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ABSTRACT Brain-Computer Interfaces (BCI) arose as systems that merge computing systems with the
human brain to facilitate recording, stimulation, and inhibition of neural activity. Over the years, the devel-
opment of BCI technologies has shifted towards miniaturization of devices that can be seamlessly embedded
into the brain and can target single neuron or small population sensing and control. We present a motivating
example highlighting vulnerabilities of two promising micron-scale BCI technologies, demonstrating the
lack of security and privacy principles in existing solutions. This situation opens the door to a novel
family of cyberattacks, called neuronal cyberattacks, affecting neuronal signaling. This article defines the
first two neural cyberattacks, Neuronal Flooding (FLO) and Neuronal Scanning (SCA), where each threat
can affect the natural activity of neurons. This work implements these attacks in a neuronal simulator to
determine their impact over the spontaneous neuronal behavior, defining three metrics: number of spikes,
percentage of shifts, and dispersion of spikes. Several experiments demonstrate that both cyberattacks
produce a reduction of spikes compared to spontaneous behavior, generating a rise in temporal shifts and a
dispersion increase. Mainly, SCA presents a higher impact than FLO in the metrics focused on the number
of spikes and dispersion, where FLO is slightly more damaging, considering the percentage of shifts.
Nevertheless, the intrinsic behavior of each attack generates a differentiation on how they alter neuronal
signaling. FLO is adequate to generate an immediate impact on the neuronal activity, whereas SCA presents
higher effectiveness for damages to the neural signaling in the long-term.

INDEX TERMS Brain computer interfaces, security, artificial neural networks, biological neural networks.

I. INTRODUCTION
Brain-computer Interfaces (BCIs) are considered as bidirec-
tional communication systems between the brain and exter-
nal computational devices. Although BCIs arose as systems
focused on controlling external devices such as prosthetic
limbs [1], they have gone one step further, enabling artificial
stimulation and inhibition of neuronal activity [2]. In the
last years, neuronal stimulation has already been applied in
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different scenarios such as the provision of sensory feedback
to prosthetic or robotic limbs [3], treatment of neurodegenera-
tive diseases or disorders like Alzheimer’s or depression [4],
and even futuristic applications such as interconnected net-
works of brains [5] or brains connected to the Internet [6].

New BCI technologies are emerging, allowing a precise
acquisition, stimulation, and inhibition of neuronal signaling.
It reduces the brain damage caused by traditional invasive
BCI systems and improves the limitations of non-invasive
technologies such as attenuation, resolution, and distortion
constraints [7], [8]. One of the most recent and promising
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BCI technique focuses on the use of nanodevices allocated
across the brain cortex [9]. Specifically, a relevant task of
nanodevices equipped with optogenetic technology is the use
of light to stimulate or inhibit engineered neurons according
to different firing patterns sent by external transceivers [10].
Promising initiatives such as Neuralink aim to accelerate the
development of these technologies [11].

The previous BCI technologies hold the promise of chang-
ing our society by improving the cognitive, sensory, and
communications skills of their users. However, they also open
the door to critical cyberattacks affecting the subjects’ safety
and data security. In this context, essential vulnerabilities of
current non-invasive BCI systems have been documented,
exploited, and partially solved in the literature [12]. As an
example, the authors of [13], [14] demonstrated the feasi-
bility of presenting malicious visual stimuli to extract sub-
jects’ sensitive data like thoughts. Besides, Sundararajan [15]
conducted a successful jamming attack over the wireless
communication used by the BCI, compromising its avail-
ability. However, the irruption of invasive and non-invasive
stimulation and inhibition techniques, without security nor
privacy capabilities, brings to the reality a novel family of
cyberattacks affecting the neuronal activity. We call them
Neural cyberattacks, and they present a critical number of
open challenges like the definition and categorization of the
different neural cyberattacks and their neuronal behavior, the
impact of each cyberattack to the neuronal behavior, and their
consequences in the brain and body.

To improve the previous challenges, the main contributions
of this article are the following ones:
• The identification of cybersecurity vulnerabilities on
emerging neurostimulation implants.

• To the best of our knowledge, the first description and
implementation of neural cyberattacks focused on neu-
ronal stimulation and affecting the activity of neural
networks allocated in the human’s brain. The proposed
cyberattacks, Neuronal Flooding and Neuronal Scan-
ning, are inspired by the behavior of current well-known
cyberattacks in computer networks.

• The definition of three metrics to evaluate the impact of
the two neural cyberattacks proposed: number of spikes,
percentage of shifts, and dispersion of spikes.

• The implementation of the previous cyberattacks in a
neuronal simulator to measure the impact produced by
each one of them and the implications that they generate
on the neuronal signaling. For that, we model a portion
of a mouse’s visual cortex based on the implementation
of a CNN where the mouse is able to exit a maze.

The paper remainder is organized as follows. Section II
gives an overview of the present state-of-the-art of current
vulnerabilities, cyberattacks, and countermeasures affecting
existing BCIs. After that, Section III illustrates emerging
neurostimulation technologies and their cybersecurity con-
cerns. Subsequently, Section IV offers a formal description
of the cyberattacks proposed, while Section V describes the
implemented use case. Section VI first presents the metrics

used to evaluate the impact of these cyberattacks, followed by
the analysis of the results and impact that these cyberattacks
generate. Finally, Section VII briefly discusses the outcomes
and potential future works.

II. RELATED WORK
During the last five years, new concepts such as brain-
hacking, or neurocrime have emerged to describe relevant
aspects of cybersecurity in BCI [16], [17]. These works high-
light that neuronal engineering devices, designed to stimu-
late targeted regions of the brain, would become a critical
cybersecurity problem. In particular, they acknowledge that
attackers may maliciously attempt to program the stimu-
lation therapy, affecting the patient’s safety. Furthermore,
they emphasize that the cyberthreats do not need to be too
sophisticated if they only want to cause harm. In this context,
as indicated in this article, it is possible to have a high
impact on the brain by taking advantage of neurostimulation
implants and send malicious electrical signals to the brain.
Despite the identification of these risks, there are no studies in
the literature defining or implementing neural cyberattacks,
where the evaluation of their impact over the brain remains
unexplored. However, several vulnerabilities and attacks have
been detected in BCI technologies performing neural data
acquisition (e.g., EEG), which can serve as a starting point
to perform neural cyberattacks. Section III offers additional
considerations about vulnerabilities in BCI solutions.

Platforms and frameworks that enable the development
of BCI applications also present cybersecurity concerns,
as demonstrated in [18], [19]. In this context, the authors
of [18] performed an analysis of the privacy concerns of
BCI application stores, including Software Development Kits
(SDKs), Application Programming Interfaces (APIs), and
BCI applications. They discovered that most applications
have unrestricted access to subjects’ brainwave signals and
can easily extract private information about their subjects.
Moreover, Cody’s Emokit project [17], managed to break
the encryption of the Emotiv EPOC device (valid for all
models before 2016), having access to all raw data transmit-
ted. The authors of [19] proposed a mechanism to prevent
side-channel extraction of subjects’ private data, based on
the anonymization of neural signals before their storage and
transmission.

The majority of the existing BCI systems are oriented
to acquire, or record, neural data. Specifically, EEG BCI
devices have gained popularity in recent years, due to their
low cost and versatility, influencing the number of existing
cyberattacks exploiting BCI vulnerabilities. In this context,
the authors of [20] studied and analyzed well-known BCI
applications and their potential cybersecurity and privacy
concerns. Martinovic et al. [14] were able to extract users’
sensitive information, such as debit cards or PINs, by pre-
senting particular visual stimuli to the users and analyzing
their P300 potential response. Another attack, performed by
Frank et al. [13], focused on presenting subliminal visual
stimuli included within a video, aiming to affect the BCI
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users’ privacy. Finally, in our previous work [21], we studied
the feasibility of performing cybersecurity attacks against the
stages of the BCI cycle, considering different communica-
tion architectures, and highlighting their impact and possible
countermeasures.

