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Abstract
Artificial Neural Networks (ANNs) are one of the most widely used form of

machine learning algorithms. Over the years numerous types of ANN have been
developed and applied to many domains. However, there are still important problems
to overcome including their slow learning and the inability of certain types of deep
ANNs to learn, due to the vanishing gradient problem. This thesis attempted to solve
these problems via novel efficient learning and initialisation algorithms.

One of the tools used to do this is Genetic Programming (GP): a form of program
evolution. Very little research had been done on the use of GP to induce learning
rules for ANNs. This thesis started from where others left and also developed a
rigorous methodology for fairly comparing learning rules. GP was able to evolve
a learning rule that is fast and general. A qualitative interpretation for the rule and
empirical evidence showed it is superior to the standard back-propagation algorithm.

The vanishing gradient problem is a long-standing obstacle to the training of deep
ANNs using sigmoid activation functions. The methods proposed in the literature to
improve the situation are not very successful. This thesis first used GP to discover
an initialisation algorithm that solve the problem. Then, we performed an in-depth
analysis of the evolved algorithm and a theoretical analysis of the extent to which
the vanishing gradient problem depends on the choice of the mean of the initial
weight distribution. Both indicated that initialising the weights with a carefully
selected negative mean would give large initial gradients in weight space. Empirical
verification finally showed that starting from such a good initial position, the standard
back-propagation algorithm is successful and efficient at training deep networks with
10 and 15 hidden layers on a standard set of benchmark problems.
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Chapter 1

Introduction

In conventional programming methods, the computer does not know how to act. The
user explicitly programs the computer so that it produces the desired outputs or, more
generally, behaviours. In contrast, machine learning algorithms produce their own
solution for a problem by learning the characteristics of the data from a training set
of examples [1, 2, 3].

Machine learning is a term which represents numerous techniques that can
automatically learn solutions in this manner [4]. Machine learning algorithms are
divided into three basic categories: supervised learning, unsupervised learning and
reinforcement learning.

In supervised learning [2, 3], the examples in the training set have labels or
desired outputs. Both the input features and the desired outputs of the examples are
used by the algorithm during the training for it to learn the characteristics of the data.
Linear Regression, Logistic Regression, Support Vector Machines, Decision Trees,
Naive Bayes and Artificial Neural Networks (ANNs) are the most commonly used
supervised learning algorithms. This learning model is usually used for classification
and regression problems.

Classification algorithms aim to categorise the pattern shown them-self based on
the correlations they learn between incoming data and the labels during the training.
The regression algorithms produce continuous values with the aim of predicting
proper output for the incoming [2, 3].

In contrast, in unsupervised learning [2, 3], the examples in the training set do
not have desired outputs. Only the input features of the examples are provided
to the algorithm. The algorithm aims to group the examples depending on their
similarities. It does not know whether the groups are correctly categorised. The
most commonly used unsupervised learning algorithms are k-means and Principle
Component Analysis.

In reinforcement learning [2, 3, 5], the algorithm learns how to act from the
outputs produced by itself. The algorithm returns feedback that is called reward or

12



CHAPTER 1. INTRODUCTION

penalty to the input by evaluating the output whether it is correct or not. It is used as
an input for the next step. Reinforcement learning is widely used in video-games,
robotics and autonomous cars etc. Most common algorithms in this learning model
are Q-learning, Monte Carlo and State-Action-Reward-State-Action which is known
as SARSA.

Some well-known machine learning algorithms are listed above based on their
usage purpose. ANNs, among those, are one of the most commonly used machine
learning algorithms. They are forms of supervised learning, although there are some
unsupervised ANNs too. ANNs were developed by taking inspiration from the
human nervous system and the brain. In ANNs, neurons are connected to each other
to form networks, typically with a layered structure. A neuron in the network receives
signals that come from neurons in previous layers, processes them, and outputs a
result to neurons in the next layer through the connections. Each connection has a
value that is used to weight the signal that comes from the previous neuron. These
are called connection weights. The networks can learn the correlations between
input signals and the desired outputs in the training data by adjusting the connection
weights repeatedly. This system uses a mathematical model of the biological neuron
that processes electrical signals coming from outside and transmits the processed
signal other neurons. The biological neuron will be explained in detail in the next
chapter [34, 35, 6].

