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1 INTRODUCTION
Brain-Computer Interfaces (BCIs) emerged in the 1970s intending to acquire and process users’
brain activity to perform later specific actions over external machines or devices [87]. After several
decades of research, this functionality has been extended by enabling not only neural activity
recording but also stimulation [167]. Figure 1 describes a simplification of the general components
and processes defining a common BCI cycle in charge of recording and stimulating neurons
[1, 26, 59], later presented in Section 2. It is important to note that these phases are not standard,
so we include the most common ones used in the literature. The clockwise direction, indicated
in blue, shows the process of acquiring neural data, and the counterclockwise represents the
stimulation one, which is highlighted in red. Regarding the neural data acquisition, neurons interact
with each other, producing neural activity, either based on previously agreed actions, such as
controlling a joystick, or generated spontaneously (phase 1 of Figure 1). This activity is acquired by
the BCI and transformed into digital data (phase 2). After that, data is analyzed by the BCI data
processing system to infer the action intended by the user (phase 3). Finally, applications execute the
intended action, enabling the control of external devices. These applications can present optional
feedback to the users, which allows the generation of new neural activity. On the other hand, the
counterclockwise direction of Figure 1 starts in phase 4, where applications define the intended
stimulation actions to perform. Phase 3 processes this action to determine a firing pattern containing
all the essential parameters required by the BCI to stimulate the brain. Finally, the firing pattern
is sent to the BCI, which is in charge of stimulating specific neurons belonging to one or more
brain regions and is dependent on the technology used. In a nutshell, a BCI can be a unidirectional
or bidirectional communication system between the brain and external computational devices.
Unidirectional communications are when they either acquire data or stimulate neurons, while
bidirectional communications are when they perform both tasks [139].
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Fig. 1. General functioning of a bidirectional BCI. The clockwise flow indicated with a blue arrow represents
the neural data acquisition process, while the counterclockwise flow represented with a red arrow models
the brain stimulation.

From the security perspective, BCIs are in an early and immature stage. The literature has not
considered security a critical aspect of BCIs until recent years, where terms such as neurosecu-
rity, neuroprivacy, neuroconfidentiality, brain-hacking, or neuroethics have emerged [31, 58, 59].
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Existing works of the literature have detected specific security attacks affecting BCI integrity,
confidentiality, availability, and safety, but they do not perform a comprehensive analysis and
miss relevant concerns [17, 87, 96, 163, 165]. More specifically, the use of neurostimulation BCIs in
clinical environments introduces severe vulnerabilities that can have a significant impact on the
user’s health condition [136]. BCIs already existing on the market would benefit from the imple-
mentation of robust security solutions, reducing their impact, particularly in clinical environments.
Furthermore, the expansion of BCIs to new markets, e.g., video games or entertainment, generates
considerable risks in terms of data confidentiality [87, 96, 163, 165]. In this context, users’ personal
information, such as thoughts, emotions, sexual orientation, or religious beliefs, are under threats
if security measures are not adopted [59, 96, 165]. Besides, contemporary BCI approaches, such as
the use of silicon-based interfaces, introduce new security challenges due to the increase in the
volume of acquired data and the use of potentially vulnerable technology [121]. The technological
revolution of recent years, combined with movements such as the Internet of Things (IoT), brings
an acceleration in the creation of new devices lacking security standards and solutions based on the
concepts of security-by-design and privacy-by-design [17, 137, 163, 165] [60]. This revolution also
brings to reality prospective and disruptive scenarios, where we highlight as examples the direct
communications between brains, known as Brain-to-Brain (BtB) or Brainets [67, 126, 127, 184], and
brains connected to the Internet (Brain-to-Internet (BtI)), which will require significant efforts from
the security prism.
Once summarized the functioning of BCIs and their security status, the scope of this paper

lies in analyzing the security issues of software components that intervene in the processes,
working phases, and communications of BCIs. Besides, this work considers the security concerns
of infrastructures, such as computers, smartphones, and cloud platforms, where different BCI
architectures are deployed. It is also important to note that, despite this article indicates overall
impacts over the brain and the user’s physical safety, the main focus of this work is to perform a
security analysis from a technological point of view. Aligned with these aspects, and to the best of
our knowledge, this article is the first work that exhaustively reviews and analyses the BCI field
from the security point of view. Since these aspects have not been studied in depth before and
BCI technologies are still immature, this line of work has a particular interest in a medium to long
term. However, this area of knowledge is relevant nowadays, since devices already available on the
market need to be protected against attacks.

In this context, Section 2 focuses on analyzing the security issues related to the design of the BCI
life-cycle. We unify the existing heterogeneous BCI life-cycles in a novel and common approach that
integrates recording and stimulation processes. Once proposed the new life-cycle design approach,
we review the attacks applicable to each phase of the cycle, the impact generated by the attacks
and the countermeasures to mitigate them, both documented in the literature and detected by us.
After highlighting the security issues related to the BCI design, Section 3 reviews the inherent
cyberattacks, impacts, and countermeasures affecting current BCI deployments scenarios. This
section identifies the security issues generated by the devices implementing each life-cycle phase’s
responsibilities, as well as the communication mechanisms and the application scenarios. The last
main contribution of this article is Section 4, where we give our vision regarding the trend of BCI
and the security challenges that this evolution will generate in the future. Finally, Section 5 presents
some conclusions and future work.

2 CYBERATTACKS AFFECTING THE BCI CYCLE, IMPACTS AND
COUNTERMEASURES

This section reviews the different operational phases of BCIs detected in the literature, known as
the BCI cycle, and homogenizes them in a new approach shown in Figure 2. After that, we survey
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the security attacks affecting each phase of the cycle, their impacts, and the countermeasures
documented in the literature. We present as well unexplored opportunities in terms of cyberattacks,
and countermeasures affecting each phase.
The literature has proposed different configurations of the BCI cycle. However, the existing

versions only consider the signal acquisition process, missing the stimulation of neurons. These
solutions present various classifications of the BCI cycle, as some do not consider the generation
of brain signals as a phase, or group several phases in only one, without providing information
about their roles [26, 59]. Other solutions, as proposed in [6, 59, 87, 172], are confusing due to
they define as new phases, transitions, and data exchanged between different stages. In terms of
applications, some authors define a generic stage of applications [1, 26, 87, 148] while others deal
with the concept of commands sent to external devices [10, 17, 18, 25, 54, 163, 171]. Also, just a few
works define the feedback sent by applications to users [10, 17, 18, 25, 59, 87, 163, 171, 172]. To
homogenize the BCI cycle and address the previously missing or confusing points, we present a
new version of the BCI cycle with five phases (with clearly defined tasks, inputs, and outputs) that
consider both acquisition and stimulation capabilities. Figure 2 represents our proposal, where the
clockwise direction corresponds to the brain signal acquisition process. The information and tasks
concerning this functioning are indicated in blue. In contrast, the stimulation process is indicated
in the counterclockwise direction, starting from phase 5, and, in each phase, the information and
tasks are identified in red.

According to the neural acquisition process (clockwise direction in Figure 2), phase 1 focuses on
the generation of brain signals. Generated data contain the user’s intention to perform particular
tasks; for example, controlling an external device. This phase can be influenced by external stimuli,
producing modifications in the regular neural activity. In phase 2, the brain waves are captured by
electrodes using a wide variety of technologies, such as Electroencephalography (EEG) or Functional
Magnetic Resonance Imaging (fMRI). Raw analog signals containing the user’s intention are then
transmitted to phase 3, where data processing and conversion are required. In particular, this phase
performs an analog-to-digital conversion procedure to allow further processing of the data. One
of the main goals of this phase is to maximize the Signal-to-Noise Ratio (SNR), which compares
the level of the target signal to background noise level to obtain the original signal as accurately
as possible. Phase 4 processes the digital neural data to decode the user’s intended action, where
relevant features are calculated and selected from the neural data. After that, different models (e.g.,
classifiers, predictors, regressors) or rule-based systems determine the intended action [25, 148].
The action finally arrives at applications in phase 5, which execute the action. Applications can also
send optional feedback to the user to generate brain signals and thus new iterations of the cycle.
Regarding the stimulation process (counterclockwise direction in Figure 2), the loop starts in

phase 5, where it is specified the stimulation action in a general way (e.g. stimulate a particular
brain region to treat Alzheimer’s disease). This intended action is transmitted to phase 4, where
this input is processed by different techniques, such as Machine Learning (ML), to generate a
firing pattern that contains high-level information about the stimulation devices to be activated,
the frequencies used and the temporal planning. Phase 3 intends to transform the firing pattern
received, indicated in a general fashion, to specific parameters related to the BCI technology used.
For example, the identification of neurons to stimulate or the power and voltage required for the
process. Phase 2 transmits these stimulation parameters to the stimulation system, that is in charge
of the physical stimulation of the brain. After this process, the brain generates neural activity as
a response, which can also be acquired by the BCI to measure the state of the brain after each
stimulation process. At this point, an alternation between brain stimulation and signal acquisition
is possible, moving from one direction of Figure 2 to the other.
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Fig. 2. Bidirectional BCI functioning cycle representing, in black, the common phases for neural data acqui-
sition and brain stimulation. (Left side) Representation, in blue, of the processes performed and the data
transferred by each phase of the neural data acquisition process. This cycle can be seen as a closed-loop
process because it starts and ends at the same phase. (Right side) Representation, in red, of the processes and
transitions of each phase making up the stimulation process.

