distribution of 𝜂𝑘 ∼
𝐼(ℎ𝑘

2 > ℎ𝑆𝑁𝑃
2 ), where 𝐼 is a function that returns 1 if the evaluated condition is true, and 0 

otherwise. The expectation of the posterior distribution of 𝜂𝑘, E[𝜂𝑘], is the probability of 

the heritability of a gene 𝑘 of being higher than the genome-wide estimate; specifically, 
we report as heritability genes, those with E[𝜂𝑘] > 0.99. For each gene, we also report 

effect sizes in terms of fold-change with respect to the genome-wide heritability estimate, 

as 𝑓𝑐𝑘 = ℎ𝑘
2 ℎ𝑆𝑁𝑃

2⁄ . 

We use the No-U-Turn Sampler as implemented in PyMC 3.4 (31), using 4 chains with 
104 sweeps each and a burnin step consisting of 2,000 samples. Convergence of the 

sampling process was assessed based on the Gelman-Rubin convergence criterion. 

BAGHERA is released as a Python software package under MIT license, and it is 
available on GitHub (https://github.com/stracquadaniolab/baghera), as a package on 
Anaconda, and as a Docker image. BAGHERA also implements the Beta-Gamma model 
described in the previous section, called BAGHERA-𝛤. Alongside the source code, we 

also provide a Snakemake workflow (https://github.com/stracquadaniolab/workflow-
baghera) to run the pipeline presented in our study. 

UK BioBank summary statistics processing and curation 

We used summary statistics of the UK BioBank GWAS for cancers classified using the 
ICD10 disease classification (source: https://nealelab.github.io/UKBB_ldsc/); importantly, 
data are uniformly processed with state-of-the-art methods, which prevents any 
methodological bias. Here, we developed a custom pipeline to assign LD scores to 
SNPs, and SNPs to human genes (see Fig. 1). Specifically, we used pre-computed LD 
scores for SNPs on autosomal chromosomes with minor allele frequency MAF > 0.01 in 

https://github.com/stracquadaniolab/baghera
https://github.com/stracquadaniolab/workflow-baghera
https://github.com/stracquadaniolab/workflow-baghera


the European population (EUR) of the 1000 Genomes project. We then removed the 
SNPs on chr6:26,000,000-34,000,000, since this region contains the Major 
Histocompatibility Complex (MHC) that have unusual genetic patterns and is known to 
affect GWAS result interpretation (28,32). Ultimately, our analysis is conducted on 
1,285,620 SNPs over 22 chromosomes. 

We then used Gencode v31 to determine the genomic coordinates of protein coding 
genes in the GRCh37 human genome. First, we merged overlapping genes by creating 
a new multi-gene locus, whose name denotes the overlapping genes and whose 
boundaries are defined as the first and last base-pair of these loci. We then assigned to 
a locus all SNPs within or no more than ±50kb away from its boundaries (Fig. 1); this 

strategy allows us to account for cis-regulatory elements while retaining gene-level 
resolution. All other SNPs are assigned to the intergenic locus. Overall 55% of SNPs 

were mapped to a locus, while the rest of them are assigned to the intergenic term. 
Finally, in order to mitigate false positives due to poorly genotyped regions, we 
considered only gene-loci harboring at least 10 variants. Ultimately, our dataset consists 

of 15025 loci, 12042 (80.1%) of them are harboring more than 10 SNPs, which were 
considered in our heritability study. The results of our analyses are deposited in CSV 
format on Zenodo (doi: 10.5281/zenodo.3968269). 

Enrichment analyses 

We used a one-tailed Fisher’s exact test for all enrichment analyses, with p-values 
adjusted using the Benjamini-Hochberg procedure, since we are interested in testing 
whether genes associated with a given category (e.g. molecular function, gene panel) 
are overrepresented in our set of significant heritability loci. Importantly, since loci in our 
analysis might represent overlapping protein-coding regions, we post-processed our 
gene lists by converting each multi-gene locus into the set of its genes. For the Gene 
Ontology analysis, we used a GO slim annotation to obtain a high-level view of the 
processes and functions mediated by a set of genes. All external datasets, with their 
respective date of download, are detailed in the Supplementary Methods. 

Results 

Simulations assessing robustness of genome-wide and gene-level estimates for 
low heritability traits 

We performed extensive testing of our method on simulated data to assess i) the 
robustness of genome-wide estimates for low heritability traits and ii) the false discovery 
rate (FDR) associated with gene-level predictions. All our datasets were calibrated to 

simulate low heritability traits (ℎ𝑆𝑁𝑃
2 ≤ 0.5), which is a reasonable assumption for cancer. 