The early studies in this area were done in the 1940s. In 1943, McCulloch and
Pitts [7] developed a neural model that could compute logical expressions. This
model was the inception of the field of ANNs. As a second step, Donald Hebb [8]
introduced a first learning rule for neural networks which is now known as ‘Hebb
learning’ in the late 1940s. Afterwards, Rosenblat’s perceptron [9] and Widrow’s
Adaptive Linear Neuron (ADALINE) [10] models were developed. These models
have a single-layer of weights between the input and output neurons. Minsky and
Papert [11] reported that these models were not able to solve non-linearly separable
problems such as the Exclusive OR (XOR). After this report, interest in neural
networks decreased. Almost two decades later, researchers developed Multi-layer
perceptrons (MLPs), which have one or more layers between input and output
layers, and trained them using the gradient descent principle by back-propagation to
solve nonlinear problems [12, 13, 14, 15, 16]. This achievement was an important
milestone in the neural networks studies.

ANNs started to be widely used after MLPs and the back-propagation [12]
algorithm were developed. Another significant improvement in ANNs was deep
learning. This term is used for networks which have many hidden layers. In the
last decade, studies on shallow (single-hidden-layer) networks have decreased while
the studies on the networks with a deep architecture have increased. Since the early
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CHAPTER 1. INTRODUCTION

studies on ANNs, researchers have developed many different types of deep and
shallow neural networks that can be used for supervised learning, unsupervised
learning and the other forms.

MLP with the supervised learning principle is the most widely used form of
ANNs. In the next chapter, an example MLP will be shown, and its working principle
will be described in detail. MLP can be used with a shallow or a deep architecture
for many tasks such as prediction, recognition and classification. Unfortunately, the
original algorithm can be trapped by local optima of the error functions, is very
slow and can easily overfit. Also, the standard weight initialisation methods (e.g.
with zero-mean) cause poor learning performance on the deep networks that use the
logistic activation function. Various techniques have been proposed in the literature
to improve the neural networks as we will review in the next chapter. However,
neural networks still have some drawbacks, such as long training time (particularly
with large, deep networks), slow learning, and the difficulty of choosing the correct
hyper-parameters. Furthermore, with traditional comparison methods, it is not easy
to evaluate which network’s hyperparameters (such as the network topology, learning
algorithm, and learning rate) provide faster learning than the others. In this thesis, we
aim to improve such problems using Genetic Programming (GP) [17] and theoretical
analyses.

GP is an evolutionary program-induction technique that can produce problem-
solvers (i.e., algorithms) for a specific class of problem. One of the first studies
for evolving algorithms was done by Cramer [18] in 1985. The author showed
that Genetic Algorithms (GAs) with a tree-based structure could produce simple
computer functions. Then, John Koza extended this approach, and in the early 1990s,
introduced GP providing a significant number of experimental results that show
computer programs produced by GP can solve wide range of problems [17, 19]. The
GP components and its working principle will be described in detail in the next
chapter.

1.1 Aims of the Research

A variety of deep and shallow ANNs have been widely applied to such data as
images, signals and text for a long time [20, 21, 22]. However, there are still some
significant questions to be answered:

a. How to choose the network topology

b. How to find a suitable learning rate for training

c. How to choose a suitable activation function

14



CHAPTER 1. INTRODUCTION

d. How to design a training algorithm

e. How to choose the initial values of the connection weights

For many years, these problems have been research subjects for scientists. How-
ever, these studies take a long time because progress often requires knowledge of
mathematical principles, engineering knowledge, creativity and sheer luck. In addi-
tion, any new algorithm has to be widely tested to analyse its efficiency [23]. Because
discovering new training algorithm is a search problem, it has been proposed to use
search and optimisation methods, such as GP and Genetic algorithms (GAs), rather
than manual trial-and-error methods in searching for new training algorithms [24].
Although algorithms evolved by GA were promising for simple problems [25], GP
could evolve efficient algorithms for complex problems since it does not restrict the
algorithms with fixed genetic coding [25, 26].

While answering all these questions may contribute to increasing the accuracy of
results and speed up running time of the algorithm used, networks are more sensitive
to their initial weights and the learning rules used than others. Therefore, this thesis
mainly focuses on questions d and e.

More specifically, this thesis aims to discover new learning and initialisation

algorithms for neural networks using evolutionary algorithms and theoretical analy-

ses. To achieve this, this thesis tries to answer the following more specific questions
that are relevant to questions d and e:

1. Would it be possible to develop fair comparison methods to compare the
algorithms used in neural networks?

2. Are there any learning algorithms that require less computational efforts than
the standard back-propagation (SBP) algorithm to solve the problems?

3. Can GP successfully develop new learning algorithms that are fast and general?

4. Can GP find any initialisation algorithms that make deep neural networks
(which use the logistic activation function) trainable?

5. Would it be possible to find ways of initialising the weights so that the algo-
rithms converge faster or more reliably?