Before reviewing the attacks, impacts and countermeasures of each phase of the BCI cycle, it is
essential to accurately define the concept of security, which refers to the "protection of information
and information systems from unauthorized access, use, disclosure, disruption, modification, or
destruction to provide integrity, confidentiality and availability" [149]. The concepts of integrity,
confidentiality and availability, together with the concept of safety, are used in this section as
metrics to evaluate the impact of security attacks against BCI systems. The standard definition of
these concepts is the following:

• Integrity: "protection against unauthorized modification or destruction of information. A
state in which information has remained unaltered from the point it was produced by a
source, during transmission, storage, and eventual receipt by the destination". [76]

• Confidentiality: "preservation of authorized restrictions on access and disclosure, including
means for protecting personal privacy and proprietary information". [149]

• Availability: "property that data or information is accessible and usable upon demand by
an authorized person." [149]

• Safety: "freedom from conditions that can cause death, injury, occupational illness, damage to
or loss of equipment or property, or damage to the environment." [143]. This work considers
the safety concept from the physiological, psychiatric, and psychological perspectives.

At this point, it is essential to note that in this document, the safety concept refers to the preser-
vation of the physical integrity of BCI users, not focusing on the conservation of objects or the
environment. To better understand the attacks and countermeasures later discussed in this section,
Table 1 offers a brief description of the attacks affecting BCI, whereas Table 2 describes their
countermeasures. For each phase of the BCI cycle, we detail the particularities of these attacks and
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countermeasures.

Table 1. Definition of the attacks detected for the BCI cycle

Attack Description
Adversarial attacks
[38, 90]

Presentation of intentionally crafted inputs to an ML system to disrupt its normal functioning
and output.

Misleading stimuli
attacks [40, 79, 96]

Presentation of malicious sensory or motor stimuli to users aiming to generate a specific neural
response.

Buffer Overflow attacks
[16, 109, 147]

Access to out-of-bounds memory spaces due to insecure software implementations. They take
advantage of operations over memory buffers whose boundaries are not well managed.

Cryptographic attacks
[58, 59]

Exploit vulnerabilities in the elements that define a system, such as algorithms, protocols or
tools. A variety of techniques focused on evading the security measures of cryptographic
systems.

Firmware attacks
[13, 173]

Extract or modify the firmware of a device, a critical piece of software that controls its hardware.

Battery drain attacks
[24] [135]

Consume the battery of a device, reducing its performance or even making it permanently
inaccessible.

Injection attacks
[105, 134]

Present an input to an interpreter containing particular elements that can modify how it is
parsed, taking advantage of a lack of verification of the input.

Malware attacks
[77, 154, 177]

Use of hardware, software or firmware aiming to gain access over computational devices to
perform malicious actions intentionally.

Ransomware attacks
[2, 37]

Encrypt users’ data and demand later an economic ransom to decipher it.

Botnet attacks
[4, 92]

Use of botnets, networks of infected devices controlled and coordinated by an attacker, to
perform particular attacks directed to specific targets.

Sniffing attacks [5] Acquisition of private information by listening to a communication channel. When the data is
not encrypted, attackers have access to the content of the whole communication.

Man-in-the-middle
attacks [163]

Alteration of the communication between two entities, making the extremes believe that they
are communicating directly between each other.

Replay attacks
[77, 166]

Retransmission of previously acquired data to perform a malicious action, such as the
impersonation of one of the legitimate participants of the communication.

Social engineering
attacks [47, 49]

Psychological manipulation to gain access over restricted resources. An example is phishing
attacks, based on the impersonation of a legitimate entity in digital communication.

Spoofing attacks
[159, 166]

Masquerade an entity of the communication, transmitting malicious data. Frequent spoofing
attacks in network communications are, among others, IP spoofing and MAC spoofing.

Table 2. Definition of the countermeasures detected for the BCI cycle

Countermeasure Description
Training sessions, demos
and serious games [59]

Initiatives to increase the awareness of the users about the risks of technology.

User notifications [24] Alert the users in case an attack is detected, to take part in the defence (e.g. stop using the
device).

Directional antennas [186] Antennas that radiate or receive the energy mainly in particular directions, aiming to
reduce interference.

Analysis of the medium
[59]

Sensing of the communication medium to detect abnormal behavior.

Low transmission power
[170]

Reduction of transmission power to avoid the interception of the communication by
malicious entities.
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Frequency and channel
hopping [46, 186]

Wireless communication models based on pseudo-random hopping patterns previously
known by sender and receiver.

Spread spectrum
[166, 170, 186]

Transmission of the information in a broader bandwidth to avoid interference in the
wireless medium.

Access control mechanisms
[24, 164, 165]

Means of detecting and preventing unauthorized access to particular resources.

Privilege management
[110–112]

Assign privileges to different groups of users based on roles.

Whitelists and blacklists
[106]

List of entities, such as systems or users, that are allowed or forbidden, respectively, to
perform specific actions.

Cryptographic mechanisms
[8]

Use of encryption and decryption techniques to protect the privacy of data, since
unprotected information can be accessed and modified by attackers.

Differential privacy [60, 90] Cryptographic mechanism based on the addition of noise to the data aiming to suppress
sensitive aspects, accessible when combined with a large amount of a user’s data.

Homomorphic encryption
[90]

Cryptographic mechanism allowing the computation of mathematical operations over
ciphered data, generating an encrypted result.

Functional encryption
[164, 165]

Cryptographic mechanism where having a secret key allows to learn a function of
encrypted data without revealing the data itself.

Authenticity verification
[8]

Ensure that the data we are accessing, or the endpoint we are communicating, is who it
claims to be.

Legitimacy verification
[8]

Review if a malicious software application has replaced a legitimate one.

Feature limitation [123] Ensure that any software only implements the specific functionality for which it was
intended.

Periodic updates [37] Correct detected vulnerabilities and include new functionalities to reinforce the existing
countermeasures.

Robust programming
languages [110]

Choose the most adequate languages taking into consideration their strengths and
weaknesses.

Compilation techniques
and options [111]

Specific capabilities of compilers to protect out of bounds accesses to the device memory
or CPU registers.

Application hardening
[50]

Modification of an application to make it more resistant against attacks, such as the
obfuscation of the application code.

Segmented application
architectures [147]

Isolation of architectures and systems, establishing different containers and security
groups to communicate with each other.

Sandboxing [104] Isolate the execution of different programs, allowing its protection against attacks.
Antivirus [159] Software focused on the prevention, detection, and elimination of malware attacks.

Modern antivirus offer protection for a wide variety of threats.
Malware visualization [41] Technique focused on the analysis of software binaries in a graphical way to detect

anomalous malware patterns.
Quarantine of devices [4] Isolation of infected or potentially infected software, to avoid further propagation and

infection.
Backup plans [3] Recurrent copy of data stored in a different location to allow its recovery in case of data

loss.
Defense distillation [90] Creation of a second ML model based on the original, with less sensitivity regarding input

perturbations and offering smoother and more general results.
Data sanitisation [66] Rejection of samples that can produce a negative impact on the model, preprocessing and

validating all input containing adversarial information.
Adversarial training [44] Inclusion of adversarial samples in the training process to allow the recognition of attacks

in the future.
Monitoring systems [15] Capture and analyze the behavior of the entities within a system and their

communications.
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Anomaly detection [24] Detection of odd behaviors on systems that can potentially correspond to an attack
situation.

Firewall [159] Cybersecurity system that only allows incoming or outgoing network communications
previously authorized.

IDS [159] Analysis of the network activity to identify potentially damaging communications aiming
to disrupt the system.

Communication interruption
[73]

Detention of an active communication to mitigate the impact of an attack if there is
evidence of its presence.

Input validation [134] Analysis and preprocessing of inputs presented to a system to suppress potential causes of
failure.

Randomization [165] Change of existing data in a way that does not follow a deterministic pattern and prevents
privacy leakage.

BCI Anonymizer [17] Anonymization of brain signals acquired from the brain to be shared without exposing
users sensitive information.

Figure 3 indicates the attacks, impacts, and countermeasures described in this section. As can
be seen, each attack is represented by a color that associates the impacts it generates and the
countermeasures to mitigate it. For each impact included in the figure, it includes a simplified
version of the BCI cycle. Those phases of the cycle marked in red indicate impacts detected in
the literature for that specific phase, whereas the blue color indicates our contribution. Besides,
the attacks, impacts and countermeasures marked with references have been proposed in the
literature, while those without references are our contribution. It is important to note that this
figure highlights the limitations exposed by the literature, as can be appreciated by the volume of
our contributions. To simplify the image, we have synthesized most of the safety impacts into a
general entry "Cause physical damage", describing the specific impacts over users’ health in detail
throughout the section.

2.1 Phase 1. Brain signals generation
2.1.1 Attacks. Considering the neural data acquisition flow, this first phase focuses on the brain
processes that generate neural activity, which can be influenced by external stimuli. The literature
has detectedmisleading stimuli attacks [40, 79, 96], a mechanism to alter the brain signals generation
by presenting intentionally crafted stimuli to BCI users. To understand these attacks, it is important
to introduce some concepts. Event-related Potentials (ERPs) are neurophysiological responses to a
cognitive, sensory, or motor stimulus, detected as a pattern of voltage variation [26]. Within the
different types of ERPs, Evoked Potentials (EPs) focus on sensory stimuli and can be divided into
two categories, Visual Evoked Potentials (VEPs) and Auditory Evoked Potentials (AEPs), related
respectively with visual and auditory external stimuli. Specifically, P300 is a VEP detected as an
amplitude peak in the EEG signal about 300ms after a stimulus, extensively used due to its quick
response [158].
On the one hand, Martinovic et al. [96] used the P300 potential to obtain private information

from test subjects and demonstrated misleading stimuli attacks. Visual stimuli were presented
in the form of images, grouped as follows: 4-digit PIN codes, bank ATMs and credit cards, the
month of birth and photos of people. The objective of the experiment was to prove that users
generate a higher peak in the P300 potential when faced with a known stimulus and, therefore, be
able to extract private information. The authors used the Emotiv EPOC 14-channel headset [36], a
commercial BCI EEG device, showing that information leakage, measured in information entropy,
was 10%-20% of the overall information, and could be increased to approximately 43%. On the other
hand, Frank et al. [40] demonstrated the possibility of performing subliminal misleading stimuli
attacks. To perform the experiments, the same ERP concept with P300 potentials was used. In this
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work, the authors showed information hidden within the visual content projected to 29 subjects, in
the form of stimuli with a duration of 13.3 milliseconds, imperceptible to the human eye. The study
used EEG devices of the brands NeuroSky [118] and Emotiv [34]. We consider that the previous
works are relevant to highlight the importance of security in BCI, and additional experiments with
a higher number of users are required.