In conclusion, this section demonstrates that most of the
related works are focused on presenting vulnerabilities and
cyberattacks affecting the confidentiality, availability, and
integrity of private data managed by BCIs. Nevertheless,
there is a lack of solutions considering cyberattacks affecting
the neuronal activity and, therefore, the subjects’ safety. This
article proposes two neural cyberattacks affecting the natural
behavior of single and population of neurons.

III. CYBERSECURITY VULNERABILITIES OF EMERGING
NEUROSTIMULATION IMPLANTS
This section introduces three promising BCI technologies
capable of recording and stimulating neuronal activity with
single-neuron resolution. For each scenario, we offer a
description of its architecture, highlighting the cybersecurity
vulnerabilities detected. Although these solutions are in an
early stage, and they are still not commercial products, they
are contemporary examples of how cybersecurity can affect
existing and future implantable BCI solutions, and in partic-
ular for solutions that can target small neuron populations.
These issues represent the starting point for the cyberattacks
illustrated in the next sections of this article. It is important
to note that the objective of this section is not to find vulner-
abilities in BCI devices or architectures but to justify how the
proposed cyberattacks could be performed in realistic BCI
systems.

A. NEURALINK
Neuralink aims to record and stimulate the brain using new
technologies, materials, and procedures to reduce the impact
of implanting electrodes in the brain [11]. The first element
of the Neuralink architecture are the threads, proposed as an
alternative for traditional electrodes due to their biocompati-
bility, reduced size based on thin threads that are woven into
the brain tissue, durability, and the number of electrodes per
thread. Groups of threads connect to an N1 sensor, a sealed
device in charge of receiving the neural recordings from the
threads and sending them stimulation impulses.With a simple
medical procedure, up to ten N1 implants can be placed in the
brain cortex. These devices connect, using tinywires tunneled
under the scalp, to a coil implanted under the ear. The coil
communicates wirelessly through the skin with a wearable
device, or link, placed under the ear. The link contains a bat-
tery that represents the only power source in the architecture,
deactivated if the user removes the link. FIGURE 1 represents
this architecture.

Although the communication mechanisms between the
coil and the link are not provided, the link is managed via
Bluetooth from external devices, such as smartphones, using
an application. In this sense, Neuralink users can manage and
personalize their links, upgrade their firmware, and include

FIGURE 1. Architecture and vulnerabilities of Neuralink.

new security capabilities.We identify that this scenario can be
potentially vulnerable as follows. First, the wireless mecha-
nism used in the communication between the coil and the link
could be vulnerable, depending on the protocol used [22].
Besides, the Bluetooth communication between the smart-
phone and the link can also be vulnerable, according to the
version used [23], [24]. As an example, we identify Sweyn-
Tooth, a set of 12 vulnerabilities affecting a large number
of devices using Bluetooth Low Energy (BLE) technologies.
Based on them, an attacker could crash the device and stop
its communications [25], deadlock the device [26], or access
functions only available for authorized users [27].

Moreover, the external device manages the logic of
both acquisition and stimulation processes, including into
these scenarios its inherent risks, and becoming one of the
most sensitive elements of the architecture. In particular,
Li et al. [20] detected that attackers could take total control
of a smartphone running a BCI application, getting access
to sensitive information, or performing malicious stimulation
actions. Furthermore, the link is a critical element of the
architecture, where attackers can modify the firmware of the
device to have a malicious behavior, as identified by [28]
for brain implants or to perform jamming attacks to disrupt
the communication between devices, described by [29] for
wireless networks.

B. NEURAL DUST
This architecture is composed of millions of resource-
constrained nanoscale implantable devices, also known as
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FIGURE 2. Architecture and vulnerabilities of Neural dust.

neural dust, floating in the cortex, able to monitor neural elec-
trophysiological activity precisely [9]. These devices com-
municate with the sub-dura transceiver, a miniature device
(constructed from components that are built from nanoma-
terials) placed beneath the skull and below the dura mater.
This device uses two different transceivers to: (1) power and
establish communication links with the neural dust, (2) com-
municate with external devices. During neural recording,
the sub-dura transceiver performs both spatial and frequency
discrimination with sufficient bandwidth to power and inter-
rogate each neural dust. The external transceiver is a device
without computational and storage restrictions, allocated out-
side of the patient’s head. Wearables, smartphones, or PCs
are examples of this device. The main task of the external
transceiver is to power and communicate with the sub-dura
transceiver and to receive the neuronal behavior from the
sensing by the neural dust. FIGURE 2 presents the architec-
ture of this solution, as well as the potential vulnerabilities
that it presents.

Nevertheless, this technology has not been conceived fol-
lowing the principle of security and privacy by design. As a
consequence, these devices do not implement authentica-
tion mechanisms to prevent malicious users from collecting
neural sensing data from the neural dust, and they do not
protect the transmitted data. In particular, the neural dust
are resource-constrained devices without computational and
storage capabilities to execute security functionalities like
authentication protocols, ciphered communications, or data
encryption. In this sense, external attackers could power
and communicate to the implants to monitor private neural
data. Finally, the sub-dura and external transceivers do not
implement authentication protocols nor securitymechanisms.
An attacker could impersonate the external transceiver to
communicate with the sub-dura device, and obtain sensitive
neuronal signaling.

C. WIRELESS OPTOGENETIC NANONETWORKS
The Wireless Optogenetic Nanonetworking device
(WiOptND) [10] is an extension from the neural dust [9]
but with the capability of optogenetically stimulating the
neurons. Optogenetic stimulation uses light to stimulate
neurons genetically engineered with specific genes that are
sensitive to signals at a particular wavelength. This in turn
provides targeted stimulation of very small population of
neurons that have been engineered, enabling precise targeting
of neural circuits within the micro-columns. Similar to the
architecture of the neural dust, the WiOptND also receives
power that is emitted from the sub-dura, which in turn
communicates to the external transceiver. However, since
the WiOptND is responsible for stimulating the neurons,
the external transceiver will communicate the sequence of
firing the neurons to the sub-dura transceiver to synchronize
the charging and communication of the WiOptND implants.
This is achieved by sending the firing sequence, in the
form of a raster plot, to the external transceiver. This opens
up new opportunities for attackers to send malicious firing
patterns into the external transceiver, which will produce
a new sequence of firing patterns for neural stimulation,
resulting in detrimental consequences for the brain. Finally,
the architecture and vulnerabilities described in FIGURE 2
also apply for WiOptND.

In conclusion, the previous vulnerabilities raise different
concerns affecting the integrity, confidentiality and availabil-
ity of subject’s neural data. These vulnerabilities motivate
different attack vectors to perform the neural cyberattacks
described in subsequent sections.

IV. DEFINITION OF NEURAL CYBERATTACKS
Once demonstrated the feasibility of stimulating individ-
ual neurons by attacking different technological solutions,
we formally describe two cyberattacks, Neuronal Scanning
and Neuronal Flooding, aiming to maliciously affect the nat-
ural activity of neurons during neurostimulation procedures.
They are inspired by the behavior and goals of some of
the most well-known and dangerous cyberattacks affecting
computer networks.