We generated genotype data for 𝑀 = 100,000 SNPs of 𝑁 = 50,000 subjects using 

haplotypes of chromosome 1 from European populations under different heritability 

models (See Supplementary Methods). 

Our analyses show that BAGHERA provides robust unbiased genome-wide estimates 
(see Supplementary Methods); interestingly, while extreme values of gene-level 
heritability might affect genome-wide estimates, we found that BAGHERA returns correct 
estimates both as the median of the posterior genome-wide heritability distribution and 
as the sum of gene-level heritability contributions. 

We then assessed whether BAGHERA was able to identify heritability loci, that is loci 
harboring SNPs with a contribution to heritability higher than expected under a constant 
per-SNP heritability contribution. To do that, we selected 1% of the loci on chromosome 

1 (≈ 13) as heritability loci and computed Receiver Operator Characteristic (ROC) and 
Precision Recall (PR) curves at varying levels of genome-wide heritability (see 
Supplementary Methods). For all curves, we evaluate the Area Under the Curve (AUC). 
Here we found that BAGHERA correctly identified heritability loci (ROC AUC 0.89), 

although precision and recall were consistently higher for higher genome-wide 
heritability levels (PR AUC: 0.41 for ℎ2 = 0.01, >0.58 for ℎ2 ≥ 0.01; Supplementary 

Figures 1,2). 

However, our simulated datasets have limitations; since simulating genotype data is a 
computationally taxing task, we restricted the number of simulated SNPs to 𝑀 ≈ 100,000 

SNPs from a single chromosome, whereas more than 1M are routinely genotyped in 
modern studies. 

We addressed this limitation by simulating summary statistics using only linkage 
disequilibrium information (see Supplementary Methods). This approach provides a 
tractable framework to test varying levels of heritability enrichment, reported in terms of 



fold-change with respect to the genome-wide estimate, and to simulate SNPs across the 
entire genome, rather than a single chromosome. 

We then assessed the performance by computing ROC and PR curves, the True 
Positive Rate (TPR), and the False Discovery Rate (FDR). BAGHERA correctly identifies 
heritability loci, even with fold-changes in heritability as low as 𝑓𝑐 = 5 (ROC AUC 

range:0.70 − 0.99). Importantly, we found BAGHERA to be conservative with a low false 
discovery rate across all scenarios (FDR range: 0 − 5%); this result suggests that our 

method is suitable for exploratory analyses, and that significant results are associated to 
true biological signal (see Supplementary Figures 3,4,5). 

Comparison with state-of-the-art methods for genome-wide and local heritability 
estimation 

To the best of our knowledge, BAGHERA is the first method specifically designed to 
analyze low heritability traits and to provide heritability estimates with gene-level 
resolution. However, since our methods can estimate both genome-wide and local 
heritability up to gene-level resolution, we decided to compare its performance to state-
of-the-art methods designed to estimate genome-wide and local heritability. 

Genome-wide estimates were compared with LD score regression (LDsc) results (28). 
Gold-standard methods require raw data; however, previous studies have shown that 
LDsc has comparable performance in most scenarios (22). Since LDsc is routinely used 
to estimate heritability for the traits in the UK BioBank, we retrieved the results for all 38 

cancers and compared them to BAGHERA estimates. We found strong consensus 
between the estimates of the two methods (see Supplementary Figure 6), consistent 
with the fact that BAGHERA uses a similar genome-wide estimator. Nonetheless, 
BAGHERA is more robust for low heritability traits, since our Bayesian formulation 
guarantees correct heritability estimates in the unit domain, whereas LDsc incorrectly 
provides negative values. 

Performances on local heritability analysis were compared with the Heritability 
Estimation from Summary Statistics (HESS) method (27), which is the only available 
approach to estimate local heritability from summary statistics. Here, we used 
BAGHERA to estimate the heritability of 1703 regions, as defined in the HESS original 

study (see Supplementary Methods). We then restricted our analysis to breast and 

prostate cancer data, since these malignancies are those with the highest ℎ𝑆𝑁𝑃
2  

estimates; this was necessary to ensure a fair comparison between the two methods, 
since HESS is not designed for low heritability traits. Here we found a statistically 
significant correlation between HESS and BAGHERA estimates (Pearson’s 𝜌: 0.76 for 

prostate and 0.78 for breast, see Supplementary Figures 7,8). However, since 

BAGHERA provides robust estimates for as much as 15000 regions, it enables more 

detailed analyses compared to HESS. 

Taken together, we have shown that BAGHERA provides robust estimates for low 
heritability traits and can identify loci with heritability enrichment up to gene-level, which 
represent a 10-fold increase in genomic resolution compared to existing methods. 