The literature has documented some well-known methods to present stimuli to users and analyze
their neural responses [17, 96, 163]. For example, to study the neural activity generated after a
question in a lie detection test [79]. Although these methods do not represent attacks themselves,
they are an opportunity to develop new misleading stimuli attacks against BCIs, defined as:

• Oddball Paradigm: specific target stimuli, hidden between a sequence of common non-target
stimuli, would generate peaks in ERP. For example, to differentiate a known face among
several unknown ones.

• Guilty Knowledge Test: the response generated by familiar stimuli can be differentiated from
the generated by unfamiliar elements. This principle has been used for lie detection.

• Priming: a stimulus can generate an implicit memory effect that later influences other stimuli.
Despite the comprehensive study in the literature on AEPs, there are no specific works, to

the best of our knowledge, describing attacks over auditory stimuli. However, Fukushima et al.
[42] described that inaudible high-frequency sounds could affect brain activity. We detect that
this scenario generates new opportunities for attackers since the generation of inaudible auditory
stimuli does not require close interaction with the victim, helping the attacker to remain undetected.

Regarding neural stimulation, this phase represents the result of the stimulation process within
the brain. Based on a lack of literature defining taxonomies of attacks over the brain, we identify
two main attack categories during neurostimulation. The first category consists of taking control of
the stimulation process to cause neural tissue damage. These attacks may reproduce or worsen the
secondary effects often present during the treatment of neurological conditions, such as Parkinson’s
disease, either by over-stimulation actions or by preventing the treatment. The feasibility of these
attacks is supported by [48, 128], who indicated that the adverse effects of neurostimulation are
related to the parameters and patterns of the stimulation. Additionally, we identify another modality
of attack in this category, based on recreating known neurological conditions if there is an existing
neurostimulation device with access to the regions naturally affected by those diseases. As an
example, we identify the possibility of recreating neurodegenerative diseases, such as Parkinson’s
and Alzheimer’s diseases, based on a deterioration of cerebral tissue, and epileptic seizures. Although
these attacks are nowadays just theoretical [11], the advance of prospecting BCI technologies like
Neuralink [116], could result in neurostimulation systems that can cover various parts of the brain,
thus introducing these threats.

The second category of attacks focuses on inducing an effect or perception in the user. It is well
known that neurostimulation can cause multiple psychiatric and psychological impacts, such as
mood variations, depression, anxiety, or suicidal thoughts, as later indicated in Section 2.1.2. An
attacker could magnify these effects with malicious stimulation parameters to take advantage of the
user. As an example, the attack could aim to reduce the patient’s inhibition to ease the extraction
of private information. This situation introduces the possibility of social engineering attacks to BCI,
where the attacker would not require sophisticated social techniques to manipulate its victims
psychologically.

2.1.2 Impacts. It is important to note that themisleading stimuli attacks detailed for this phase have
only been conducted against data confidentiality [40, 79], aiming to extract sensitive data from BCI
users. However, we consider that they can also affect BCI integrity, availability, and safety. These
stimuli can alter the normal functioning of this phase, generating malicious inputs for the next
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stages that can derive on disruptions of the service or incorrect actions aiming to cause physical
damage to users. Specifically, Landau et al. [79] identified that misleading stimuli attacks performed
during a medical diagnose, such as a photosensitive epilepsy test in which different visual stimuli
are presented, can derive in a misdiagnosis, affecting the users’ safety. We also identify as feasible
that malicious stimuli, both perceptible or subliminal, can affect the users’ mood.

From the perspective of neurostimulation, the attacks above can affect users’ health differently
according to their previously existing diseases, impacting their physical and psychological safety.
The issues related to different BCI technologies are detailed in Section 2.2, indicating general
impacts over the brain in this phase. Table 3 presents the most common side effects during particular
neurostimulation therapies. As can be seen, performing an attack during the stimulation process
can aggravate or even generate a wide range of negative impacts on BCI patients. Additionally, the
authors of [135, 136] highlighted common issues to neurological diseases, such as tissue damage,
rebound effects, and denial of stimulation (also affecting the service availability). Besides, they
identified that an alteration of voltage, frequency, pulse width, or electrode contact used to stimulate
the brain could modify the volume of cerebral tissue activated, inducing non-desired effects in the
surrounding structures depending on the electrode location and stimulation technique. Pycroft et
al. [135] also indicated that an attack on neurostimulation could induce a patient’s thoughts and
behavior. In [95], the authors highlighted that attacks on neurostimulation can prevent patients
from speaking or moving, cause brain damage or even threaten their life, while the authors of [79]
indicated the user’s frustration if the result of the process is not adequate.

Pycroft et al. [136] indicated potential attacks and harms against neurostimulation patients. First,
they detected that an overstimulation procedure could cause tissue damage, independently of the
type of stimulation and medical condition. For Parkinson’s disease, an attacker could apply a ~10Hz
stimulation over the STN region to produce hypokinesia or akinesia. In patients with essential
tremor, where the ventral intermediate nucleus (VIM) is stimulated, both an increase of voltage
and a decrease of frequency could dangerously derive in exacerbated tremor. Finally, a variation in
the stimulation parameters during the treatment of obsessive-compulsive disorder could generate
alterations of reward processing or operant conditioning.

Based on the above, safety impacts are the most damaging in this phase, presenting a risk of irre-
versible physical and psychiatric issues. In addition, taking advantage of the victim’s psychological
status, it could ease social engineering attacks as well. The attacker could aim to reduce or inhibit
the patient’s mental defense mechanisms, acquiring sensitive information, thus impacting data
confidentiality. However, more worrisome would be to take advantage of the victim’s mental status,
in which the patient unconsciously accedes to undesired acts, such as gambling money, buying
unnecessary products, committing a crime, or participating in non-consensual sexual intercourse.

2.1.3 Countermeasures. Focusing on the countermeasures to mitigate misleading stimuli attacks,
multiple works [24, 79, 135, 136] identified general measures to raise the awareness of BCI users,
such as spreading the risks of these technologies among clinicians and patients and the education of
the users in these technologies. This is especially interesting since humans usually are the weakest
element of a security system. In particular, Ienca et al. [59] indicated that specific training sessions
could be beneficial to protect users against potentially unsafe stimuli related to authentication
methods and banking-related information. Besides, the inclusion of demos and serious games in
commercial BCI devices may educate them on the risks of these technologies. However, these
countermeasures can only be applied when the user is aware of the stimuli. Because of that, we
consider that misleading stimuli attacks can be reduced if BCIs are complemented with external
systems that monitor the stimuli presented and give users the possibility to evaluate if the content is
appropriate. For example, by analyzing if the multimedia contents showed to users, such as images
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Table 3. Summary of the most common side effects during FDA-approved neurostimulation.

Technology Condition Brain region Neurological side effects Psychiatric/psychological side effects

DBS

Parkinson’s disease
STN

Akinesia, cramping in the face or hand,
dysarthria, dysphagia, eyelid apraxia, gait disturbance,
hypersalivation, impaired vision, incontinence, learning and
memory difficulties, paresthesia, postural instability,
speech disturbance, lack of verbal fluency,
vegetative symptoms, weakness [23, 30, 33, 48, 157]

Anxiety, apathy, cognitive disturbance, confusion,
depression, hallucination, submanic state [23, 33, 48]

GPI Similar to STN [48] Anxiety, depression, suicidal thoughts [33, 48]

VIM Dysphagia, fine motor disturbance,
speech disturbance [157]

Essential tremor VIM Dysaesthesia, dysarthria, gait disturbance,
paresthesia, speech disturbance [23, 33]

Dystonia GPI Gait disturbance, paresis, speech disturbance,
tetanic muscle contractions, visual deficits [23, 33]

Anxiety, cognitive disturbance,
confusion, hallucination [23]

Obsessive-compulsive
disorder VC/VS, NAc Depression, operant conditioning, reward processing

alteration, suicidal thoughts, suicide [102]

RNS Epilepsy Seizure origin Death, change in seizures,
hemorrhage, infection [117] Anxiety, depression, suicide, suicididal thoughts [117]

or videos, have been maliciously modified [15, 175], even if they are subliminal. Additionally, we
propose using predictive models based on anomaly detection systems, aiming to detect an attack in
its early stage and deploy mechanisms to mitigate them.

2.2 Phase 2. Neural data acquisition & stimulation
2.2.1 Attacks. This second phase focuses on the interaction of BCI devices with the brain to acquire
neural data or perform its stimulation. Regarding data acquisition, the authors of [79, 87] identified
the use of a combination of replay and spoofing attacks in which previous signals from the BCI
user, signals from other users, or synthetic signals can impersonate the legitimate brain waves.
We detect the applicability of these attacks to stimulation systems, where an attacker can force
specific stimulation behaviors based on previous actions. One possible outcome of this control can
be an increase in the voltage delivered to the patient’s brain [95]. Besides, the authors of [59, 79]
detected the use of jamming attacks against the neural data acquisition process, transmitting
electromagnetic noise to the medium. Based on Vadlamani et al. [170], we also identify this problem
in neural stimulation, where jamming attacks can override the legitimate signals emitted by the
BCI electrodes if they are transmitted with enough power.