To formalize both cyberattacks, we denote NE ⊂ N as a
subset of neurons from the brain, where n ∈ NE expresses
every single neuron. The voltage of a single neuron in a
specific instant of time is denoted as vn ∈ R, whereas
vin ∈ R indicates the voltage increase used to overstimulate
a neuron n. Moreover, twin represents a temporal window in
which the cyberattack is performed, equivalent to the duration
of the simulation in Section VI. tattk is the time instant when
the cyberattack starts, and 1t the amount of time between
evaluations during the process. In the implementation of the
cyberattacks, it represents the duration of the steps of the
simulation.

1) NEURONAL FLOODING
In the cyberworld, a flooding cyberattack is designed to
bring a network or service down by collapsing it with large

VOLUME 8, 2020 152207



S. López Bernal et al.: Cyberattacks on Miniature Brain Implants to Disrupt Spontaneous Neural Signaling

amounts of network traffic. Traffic is usually generated by
many attackers and forwarded to one or more victims. Extrap-
olating this network cyberthreat to the brain, a Neuronal
Flooding (FLO) cyberattack consists in stimulating multiple
neurons in a particular instant of time, changing the normal
behavior of the stimulation process and generating an over-
stimulation impact. The execution of this cyberattack does not
require prior knowledge of the status of the affected neurons
since the attacker only has to decidewhat neurons to stimulate
and when. This fact makes this cyberattack less complex
than other cyberattacks that require prior knowledge of the
neuronal behavior.

In particular, FLO performs the overstimulation action at
tattk. In that precise moment, a subset of neurons AN ⊆
NE is attacked. This cyberattack is formally described in
Algorithm 1.

Algorithm 1 FLO Cyberattack Execution
t = 0
while t < twin do
if t == tattk then
for all n ∈ AN do
vn← vn + vin

end for
end if
t ← t +1t

end while

FIGURE 3. Raster plot of a FLO cyberattack when the attack is performed
at 10ms.

FIGURE 3 represents an example to appreciate graphically
the behavior of a FLO cyberattack, where the details of the
neuronal network used in the simulation are not relevant at
this point (addressed in Section V). In particular, it represents
the comparison of the FLO cyberattack with the spontaneous
behavior for a simulation of 80 neurons, a duration of 90ms,
and 42 neurons attacked in the instant 10ms. Green dots
represent the neuronal spontaneous behavior, blue circles
indicate the instant when the neurons are attacked, red circles
highlight the propagation of the cyberattack in time, and
those dots with a green color and red outline represent spikes
common to both spontaneous and under attack situations.
In this figure, we can see that all the attacked neurons alter

their behavior, having spikes in different moments compared
to the spontaneous activity.

2) NEURONAL SCANNING
Port scanning is another well-known cybersecurity technique
performed by attackers to discover vulnerabilities in oper-
ating systems, programs, and protocols using network com-
munications. In particular, it aims to test every networking
port of a machine, checking if it is open and discovering the
protocol or service available in that end-point. In the brain
context, a Neuronal Scanning (SCA) cyberattack stimulates
neurons sequentially, impacting only one neuron per instant
of time. Based on that, it is essential to note that attackers do
not require prior knowledge of the neuronal state to perform
neural scanning cyberattacks. This fact, together with the
stimulation of one neuron per instant of time, makes a low
attack complexity.

Considering the notation previously defined, Algorithm 2
describes an SCA cyberattack. In particular, it sequentially
overstimulates all the neurons included in the set of neurons
NE, without repetitions. For each neuron n, its voltage vn
increases by vin. It is essential to indicate that the conditional
clause limits the instants in which an attack can be performed,
where tattk represents the attack over the first neuron of the
set, and tattk + |NE|1t the attack over the last neuron.

Algorithm 2 SCA Cyberattack Execution
t = 0
while t < twin do
if t ∈ [tattk , tattk + |NE|1t] then
n← (t − tattk )/1t
vn← vn + vin

end if
t ← t +1t

end while

Finally, FIGURE 4 shows, in a visual way, the behavior
of an SCA cyberattack. We simulate 80 neurons during 90s,
and sequentially attack all neurons, starting in the instant
10ms. The color code followed is the same as in FIGURE 3.
As can be seen, the sequential attack of the neurons generates
a diagonal line in the spikes. All spikes over the line remain
unaltered since those neurons have not yet been affected by
the attack. On the contrary, the spikes under the diagonal are
affected by the attack.

V. EXPLOITING VULNERABILITIES DUE TO
CYBERATTACKS
This section introduces the use case used to implement the
cyberattacks defined in Section IV. We present the scenario
and the experimental setup implemented to create the neu-
ronal topology required to test the cyberattacks.

A. USE CASE AND EXPERIMENTAL SETUP
The knowledge of precise neocortical synaptic connections
in mammalian is nowadays an open challenge [30]. Based on
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FIGURE 4. Raster plot of an SCA cyberattack, from the instant 10ms to
90ms.

this absence of realistic neuronal topologies, we have stud-
ied the primary visual cortex of mice and replicated a por-
tion of it, modeled using a Convolutional Neural Network
(CNN) [31]. This CNN was trained by means of reinforce-
ment learning [32] to represent a simple system able to make
decisions based on a maze and find its exit. As indicated
by Kuzovkin et al. [33], CNNs, and biological neuronal
networks present certain similarities. First, lower layers of a
CNN explain gamma-band signals from earlier visual areas,
whereas higher layers explain later visual regions. Further-
more, early visual areas are mapped to convolutional layers,
where the fully connected layers match the activity of higher
visual areas. That is to say, the visual recognition process
in both networks is incremental and move from simple to
abstract. At this point, it is essential to note that we can-
not compare the topology and functionality of a CNN to
the complexity of the neuronal connections of a real brain.
We only used this technique to provide a simple topology that
is then implemented in a neuronal simulator to evaluate how
attacks over a simplistic but realistic environment can affect
the activity of simulated neurons, as indicated in Section V-C.

In this context, we designed a simple proof of concept
based on the idea of a mouse that has to solve the problem of
finding the exit of a particular maze, inspired in the code from
[34]. The mouse must find the exit with the smallest number
of movements and starting from any position. We define a
maze of 7 × 7 coordinates, as represented in FIGURE 5.
It contains one starting position identified with ‘‘1’’, while
the exit is labeled with ‘‘27’’. Moreover, the positions colored
in gray represent obstacles, and those in white are accessible
positions throughwhich themouse canmove. In this scenario,
the mouse can move in all four 2D directions: up, down, left,
and right. The numbering from 1 to 27 defines the optimal
path determined by the trained CNN to reach the exit position,
considering the lowest number of steps. Finally, it is essential
to define the concept of visible position. From each particular
cell of the maze, the mouse can visualize a square of 3 × 3
adjacent positions, including those that represent obstacles.
This situation is highlighted in FIGURE 5 with a red square,
indicating the visible positions from the cell 15 of the optimal
path.

FIGURE 5. Maze used in our use case to model the movement of the
mouse, including the optimal path between the starting and final cells.
There are nine visible positions from the cell 15, highlighted within a red
square.

TABLE 1. Summary of the layers of the CNN.

B. CONVOLUTIONAL NEURAL NETWORK
Our objective was to generate a CNN able to exit the maze
from any position. We also aimed to define a topology
with a reduced number of nodes to be compatible with
resource-constrained neuronal simulators since we aim to
evaluate this topology in multiple simulators. Nevertheless,
for simplicity, this work includes details of the implemen-
tation in only one simulator, as described in Section V-C.
To solve our maze problem, we implemented a CNN com-
posed of two convolution layers and a dense layer. The
ensemble of these three layers defines a complete CNN
of 276 neurons, representing a small portion of a mouse pri-
mary visual cortex, summarized in Table 1. We implemented
this CNN using Keras on top of TensorFlow [35].