Genome-wide estimates of cancer heritability in the UK Biobank 

We used BAGHERA to analyze 38 cancers in the UK Biobank (29), a large-scale 

prospective study aiming at systematically screening and phenotyping more than 
500,000 individuals, with a reported age at the assessment centre ranging between 37 

and 73 years. 

We obtained summary statistics for 𝑁 = 361,194 individuals (see Table 1), including 

subjects whose tumors were histologically characterized according to the ICD10 
classification, where malignant neoplasms are identified with codes ranging from C00 to 
C97 (see Supplementary Methods). The number of cases varies significantly across 

cancers, ranging from 102 individuals, for malignant neoplasm of base of tongue (C01), 
to 9086 individual, for other malignant neoplasms of the skin (C44). In this cohort, cancer 

prevalence ranges between 0.29% and 2.51%, with higher estimates for common 

malignancies in European populations, such as breast and prostate cancer (33). 

Estimating heritability from non-targeted cohorts can be challenging, due to the small 
prevalence of the disease. To test whether we had sufficient signal for each cancer, we 
reasoned that if the SNP test statistic follows a 𝜒2 distribution with 1 degree of freedom, 

under the null hypothesis of no association, its expected value is 𝐸[𝜒2] = 1; thus, 

similarly to other studies, we expected to have sufficient polygenic signal for our analysis 
if the average 𝜒2 was greater than 1 (25). Here we found the vast majority of cancers to 

have an average 𝜒2 ≈ 1, with only 17 having a deviation greater than 1% from the 



expected value of the test statistic. We also did not consider cancers assigned to other 
malignant neoplasm of the skin (C44), since i) most tumors belong to unspecified 
anatomical regions (C44.3, C44.9), ii) are predominantly caused by sun exposure in 
Europeans and iii) and includes poorly characterized rare skin cancers. Ultimately, we 
restricted our study to 16 cancers for which we had sufficient power to perform our 

analysis. Nonetheless, all our results are consistently aligned with those we obtained 
when considering all 38 cancer types (see Supplementary Figures 9,10,11,14,15, 

Supplementary Tables 5,6,7).  

We then estimated genome-wide heritability of each cancer by computing the median of 

the posterior distribution of ℎ𝑆𝑁𝑃
2  and transforming this value on to the liability scale, 

ℎ𝑆𝑁𝑃𝐿

2 , to obtain estimates independent from prevalence and comparable across 

malignancies. We found cancer heritability to be ℎ𝑆𝑁𝑃𝐿

2 = 14.7% on average, ranging 

from 8% for non-Hodgkin’s lymphoma and up to 31% for testis (see Table 1) consistent 
with other available estimates for this cohort (see Supplementary Materials and 
Supplementary Figures 16,17,18, Supplementary Table 8). While comparison between 
cancer heritability estimates is usually difficult across studies, due to differences in 
histological classification and genetic confounders, we found our heritability estimates on 
the liability scale to be consistent with those reported for other cohorts, in particular for 
breast, prostate, testes and bladder (17,18,20,34). The heritability of testicular cancer is 

the highest among all malignancies (ℎ𝑆𝑁𝑃𝐿

2 = 0.3158), consistent with the hypothesis that 

germline variants have stronger effects in early onset and young adult cancers. 
However, lethal early onset cancers are underrepresented in the UK Biobank, since 
children and young adults were not enrolled in the study, and thus an accurate 
estimation of the correlation between age of onset and heritability is not possible. 
Nonetheless, it is interesting to note that many malignancies with onset in late 
adulthood, such as prostate or bladder, still display a significant heritable component, 

ranging from ℎ𝑆𝑁𝑃𝐿

2 = 0.25 for brain tumors (age of onset: 59) to ℎ𝑆𝑁𝑃𝐿

2 = 0.08 for diffuse 

non-Hodgkin’s lymphoma (age of onset: 60). Overall, 14 out of 16 cancers (87%) show 
heritability higher than 10% suggesting a consistent contribution of SNPs to the heritable 

risk of cancer. 

Heritability loci across 𝟏𝟔 malignancies 

We identified 783 heritability loci (𝜂 > 0.99), harbouring 1,146 protein-coding genes, 

across 16 cancers (see Figure 2), with 53 heritability loci per malignancy on average, 
ranging from 5 loci in mesothelioma, to 271 loci for prostate (see Table 1, Figure 3A); 

here we are using the term heritability loci when referring to the non-overlapping 
genomic regions tested by BAGHERA, which might also include multi-gene loci. Gene-
level heritability across the selected 16 cancers has a long-tail distribution (Figure 3B), 

with a median 16-fold increase compared to the genome-wide estimate, ranging from 
4.4-fold for the Phosphodiesterase 4D (PDE4D) gene locus to 276-fold for the fibroblast 

growth factor receptor 2 (FGFR2) gene locus in breast cancer. Interestingly, 87% of 
heritability loci show per-SNP heritability 10-fold higher than the genome-wide estimate. 