This thesis mainly attacks problems d and e (from the list above) by investigating
the questions 1, 2 and 3, and 4 and 5, respectively.
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1.2 Novelty of the Research

Evolving learning rules, which is of particular interest in this thesis, was achieved
through GP. Approximately two decades ago, GP enabled researchers [27, 28, 29, 24]
to evolve new learning rules (more on this previous work in the next chapter).

Despite these early successes, somehow surprisingly, this work went unnoticed
by the machine learning community, receiving only relatively few citations mostly
by evolutionary computation researchers, and not being followed up by any new
research. This thesis aims to fill this knowledge gap in the literature; and picks up
from where others left and not only finds new fast, stable and general rules for MLP
produced by GP, but also develops a rigorous methodology for comparing learning
rules.

Initialisation methods for deep MLPs are the other particular interest of this
thesis. The importance of the initialisation of neural networks has been emphasised
since the 1990s. There have been a significant number of studies on this subject.
Almost all studies presented until the late 2000s were done by considering shallow
networks. Because the use of non-sigmoidal activation function is one of the efficient
ways to train deep neural networks, most initialisation methods proposed in the
last decade have been developed for networks that use non-sigmoidal activation
functions. Another knowledge gap in the literature is whether deep MLPs that use
the logistic activation function can successfully be trained given the well-known
vanishing gradient problem, which hampers the training of such networks.

As mentioned above, training deep networks was achieved by using different
activation functions such as Rectified linear Unit (ReLU) and other ReLU based
alternatives. However, as we will discuss in the next chapter, such functions have
some drawbacks such as dying neuron, bias shift, noise sensitiveness. The use of
sigmoidal activation functions can avoid such problems and provide stable learning.
In order to achieve this, pre-training and weight initialisation methods have been
proposed in the literature. However, the proposed methods for such networks did
not perform well when the networks have more than 5 hidden layers (for more, see
Section 2.3.3). In a nutshell, training of deep neural networks that use the logistic
activation function still suffers from the vanishing gradient problem.

Here we focused on using GP as a mechanism to discover new initialisation
strategies, that would potentially reduce the vanishing gradient problem. Later, based
on the lessons learnt from GP, we were able to improve on the algorithms GP evolved
and find a theoretical explanation for why they work well.

GP is an evolutionary program-induction technique that has produced numerous
human-competitive results in the last two decades. However, no one has paid enough
attention to the usage of GP in evolving learning and initialisation algorithms for
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neural networks. This thesis seeks to fill this gap in the literature by investigating
whether GP can evolve learning and initialisation algorithms to train shallow and
deep neural networks successfully.

1.3 Achievement of the Research

1.3.1 Comparison Methods for Learning Rules

In Chapter 3, two general rigorous methodologies were developed for fairly com-
paring the performance of learning rules. These methods answer to question 1
above.

Both methods compute the computational effort, i.e., the total number of training
epochs required to obtain at least one successfully trained network within a batch of
runs. The first method (with high probability) ensures that if all runs are executed in
parallel, at least one run will be successful in a series of runs. The second method
assumes that runs are executed one by one sequentially and provides the expected
value of the computation required to obtain a successfully trained network.

1.3.2 Evolution of Learning Rules for MLPs

In Chapter 3, GP was applied to the problem of evolving learning rules for MLPs.
Preliminary experiments showed that GP tends to find unstable learning rules by
increasing the learning rate of the programs in the GP population when the fitness
function considers only the error obtained from a single point (the final training
epoch). In order to obtain more stable learning rules, the unstable rules in the
population were penalised while the rules which have monotonic error descents were
rewarded. GP found a form of SBP algorithm but with a variable effective learning
rate. The rule is fast, stable and general. In Chapter 3, we provided both a qualitative
interpretation for the new learning rule and strong evidence of its superiority with
respect to the SBP.

In Chapter 4, similarly to Chapter 3, the GP was used to evolve neural network
learning rules. In this case, the aim is to speed up learning by allowing the evolution
of unstable learning rules that can escape local minima.

To do this, in contrast to the previous chapter, the GP does not consider oscil-
lations on the error during the training. It is designed to optimise either the lowest
error or the highest accuracy values obtained throughout the whole training process.
The fitness function is the sum of the lowest errors or sum of the highest accuracies
of a pre-defined percentage of the training epochs.

Two different learning rules were evolved. The fitness function used the error val-
ues for the first one, while it used the accuracy values for the second one. According
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to comparison methods proposed; both the leaning rules evolved in this chapter are
superior to the SBP. However, these rules are slower than the learning rule evolved
in Chapter 3.

Although the GP system used different fitness functions and different training
(evolution) problems for the experiments done in Chapter 3 and Chapter 4, the system
found similar learning rules which adjust the learning rate of the SBP. The learning
rates of both rules are varied on the basis of the activation values in the pre-synaptic
and post-synaptic neurons.