FIGURE 6 depicts the architecture of the implemented
CNNwhich is also described in Table 1. In particular, we have
included a first 2D convolution layer with a 3×3 kernel. This
layer takes as input the current status of the maze, focusing
each neuron on a square of 9 (3×3) adjacent positions. In our
experiments we determined that 8 filters of size 3× 3 in each
layer were sufficiently expressive. To represent the maze,
each position contains a 1 value if the position is accessible,
a 0 value if it is an obstacle, or a 0.5 value in the position of
the mouse.

During the training, each filter of the first layer specializes
on a particular aspect of the maze. For example, a filter
could focus on detecting vertical walls, while another could
detect corners. The filters of the second layer can detect more
complex scenarios by composing the output of these initial
detectors. Since the input is a 7 × 7 maze, and the kernel
is 3 × 3, the first convolution process requires 25 neurons
(5 × 5 kernel outputs) to cover the new 5 × 5 subset of the
maze on the next layer. Since we use 8 different filters, the
total number of neurons required to produce the first layer’s
output of the CNN is 200 (5 × 5 × 8). This is illustrated in
FIGURE 6, where each group of neurons has a different color
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FIGURE 6. Visual representation of the implemented CNN. It introduces a
simplifications of the whole topology, indicating how the convolution
process is performed and how nodes connect between layers. The color
of each node matches the color of its associated filter.

that matches the color of its filter. Therefore, since the first
layer generates an output of size 5× 5× 8, the application of
the 3× 3 kernels of the second convolutional layer requires a
total of 72 (3×3×8) neurons. Finally, this new output is sent
through a last dense layer of 4 neurons, one for each possible
movement direction on the maze (left, up, right, down). Each
output is an estimation of the probability of success with
each movement, being selected the direction with the greatest
score.

In order to understand Section V-C and Section VI, it is
necessary to explain the mapping between the sequential
number of each neuron and its position in its associated filter
output. FIGURE 6 shows this mapping. Each neuron have
associated a 3-dimensional vector, where the third coordinate
is its filter and the two first coordinates, the position in that
filter output. The order is as follows: the first neuron has the
coordinates [0,0,0], corresponding to the first neuron in the
first filter output; the eighth neuron corresponds to [0,0,7];
the ninth one is [0,1,0], and so on until the 200th neuron, with
coordinates [4,4,7].

C. BIOLOGICAL NEURONAL SIMULATION
After training the CNN, we represented its resulting topology
in Brian2, a lightweight neuronal simulator [36]. We selected

TABLE 2. Relationship of parameters between artificial and biological
networks.

Brian2 because it is adequate to run neuronal models in
user-grade computers, without the requirement of using mul-
tiple machines, or even supercomputers. It also presents
a good behavior in the implementation of neuron models
with simplified and discontinuous dynamics (such as Leaky
Integrate-and-Fire or Izhikevich) [37]. Other alternatives,
such as NEURON, present complex solutions to model neu-
rons with fine granularity, offering distributed computation
capabilities for high demanding simulations. Nevertheless,
this functionality is unnecessary in our particular study.

We maintain in the biological simulation the exact number
of layers, the number of neurons per layer, and the topo-
logical connections between neurons. However, there is a
crucial difference between the implementation of these two
approaches. In the CNN, a filter weight represents the impor-
tance that a connection between two neurons of different
layers have on the topology and, thus, over the solution.
In the biological simulation, we transform the CNN weights
to synaptic weights, representing the increase of the voltage
induced during an action potential. Table 2 summarizes these
similarities and differences between both networks.

To represent the behavior of each neuron, we decided to
use the Izhikevich neuronal model since it is computationally
inexpensive, and it allows us to precisely model different
types of neurons within different regions of the brain [38].
This model represents an abstraction of how cortical neurons
behave in the brain. In particular, the following set of equa-
tions describes the Izhikevich model, whose parameters are
indicated in Table 3. This model allows multiple configura-
tions to mimic different regions of the brain. In our scenario,
we assigned particular values to the previous parameters
to implement a regular spiking signaling from the cerebral
cortex, as indicated in [38]. Specifically, we aimed to model
pyramidal neurons from the primary visual cortex of a mouse,
which correspond to excitatory neurons typically present in
the biological visual layers L2/3, L5, and L6 [39]. For sim-
plicity, during the analysis of the results of the simulation,
we will refer to these layers in subsequent sections as first
layer (L2/3), second layer (L5) and third layer (L6).

v′ = 0.04v2 + 5v+ 140+ u+ I (1)

u′ = a(bv− u) (2)

if v > 30mV , then

{
v, ← c
u, ← u+ d

(3)
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TABLE 3. Parameters used in the Izhikevich model.

To create our neuronal topology, we used the weights of
the trained CNN as post-synaptic voltage values, normalized
within the range between 5mV and 10mV . We selected this
range because these values constitute a conservative voltage
raise within the range of values of v, indicated in Table 3.
At the beginning of the simulation, we assigned the initial
voltage of each neuron from a previously generated random
list in the range [−65mV , 0mV ). This initial value for each
neuron is constant between executions to allow their compar-
ison. To define a more realistic use case, we represented in
our simulation the movement of the mouse inside the maze
(see FIGURE 5), staying one second in each position of the
optimal path. To understand this, it is essential to introduce
the concept of intervening neurons, which defines the set of
neurons managing all the visible positions of the mouse when
it is placed in a particular position of the maze. FIGURE 7a
illustrates the relationship between the position 13 of the
optimal path and its intervening neurons, not considering
its related visible positions for simplicity. For this position,
we define nine 3× 3 squares within the surface delimited by
the red square, where we represent only the first two squares
to improve the legibility of the figure. Focusing on the first
square, colored in blue, it comprises eight neurons indexes
(49 to 56), obtained from the translation between 3-dimension
coordinates previously commented in this section. The sec-
ond one, highlighted in orange, associates eight different neu-
rons. After applying all nine squares, we obtain the complete
list of intervening neurons related to the position 13. This
single process is repeated for every visible position from
the position 13 (indicated in FIGURE 7a with red dots),
obtaining the complete set of intervening neurons. This set
of intervening neurons is presented in Table 4, where each
visible position from the position 13 is identified by its maze
coordinate for simplicity. The last row of the table presents
the complete set of intervening neurons for the position 13,
obtained as the union of all individual sets of neurons.

The movement of the mouse was implemented by
providing external stimuli to the simulation via the I param-
eter, where a value of 15mV was assigned to all interven-
ing neurons from the current location of the mouse. For all
non-intervening neurons in a specific instant, we assigned a
value of 10mV . These values align with the range defined in
[38]. This information was extracted from the topology of the
CNN, which contains the relationship between the neurons
of the first layer and the positions of the maze. We took
into consideration these aspects in the experimental analysis
performed in Section VI. Based on that, we modeled with a

FIGURE 7. Relationship between positions of the maze and its
implication in the modulation of neuronal signaling.

TABLE 4. List of intervening neurons associated to the position 13 of the
optimal path of the maze.

higher value of I those intervening neurons, transmitting a
more potent visual stimulus to those neurons related to adja-
cent positions from the current location. Based on Equation 1,
an increase in the I parameter will produce a voltage rise in
these intervening neurons, generating a raise in the amplitude
of the electrical signal. This behavior wasmodeled taking into
consideration the study performed in [40], which indicates
that a known visual stimulus generates a voltage amplitude
increase. FIGURE 7b graphically compares these differences
between values of the I parameter. It highlights that inter-
vening neurons present a higher number of spikes during a
particular temporal window, which is interpreted by the brain
as the reconnaissance of accessible cells in the maze from the
current position.
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FIGURE 8. Summary of our use case, indicating the translation between the topology of the CNN
implemented and the biological network simulated.