Only 3 loci have fold changes below 5 and more than 99% of loci with fold-changes 

below 10 are found in the breast and prostate datasets, which have ℎ𝑆𝑁𝑃
2 > 0.01. Based 

on our simulations, our set of heritability loci are expected to have a limited number of 
false positives. 

Interestingly, heritability loci represent less than 1% of all the loci in the genome, but 
they are significantly more than those harboring genome-wide significant SNPs (see 
Supplementary Materials, Supplementary Figures 12,13, Supplementary Table 4); this 
result is consistent with cancer being polygenic. Although we identified a polygenic 
signal, heritability loci account for up to 38% of all the heritable risk (breast cancer), 

suggesting that a significant amount of heritability could be explained by only few loci 
across the genome (Figure 3A). Consistent with our hypotheses, when we looked at the 
contribution of SNPs in intergenic regions, we did not find any heritability enrichment. 

We then tested whether heritability loci were shared among multiple cancers to identify 
any potential genomic hotspot for pan-cancer heritability. We found that only 59 (≈ 8%) 

of the 783 heritability loci show a significant heritability enrichment in at least 2 cancers, 
and 8 (≈1%) in 3 or more (Figure 3C-D). This observation is consistent with results from 

tumor sequencing studies, which have shown that pleiotropic effects are limited to few 
master regulators, such as TP53 (35). Nonetheless, after performing literature curation, 
we found evidence for a cancer mediating role for 7 of the 11 unique protein coding 

genes found in at least 3 cancers (see Supplementary Table 1), including 4 genes 
(CLPTM1L, APAF1, THADA, AGBL1) involved in apoptosis and 3 genes (PCDH15, 

DLG2, POU5F1B) involved in cell division, migration and tumorigenesis (36,37). It is 
important to note that the cisplatin resistance-related protein 9 (CLPTM1L) is the 



heritability locus found in most cancers (4 out of 16) and is one of the gene in the 
5p15.33 locus (the other being TERT), which has been consistently associated with  
different cancer types (38). 

Taken together, our analysis found 783 loci, harbouring 1,146 protein-coding genes, 
having a significant contribution to the heritable risk of at least 1 cancer. We denoted 

these 1,146 genes as cancer heritability genes (CHGs). 

Cancer heritability genes are recurrently mutated in tumors 

Tumor sequencing projects, including The Cancer Genome Atlas (TCGA) program and 
the Pan-Cancer Analysis of Whole Genomes (PCAWG) project, have identified a 
number of driver genes, which promote tumorigenesis when acquiring a somatic 
mutation. 

There is also increasing evidence that genes harboring germline and somatic mutations 
can mediate cancer phenotypes (14,39), thus we tested whether cancer heritability 
genes are significantly enriched among known cancer driver genes. To do that, we 
obtained a curated list of driver genes using the COSMIC Cancer Gene Census 
(Supplementary Table 2). Interestingly, we found that a significant proportion of cancer 
heritability genes, 60 out of 1,146 (≈ 5%), are also known cancer driver genes (𝑂𝑅 =
1.75, 𝑃: 1.3 × 10−4). These genes include members of the p53 pathway, such as 

CDKN2A, the Tumor Protein 63 (TP63) and MDM4 regulator of p53 (MDM4), as well as 
genes mutated across multiple types of cancer, including FGFR2 and the anaplastic 
lymphoma kinase (Ki-1) (ALK) gene (Figure 4A and 4B). 

However, the number of cancer driver genes is extremely variable across malignancies 
and studies, thus we tested whether the enrichment of CHGs in cancer driver genes was 
independent from the cancer driver gene annotation used. To do that, we collected lists 
of cancer driver genes from multiple studies, including the PCAWG project (15), the 
Precision Oncology Knowledge Base (OncoKB, (40)), Memorial Sloan Kettering Impact 
and Heme gene panels (41), and the curated list of cancer genes by Vogelstein et al. 
(42). Here we found that CHGs are significantly enriched in each cancer driver gene 
annotation analyzed, with an enrichment ranging from OR=1.55 for the PCAWG 

annotation to OR=2.47 for OncoKB tumour suppressors (Supplementary Table 2). 
Interestingly, we did not find any enrichment of CHGs in genes carrying germline driver 
mutations; this is consistent with the fact that most germline driver mutations are rare, 
and thus are unlikely to be genotyped in GWAS studies. 