2.2.2 Impacts. Regarding the impacts produced by the previous attacks, Li et al. [87] identified
that replay and spoofing attacks affect both data integrity and availability, being able to disrupt the
acquisition process. Landau et al. [79] highlighted that these attacks could interfere with clinical
diagnosis procedures, replacing the legitimate brain signals by malicious ones, concluding in misdi-
agnosis, and producing either an absence of treatment or an unnecessary one on healthy patients.
We identify that these attacks, applied to the stimulation scenario, can disrupt the stimulation
process or acquire and modify the stimulation pattern used by the BCI to maliciously stimulate the
neurons, affecting data integrity, data and service availability, and the patient’s safety. Focusing on
jamming attacks, an attacker can aim to prevent the electrodes from capturing brain signals due
to the noise transmitted [59, 79], affecting their availability and safety. We detect that jamming
attacks can also affect neurostimulation scenarios, where signals with enough power can override
the legitimate ones, affecting the integrity and availability of the data, as well as the patient’s safety
during stimulation actions.
Apart from the impacts derived from the previous attacks, it is important to note that each

specific BCI technology presents specific risks according to their invasiveness and functioning, and
thus the impact generated by an attack differs. To analyze this situation, we select some of the most
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used BCI technologies used to acquire neural data or stimulate the brain. For each one of them, we
address specific considerations to evaluate their impact.
Regarding the issues related to acquisition technologies, it is necessary to consider both their

temporal and spatial resolutions. We identify that a low temporal resolution in acquisition technolo-
gies presents concerns on data and service availability since the devices transmit a reduced amount
of data that can be affected more easily by electromagnetic interference and, especially, jamming
attacks. Besides, this situation can also be beneficial for replay and spoofing attacks, since attackers
have more time to prepare and send malicious data. A high spatial resolution can impact on data
confidentiality, allowing attackers to have access to more sensitive neural data. It is worthy to
note that attacks on technologies such as fMRI or Magnetoencephalography (MEG) can potentially
have a higher economic impact due to the high cost of these technologies compared to others like
EEG [82, 137]. Nevertheless, EEG is the most studied acquisition technology from the security
perspective, due to its wide availability outside clinical environments, highlighting the feasibility
of attacks such as misleading stimuli attacks or jamming attacks.
Although the literature has documented some potential security impacts for acquisition tech-

nologies, the impact of neurostimulation technologies on patient’s health has been studied in a
more detailed way, specifically in the field of Implantable Medical Devices (IMDs). Because of that,
we first introduce the most common stimulation technologies nowadays to review their specific
impact later, mainly addressing safety issues.

Focusing on the specific impacts of neurostimulation technologies, Deep Brain Stimulation (DBS)
is the most studied one due to its invasiveness, where Medtronic is one of the most popular brands
commercializing open-loop DBS devices [128]. The side effects of this method have been extensively
studied in the literature, where some of them have previously been presented in Table 3 for the
treatment of particular conditions. According to Pycroft et al. [136], the use of DBS with high
charge densities can cause tissue damage. Furthermore, an increase or decrease in the stimulation
frequency can have a considerable impact on its efficacy, even reversing the stimulation effect.
Finally, an alteration of emotion and affect processing can occur during DBS as side-effects, such as
pathological crying or inappropriate laughter, having a distressing impact.
Moving to Transcranial Magnetic Stimulation (TMS), Polanía et al. [129] indicated that pulses

applied to particular areas could induce suppression of visual perception or speech arrest, which
serves as an opportunity for attackers. León et al. [84] highlighted that TMS could produce side-
effects such as headache and neck pain, being epileptic seizures possible but improbable. The side
effects of Transcranial Electrical Stimulation (tES) usually are mild, such as skin tingling, itching,
and redness [114]. Nevertheless, this technique can have indirect effects on the stimulation of
non-neuronal elements, such as peripheral nerves, cranial nerves, or retina. Because of that, the
stimulation is limited to maximum tolerable doses [89]. Besides, in patients with depression, Direct
Current Stimulation (tDCS) can derive to mania and hypomania cases [99]. It is worthy to note that
the side effects described above can naturally arise in controlled environments where clinicians
have strict control over the procedure. However, if attackers alter the therapy, they could recreate
or amplify malicious conditions, generating a clear impact on patients’ health.

The Neuropace RNS is a closed-loop neurostimulation system for treating drug-resistant epilepsy,
performing both neural data acquisition and neurostimulation procedures. It presents the advantage
of delivering stimulation only when detecting the beginning of seizure activity, reducing secondary
effects. Nevertheless, it introduces potential challenges than can be used by an attacker to impact its
users’ safety [128]. First, we identify that the closed-loop behavior could induce, in both clinicians
and patients, a reduction of the perception of risks, assuming that the device is working correctly.
Furthermore, since the device presents autonomous capabilities, an attacker could disrupt its
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behavior, without the knowledge of the user, to generate an impact on data confidentiality, service
availability, and safety.

2.2.3 Countermeasures. Regarding the countermeasures to detect and mitigate replay and spoofing
attacks, Landau et al. [79] proposed, for data acquisition, the use of anomaly detection mechanisms
to detect modified inputs, as well as the accuracy improvement of acquisition devices. Besides,
we propose a mechanism able to disable the electrodes not required for the current application
usage and avoid potential risks, such as the acquisition of P300 in brain signals. This action could
be performed automatically by the BCI system or based on the patient’s or clinician’s decision.
Taking into account neural stimulation, and specifically for IMDs, external devices to authenticate
and authorize the stimulation actions can be used [24]. The authors of [46, 170, 186] documented
several detection mechanisms and countermeasures related to the mitigation of jamming attacks.
All detection procedures are based on an analysis of the medium to detect abnormal behavior, as
identified for neural data acquisition by Ienca et al. [59]. Specifically, Landau et al. [79] proposed
using an ensemble of classifiers to detect the addition of noise to the benign input. As proposed
countermeasures, Vadlamani et al. [170] identified the use of low transmission power as a possible
solution to harden the detection of the legitimate transmission, and the use of directional antennas
oriented to the brain to avoid the jamming. The use of frequency hopping [186] and channel
hopping [46] after a particular duration of time also aim to reduce the impact of these attacks. We
detect that the use of directional antennas is also a possible solution for replay and spoofing attacks.
Finally, it is worthy to note that the mitigation of the previous impacts focused on user’s safety is
the consequence of mitigating the attacks spotted against BCI devices.
In the scenario of closed-loop neurostimulation systems, we identify as essential to have in-

formation about the behavior of the device, from both acquisition and stimulation procedures.
These feedback mechanisms would allow to externally analyze the status of the brain and the
stimulation decisions. Another proposal is the use of anomaly detection systems, included in the
device, to identify unusual stimulation parameters, or an absence of treatment when a seizure
occurs, notifying the user. This second approach could be more energy preserving, and the election
of the strategy would depend on the use case.

2.3 Phase 3. Data processing & conversion
2.3.1 Attacks. This phase performs the data processing and conversion tasks required to allow
neural data and stimulation actions to be ready for subsequent stages. Although the literature has
not detected security problems in this phase, according to the aspects indicated by Bonaci et al. in
[17, 18], we identify malware attacks as possible against this phase, taking control over the BCI.
These attacks are candidates to affect both acquisition and stimulation processes, impacting the
tasks performed in this phase. In particular, we identify that malware can disrupt the analog-to-
digital conversion that occurs during neural data acquisition, as well as the translation of firing
patterns to particular stimulation devices. We also detect that jamming attacks applied to the
previous phase for data acquisition can impact this phase since a distorted input signal with enough
noise can be difficult to filter and thus propagate this signal to subsequent phases.

2.3.2 Impacts. In this context, we identify that malware attacks have an impact on both neural
data acquisition and stimulation, where attackers alter or override the data received from previous
phases, generating malicious data sent to subsequent phases. That is, the analog data recorded
during neural data acquisition or the firing pattern used in neurostimulation processes. These
attacks can gather the sensitive data managed in this phase, both analog and digital, and send it to
the attackers, affecting data confidentiality. For example, information about private thoughts or
neurological treatments. In terms of data and service availability, both acquisition and stimulation
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are potentially vulnerable to malware that avoids data transmission to subsequent phases of the
cycle. Malware affecting integrity and availability is also a threat against users’ physical safety,
generating damaging stimulation patterns or dangerous actions sent to applications. Besides, the
impacts and countermeasures described in the first phase of the acquisition flow for jamming
attacks are also applicable to the current stage.

2.3.3 Countermeasures. Regarding the countermeasures to mitigate attacks affecting data confi-
dentiality, Chizeck et al. [26] defined a US patent application entitled “Brain-Computer Interface
Anonymize” that proposes a technology capable of processing neural signals to eliminate all non-
essential private information [17, 165]. As a result, sensitive information is never stored in the BCI
device or transmitted outside. We identify this method as especially relevant in this phase, as it
is the first stage after the BCI’s acquisition process. Although the authors do not provide details
about techniques or algorithms to understand how raw signals are processed, they indicate that this
process can only be performed on hardware or software within the device itself, and not on external
networks or computer platforms, as a way to ensure the privacy of the information. Besides, Ienca
et al. [60] proposed the use of differential privacy to improve the security and transparency of data
processing.