Finally, FIGURE 8 introduces a graphical summary of
the current use case. It depicts a mouse with a miniature
brain implant solution in its primary visual cortex, such as
Neuralink or Neural dust. To simulate its biological neuronal
network, and based on a lack of realistic cortical topologies,
a trained CNN provides the number of nodes and distribution
in layers for the biological network. In particular, wemodeled
pyramidal neurons from visual layers L2/3, L5, and L6, using
the Izhikevich model with a regular spiking signaling. Based
on this scenario, an external attacker takes advantage of con-
temporary vulnerabilities in these implantable solutions to
alter the behavior of the spontaneous activity of the biological
neuronal network.

VI. RESULTS ANALYSIS BASED ON METRICS
In this section, we evaluate the impact that FLO and SCA
cyberattacks have on spontaneous neuronal activity of the
neuronal topology presented in SectionV. To analyze the evo-
lution of the cyberattacks impact while the mouse is moving
across the maze, we consider the following three metrics:
• Number of spikes: determine if a cyberattack either
increases or reduces the quantity of spikes compared to
the spontaneous neuronal signaling.

• Percentage of shifts, being a shift the delay of a spike
in time (forward or backward) compared to the sponta-
neous behavior: study if a cyberattack generates signifi-
cant delays in the normal activity of the neurons.

• Dispersion of spikes in both dimensions of time and
number of spikes: analyze the spiking patterns under
attack, aiming to detect if the cyberattack causes a mod-
ification on the distribution of the spikes.

For each layer of the topology, and combining all of
them, we measured and analyzed the number of spikes and

percentage of shifts. Finally, the dispersion of spikes is com-
puted for each position of the optimal path and grouping all
layers. Finally, we compared the impact generated by both
cyberattacks.

To better understand the impact of FLO and SCA cyberat-
tacks, FIGURE 9 compares the evolution of neuronal spikes
for the spontaneous activity, a FLO cyberattack and an SCA
cyberattack. We selected three positions of the optimal path
to analyze in detail the spiking evolution along with the
simulation, presenting only the first 100ms of each position.
It is essential to note that this simplification is only for this
figure, and all the results subsequently presented consider the
complete duration of each position. As can be seen, in the
spontaneous signaling, there is a certain natural dispersion
caused by the behavior of the neuronal model used, and the
movement of the mouse (due to the the modification of the
associated I parameter). Specifically, each time the mouse
changes from one position to another, the I parameter changes
according to the intervening neurons, where a higher value of
I is translated to a higher spike rate (see Algorithm 1). Since
the mouse periodically changes its position, it modifies the
spiking rate of the neurons, generating a natural dispersion in
the absence of attacks. Looking at the first position of both
spontaneous and FLO, in the instant 50ms, there is a clear
difference between them, since we executed the attack in that
exact instant. The set of attacked neurons generates spikes
before it was intended due to the voltage rise produced by the
attack. Consequently, we can see that the dispersion over the
following positions (13 and 27) augments, altering the nat-
ural pattern of the neurons. Regarding the SCA cyberattack,
it also starts in the instant 50ms but, its impact it is not yet
present in the first 100ms of the initial position. If we check
the subsequent positions, the attack gradually propagates,
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FIGURE 9. Raster plots indicating the evolution of the spontaneous signaling and both FLO and SCA cyberattacks for three positions of the optimal path
of the maze.

generating characteristic ascending patterns. Subsequent sub-
sections analyze, in a more detailed way, the information
contained in FIGURE 9, extending the analysis to all the
positions of the optimal path and using the previous three
metrics.

A. NEURONAL FLOODING
In this subsection, we aim to simultaneously attack multiple
neurons and analyze its impact using the metrics previously
indicated at the beginning of the section. The implementation
of this cyberattack is based on the general description indi-
cated in Algorithm 1. We decided to perform only the attacks
over the first layer of the topology, from where each target
neuron is randomly selected, to evaluate the propagation to
deeper layers. Furthermore, we tested a combination of two
additional parameters. The first one represents the number of
simultaneously attacked neurons, k ∈ {5, 15, . . . , 95, 105}.
AN will contain k neurons randomly selected from NE, the
set of neurons in the first layer. It is worthy to note that
we reached to attack simultaneously more than half of the
neurons of the first layer, which represents a fairly aggres-
sive portion of the neurons. The second parameter of the
attack, VI = {20, 40, 60}, indicates the different voltage
increases in mV used to stimulate the neurons in AN. Its
maximum level, 60mV , approximately represents two-thirds
of the voltage range defined by the Izhikevichmodel.We have
executed each combination of parameters 10 times, denoted
as exec = 10, to ensure that the random selection of neurons
performed is representative. The value of tsim is 27s (one
second per position of the optimal path), and tattk, is 50ms.
Table 5 summarizes the previously indicated parameters.

TABLE 5. Configuration of the implemented FLO cyberattack.

FIGURE 10. Number of intervening neurons related to visible positions
from each position of the optimal path.

1) NUMBER OF SPIKES METRIC
To better understand the analysis of this metric, it is necessary
to introduce FIGURE 10, which shows, for each position of
the optimal path of the maze, the number of intervening neu-
rons involved in the decision-making process of the mouse.
Since these intervening neurons are dependent on the number
of visible positions from a particular location of the maze,
the number of intervening neurons is higher in central cells
of the maze compared to those placed near the borders.
Moreover, intervening neurons are dependent on the topology
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FIGURE 11. Total number of spikes for all neurons of the topology per
position of the optimal path, attacking different number of neurons (105
and 55 simultaneous neurons).

used and the convolution process of the CNN, as depicted in
FIGURE 6.

FIGURE 11 compares, for the spontaneous signaling
and two different configurations of FLO, the total number
of spikes per position of the optimal path. In particular,
the graph plots two different amounts of neurons in AN
(55 and 105 neurons) for all exec simulations. In this figure,
we fixed vi to a value of 40mV to improve its visualization.
As can be seen, both figures share a common tendency,
indicating that the higher the number of intervening neurons
from a position, the higher the number of spikes. This is a
consequence of how the mouse moves across the maze and
how neurons and positions are related based on our particular
topology. Comparing both figures, FIGURE 10 reaches its
highest peaks one position before, since this change of inter-
vening neurons needs to be propagated in time, affecting the
number of spikes of its following position.

In FIGURE 11, we can see that, in general, FLO cyber-
attacks reduce the number of spikes compared to the spon-
taneous activity, increasing this reduction when the mouse
progresses in the maze. Furthermore, increasing the impact
of the attack, in terms of the number of attacked neurons,
reduces the number of spikes. These aspects are aligned with
the results later presented in Section VI-A3, where this reduc-
tion is caused by an increase of the dispersion in the attacked
neurons. However, it is worth noticing the high number of
spikes produced in the first position. The Izhikevich neuronal
model for regular spiking generates a quick burst of spikes
in a short time, and, after that, it stabilizes its spike rate,
explaining this behavior. When we apply a FLO cyberattack,
the attacked neurons anticipate their spikes, producing either
a raise of spikes if the number of attacked neurons is not so
elevated (low dispersion in time), or a reduction of spikes if
most of the neurons are attacked (high dispersion). Moreover,
the evolution of the simulation after the attack does not tend
to come back to the spontaneous signaling, in terms of the
number of spikes. In fact, these distances augment over time,
reaching a difference of around 700 spikes in position 27, with
some variability between both FLO configurations. Based
on that, these results indicate that the effect of attacking
neurons in a particular instant propagates until the end of the
simulation.

FIGURE 12. Evolution of the mean of spikes with different number of
attacked neurons and voltage increases, aggregating all positions of the
optimal path.