Taken together, we found 60 cancer heritability loci that are also recurrently mutated in 

multiple tumours; this result suggests that SNPs in cancer heritability genes might affect 
the same biological programs altered by somatic mutations in tumors. 

Cancer heritability genes underpin biological processes affecting tumorigenesis 

Our gene-level heritability analysis identified 1,146 genes explaining a significant 

proportion of the heritable risk of at least 1 cancer. We then showed that cancer 

heritability genes are enriched in known cancer driver genes, suggesting that loci 
recurrently mutated in tumours also harbour high-frequency inherited mutations that 
could mediate cancer risk. Thus, we hypothesized that cancer heritability genes could be 
involved in molecular functions and biological processes affecting tumorigenesis. 

To do that, we characterized CHGs by gene ontology (GO) enrichment analysis (see 
Table 2). We found a statistically significant enrichment for 21 terms (Fisher’s exact test; 
False Discovery Rate, FDR < 10%, Figure 4C), with an average odds ratio of 1.31 and 

up to 1.55 for growth. CHGs are genes predominantly involved in biological processes 
driving cell morphogenesis, differentiation, proliferation and growth, which include the 
mammalian target of rapamycin (mTOR) and the Poly [ADP-ribose] polymerase 1 
(PARP1) genes. We also observed a significant enrichment of genes associated with 
cytoskeleton organization and anatomical structure development, which includes the 
Mothers against decapentaplegic homolog 2 (SMAD2) gene. 

While these molecular processes drive normal cell fate, survival and proliferation, they 
are recurrently hijacked by cancer cells to gain growth advantage and spread through 
the body through metastases (43), a process that is considered an hallmark of cancer. 
We then tested whether cancer heritability genes are associated with any other hallmark 
of cancer, which are processes, common to all malignancies, controlling the 
transformation of normal into cancer cells (44). These lists of biological processes 
include proliferative signaling, suppression of growth, escaping immune response, cell 
replicative immortality, promoting inflammation, invasion and metastasis, angiogenesis, 
genome instability and mutation, and escaping cell death. Interestingly, we found 33 



CHGs associated with at least one hallmark (𝑂𝑅: 2.062, 𝑃: 3 × 10−4). Consistent with our 

previous analysis, cancer heritability loci are involved in escaping cell death, mediating 
proliferative signaling, invasion and metastasis (Figure 4D and Supplementary Table 3). 
We then went further to understand whether CHGs mediate these cancer processes by 
acting either as tumor suppressor genes (TSGs) or oncogenes (see Fig. 4E). To do that, 
we used the Precision Oncology Knowledge Base (OncoKB, (40)), a curated list of 519 
cancer genes, including 197 tumour suppressor genes (TSGs), 148 oncogenes and 

other cancer genes of unknown function. We found that 27 CHGs are tumour 

suppressors (OR: 2.47, 𝑃: 7.9 × 10−6), whereas 17 are reported as oncogene (OR: 1.83, 

𝑃: 0.0198) of which 4 can function both as TSG and as oncogene (Figure 4A, D and E 
and Supplementary Tables 2 and 3); importantly, this result has been also confirmed 
when using the COSMIC Cancer Gene Census TSG annotation (OR: 2.036, 

𝑃: 2.07 × 10−4). Tumour suppressor CHGs include well-known cancer driver genes, such 

as CDKN2A and SMAD2, which regulate cell growth, and DNA repair genes, such as 
MUTYH and FANCA (45). 

Taken together, we found evidence that cancer heritability genes directly mediate 
processes underpinning tumorigenesis; interestingly, while we did not observe 
pleiotropic effects at genomic level, we found that cancer heritability genes are involved 
in biological processes common to all cancers. It is then conceivable that inherited 
mutations in genes controlling these biological programs could provide a selective 
advantage to cancer cells, once they acquire a driver somatic mutation. Our results 
suggest a functional role for cancer heritability genes consistent with a two-hit model 
(46); while inherited mutations associated with oncogene activation are likely to be under 
purifying selection, mutations in tumor suppressor genes can be observed at higher 
frequency because deleterious effects are only observed upon complete loss of function. 

Discussion 

Our study provides new fundamental evidence demonstrating a strong contribution of 
high-frequency inherited mutations to the heritable risk of cancer. We found that SNPs 
account for at least 10% of the heritable risk of 14 malignancies, and their contribution is 

not only limited to early onset cancers, but also malignancies with a late age of onset, 
such as bladder and prostate. 