The countermeasures to mitigate malware depend on their type and behavior. We consider the
use of antivirus software and Intrusion Detection Systems (IDS) as alternatives for the protection of
individual devices, based on [79]. Besides, the authors of [159, 177] considered perimeter security
mechanisms, such as firewalls, responsible for analyzing all incoming and outgoing communication
of the device. We also propose using ML anomaly detection systems to identify potential mal-
ware threats [24] [141]. Finally, Chakkaravarty et al. [154] reviewed current persistent malware
techniques able to bypass common countermeasures and proposed mitigation techniques, such
as sandboxing [104], application hardening [50] and malware visualization [41]. It is essential to
highlight that the countermeasures applicable for this phase highly depend on the device constraints
that implement this phase, which is typically the BCI device (see Section 3).

2.4 Phase 4. Decoding & encoding
2.4.1 Attacks. Decoding & encoding is the phase focused on identifying the action intended by the
users in neural data acquisition or the specification of the neural firing pattern in neurostimulation.
Malware attacks have been identified in the literature by Bonaci et al. [17, 18] from the signal
acquisition perspective. Specifically, they identified that attackers could use malware to either
override the functioning of this phase or to implement additional malicious algorithms. Besides,
we identify that malware attacks can also be applied to the stimulation flow, avoiding or disrupting
a firing pattern’s generation. Besides, we identify that adversarial attacks can also be applied to this
phase for both acquisition and stimulation tasks, taking advantage of the classification algorithms
used. These attacks affect all types of ML models, and, because of that, they are currently an open
challenge [38]. Liu et al. [90] detected the possibility of poisoning attacks, where attackers introduce
crafted adversarial samples to the data, aiming to change its distribution. Evasion attacks aim to
create samples that evade detection systems, whereas impersonate attacks focus on adversarial
samples that derive in incorrect classification of the legitimate ones. Finally, two attack models
exist according to the knowledge about the model [44]. In white-box attacks, adversaries know the
model, while in black-box attacks, they only have access to the model through a limited interface.

2.4.2 Impacts. The previously described attacks generate particular impacts on BCI. On the one
hand, malware has an impact on data integrity and availability, as it can alter or ignore the received
data from previous phases, and override the output of the current one. That is, disrupt the intended
action sent to BCI applications in the acquisition process, such as preventing the control of a
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wheelchair or changing its direction, or the firing pattern in neural stimulation, enabling a wide
variety of attacks as described in Section 2.1. Besides, malware affects the availability of the ML
process by the alteration of the trained model or the ML algorithm. From a data confidentiality
perspective, malware can access the features used in the ML training phase, as well as gather
information about the model and the algorithm used. Malware also affects users’ safety, as the
previous integrity and availability impacts derive in malicious actions and firing patterns that affect
the integrity of users, such as causing neural damage or inducing particular psychological states. On
the other hand, adversarial attacks also affect data integrity and availability, as the introduction of
malicious samples aiming to disrupt the model can alter or avoid the generation of actions and firing
patterns. Shokri et al. [153] demonstrated that ML models are sensitive against adversarial attacks,
aiming to detect if a sample exists in the model’s training dataset. Based on that, an attacker may
extract sensitive users’ data, such as previous intended actions or used patterns during stimulation
actions. Taking into account data confidentiality, Landau et al. [79] detected that a malicious entity
taking control of the output of this phase could access the user’s intention. Finally, the use of
malicious samples, as is the case of poisoning attacks, alter the ML system, deriving in safety impacts
for both cycle directions.

2.4.3 Countermeasures. To mitigate the attacks on the ML training phase affecting integrity and
availability, we have identified several techniques proposed in the literature for generic adversarial
attacks, that can serve as an opportunity to improve the security of BCI. First, data sanitization is
useful to reject samples containing adversarial information, thus disrupting the model. Jagielski et
al. [66] proposed a similar approach against poisoning attacks applied to regression techniques,
where noise and outliers are suppressed from the training dataset. Nevertheless, it does not pre-
vent attackers from crafting samples similar to those generated by the legitimate distribution.
Countermeasures such as adversarial training or defense distillation have been presented in this
context. However, both have limitations, as they depend on the samples used during the training
and can be broken using black-box attacks and computationally expensive attacks based on iterative
optimization [44, 90]. Goodfellow et al. [44] also proposed architecture modifications, based on
the improvement of ML models to be more robust, but this derives in models difficult to train
that have degradation in the performance when used in non-adversarial situations. Liu et al. [90]
documented the integration of techniques to mitigate the attacks, called ensemble method. They
also indicated two methods that can apply in both training and testing phases: differential privacy
and homomorphic encryption [56, 90, 165]. Finally, it is worthy to note that the countermeasures to
mitigate malware attacks in the previous phase can apply to the current one.

2.5 Phase 5. Applications
2.5.1 Attacks. From the data acquisition context, applications perform in the physical world the
actions intended by users through their neural activity. These actions can range from the interaction
with a computer or smartphone, to the control of a robotic limb. From the perspective of neural
stimulation, applications are the entry point of the information transmitted to the brain, like sensory
stimuli in prosthesis or cognitive enhancement. In this section, we consider attacks on applications,
without analyzing their communication with external systems, addressed in Section 3.1.

Considering the issues of this phase, spoofing attacks over BCIs have been detected in the literature,
where an attacker creates malicious applications identical to the original and make them available
in app stores [8]. The authors of [17, 18, 87] identified malware attacks as a threat in BCI. Besides,
Pycroft et al. [136] identified that the use of consumer devices, such as smartphones, generates
new risks and security problems. Specific considerations about malware are the same as detailed
in Sections 2.3 and 2.4. Moreover, we have found several opportunities related to cyberattacks
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performed against applications. In particular, we detect security misconfiguration issues, Buffer
Overflow (BO) attacks, and injection attacks over applications. However, the detailed analysis of
these particular attacks is out of the scope of this work, and we only address general aspects related
to BCI.

2.5.2 Impacts. Landau et al. [79] identified multiple risks on BCI applications with the indepen-
dence of any attack. They detected that an attacker could interfere with the user’s ability to use
the device, impacting its availability. They also detected confidentiality concerns regarding the
identification of users by their neural data, illustrating a scenario in which an attacker extracts
EEG data from the application and compares it with the EEG database of a hospital, identifying the
user and accessing his or her medical records. This identification can derive in a discrimination
situation based on the belonging of specific groups, such as religious beliefs. Besides, most BCI
development APIs offer full access over the information and do not implement limitations on the
stimuli presented to users, generating confidentiality issues [17, 40, 87, 96, 163, 165]. Finally, all
the attacks affecting this phase can force applications to send malicious stimuli or actions, causing
physical harm [8].
Considering the impact of the previous attacks, applications created by spoofing attacks affect

both data integrity and confidentiality, as they can present malicious stimuli to obtain sensitive
neural information, such as thoughts or beliefs [8]. In neurostimulation scenarios, we identify
that these fraudulent applications could entirely modify the firing patterns used to stimulate the
patient, generating a high impact over safety. More particularly, these applications could induce
psychological states in the victim, making them more willing to gamble, or even generate adverse
effects such as anxiety and depression. Based on that, the attacker could take advantage of these
mental states, injecting in-app advertisements to earn money from the victim.

Malware attacks impact the integrity of the applications by altering their services and capabilities,
such as disabling the encryption of information. Besides, they can compromise applications’ confi-
dentiality, gaining access to sensitive information such as medical records and user profiles used
during neurostimulation treatments. Concerning the availability of the application,malware attacks
can derive in denial of service over the application, impacting in processes such as controlling
prosthetic limbs or wheelchairs.
We detect that misconfiguration attacks present data integrity issues, where attackers take

advantage of the system to gain unauthorized access, such as weak access control mechanisms. Data
confidentiality issues are also present, for example, on configuration files that have static predefined
passwords, allowing attackers to gain access to users’ private data. Applications’ availability
problems are also possible, as a misconfiguration issue can serve as a first step to disrupt the normal
behavior of the BCI application.
Moving to injection attacks, they can produce data loss, modification, and corruption, affecting

the integrity of applications [105, 134]. In terms of confidentiality, they can produce the disclosure
of sensitive information to unauthorized parties [105, 134], such as insurance companies aiming to
select the best candidates for their products [8]. Availability can be affected by a denial of access
over an authentication system, or producing crash, exit or restart actions on the applications,
disrupting vital processes such as clinical neurostimulation [107, 134].

BO attacks can derive in the execution of unauthorized code or commands, where an attacker can
alter the normal functioning of the application or access to sensitive information [110]. Furthermore,
they can also aim to bypass protection mechanisms by the execution of code outside the scope
of the program’s security policy. These actions can affect the data integrity, confidentiality, and
availability of the application [111].
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2.5.3 Countermeasures. It is necessary to verify the legitimacy of the applications and ensure
sufficient control of the app stores to mitigate spoofing attacks [8]. In that regard, Landau et
al. [79] proposed the use of applications developed by authorized organizations to ensure their
trustworthiness. When it comes to malware attacks, the same countermeasures proposed for the
Data processing & conversion phase also apply for applications. That is, the use of antivirus, firewall,
IDS, and anomaly detection systems to identify and mitigate the attacks. Furthermore, Takabi et
al. [164, 165] proposed the use of access control mechanisms over the information to restrict its
access and thus mitigate confidentiality impacts. They also indicated the use of randomization and
differential privacy. Besides, they proposed the integration of homomorphic encryption to operate
with encrypted information combined with functional encryption to access only to a subset of the
information.