After this analysis, we considered relevant to evaluate
how the mean of spikes evolved through the three layers
of the topology with different configurations of the FLO
cyberattack. In particular, we tested different amounts of
attacked neurons and voltage increase, with exec different
executions for each combination of the previous parameters.
Using exec executions introduces variability in terms of the
randomly selected neurons for each execution. We present
these results in FIGURE 12, which represents an aggrega-
tion of the number of spikes produced during the optimal
path of the maze. It indicates that increasing the number of
attacked neurons derives in a higher reduction in the number
of spikes, while the application of different voltages does
not produce a high impact. The dimmed colors surrounding
the main lines of the figure indicate the fluctuations between
the exec simulations. As can be seen, the difference in the
mean of spikes compared to the spontaneous signaling grows
when the number of attacked neurons raises, having a differ-
ence of around 60 spikes for 110 attacked neurons (half of
the first layer). These results align with those presented in
FIGURE 11 for the positions of the optimal path, where both
figures present a clear descending trend when the number
of attacked neurons augments. Finally, the use of different
increases of voltage during the experiments did not generate
a considerable impact on the number of spikes.

To expand the focus on this analysis and to determine
whether this descending trend is exclusive to only certain lay-
ers, FIGURE 13 analyzes the same parameters but differen-
tiating between the three layers of the topology and focusing
only on the last position of the optimal path of the maze.
We can see that the variation of the mean of spikes is more
significant in deeper layers (2nd and 3rd). This variation is
due to the distribution of our topology and the normal behav-
ior of the brain, where initial layers propagate their behavior
to subsequent layers, magnifying their activity via synapses.
The y-axis range considerably differs between layers, being
the difference with the spontaneous signaling of less than one
spike in the first layer. The second layer offers a broader range
of around 8 spikes in the most damaging situation, whereas
the third layer has an approximate separation of between 10 to
25 spikes.

In summary, the previous figures indicate that, under
attack, the mean of spikes decreases compared to the
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FIGURE 13. Mean of spikes for each layer of the topology, focusing on
the last position of the optimal path.

spontaneous behavior. In particular, we highlight that increas-
ing the number of attacked neurons derives in a higher impact
in the mean of spikes. Nevertheless, there are no significant
differences in the variation of the voltage used to attack the
neurons. Finally, the number of intervening neurons from the
visible positions of the optimal path of the maze strongly
influences the mean of spikes.

2) PERCENTAGE OF SHIFTS METRIC
For this metric, we first evaluated the percentage of delayed
shifts for an aggregation of all three layers. After that, we ana-
lyzed the same but combining all the positions of the optimal
path of the maze. In this test, we included a different number
of attacked neurons and voltage raises. FIGURE 14 describes
this situation, where attacking a higher number of neurons
produces a higher percentage of shifts. This ascending trend
is aligned with the dispersion metric, since an enlargement
in the parameters of the attack produces a growth of shifts.
As a consequence, it generates a higher dispersion in time
and number of spikes.

If we focus on each layer of the topology, FIGURE 15 rep-
resents a FLO cyberattack for the last position of the optimal
path, where each color line indicates a voltage raise. Focusing
on the first layer, we can see a linear growthwhenwe augment
the number of attacked neurons since only those neurons shift
in the layer. Moving to subsequent layers, we can observe that
the growth tendency is more prominent in the second layer.
This indicates that, when we advance to the third layer, the
effect of the attack gets slightly attenuated.

In conclusion, this metric indicates that attacking more
neurons derives in a higher percentage of shifts. Additionally,
and similarly to the metric studying the number of spikes,
voltage increases have not a high impact on our scenario.

3) DISPERSION METRIC
We first focus on the spike dispersion over time caused by
the different number of attacked neurons for each position of
the optimal path. This means that, for each position of the

FIGURE 14. Shift percentage mean for an aggregation of all topological
layers and positions of the optimal path.

FIGURE 15. Shift percentage mean for each layer of the topology, for the
last position of the optimal path.

maze, we obtain the number of time instants with recorded
spikes, independently of the number of spikes. If we take
into account that each position of the maze corresponds to
one second and that the sampling rate of Brian2, by default,
is 0.1ms, we have a total number of 10 000 instants per
position. If a position presents a higher dispersion value than
other positions, it indicates that there are more instants with
spikes in the former one. We focus on a voltage raise value of
40mV , since previous analysis indicated that this parameter
has a low impact on our scenario.

In FIGURE 16 we can observe that the spontaneous sig-
naling presents some similarities with the trend existing in
FIGURE 11 and, specifically, in those positions with the most
significant peaks. If a position presents a raise in the number
of spikes, the probability of having spikes in FIGURE 16 for
a longer period of time also increases. However, the natural
dispersion of the simulation attenuates these peaks, where the
I parameter changes according to the visible positions of the
maze. Considering both FLO configurations, we can appre-
ciate an enlargement in the temporal dispersion compared to
the spontaneous behavior. FLO cyberattacks anticipate the
spikes of the attacked neurons in a given moment, generating
a higher dispersion as the simulation progresses. Specifically,
the difference with the spontaneous signaling augments over
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FIGURE 16. Spike dispersion over time for each position of the optimal
path.

time, induced by the natural variability of the mouse’s move-
ments. Although the attack with 55 neurons presents a higher
impact until position 17, from that position until the end,
the attack with 105 neurons has a higher impact from this
metric. A higher impact over the temporal dispersion when
we attackmore neurons simultaneously aligns with the results
presented in FIGURE 13 for the number of spikes. These
results are also related to those presented in Section VI-A2
for the percentage of shifts, where an intensification in these
shifts derives in a dispersion growth.

We can also consider this dispersion from the perspective
of the number of spikes. For each position of the optimal path,
we evaluate the distribution of the number of spikes, setting
the voltage increase to a value of 40mV and the number of
simultaneous attacked neurons to 105. FIGURE 17 illustrates
this distribution, where each position contains a violin plot
for both the spontaneous and under attack behaviors. It is
essential to highlight that this figure represents only one
of the exec simulations performed for the complete set of
experiments to ease the visualization. We can appreciate that
the attack in position one reaches a peak of 110 spikes due
to the increase of spikes induced by the attack performed at
that particular moment. Focusing on the distribution indicated
by each violin, the variance progressively reduces when the
mouse progresses in the maze, concentrating the distribution
of number of spikes around one. That means that in the last
positions there are more instants where only one spike occurs,
indicating that the attack increases the spike dispersion as the
simulation progresses.

This situation aligns with the results presented in
FIGURE 11, where a higher number of spikes influence this
upper threshold. Nevertheless, it is worth considering the
exception in position 13, where this threshold is consider-
ably reduced. To understand this situation, we also have
to consider FIGURE 16, which indicates that this position
presents the highest percentage of dispersion, with more than
50% of spikes shifted. This position indicates the relation-
ship between these two dispersion approaches, where a high
temporal dispersion generates a reduction in the dispersion
focused on the number of spikes.

In conclusion, FLO cyberattacks generate a large impact
on the spontaneous neuronal activity. In particular, the pre-
vious figures highlight how the mouse’s natural movement

induces particular natural dispersion, both in time and number
of spikes. Performing FLO cyberattacks also produces an
enlargement in the temporal dispersion, where the neuronal
activity is more scattered. This can also be analyzed from
the dispersion focused on the number of spikes since this
reduction on the aggregation causes the spikes to tend to a
low number. It means that there are more instants with a fewer
number of spikes compared to the spontaneous behavior.