1.3.3 Initialisation Rules for Deep MLPs

The vanishing gradient problem is another interest of this thesis. This is a long-
standing obstacle for the training of deep neural networks, where the gradients in
the networks become too small or zero. It usually happens in the earlier layer of
networks when the networks are relatively deep, and a sigmoidal activation function
is used for the neurons. Several different methods have been proposed to address this
problem, such as pre-training the networks which is a kind of initialisation method,
the use of different activation functions, residual neural networks and initialisation
of the networks.

There are several successful methods in the literature that initialise deep networks
to speed up learning [30, 31, 32, 33]. However, most of them do not consider the
logistic activation functions or do not work successfully with such functions. This
thesis is concerned with the initialisation of deep MLPs with neurons using the
logistic activation function to overcome the vanishing gradient problem because this
problem is still a major obstacle for such networks to learn the data successfully..

In Chapter 5, GP was applied to evolve a weight-update rule like the learning rules
evolved in the previous chapters. The networks were pre-trained using the weight-
update rule evolved. The evolved rule always returns a positive value. Therefore, the
mean of the connection weights in a network shifts towards to the negative direction
at each update throughout the pre-training process. The amount of shifting in each
step depends on the architecture of the network.

The initialisation rule evolved was compared with three state-of-art methods using
six classification problems. In order to show that the evolved rule is not sensitive to
the network architecture, two different network architectures, one relatively small
and one relatively large, were used for each problem. Results showed that the rule
was always superior to the other methods used for comparison when the networks
were relatively deep and wide. It outperformed two of those comparison methods
while it was competitive with the best alternative when the networks were relatively
small.

Chapter 6 investigates why initial weights that have a negative-mean can make
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a deep MLP, that uses the logistic activation function, trainable. Also, that chapter
proposes an initialisation method that does not need to pre-train networks.

The work started from a simple theoretical model that illustrates how mean
gradients are affected by the mean of the initial weight distribution in such networks.
When such a mean is zero, it is well-known that gradients are on average zero.
However, the theory leads to a number of somehow surprising predictions: (a) the
initial gradients are non-zero when the initial weights have non-zero mean; (b) the
initial gradients are maximised when the mean of the initial weights is negative and
inversely proportional to the number of neurons in each layer; (c) for networks that
are not too deep, there is also a local optimum in the positive region for the mean
initial weights; (d) the bigger the number of neurons in a layer, the bigger the initial
gradients. These predictions have been verified with a comprehensive set of empirical
tests showing that they are correct. The knowledge gained on initial gradients from
theory and the empirical tests suggested that a rule that sets the mean initial weights
to −min(1,8/number of neurons in layer) would maximise such gradients.

To verify to what degree this changed the situation in relation to the vanishing-
gradients problems, the SBP method was used, but initial weights were drawn from a
Gaussian distribution with such a mean and a standard deviation of 0.1, on a large set
of test problems and both shallow and deep networks of up to 15 hidden layers. The
results of this method was compared with those obtained with the standard zero-mean
initialisation and other initialisation strategies proposed in the literature. In all cases,
results showed that, uniquely, the proposed initialisation method prevents the SBP
algorithm from suffering from the vanishing gradient problem in both shallow and
deep networks.

1.4 The Structure of the Thesis

Chapter 2 begins with describing MLPs, including their components and the training
process that uses the SBP. It, then, reviews literature related to the back-propagation
learning rules, weight initialisation methods and the methods for the vanishing
gradient problem. After that, it describes GP and its components and finally, presents
an overview of studies integrating neural network and Evolutionary Algorithms
(EAs).

Chapter 3 initially describes two general rigorous comparison methodologies
developed to compare learning rules. This chapter then describes the GP system
used to evolve learning rules and its configurations such as the GP parameters, the
fitness function, the training problems and their parameters. It finally presents and
discusses the experimental results.

Chapter 4 aims to speed up learning by evolving unstable learning rules using
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the same GP system as that used in Chapter 3 but with different configurations and
different fitness functions. It presents these differences, two evolved learning rules
and analysis of the experimental results.

In Chapter 5, GP was applied with the aim of evolving an initialisation rule for
deep MLPs. This chapter shows that deep MLPs can be successfully trained when
the networks are initialised by the evolved method. It also reports the limitations of
this method.

Chapter 6 is the extension of Chapter 5. It theoretically and empirically inves-
tigates why the initial weights drawn with a negative-mean make deep networks
trainable; and presents an initialisation rule that does not require any pre-training
process.