As an opportunity for BCI, we identify some preventive actions against misconfiguration attacks
defined by the Open Web Application Security Project (OWASP) [123], such as the use of minimal
platformswith only necessary features, components, libraries, and software to reduce the probability
of misconfiguration issues. Moreover, a periodic review and update of configuration parameters
are also beneficial as part of the management process of applications. It is also necessary to create
segmented application architectures that offer a division between components and defines different
security groups, using Access Control Lists (ACLs).

Concerning BO, it is important to use programming languages that protect against these attacks,
as well as the use of compilers with detection mechanisms. [147]. Developers must validate all
inputs and follow well practice rules when using memory (e.g., verification of the boundaries of
buffers). Moreover, sensitive applications must be ran using the lowest privileges possible and even
isolated using sandbox techniques [110–112]. To detect injection attacks, both static and dynamic
analysis of applications’ source code have been proposed [134]. For their mitigation, it is necessary
to escape all special characters included in the input [107, 134]. Multiple solutions have been
proposed, such as the use of whitelists and blacklists [106], the use of safe languages and APIs
containing automatic detection mechanisms [105, 134], the use of sandboxing techniques to define
strict boundaries between processes [107], the definition of different permissions on the system
[106], and error messages with minimal but descriptive details.

3 SECURITY ISSUES AFFECTING THE BCI DEPLOYMENTS
This section reviews the different architectural deployments of the BCI cycle found in the literature.
After that, we group them into two main families, characterized by the BCI cycle implementation
and its application scenario. In contrast to Section 2, where the security analysis is independent of
the deployment, this section reviews the state of the art of existing attacks affecting the devices
implementing each phase of the BCI cycle, as well as their impacts and countermeasures. New
opportunities, in terms of attacks and countermeasures, missed by the literature, are also highlighted
in this section. Figure 4 represents both architectural deployments defined, Local BCIs, and Global
BCIs, indicating the communication between their elements and the phases of the BCI cycle that
each element implements according to the type of deployment.

3.1 Local BCI
3.1.1 Architecture description. Local BCI deployments highlight by managing the neural data
acquisition and stimulation processes of single users. This architecture typically deploys the BCI
phases between two physical devices, as represented in Figure 4. The first one, identified as BCI
device, focuses on the neural acquisition and stimulation procedures (phases 1 and 2 of the BCI cycle).
In contrast, BCI applications (phase 5) run in a Near Control Device (NCD), a PC or smartphone that
controls the BCI device using either a wired or wireless communication link. Phases 3 and 4 of the
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Fig. 3. Relationship between the attacks, impacts, and countermeasures over the BCI cycle. The phases of
the cycle colored in red for each impact represent issues documented in the literature, while those marked
in blue are our contribution. The attacks, impacts and countermeasures followed by references have been
documented in the literature, and those without a cite represent our contribution.
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Fig. 4. Representation of Local BCI and Global BCI deployments, indicating the communication between
their elements and the stages of the BCI cycle that each element implements according to the architectural
deployment.

cycle can be implemented equally in both devices, where manufacturers make the final decision. At
this point, it is essential to note that alternative designs can arise due to specific requirements of the
deployments, such as the presence of multiple users. Moreover, we consider fully implantable BCIs
within this architecture, since they require an external device for its configuration and verification.

3.1.2 Examples of deployments. This kind of architectural deployment is the most commonly
implemented for consumer-grade BCIs, where commercial brands like NeuroSky or Emotiv focus
on scenarios such as gaming and entertainment [1, 96, 100]. Neuromedical scenarios also use
this approach, where an NCD placed in the clinical environment manages the acquisition and
stimulation processes. This section specifically addresses the issues detected in physical BCI devices,
the inherent problems of the NCD, and those related to the communication between BCI and NCD.
At this point, it is important to note that the attacks, impacts, and countermeasures detected for
the BCI cycle are also applicable.

3.1.3 Attacks. Focusing on BCI devices, Ballarin et al. [8] identified attacks affecting the device
firmware throw a configuration link (e.g., USB ports), having an impact on data integrity and confi-
dentiality, also generating disruptions on the system. Pycroft et al. [136] identified the possibility
of injecting malicious firmware updates. Moreover, we identify that these attacks can serve as an
opportunity to generate safety problems. Ienca et al. [58, 59] documented cryptographic attacks,
indicating that Cody’s Emokit project was able to crack the encryption of data directly from the
Emotiv EPOC, a consumer-grade BCI. They detected that these attacks affect data integrity and
confidentiality. Marin et al. [95] detected that current IMDs lack robust security mechanisms.
Yaqoob et al. [178] identified that neurostimulation devices lack encryption and usually define
default passwords, impacting integrity and confidentially, easing unauthorized access to sensitive
data. We also identify that they produce service availability and safety issues if they can modify
the data.
The authors of [24, 135] highlighted that attackers could focus on draining the battery of the

device and thus affect both service availability and users’ physical safety. In neurostimulation
systems, losing the battery capacity would result in a loss of treatment, where the disease symptoms
would reappear. Due to this, some IMDs include rechargeable batteries, reducing the risks of
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depleting them, and thus defining more robust solutions. It is also essential to consider that, in
non-rechargeable systems, surgery is required to replace the batteries, increasing the risk of both
physical and psychological safety issues.

The authors of [17, 136] described the possibility of hijacking attacks, referred to as brainjacking,
where the attacker acquires complete access over the device by any means. These attacks generate
an impact on all four security impact metrics. Finally, Pycroft et al. [135] identified general confi-
dentiality impacts than can be shared by multiple attacks. They identified that close-loop IMDs
use physiological data acquired by the BCI to improve the stimulation procedures or drug delivery.
However, this sensitive data can be used by attackers to acquire information about the patient’s
health condition. Furthermore, an attacker can acquire sensitive information stored in the device,
such as stimulation settings, personal data, or battery status, useful to perform new attacks.
Considering NCDs, Ballarin et al. [8] identified social engineering and phishing attacks against

BCIs, focused on the acquisition of users’ authentication credentials, affecting data confidentiality.
Although BCI applications do not require a connection to the Internet, the NCD can be connected.
Therefore, we detect that these systems can suffer malware attacks and, specifically, ransomware
[2] and those based on botnets [74, 77, 159], with an impact on the integrity and availability of
data and applications contained in the NCD, as well as users’ safety. In particular, botnets also
generate data confidentiality issues, since attackers have control over the system. Moreover, we
detect sniffing attacks on NCDs taking advantage of networking configuration and protocols, such
as MAC flooding, DHCP attacks, ARP spoofing, or DNS poisoning [5], affecting service and data
integrity, confidentiality and availability.

Focusing on the communication between BCI devices and NCDs, Sundararajan et al. [163] studied
the security of the commercial-grade Emotiv Insight, which implemented Bluetooth Low Energy
(BLE) in its version 4.0 to communicate with a smartphone that contains the application offered by
Emotiv. They successfully performed man-in-the-middle attacks over the BLE link, being able to
intercept and modify information, force the BCI to perform unwanted tasks, and conduct replay
attacks affecting, therefore, integrity, confidentiality, and availability of sensitive data. The literature
has documented further integrity and confidentiality impacts, where attackers can intercept and
modify sensitive data even using encryption [8, 87, 163, 164] [79, 95, 135]. These attacks are related
to the cryptographic attacks described above, where weak encryption of the data stored in the device
can derive in man-in-the-middle attacks. Finally, it is important to note that the attacks related to
user data and credentials have a higher impact if multiple users use the system.

3.1.4 Countermeasures. To some of the previous attacks, different countermeasures have been
proposed. Related to firmware attacks, Ballarin et al. [8] indicated the encryption of the firmware, as
well as an authenticity verification throw hash or signature. Pycroft et al. [136] highlighted periodic
firmware updates and the use of authorization mechanisms for these updates. The authors of [24,
135, 136] identified the use of access control mechanisms placed in external devices with proximity
to the patient and anomaly detection systems over the BCI device usage to face potential threats
such as battery drain attacks. In particular, for these attacks, rechargeable batteries are recommended
to avoid a surgical replacement. The authors of [79] proposed, as general countermeasures, the
regulation of neurotechnology as a way to standardize its manufacturing processes, as well as a
reduction of BCI training process, which tends to frustrate the users, being less willing to cooperate.
These measures are complementary with those documented by [135], which considered that BCI
devices should keep logs and access events, including mechanisms for reporting bugs.
The use of robust cryptographic mechanisms and the latest protocol versions are determinant

to avoid cryptographic attacks, man-in-the-middle attacks, and sniffing attacks [8, 163]. Besides,
anonymization of the information transmitted from BCI to NCD is also recommendable against
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attacks impacting confidentiality, for example, using the BCI Anonymizer [17, 18, 164]. Social
engineering and phishing attacks focused on credential theft can be reduced by implementing a
second authentication factor to access the BCI and proper access control mechanisms [8, 165]
[135]. The application of the malware countermeasures indicated in Section 2.3 can evade global
malware threats impacting NCDs, by updating all software to the latest version and implementing
periodic backup plans. Moreover, the use of ML techniques, as proposed by Fernández-Maimó
et al. [37] for Medical Cyber-Physical Systems (MCPS), can also be used to detect, classify, and
mitigate ransomware attacks. Concerning botnets, a wide variety of detection techniques have been
detected by us for the BCI field, like the use of anomaly detection based on ML and signatures, the
quarantine of infected devices, and the interruption of particular communication flows [4, 73, 92].
Finally, we consider that the recommendations of the U.S. Food and Drug Administration (FDA) for
premarket and postmarket management of security in medical devices apply to BCI [150, 168, 169].