The previous analysis, based on the number of spikes,
percentage of shifts, and dispersion, highlights the impact
that FLO cyberattacks can generate over the spontaneous
neuronal activity. We subsequently analyze these metrics
together since they are strongly dependent between them.
In particular, the application of a FLO cyberattack generates
a decrease in the number of spikes, where these differences
are more prominent in deeper layers of the topology. These
results can be explained based on the dispersion induced by
the attack, where a growth on the dispersion reduces the
probability of multiple action potentials in the first layer.
Consequently, the post-synaptic voltage raises arrive at sub-
sequent layers in a more dispersed way, delaying the spikes.
The metric focused on the percentage of shifts over the spon-
taneous signaling is closely related to the dispersion metric.
An increase in the percentage of shifts entails a modification
in the natural periodicity of the spikes. This change is directly
translated to a higher dispersion rate, both in time and number
of spikes. Finally, it is essential to note that this behavior
and results are dependent on our particular topology. Nev-
ertheless, they can serve as an example of how performing a
FLO cyberattack can affect neuronal activity in a particular
scenario.

B. NEURONAL SCANNING
This section details the implementation of an SCA cyberat-
tack on our topology, based on the general description of the
attack represented by Algorithm 2. For this particular imple-
mentation, we have sequentially attacked the 200 neurons that
compose the first layer of the topology. We denote as VI =
{5, 10, . . . , 60, 65} the set of voltage raises, in mV , applied
separately in each SCA cyberattack. As previously indicated
for the FLO cyberattack, the duration of the simulation, tsim,
is 27s, staying the mouse one second in each position of the
optimal path of the maze. Additionally, the attack initiates in
the instant 50ms, represented by tattk . To model the periodic-
ity of attacking the neurons,1t indicates the temporal separa-
tion between two attacks over two consecutive neurons, being
134ms in our particular implementation. Each combination of
parameters is executed only once (exec = 1) since there is no
variability in the selection of neurons, as it is the case of a
FLO cyberattack. Finally, Table 6 indicates a summary of the
parameters used in the implementation of SCA cyberattacks.

1) NUMBER OF SPIKES METRIC
FIGURE 18 compares the number of spikes per position of
the optimal path between the spontaneous neuronal signaling
and an SCA cyberattack. In particular, the SCA cyberattack
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FIGURE 17. Spike dispersion over the number of spikes for each position of the optimal path.

TABLE 6. Configuration of the implemented SCA cyberattack.

FIGURE 18. Total number of spikes for all neurons of the topology, per
position of the optimal path.

establishes a value of 40mV from the VI set and defines
an aggregation of all three layers of the neuronal topology.
We can appreciate the same trend observed in FIGURE 10 for
the intervening neurons from each of the studied positions.
The most prominent peaks are, as previously documented
for FLO cyberattacks, delayed one position due to the time
required to generate an impact over the neurons. These results
can be explained based on the sequential behavior of an SCA
cyberattack since the number of attacked neurons raises along
time. In addition, this progressive reduction in the number of

FIGURE 19. Evolution of the spikes mean with different number of
attacked neurons and voltage raises, for an aggregation of all positions of
the optimal path.

spikes caused by the attack aligns with the results that will be
presented in Section VI-B3 for the dispersion metric.

After this analysis, we evaluated in FIGURE 19 the mean
of the spikes for the different voltage increases defined inVI,
for an aggregation of the three layers of the topology and the
positions of the optimal path. We can appreciate that increas-
ing the voltage used to overstimulate the neurons produces
a reduction in the number of spikes. It should be noticed
that rises higher than 20mV do not significantly influence
the impact of the attack. Performing an SCA cyberattack
with a voltage of 60mV , the most damaging situation consid-
ered, reaches the highest difference in the number of spikes,
around 70 spikes compared to the spontaneous behavior.

FIGURE 20 presents a differentiation per layer of the
topology for the last position of the optimal path. We can
appreciate that, in the first layer, the variation in the number
of spikes between different voltage increases is negligible,
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FIGURE 20. Spikes mean for each layer of the topology, focusing on the
last position of the optimal path.

being in all cases 24 spikes. Until 15mV , it presents a small
growth of spikes compared to the spontaneous signaling,
which benefits of the anticipation of the spikes in time.
In more aggressive voltages, the number of spikes gets more
reduced than the spontaneous behavior. Moving to the sec-
ond layer, these differences become more significant, with a
number of spikes ranging between 2 and 14 spikes according
to the voltage used. This layer presents a general descending
trend, reaching the most damaging peak with 20mV . This
trend is common to the third layer, although the range in the
number of voltages becomes broader, with a higher difference
of 40 spikes compared to the spontaneous signaling. It is
interesting to highlight the proliferation of spikes in the third
layer when using 5mV , based on the slight anticipation of
spikes in time from the previous layers.

Comparing these results to those presented in FIGURE 19,
we can appreciate in the latter specific differences in the
evolution of the impact. In this figure, the most damaging
voltage is 60mV , compared to the 20mV highlighted for
the second and third layers presented in FIGURE 20. This
situation is explained by the fact that the analysis focused
on differentiating the layers only considers one position and,
because of that, some minor differences can arise.

In conclusion, the previous results indicate that performing
an SCA cyberattack generates a reduction in the number of
spikes, aggravated when the mouse moves across the maze.
Increasing the voltage used to overstimulate the neurons does
not produce a significant impact with voltages higher than
20mV . Finally, the number of intervening neurons from each
position of the optimal path influences this metric.

2) PERCENTAGE OF SHIFTS METRIC
FIGURE 21 first presents the results concerning the per-
centage of shifts for different voltage raises. These results
represent an aggregation of the three layers and all the posi-
tions of the optimal path. In particular, this figure indicates
that the percentage of shifts increases when we raise the
voltage used to attack the neurons. We can see that an

FIGURE 21. Shift percentage mean for an aggregation of all topological
layers, aggregating all positions of the optimal path.

overstimulation of 5mV generates an approximate 58% of
shifts. Slightly increasing this voltage generates considerable
impacts, between the range of 5mV and 20mV , reaching a
close percentage of 68%. Finally, increasing the stimulation
with voltages higher than 20mV does not significantly enlarge
the percentage of shifts. These thresholds align with those
presented in FIGURE 19 for the aggregated number of spikes.

To further explore this metric, we have represented in
FIGURE 22, a differentiation of each layer of the topology
for just the last position of the optimal path. We can observe
that the range of shifts is lower in the first layer compared
to deeper layers, based on the influence that the first layer
has on the latter due to the transmitted action potentials.
Besides, the growth trend existing in the first layer is more
prominent, being similar to the one shown in FIGURE 21 for
the aggregated analysis of shifts. When we go deeper into
the number of layers, we can see that the growth trend is
not that aggressive using low voltages, which indicates that
the attack progressively loses its effectiveness. It is important
to highlight that the ranges shown in FIGURE 21 for the
percentage of shifts are much higher than those presented
in FIGURE 22. To understand this situation, it is worthy
of reflecting on the behavior of SCA cyberattacks. In the
first positions of the optimal path, only specific neurons are
attacked. When the attack progresses along time, the number
of neurons affected by the attack continues increasing. Based
on that situation, this last figure focused on the layers presents
higher ranges, since they correspond to the last position of the
optimal path and, thus, all 200 neurons of the first layer have
been affected.

In conclusion, performing an SCA cyberattack generates a
raise in the percentage of shifts. This impact becomes more
damaging when the mouse moves across the maze since the
number of attacked neurons is more abundant along time.
Besides, we can observe a degradation of the impact of the
attack in deeper layers, where higher voltages are needed to
cause a similar impact in terms of shifts.