The final chapter contains a summary of the studies done in this thesis and their
results, presents some conclusion and describes possible future work.
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Chapter 2

Literature Review

2.1 Neural Networks

A human brain has billions of neurons and many biological neural networks. A neural
network consists of a group of neurons that are connected to each other. We learn
the environment thanks to biological neural networks that interpret signals received
via our sense organs such as categorising objects according to their similarities using
our eyes and distinguishing a dog voice from a cat voice using our ears [34]. ANNs
are the mathematical model of biological neural systems and used with the aim of
achieving such learning with machines.

2.1.1 Biological Neuron

Figure 2.1 shows a typical biological neuron. A biological neuron consists of four
main components: soma (cell body), dendrite, axon and synapse. The soma receives
electrical signals (messages) from the previous neurons through dendrites. When the
signals accumulated in the soma exceeds the threshold, the soma fires and transfers
the signals to synapses through the axon. Synapses are a biological node for signals
to be transmitted to the dendrites of the next neurons. Numerous neurons that are
connected to each other construct a biological neural system [34, 35].

2.1.2 Artificial Neuron

The artificial neuron is a mathematical model of the biological neuron. An artificial
neuron is shown in Figure 2.2. It consists of input signals, connection weights, a
neuron, an output signal. Input signals are weighted by the corresponding connection
weights. The resulting values are summed in the neuron. The sum of those values is
processed in the neuron by applying an activation function. The activation value is the
output of the neuron and transferred to the other neurons through the corresponding
connection weights.
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Figure 2.1: A typical biological neuron
(from [35])

𝑥1 

 𝑥2 

 𝑥3 

 

𝑥n 

 

w1 

 w2 

 w3 

 

wn 

 

y 

 

 

net =∑𝑥𝑖𝑤𝑖

𝑛

𝑖=1

 𝑓(net) 

. 

. 

. 

. 

. 

Figure 2.2: An artificial neuron
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Figure 2.3: An Example MLP

2.2 Multilayer Perceptron

As stated in the previous chapter, networks introduced before MLP could not solve
non-linearly separable problems. The development of MLP was an important mile-
stone in the neural network history since it could solve the non-linearly separable
problems. Since then, interest in neural networks has increased, and many different
ANN types of ANNs have been introduced for different purposes.

MLP is a widespread form of feed-forward ANNs. It generally uses supervised
learning and is commonly used for the classification and regression problems in
many fields such as signal processing, image processing and pattern recognition.

In MLP, neurons, that are also called nodes, are connected to each other to form
networks, typically with a layered structure. Each neuron has connection weights
between itself and the neurons in the previous and/or next layer(s). An MLP has an
input layer, one or more hidden layers and an output layer. A single hidden-layer
MLP is called ‘shallow’ while an MLP which has many hidden layers is called
‘deep’. Figure 2.3 shows an example MLP that has four input features, three hidden
layers, five neurons in each hidden layer and one output neuron.

Input layer: Every single neuron in the input layer represents one of the features
of the problems. No activation function is applied to the neurons in the input layer.
Incoming signals in the input layers are transferred to the neurons in the next (hidden)
layer by being weighted with the corresponding connection weights. The sum of the
weighted values in each neuron is used for net input by that neuron.

Hidden layer(s): The signals that come from the neurons of the previous (input
or hidden) layer to a neuron of the current layer is called the net input. An activation
function chosen by the designer is applied to the net input values to determine the
output value of each neuron. Then, the resulting values are transferred to the neurons
in the next layer by being weighted with the corresponding connection weights.
Neurons in the next layer use the sum of weighted values that come to themself as
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net input. This process is repeated until the activations of the neurons in the output
layer are updated. This recursion process and the relevant equations are presented in
Section 2.2.2.

Output layer: The process is similar to the operations in hidden layers. An
activation function is applied to the net inputs of each neuron in the output layer.
The resulting values represent the network outputs.

Each layer except the input layer in a network is also connected to a bias node
which is usually set to 1. These connections have a weight value which is added
to the net input of the corresponding neuron. These weights are also optimised via
back-propagation. Its mathematical expression is provided in Section 2.2.2.

2.2.1 Activation Functions

Activation functions are mathematical functions that compute the outputs of neurons
given their net input values [36]. There are many activation functions in the liter-
ature [37, 38]. In order to solve complex problems, the network needs non-linear
activation functions. The most commonly used activation functions are the logistic,
hyperbolic tangent (tanh) and rectified linear unit (ReLU) [39] functions.