3.2 Global BCI
3.2.1 Architecture description. Global BCI architectures focus on the management of neural data
acquisition and neural stimulation of multiple users through an Internet connection. This archi-
tecture considers three devices to deploy the phases making up the BCI cycle, as can be seen in
Figure 4. In this family, the BCI device remains focused on data acquisition and stimulation (phase
2), whereas the NCD is in charge of the execution of applications (phase 5), as well as conversion
and processing actions (phase 3). Finally, the new element introduced in this architecture is the
Remote Control Device (RCD), representing one or more external resources or services accessible
via the Internet, such as cloud computing and storage. It typically implements phases 4 and 5 of
the BCI cycle, as it has the resources to run more complex applications and information analysis.
The main difference between this architecture and the one described for Local BCIs in Section 3.1
is that, in Local BCIs, the NCD does not send user information to external services (e.g., cloud).
Finally, this section focuses on the problems associated with the communication between NCD
and RCD, and the BCI-related attacks that can apply to RCDs. However, these later attacks are
addressed in a general way, as specific cloud computing attacks are outside the scope of this article.

3.2.2 Examples of deployments. This architectural deployment is the most innovative, as it al-
lows the communication of multiples users with external services and the creation of complex
deployments, where the data and information of every user are stored and managed in a shared
infrastructure. From a commercial point of view, Emotiv allows users to contrast their data with
the data stored by other users, as well as keep users’ neural recordings in the cloud to visualize
and manipulate them, also offering an API called Emotiv Cortex [35]. Besides, several companies
worldwide provide distributed BCI services, as is the case of Lifelines Neuro [88], which offers a
continuous EEG acquisition, storage, and visualization in their cloud platform. These scenarios are
especially relevant in the context of personalized medicine and early diagnosis.

3.2.3 Attacks and countermeasures. Considering the attacks on this deployment, the issues docu-
mented in Section 3.1 for Local BCIs are also applicable in this architecture. However, Global BCIs
present higher risks, since these deployments are an opportunity for remote attacks against inter-
connected BCI devices, which derives in physical harm for their users. Furthermore, Takabi et al.
[165] detected that BCI applications could send raw brain signals to cloud services that execute ML
techniques to extract sensitive information and therefore affect confidentiality. We identify that this
problem can also be present in Local BCIs if the NCD has an Internet connection. Ballarin et al. [8]
identified that man-in-the-middle attacks could occur in the communication channel between NCD
and RCD, affecting the integrity and confidentiality of the data transmitted as well as the service
availability. They also detected that attacks on RCDs could have a higher impact on confidentiality
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than on Local BCIs, as these platforms store sensitive information from multiple users, that can
be stolen or sold to third parties. Ienca et al. [60] detected different issues in Global BCIs in terms
of their usage. First, they highlighted that current brands, such as Emotiv [34], indicate in their
privacy policy that they can gather personal data, usage information, and interactions with other
applications, and that they can infer information from these sources, with potential confidentiality
issues. The authors identified as possible the use of big data to extract associations and share the
data with third parties. Moreover, they detected that the use of cloud services could derive in a
massive database theft with sensitive data, an unclear legal liability in case of breaches.
We identify that this architecture is quite similar to those defined and implemented for IoT

scenarios, where constrained devices communicate with external services via intermediate systems,
especially when multiple devices interact. We detect that most of the security attacks and impacts
defined by Stellios et al. [160] are also applicable in this architecture. Moreover, we consider
that the issues highlighted by the OWASP in their IoT projects are critical aspects of Global
BCIs [125]. This relationship between IoT and external services has been previously studied in
cloud computing scenarios [19]. Despite the advantages, attacks on cloud computing can impact
integrity, confidentiality and availability in different cloud architecture levels, such as infrastructure,
networking, storage, and software [9, 155]. The evolution of NCDs derives in mobile devices with
higher computing capabilities, integrated into mobile cloud computing systems. However, they also
have an impact on the security of deployments [113]. We also detect that the improvement of NCDs
capabilities can also allow the introduction of fog computing in Global BCIs, where NCDs perform
part of the computation, generating new security and trust issues [93, 142, 183]. Malware attacks
are also present in cloud environments, where ransomware and botnets are common threats [155].
Focusing on general cloud computing countermeasures, Amara et al. [3] identified security

threats and attacks, as well as the mitigation techniques against them. The use of honeypots,
firewalls, and IDS in cloud scenarios is convenient to reduce the impact of malware attacks [142].

Figure 5 summarizes the previous attacks, impacts, and countermeasures. This figure first shows
the list of attacks considered in this section, associated with a unique icon, where those attacks with
references indicate that they have been detected in the literature, while those without references
represent our contribution. After that, we show the impacts that generate the previous attacks,
organized by category. For each impact, we indicate the specific attacks that cause the impact, and
which elements of the architectural deployments presented in Figure 4 are affected. Moreover, we
consider the issues on the communication links between these elements. In particular, the attacks
and elements identified in red represent issues detected in the literature, whereas those in blue are
our contributions. Finally, this figure lists countermeasures detected both in the literature and by
us, associating each attack with a list of countermeasures. The color and reference criteria used
before for the impacts also applies to the countermeasures, where an attack represented with a
particular color indicates that all their countermeasures have the same color.

4 BCI TRENDS AND CHALLENGES
One of the first BCI solutions was developed at the end of the 1990s. It supposed a significant
advancement in the medical industry, specifically in neurorehabilitation, bringing to the reality the
mental control of prosthetic limbs and wheelchairs [119]. During the decade of the 2000s, a new
generation of neuroprosthetic devices was developed to restore the mobility of patients severely
paralyzed, creating communication links between the brain and a wide variety of actuators, such
as robotic exoskeletons [82]. This trend in the field of BCI has resulted in new paradigms and
scenarios in the last decade, where acquisition and stimulation procedures are used together to
acquire brain activity and deliver feedback to the brain or peripheral nerves, defining the concept
of bidirectional, or closed-loop, BCIs. Focusing on these systems, NeuroPace RNS is the only
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Fig. 5. Attacks, impacts, and countermeasures associated with the BCI architectural deployments. Elements
indicated in red represent information detected in the literature, while blue represents our contribution.

technology clinically approved for closed-loop treatment [33]. DBS is nowadays considered as a
unidirectional BCI system, or open-loop, only performing stimulation actions. Nevertheless, current
research aims to develop closed-loop DBS systems that are able to automatically identify the best
stimulation parameters based on the status of the brain [52]. This evolution is also applicable for
neuroprostheses, where the users can mentally control prosthesis while receiving stimulation to
recover motor abilities [85].
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This evolution allowed the definition of prospect ways of interaction where the BCI acts as an
online communication element with other systems and users, based on Global BCI architectures.
In particular, we subsequently present several examples of futuristic systems to highlight the
importance of security in the progress of BCI technologies. Zhang et al. [182] defined the concept of
the Internet of Brain, also known as BtI, where the BCI uses an NCD to access Internet services, such
as search results or social media. Lebedev et al. [82] also described experiments where monkeys
controlled remote robotic arms using BCI devices. More recently, Saad et al. [144] identified that
6G technologies could enable the interconnection of BCIs with the Internet. Besides, Martins et al.
[97] documented a fusion between neuralnanorobotics and cloud services to acquire knowledge,
defining the concept of Human Brain/Cloud Interface (B/CI). Another futuristic approach, BtB,
allows direct communications between two brains, known as BtB [127, 184], where Pais-Vieira et
al. [127] documented the real-time exchange of information between the brain of two rats. These
systems have also been extended to create networks of interconnected brains, known as Brainet,
which can perform collaborative tasks between users and share knowledge, memories, or thoughts
through remote brains [67, 126]. Although these systems are in an early research stage, they could
be a reality in the next decades, where security aspects will gain enormous importance. To represent
this trend, Figure 6 illustrates this evolution of the literature, indicating the years of publication and
approaches. Besides, current innovations, such as the use of silicon-based chips, could increase the
quantity of information that we can acquire from the brain, and ease the development of electronic
devices to improve the resolution of the neural acquisition and sensitivity of the process [121].

The BCI research field has gained relevance in the last few years, where different governments
have funded and promoted BCI initiatives. In the United States of America, the DARPA is supporting
the BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies) [64].
Canada has launched its research line, called the Canadian Brain Research Strategy [63, 162]. On
the other side of the Atlantic ocean, the European Union has also supported different projects, such
as the Human Brain Project (HBP) [133] or the Brain/Neural Computer Interaction (BNCI) project
[21, 22]. Asia has also promoted several initiatives, such as the China Brain Project [132] or the
Brain/MINDS project in Japan [20]. All the previous initiatives and projects aim to advance the
understanding of the human brain through the use of innovative technologies. As a consequence,
emerging technologies offer precise acquisition and stimulation capabilities that enable new BCI
application scenarios. The common interest in the study of the human brain and, in particular, on
BCI leads to new opportunities for manufacturers, who can increase their competitiveness producing
revolutionary BCI services based on growing paradigms such as the IoT, cloud computing, and big
data. This development derives in the improvement of the usability, accuracy and safety of the
products, together with their expansion to non-medical economic sectors such as entertainment.
The result of the above is a trend of BCI towards Global BCI architecture deployments, where
multiple BCI devices can communicate between them to perform collaborative tasks, based on the
approaches of BtI, BtB, and Brainet. Once summarized the evolution of BCI and its trend, below,
we highlight the most relevant current and future challenges concerning security on BCI.

4.1 Interoperability between BCI deployments
Existing BCI deployments consider isolated devices without standards to provide interoperability
in terms of communication and data representation. This is the case of commercial BCI brands and
devices, which have been designed to resolve particular problems and are not compatible between
them [137]. Moreover, deployments integrating the communication between several BCIs are ad hoc;
that is, manufacturers design and implement them, considering only the requirements of a particular
scenario. In this context, the current trend of BCIs towards paradigms such as the IoT and cloud

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 2020.