We then went further and built a high-resolution map of the heritable cancer genome 
consisting of 1,146 genes showing a significant contribution to cancer heritability. We 

then showed that CHGs are responsible for controlling growth, cell morphogenesis and 
proliferation, which are fundamental processes required for tumorigenesis. Interestingly, 
we found that a significant proportion of CHGs (60 out of 1,146) are also recurrently 

mutated across many tumors, including well known driver genes such as FGR2, 
CDKN2A and SMAD2. Importantly, 27 out of 60 (45%) are known tumor suppressors 

genes (TSGs), suggesting that SNPs might support cancer by hijacking tumor 
suppressor functions. Ultimately, our results suggest that inherited mutations in tumor 
suppressor genes could create a favorable genetic background for tumorigenesis. It is 
conceivable that SNPs make normal cells more likely to evade the cell-cell contact 
inhibition of proliferation, to elude the anatomical constrains of their tissue and to 
achieve more easily independent motility in presence of other early oncogenic events; 
evidence supporting these mechanisms has been recently found in advanced urothelial 
cancer (47). Thus, combining germline and somatic genetic information of key cancer 
genes could facilitate the identification of subpopulations of patients at higher risk, 
differential response to treatment and risk of relapse. Nonetheless, determining the 
heritability threshold to justify the integration of genes carrying low penetrant mutations 
into clinical cancer genetics will require further investigation. 

However, a causal role for many CHGs cannot be ascertained only by genetic analysis 
and will require further experimental validation. Of particular interest is the subset of 
CHGs belonging to the Solute carrier (SLC) family (48). SLCs might support cancer 
metabolism, and polymorphisms in these loci could provide a strong basis for interaction 
with environmental risk factors such as fats, carcinogens, metal ion deficiencies, and 
thus could be integrated with future dietary studies, since risk factors may be greater in 
subgroups of patients. 

Obtaining a genomic map with gene-level resolution required the development of a new 
method, we called BAyesian Gene HERitability Analysis (BAGHERA), for estimating 
heritability of low heritability traits at the gene-level; to the best of our knowledge, 
BAGHERA is the first method to enable heritability analysis with gene-level resolution. 
We performed extensive simulations to show that our method provides robust genome-
wide and gene-level heritability estimates across different genetic architectures and 



outperforms existing methods when used to analyze low heritability traits, such as 
cancer. 

We also recognize the limitations of our work. While our method provides accurate 
estimates of genome-wide heritability, extremely low heritability diseases could lead to 
negative gene-level heritability estimates; this was a trade-off to ensure reasonable 
computational efficiency, although a rigorous model is provided as part of our software. 
Our analysis does not incorporate functional information, such as gene expression or 
stratified effects for synonymous/non-synonymous variants, which limits our power of 
detecting tissue-specific contributions and single causal variants. Finally, since 
BAGHERA works at single-gene level using summary statistics, analyzing tumors 
triggered by multi-hit events might still require genotype data. 

Taken together, our study provides new insights on the genetic architecture of cancer 
with gene-level resolution. We expect that integrating heritability information of cancer 
genes, along with other cancer heritability genes linked to environmental risk factors and 
somatic information, will help define more effective early detection and surveillance 
strategies for the broader population. 
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Tables 
 

Table 1. Genome-wide heritability of the 38 cancers in the UK BioBank. For each 

cancer, we report the number of cases, the prevalence in the cohort, the average 𝜒2 of 

the SNPs considered in the GWAS analysis (𝜒2), the genome-wide estimates of 

heritability, both on the observed (ℎ𝑆𝑁𝑃
2 ) and the liability (ℎ𝑆𝑁𝑃𝐿

2 ) scale, and the number of 

heritability loci (HL) reported by BAGHERA as significant for 𝜂 > 0.99. In bold, we denote 

the 16 cancers that we used for the downstream analysis analysis and functional 
characterisation. 