Logistic function bounds the output value between 0 and 1. Its mathematical
expression is

f (x) =
1

1+ e−x , (2.1)

and its derivative is
f (x)′ = f (x)[1− f (x)]. (2.2)

The tanh function limits the output value between -1 and 1. It is defined as

f (x) =
ex− e−x

ex + e−x , (2.3)

and its derivative is
f (x)′ = [1+ f (x)][1− f (x)]. (2.4)

ReLU keeps the output value in the range of [0,∞). It is

f (x) =

x if x > 0,

0 if x≤ 0,
(2.5)

and its derivative is

f (x)′ =

1 if x > 0,

0 if x≤ 0.
(2.6)

In Equations (2.1) - (2.6), x is the net input for neurons. The formula used to
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compute net inputs is provided in Equation (2.9) in Section 2.2.2.
Another commonly used activation function is the softmax function which

transforms the net inputs in the output layer into probabilities that the pattern shown
to the network belongs to each class. It is only applied to the output layer when the
neural network is used as a classifier, and, typically, there are more than 2 classes.
Its mathematical expression is

pi =
exi

∑
n
k=1 exk

, (2.7)

and its derivative is
∂pi

∂xj
=

pi
(
1− p j

)
if i = j,

−pi.p j if i , j.
(2.8)

Here x is the net input of the neuron, i is the index number of the neuron in the output
layer (it represents the class number of the input pattern); and n is the total number
of classes in the data.

Although the logistic and tanh activation functions are widely used in practice,
they suffer from the vanishing gradient problem. Therefore, different functions have
been proposed such as ReLU [39], Leaky Rectified Linear Unit, (LReLU) [40] and
Parametric Rectified Linear Unit (PReLU) [33]. Some well-known literature on the
vanishing gradient problem is described in Section 2.3.3.

2.2.2 Normal Operations

The structure of an MLP consists of multiple layers of neurons connected by corre-
sponding weights.

Let al be a vector representing the activation of the neurons in layer l. If l is not
the output layer, this can also be considered as the input vector for the neurons in
layer l +1. Let W l be weights matrix between layer l and layer l +1. Following the
standard convention we include in this matrix also the bias vector W l

0 which includes
the biases of the neurons in layer l +1. Let netl be net input vector of layer l, which
has elements

netlj =W l−1
0 j +

n

∑
i=1

al−1
i W l−1

i j . (2.9)

Then an activation function is applied to the corresponding neuron, so the elements
of al are given by

al
j =

 f (netlj) if 1 < l ≤ L,

x j if l = 1,
(2.10)

where L is the number of layers in the network and x j is the j-th element of input
pattern x.
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2.2.3 Standard Back-propagation

The aim of back-propagation is to decrease the error of the network calculated at the
output layer and optimise the connection weights. When the input data is applied
to the neurons in the first layer of the network, various operations are performed on
that data until it reaches to the output layer such as weighting the signals, computing
the net input and output values in the neurons. The error is the difference between
actual activation values in the output layer and the desired values over the training
set. The network error is computed after the error is computed for every single
example in the data. The computed error signals are scaled and back-propagated
through the weights in the previous layer using gradient descent. Thus, each of the
neurons in the hidden layers is attributed a part of the total error. This process is
repeated until reaching the input layer. Once the errors are for all the neurons are
known, the weights can be adjusted. This arrangement allows the network to produce
actual outputs that consistently match the desired outputs after the training process
is completed.

In vector form, the error produced when training pattern xk is presented in input
to the network is

ε
k = aL(xk)− yk, (2.11)

where aL(xk) is the activation vector of the last layer in the presence of input pattern
xk and yk is the corresponding desired output vector.

There are many methods to measure network performance in the literature. In
this thesis, for boolean induction problems, the total sum of squared error (TSE) and
for multi-classes problems, average cross-entropy loss are used as these are the most
commonly used ones in the literature for such problem types. Average cross-entropy
is used only when the output layer of a network is softmax. The TSE is

TSE =
1
2

m

∑
k=1

(
ε

k · εk
)
, (2.12)

and average cross entropy loss is

L =− 1
m

m

∑
k=1

yk · logaL(xk), (2.13)

where m is the number of examples in the data set, · is the scalar product and, so,
(εk · εk) is the squares of the components of εk.

In the SBP learning rule, at each iteration, t, each weight is updated with a
fraction of the derivative of the error with respect to the weight, i.e.,

∆W l
i j(t) = ηδ

l+1
j al

i, (2.14)
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where η is the learning rate and

δ
l
j =


f ′(netlj)ε

L
j if l = L and activation funtion is sigmoid,

εL
j if l = L and activation funtion is softmax,

f ′(netlj)∑iW l
jiδ

l+1
i otherwise,

(2.15)

where εL
j in the error in output neuron j and f ′ is the derivative of the activation

function f .
After all ∆W in the network are computed, the connection weights in each layer

are updated by the formula of

W l
i, j(t +1) =W l

i, j(t)−∆W l
i, j(t). (2.16)

The frequency of updating of network weights varies. Some well-known models
are:

Online learning: In this model, the process described above is applied to every
single training example in the data. The weights are updated immediately after the
∆W values are computed.