Security in BCI: State-Of-The-Art, Opportunities, and Future Challenges 0:25

First BCI 
solu�ons

New 
genera�on 

of 
prosthe�c 

devices

2006

2007

New 
paradigms 

and 
scenarios

2009 2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

Karim et al. 
[70] BtI
Vaughan et al. 
[174] BtI

2010s2000s

1990s

Francis et al.
[39] BtI

Iandoli et al. 
[57] BtI, Brainet

Mugler et al.
[115] BtI
Sirvent et al.
[156] BtI

Le Groux et al.
[81] Brainet

Wang et al. 
[176] Brainet

O’Doherty et al. 
[122] BtB

Yu et al.
[180] BtI

Eckstein et al.
[32] Brainet

Bernstein et al.
[12] Brainet

Pais-Vieira et al. 
[127] BtB

Yoo et al. 
[179] BtB

Poli et al. 
[130] Brainet

Yuan et al. 
[181] Brainet

Kapeller et al. 
[69] Brainet

Grau et al.
[45] BtB

Poli et al. 
[131] Brainet
Rao et al.
[140] BtB

Pais-Vieira et al. 
[126] BtB, Brainet

Kyriazis et al. [78]
BtI, BtB, Brainet

Ramakrishnan et al. 
[138] Brainet
Stocco et al. 
[161] BtB

Zhang et al.
[182] BtI
Li et al. 
[86] BtB

Mar�ns et al.
[97] BtI
Jiang et al. 
[67] Brainet
Zhang et al.
[184] BtB

Katona et al.
[71] BtI

Saad et al.
[144] BtI

De Oliveira Júnior 
et al. [29] BtI
José et al.
[68] BtI

Laport et al.
[80] BtI

Lu et al.
[91] BtI

Coogan et al.
[28] BtI

Zhang et al.
[183] BtI

Saboor et al.
[145] BtI

Maksimenko et al.
[94] BtB, Brainet

Hosseini et al.
[55] BtI

He et al.
[51] BtI

Saboor et al.
[146] BtI
Lee et al.
[83] BtB

Mashat et al.
[98] BtB

Lebedev et al. [82]
BtB, BtI, Brainet

Fig. 6. Timeline of the evolution of BCI research, seen from the perspective of BtI, BtB, and Brainet approaches.

computing will require an improvement in interoperability, as it is essential to ensure the future
expansion of BCI technologies. Besides, the lack of interoperability limits the definition of global
cybersecurity systems and mechanisms that can be applied. In this sense, current BCI solutions are
device-oriented and do not offer collaborative mechanisms against cyberattacks. We detect as a
future opportunity the use of well-known standardized APIs, communication technologies, and
protocols to offer seamless protection on BCI. We also propose the use of ontologies to represent
neural information in a formal and standardized fashion. Different companies and products would
use a joint representation to ease data interpretation, processing, and sharing. This homogenization
would have a positive impact on cybersecurity, enabling the design and deployment of new protocols
and mechanisms for the secure exchange of particular pieces of sensitive data between independent
BCI solutions. In particular, the exchange of medical information between different organizations
can be accomplished using well-known standards, as is the case of the HL7 standard [53].

4.2 Extensibility of BCI designs
Extensibility refers to the ability of BCIs to add new functionality and application scenarios
dynamically. Nowadays, BCI devices suffer a lack of extensibility, as companies manufacture
them to provide particular services on fixed application scenarios. The neural data processing is
performed in a fixed way and according to predefined premises. It means that each layer making
up BCI architectures performs particular processing tasks, which can not be changed or even
modified on demand [163]. Since each application scenario has its requirements and restrictions,
the trend towards Global BCI will need new automatic and flexible architectures and processing
mechanisms over the acquired neural data. These aspects also affect the security solutions that
can be applied, since current constraints of BCI systems prevent the use of reactive and adaptive
defensive mechanisms to face the threats described in previous sections. In conjunction with a lack
of interoperability, the security responsibilities of each phase of the architecture are predefined and
cannot be extended within that element, or delegated to be performed in other systems. As a future
line of work, we highlight the design of BCI deployments that allow the implementation of most
of the operations performed in software, instead of hardware, allowing developers to change the
system’s behavior. Another possible solution is a modular design of BCI, including supplementary
modules, according to the requirements. However, these modifications introduce new security
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challenges, since software developments are more prone to errors and attacks, and new modular
systems will address specific challenges, such as the verification of their authenticity.

4.3 Data protection
Current BCI architectures and deployments do not consider the protection of neural data and
personal information, as detected in the literature [137, 152, 164]. The evolution of BCIs towards
distributed scenarios with heterogeneous and ubiquitous characteristics, such as BtB approaches,
will require the storage and management of multiple users’ personal and sensitive data. Because of
that, future deployments should ensure that this critical information is transmitted and processed
securely. Specifically, robust cryptography mechanisms need to be applied over data communication
and storage, while techniques such as differential privacy or homomorphic encryption would help
to ensure the anonymization of the data. Moreover, users do not have control over their privacy
preferences to define who has access to the information and in which particular circumstances.
Because of that, there are no specific privacy regulations to ensure that applications and exter-
nal services can access only to the neural information accepted by users, nor any limitation on
manufacturers or third-parties to prevent the processing of sensitive neural data without users
authorization. To improve this situation, we propose policy-based solutions that allow users to
define their privacy preferences based on their particular context. Besides, we propose the use of
user-friendly systems that also help users proposing privacy-preserving recommendations. These
initiatives must also align with the data protection law applicable in each country.

4.4 Physical and architectural BCI threats
Nowadays, a considerable amount of BCI designs and deployments do not consider cybersecurity
issues such as the protection of communications, processing, storage, and applications. Although
some solutions include security mechanisms, like Medtronic DBS products, some aspects must be
improved. In particular, these devices use proprietary telemetry protocols [101], which recently
has led to vulnerabilities [27]. Nevertheless, companies such as Medtronic or Boston Scientific
publish security bulletins when a security vulnerability affecting their devices is detected [103, 151],
highlighting the interest that companies have on security. Moreover, the lack of BCI standards
and, specifically, cybersecurity standards, prevent the homogenization of the security solutions
implemented [17, 137, 163, 165]. The expansion of BCI will require robust dynamic cybersecurity
mechanisms to face future challenges. Moreover, the development of more precise BCI devices and
the integration of a large number of devices and systems, would result in a massive production of
sensitive data. In our opinion, this context could benefit the increase of vulnerable systems and
communication links. To address these challenges, manufacturers should evaluate alternatives
for the mitigation of cyberattacks from multiple perspectives, aiming to implement seamless
cybersecurity solutions. Based on that, we propose using 5G network technologies, since they
have been designed to support a significant number of devices, which are necessary for BtB and
Brainet scenarios. In particular, we identify that techniques and paradigms associated with 5G,
such as Network Function Virtualisation (NFV) and Software-Defined Networking (SDN) for the
virtualization and dynamicmanagement of network communications, are useful for the development
of reactive cybersecurity solutions. Also, technologies such as Blockchain can provide the tracking
of the information and ensure that it has not been modified, guaranteeing the integrity of the
data. Moreover, we identify the protection of network communications by using protocols such
as TLS [62] or IPsec [61] as an opportunity, which offers robust mechanisms against cyberattacks.
Moreover, we detect that the application of information risk management standards, such as the ISO
27000 [65], and the NIST Cybersecurity Framework [120] could benefit the creation of homogeneous
and robust solutions. Finally, we identify that game theory applied to BCI security strategies can be
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useful to implement regularly evolving systems. In particular, they can be useful to model how to
establish the most appropriate countermeasures against continuously and automatically changing
attacks, specifically in distributed scenarios such as BtB [7].

5 CONCLUSION
This article performs a global and comprehensive analysis of the literature of BCIs in terms of
security and safety. Mainly, we have evaluated the attacks, impacts and countermeasures that BCI
solutions suffer from the software’s architectural design and implementation perspectives. Initially,
we proposed a unified version of the BCI cycle to include neural data acquisition and stimulation
processes. Once having a homogeneous BCI cycle design, we identified security attacks, impacts,
and countermeasures affecting each phase of the cycle. It served as a starting point to determine
which processes and functioning stages of BCIs are more prone to attacks. The architectural
deployments of current BCI solutions have also been analyzed to highlight the security attacks
and countermeasures related to each approach to understanding the issues of these technologies
in terms of network communications. Finally, we provide our vision regarding BCI trends and
depict that the current evolution of BCIs towards interconnected devices is generating tremendous
security concerns and challenges, which will increase in the near future.

Among the learned lessons, we highlight the following five: (1) the field of security oriented to BCI
technologies is not yet mature, generating opportunities for attackers; (2) even non-sophisticated
attacks can have a significant impact on both BCI technologies and users’ safety; (3) there is a
current opportunity for standardization initiatives to unify BCIs in terms of information security; (4)
well-studied fields, such as IMDs and IoT, can define a guide to develop robust security mechanisms
for BCIs; (5) users’ awareness of BCI security issues is vital.

As future work, we plan to focus our efforts on the design and implementation of solutions able
to detect and mitigate attacks affecting the stimulation process in real time. In this context, we are
considering using artificial intelligence techniques to detect anomalies in the firing patterns and
neural activity controlled by BCI solutions in charge of stimulating the brain. Besides, we also plan
to contribute by improving the interoperability and data protection mechanisms of existing BCI
architectures. Finally, another future work is the development of dynamic and proactive systems as
an opportunity to mitigate the impacts of the attacks documented in this work.
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