ICD10 Malignancy Cases Prevalence 𝜒2 ℎ𝑆𝑁𝑃
2  ℎ𝑆𝑁𝑃𝐿

2  HL 

C44 Other malignant neoplasms of skin 9086 0.0252 1.1408 0.0341 0.2422 422 

C50 Malignant neoplasm of breast 8304 0.0230 1.0869 0.0170 0.1285 267 

C61 Malignant neoplasm of prostate 4342 0.0120 1.0765 0.0191 0.2320 271 

C18 Malignant neoplasm of colon 2226 0.0062 1.0399 0.0070 0.1416 33 

C43 Malignant melanoma of skin 1672 0.0046 1.0288 0.0051 0.1293 52 

C15 Malignant neoplasm of 
oesophagus 

519 0.0014 1.0236 0.0035 0.2296 24 

C67 Malignant neoplasm of bladder 1554 0.0043 1.0222 0.0047 0.1254 39 

C34 Malignant neoplasm of bronchus 
and lung 

1427 0.0040 1.0208 0.0035 0.1010 17 

C20 Malignant neoplasm of rectum 1118 0.0031 1.0130 0.0031 0.1091 15 

C62 Malignant neoplasm of testis 221 0.0006 1.0120 0.0024 0.3158 29 

C71 Malignant neoplasm of brain 368 0.0010 1.0116 0.0030 0.2578 19 

C45 Mesothelioma 150 0.0004 1.0110 0.0012 0.2213 5 

C91 Lymphoid leukaemia 349 0.0010 1.0109 0.0018 0.1646 11 

C02 Malignant neoplasm of other and 
unspecified parts of tongue 

152 0.0004 1.0106 0.0013 0.2475 23 

C16 Malignant neoplasm of stomach 388 0.0011 1.0106 0.0010 0.0868 12 

C83 Diffuse non-Hodgkin’s 
lymphoma 

587 0.0016 1.0104 0.0014 0.0824 14 

C82 Follicular (nodular) non-
Hodgkin’s lymphoma 

320 0.0009 1.0101 0.0031 0.3059 21 

C90 Multiple myeloma and malignant 
plasma cell neoplasms 

401 0.0011 1.0092 0.0013 0.1020 15 

C56 Malignant neoplasm of ovary 693 0.0019 1.0063 0.0012 0.0616 13 

C54 Malignant neoplasm of corpus uteri 988 0.0027 1.0063 0.0008 0.0295 14 

C48 Malignant neoplasm of 
retroperitoneum and peritoneum 

122 0.0003 1.0053 0.0009 0.2064 5 

C64 Malignant neoplasm of kidney 
except renal pelvis 

701 0.0019 1.0043 0.0009 0.0455 10 

C01 Malignant neoplasm of base of 
tongue 

102 0.0003 1.0043 0.0014 0.3596 10 

C73 Malignant neoplasm of thyroid 
gland 

278 0.0008 1.0042 0.0011 0.1254 13 

C49 Malignant neoplasm of other 
connective and soft tissue 

222 0.0006 1.0040 0.0017 0.2229 28 

C80 Malignant neoplasm without 
specification of site 

398 0.0011 1.0040 0.0016 0.1300 14 

C53 Malignant neoplasm of cervix uteri 192 0.0005 1.0039 0.0005 0.0709 14 

C22 Malignant neoplasm of liver and 
intrahepatic bile ducts 

189 0.0005 1.0031 0.0009 0.1353 7 

C21 Malignant neoplasm of anus and 
anal canal 

139 0.0004 1.0027 0.0007 0.1436 23 

C85 Other and unspecified types of 
non-Hodgkin’s lymphoma 

762 0.0021 1.0023 0.0013 0.0600 9 

C09 Malignant neoplasm of tonsil 162 0.0004 1.0022 0.0006 0.1009 5 

C92 Myeloid leukaemia 328 0.0009 1.0011 0.0008 0.0764 9 

C17 Malignant neoplasm of small 
intestine 

114 0.0003 1.0007 0.0015 0.3596 12 

C19 Malignant neoplasm of 
rectosigmoid junction 

498 0.0014 0.9992 0.0006 0.0390 10 

C25 Malignant neoplasm of pancreas 403 0.0011 0.9991 0.0005 0.0402 12 

C81 Hodgkin’s disease 150 0.0004 0.9989 0.0003 0.0597 5 

C69 Malignant neoplasm of eye and 
adnexa 

137 0.0004 0.9970 0.0004 0.0705 14 

C32 Malignant neoplasm of larynx 159 0.0004 0.9914 0.0003 0.0450 7 

 

 

  



Table 2. Gene ontology enrichment analysis of cancer heritability genes. We report 
the gene ontology terms significantly associated with cancer heritability genes, at 
10%FDR. For each term, we report the number of annotated CHGs, the odds ratio, the 

p-value from the Fisher’s Exact test and the adjusted p-value after applying the 
Benjamini-Hochberg procedure. 

 

GO term No. CHGs OR p-value FDR 

anatomical structure development 352 1.31 0.000044 0.006133 

kinase activity 126 1.44 0.000237 0.012169 

growth 84 1.55 0.000263 0.012169 

DNA metabolic process 82 1.53 0.000481 0.016723 

cytoskeleton organization 120 1.39 0.000861 0.023924 

ion binding 431 1.22 0.001248 0.028903 

biosynthetic process 361 1.21 0.002711 0.041872 

biological_process 505 1.20 0.002224 0.041872 

cell morphogenesis 81 1.43 0.002419 0.041872 

cell proliferation 146 1.30 0.003404 0.047312 

cytoskeleton 141 1.28 0.005851 0.054216 

cellular protein modification process 275 1.21 0.004476 0.054216 

cell-cell signaling 123 1.30 0.005097 0.054216 

peptidase activity 103 1.33 0.005513 0.054216 

DNA binding transcription factor activity 160 1.27 0.005068 0.054216 

enzyme binding 178 1.24 0.006568 0.057059 

cell differentiation 268 1.20 0.007776 0.063577 

embryo development 77 1.36 0.009437 0.069042 

cytoskeletal protein binding 77 1.36 0.009173 0.069042 

nucleus 347 1.16 0.014507 0.097916 

DNA binding 174 1.21 0.014793 0.097916 

 