3) DISPERSION METRIC
Focusing on the temporal dispersion caused by an SCA cyber-
attack, FIGURE 23 presents its analysis for each position of
the optimal path and the aggregation of all the neurons of the

152218 VOLUME 8, 2020



S. López Bernal et al.: Cyberattacks on Miniature Brain Implants to Disrupt Spontaneous Neural Signaling

FIGURE 22. Shift percentage mean for each layer of the topology, only
focusing on last position of the optimal path.

FIGURE 23. Spike dispersion over time for each position of the optimal
path.

topology. We can observe that performing an SCA cyberat-
tack progressively augments the temporal dispersion, based
on the incremental number of attacked neurons over time.
In particular, this dispersion is not significant in the first five
positions of the optimal path, due to the number of attacked
neurons until that moment and the specific connections of our
topology.

After that, we analyze in FIGURE 24 the dispersion from
the perspective of the number of spikes. In particular, we rep-
resent, for each position of the optimal path, a violin distribu-
tion of how the spikes behave.We can observe that, in the first
five positions, there are no significant visual differences in
the distributions, although the median of the distribution start
to slightly decrease. This is justified by the reduced number
of neurons affected by the attack until that instant. After
that position, the differences with the spontaneous behavior
progressively augment, both in the peaks in the number of
spikes and the shape of the violins. Focusing on the number of
spikes, themaximum number of simultaneous spikes presents
a reduction, particularly in the last positions. The shape of
the violins progressively changes, due to a reduction in their
variance, where the number of spikes concentrates at the
value of one only spike. That is to say, the majority of the
instants in the last positions had only one spike. These results

are aligned to those presented in FIGURE 23 for the analysis
of the temporal spike dispersion, since both figures indicate
that this dispersion increases when the mouse progresses in
the maze.

In summary, this metric indicates that performing an SCA
cyberattack disrupts the normal neuronal spiking frequency,
inducing dispersion in both temporal and number of spikes
dimensions. These differences aggravate when the mouse
progresses in the maze, based on the sequential functioning
of SCA cyberattacks.

The previous three metrics highlight how SCA cyberat-
tacks can affect the spontaneous neuronal activity on our
particular topology.We should consider them as different per-
spectives to analyze a common issue. As previously indicated,
an SCA cyberattack progressively induced a decrease in the
number of spikes over time, aggravated in deeper layers of the
topology. This decrease is strongly related to both dispersion
metrics. The attack generates an alteration in the frequency
of spikes in time, producing more instants with spikes in
the simulation. Specifically, the previous results indicate that
in the last positions of the maze, most of the instant only
have one spike, which generates a clear difference with the
spontaneous activity. The dispersionmetric is strongly related
to the percentage of shifts since this dispersion will cause
a displacement of the spikes in time. In terms of shifts, the
attack gets attenuated in deeper layers.

C. IMPACT COMPARATIVE BETWEEN NEURONAL
FLOODING AND SCANNING
This last section compares the results previously discussed
for FLO and SCA cyberattacks. Focusing on the total number
of spikes (FIGURE 11 and FIGURE 18), we can observe
that an SCA cyberattack generates a more impacting reduc-
tion in the number of spikes than the most aggressive FLO
configuration. The last positions particularly highlight these
differences.

When we analyze the number of spikes aggregating both
positions and layers (FIGURE 12 and FIGURE 19), we can
appreciate one of the main differences between the attacks.
In FLO cyberattacks, we can define as parameters of the
attack the number of neurons and the voltage used to attack
those neurons. In SCA cyberattacks, we can only specify
the voltage, since our implementation affects all neurons
of the first layer. Based on that, there is not an immediate
comparison between these figures in terms of their trend.
Nevertheless, we can compare the most aggressive configura-
tion for each attack to determine which produces the highest
reduction of spikes. We can see that SCA presents a slightly
higher impact than FLO.

Focusing on the distribution of spikes per layer
(FIGURE 13 and FIGURE 20), we can observe that there are
no significant changes between the attacks. In the second one,
SCA presents a slightly lower number of spikes. Finally, the
third layer amplifies these differences, where SCA has a more
significant reduction of spikes.
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FIGURE 24. Spike dispersion over the number of spikes for each position of the optimal path.

In terms of the percentage of shifts (FIGURE 14 and
FIGURE 21), FLO presents a higher impact on this metric.
Extending this comparison for each layer of the topology
(FIGURE 15 and FIGURE 22), we can see that the main
difference lies in the first layer, where SCA duplicates its
impact since subsequent layers present similar results. Based
on that, we can conclude that FLO presents a higher impact
on this metric, although the difference in percentages is slight.

There is a clear difference between both attacks in
terms of the temporal dispersion metric (FIGURE 16 and
FIGURE 23). FLO has a higher dispersion in the first five
positions of the optimal path since the targeted neurons neu-
rons are all attacked in the same instant. After that, SCA
evolves in a more damaging way. Focusing on the dispersion
based on the number of spikes (FIGURE17 and FIGURE 24),
we can observe that FLO is more effective in the first
positions.

This comparative highlights that the inner mechanisms
of each attack generates different behaviors in the neuronal
activity. FLO is adequate for attacks aiming to disrupt the
neuronal activity in a short period of time, affecting multiple
neurons in the same instant of time. On the contrary, SCA is a
more effective attack for long-term effects, requiring a certain
amount of time to reach a significant impact on the neurons.
From that threshold, the impact caused on the neurons is more
concerning.

VII. CONCLUSION
This work first presents security vulnerabilities of micron-
scale BCI to cyberattacks, particularly for implants that can
do single-cell or small population sensing and stimulation.
Taking these vulnerabilities as a starting point, we describe

two novel neural cyberattacks focused on the alteration
of neuronal signaling. In particular, we investigated the
Neuronal Flooding (FLO) and Neuronal Scanning (SCA),
inspired by well-known approaches found in the cyberse-
curity field. Our investigation is based on a case study of
a mouse that learns its navigation within a maze trained
by a Convolutional Neural Network (CNN). The CNN was
converted into a biological neuronal simulation model rep-
resenting the workings and functions of real neurons within
the brain. The two attacks were applied to the mouse as it
migrated through the maze. To evaluate the impact of these
attacks on neuronal activity, we proposed three metrics: num-
ber of spikes, percentage of shifts, and dispersion of spikes,
both over time and number of spikes.

A number of experiments have demonstrated that both
attacks can alter the spontaneous neuronal signaling, where
the behavior of these attacks generates distinct differences.
FLO attacks all targeted neurons in the same instant of time,
while SCA presents an incremental behavior, which requires
more time to affect the neuronal activity. Focusing on the
results, SCA presents a more damaging impact in terms of
the number of spikes, which generates a higher reduction
than FLO. In terms of shifts, FLO causes more spikes to
differ in time than SCA, although these differences are not
very significant. Finally, SCA presents a higher impact on the
dispersion of the neurons, both in time and number of spikes.
These results are highly dependent on the topology used, the
neuronal model utilized to represent the neurons, and the
types of neurons used (pyramidal from the primary visual
cortex). Because of that, this work should be considered as
a first step in the study of cyberattacks affecting spontaneous
neuronal signaling.

152220 VOLUME 8, 2020



S. López Bernal et al.: Cyberattacks on Miniature Brain Implants to Disrupt Spontaneous Neural Signaling

As future work, we plan to define a taxonomy of neu-
ronal cyberattacks affecting not only overstimulation but also
neuronal activity inhibition. We aim to explore how neural
cyberattacks can affect realistic neuronal tissues and, in par-
ticular, various neural circuits within the cortex. Our research
lays the groundwork for security countermeasures to also be
integrated into BCI systems that utilize miniature implants
for small neuronal population stimulation that can have a
tremendous effect on the brain.
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