Batch learning: In this model, the ∆W s are computed using the same connection
weights for all examples in the training set. The weights are updated using the
accumulated ∆W s [41].

Mini batch learning: In this model, the data is divided into small batches. The
∆W s are computed using the same weights for all examples in a batch. The weights
are updated using the accumulated ∆W s for the batch [42]. The examples in the next
batch are processed using the updated weights.

An iteration is defined as the completion of each pair of the forward- and back-
propagation. This means that an iteration is completed after each weight update. An
epoch is defined as the weight update phases are completed for all examples in the
data.

2.3 Improvements of Artificial Neural Networks

Some researchers reported that multi-hidden-layer networks outperformed to single-
hidden-layer networks [43, 44, 45]. However, deeper networks were not considered
much in the literature because they could not be easily trained using the back-
propagation algorithm until Hinton [46, 47] showed that deep neural networks could
successfully be trained. Since then a variety of deep and shallow ANNs have been
widely applied to such data as images, signals and text for a long time [20, 21, 22].
However, the original SBP algorithm can be trapped by local optima of the error
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functions. It is very slow and can easily overfit.
Various techniques have been proposed in the literature to improve the situa-

tion. Some common themes in the literature are the following: setting the initial
weights [48, 49, 50, 51, 52, 30, 53, 54, 55, 56], choosing optimal network architec-
tures [57, 58, 59, 60, 61, 62, 63], overcoming the vanishing gradient problem [64, 39,
65, 66, 67], avoiding overfitting [68, 69] and other speed-up techniques such as learn-
ing rate optimisation and optimal learning rule [70, 71, 72, 73, 74, 75, 76, 77, 78, 79].

This thesis will focus on back-propagation learning rules, weight initialisation
methods and the vanishing gradient problem of deep neural networks.

2.3.1 Back-propagation Learning Rules

A significant number of gradient descent optimisation algorithms have been intro-
duced [80]. Some of these algorithms are widely used to train neural networks. The
use of a momentum term [12] is one of the first and best-known methods to accelerate
the convergence of the back-propagation algorithm. It controls the step size of the
current weight change by adding a proportion of the previous weight change. As
long as the weight change is in the same direction, the step size grows since the
momentum is accumulated. This accelerates learning by reducing the oscillations
during the training.

Silva and Almedia [70] proposed applying an independent learning rate to each
weight. The proposed algorithm has two different coefficients for the learning
rate, which are d and u. Their ranges are given by 0 < d < 1 < u. The algorithm
increases the learning rate exponentially if the previous weight change and current
weight change in a particular connection have the same sign (the same direction).
If they have different signs, the algorithm decreases the learning rate exponentially.
The current learning rate is computed by multiplying the previous learning rate
by the appropriate coefficient u and d, respectively. The algorithm is applied to
all connection weights separately. Resilient back-propagation (Rprop) [71] uses a
similar approach. It has two different learning rates which are η− and η+. These are
constant and chosen from the range of η− < 1 < η+. The algorithm independently
decides which learning rate will be used for every single weight by considering signs
of the current and previous weight changes. If the sign of the current and previous
weight changes are the same, that connection uses η+ as the learning rate. If those
signs are different, the connection uses η− as the learning rate. These are the early
studies on which use adaptive learning rate instead of a constant learning rate. The
authors reported that this approach accelerates learning.

In the last decade, several adaptive methods have been introduced to optimise
learning rule parameters and have become quite common. The Adagrad [81] algo-
rithm improves the performance of networks by adaptively scaling the learning rate
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set at the beginning of training. However, learning slows down or stops over time
since the algorithm reduces the learning rate by taking into account all past squared
gradients in every single epoch. The Adadelta [75] and RMSprop [76] algorithms
were proposed to overcome the vanishing learning rate problem of Adagrad algo-
rithm. Adadelta limits the size of accumulated past gradients. This prevents the
learning from slowing down and allows the network to continue learning even after
many epochs. RMSprop scales the learning rate for each weight by the root mean
square of the past gradients. This is approximated via an exponential moving average
filter. Adam [77] is another popular learning algorithm that adaptively scales the
learning rate. This algorithm computes learning rates for each weight depending on
two parameters, namely first and second moments of the gradients of the weights.

Researchers still propose alternative adaptive gradient descent algorithms to
improve over these methods, such as Nadam and NadaMax [82]. However, Wilson
et al.[83] compared the gradient descent and stochastic gradient descent (SGD)
algorithms with the adaptive methods including Adagrad, RMSprop and Adam on
some of the benchmark problems used in deep learning and reported that gradient
descent and SGD provided higher generalisation than adaptive methods.