 

  



Figures 
 
Figure 1: BAyesian Gene-level HERitability Analysis (BAGHERA) workflow. Here 
we show the 4 steps required to run gene-level heritability analysis with BAGHERA. 1) In 
the preprocessing step, SNP summary statistics are retrieved, and genes are processed, 
such that a multi-gene locus is created when two or more genes are overlapping. 2) 
SNPs are assigned to the closest gene locus within 50kb. For example, the SNP marked 
with a star is within 50kb from both D;E and F, but it is assigned to locus F, which is 
closer. SNPs farther than 50kb from any gene locus are considered intergenic. 3) 
BAGHERA uses the No U-Turn Sampler (NUTS) (on the left) to fit our hierarchical 
Bayesian model to estimate genome-wide and gene-level heritability. The sampler 
estimates the posterior distributions of the heritability terms (on the right) and evaluates 
the indicator function to identify loci explaining a significant amount of heritability. When 
𝜂 > 0.99, the locus is considered significant. 4) Finally, results are saved into CSV 

format to facilitate downstream analyses. It is worth noting that ℎ𝑆𝑁𝑃
2  is the estimate for 

genome-wide heritability and it is calculated for the malignancy rather than per-locus. 

 

Figure 2: Cancer heritability loci across the human genome. For each chromosome, 
we report all cancer heritability loci with heritability enrichment in the top 1%. In case of a 
multi-gene locus, we report only the first gene name of the locus. 

 

Figure 3: Heritability loci across cancers in the UK Biobank. A) For each 

malignancy, we report the observed heritability (ℎ𝑆𝑁𝑃
2 , left box), the heritability on the 

liability scale (ℎ𝑆𝑁𝑃𝐿

2 , dark barplot, between 0 and 0.5), the percentage of ℎ𝑆𝑁𝑃
2  explained 

by heritability loci (central barplot, the percentage explained by HLs is highlighted with a 
darker shade) and the number of heritability loci (right barplot). B) Gene-level heritability 
distribution across heritability loci, expressed as fold-change with respect to the genome-
wide estimate. The x-axis is bound to the minimum and maximum values of fold-change. 
We highlighted the top locus (FGFR2) and the median (15.9) fold-change across all 
cancers. C) Percentage of cancer heritability loci associated with multiple cancers. 
Approximately 8% of HLs are common to multiple malignancies. D) Cancer heritability 
loci associated with multiple cancers. We report the 59 HLs common to at least 2 
cancers; here the size of the dot is proportional to the fold-change of the locus in the 
specific cancer. 

 

Figure 4: Functional characterization of cancer heritability genes. A) List of CHGs 
reported as cancer driver genes across multiple annotations. With the blue hue (first 
three columns), we report the genes annotated by OncoKB, specifying whether they are 
tumor suppressors (TSG) or oncogenes (OG). With red and orange, 4-th and 5-th 
columns, we report the genes that are included in the COSMIC annotation as drivers 
and whether the reported mutation is somatic and germline. In the last four columns, we 
annotate each gene to the cancer type for which is denoted as driver in COSMIC. B) 
Enrichment of CHGs across cancer driver genes annotations; here we report OncoKB 
(purple), COSMIC database (light blue), different cancer driver sets (dark blue) and other 
sets (green) like DNA repair genes and known actionable targets. Stars indicate 
statistical significance, with multiple terms having P<10−4,. C) Gene Ontology 

enrichment analysis using Fisher’s exact test. For each significant term, we report the 
odds-ratio (x-axis) and −𝑙𝑜𝑔10(FDR) (color gradients). D) CHGs associated with the 
hallmark of cancers; genes in darker grey are tumour suppressors. Each gene is 
connected to the hallmarks that it mediates according to the Cancer Gene Census. E) 
Tumor suppressor and oncogene CHGs across cancers. For each cancer type (y-axis), 
we report the number of genes (x-axis) reported as tumor suppressors (TSGs) and/or 
oncogenes in OncoKB (color codes, cancer genes are known to be drivers, but their 
specific role is not reported). 

 