2.3.2 Weight Initialisation

The performance of neural networks is very sensitive to initial conditions. If the same
initial value is used for all weights of a network, it leads the network to produce the
same outputs in the neurons, thereby making learning difficult [84]. This is known
as the symmetry problem. Preventing the network from this situation by initialising
it at random is called as symmetry breaking [54]. Most networks are initialised
randomly. Fahlman [85] proposed to draw weights uniformly from the intervals
[−1, 1] and [−2, 2]. He reported that small changes in the ranges do not make
the results very different. Another random initialisation method was proposed by
Nguyen and Widrow [48] (INITNW) where weights are initialised using uniformly at
random in the interval [−0.7h1/n, 0.7h1/n] where h is the number of hidden neurons
and n is the number of input neurons.

Boers and Kuiper [86] argued that the net input of neurons should be prevented
from driving the activation of a neuron in areas where the slope of the activation
function is small. Because they used the logistic function, they determined that net
inputs should be in the interval [−3, 3]. They proposed to initialise the weights in
the interval [−3/

√
n, 3/

√
n] since this can always guarantee the inputs of neurons

to be in the large slope of the activation function when all input values are assumed
to be in the range of [0, 1]. This interval is the same as the that proposed by Wessels
and Barnard [49], who also proposed a more refined method to avoid false local
minima which were defined as being far from optimal classification performance.
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The proposed approach separately initialises the set of weights of different the layers.
Drago and Ridella [87] (SCAWI) argue that (1) a neuron is saturated when its

output magnitude is greater than a threshold (0.9) and; (2) a neuron is paralysed when
it is saturated, and the magnitude of the error associated with its output is greater
than a threshold (0.9). They determined the initialisation range by considering the
percentage of paralysed neurons. According to statistical analysis, they proposed
to initialise the weights between the input and hidden layers using the uniformly
distributed interval [−1.3/

√
1+ninput·v2, 1.3/

√
1+ninput·v2] where v is mean of

the normalised input values and initialise the weights between hidden and the output
layers using the range [−1.3/

√
1+nhidden, 1.3/

√
1+nhidden ]. This method and

the INITNW were developed when scaling the input data to the interval [−1, 1] and
using the tanh activation function.

Thimm and Fiesler [84] analysed the results of various experiments with three
different activation functions (linear, tanh, and shifted/scaled tanh) on multilayer
and high-order perceptrons. High-order perceptron used in this work is a single
layer perceptron that can solve non-linearly separable problems. It has an additional
interlayer. The nodes in this layer multiply the input signals and transfer the resulting
values to the output layer. They used eight benchmark problems to test the method
and reported that the optimal initialisation method is a random initialisation within
the very small interval [−0.017, 0.017] for high order perceptrons with that use
logistic activation function. When the tanh is used as an activation function, the
interval [−α /

√
n, α /

√
n] provides the best results where α is the optimal weight

variance which is approximately 0.8 for the tanh.
Similarly to the method of Boers and Kuiper mentioned before, Yam and

Chow [88], Adam et al. [54], and Bhatia et al. [56] emphasise that the outputs
of neurons should be in the active region of the activation function to avoid prema-
ture saturation by maximising the derivative of neurons. Yam and Chow determined
the active region in a larger interval than the one proposed by Boers and Kuiper. It is
[−4.36, 4.36] for the logistic activation function. As a geometric result of this region,
they determined the following formulas to compute the minimum and maximum
weights — -Wmax and Wmax — of each layer layer:

W hidden
max =

15.1
h

,

W input
max =

8.72
Dinput

√
3
n
.
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Here Dinput is the maximum distance in the input space and is computed by

Dinput =

√
n

∑
i=1

[max(xi)−min(xi)]2

where xi is ith, feature of the input data and, once again, h is the number of hidden
neurons.

The active region of the sigmoid activation function determined by Adam et

al. [54] is where the derivative of the function is greater than 0.04 or 0.05. Initially,
the input variables normalised in the range of [0, 1] or [−1, 1] are re-scaled using
some statistical values (e.g., min, max and q-quartile). Then, the network is ini-
tialised. They proposed different formulas or intervals for the biases and weights
between (1) the input and hidden layers; (2) the hidden layers; (3) the hidden and
output layers. The interval for the weights between the hidden and output layers
([−3A/

√
n, 3A/

√
n]) is the same as that proposed by Boers and Kuiper, and Wessels

and Barnard when A is equal to 1. In this study, A may be greater than 1 depending
on the number of neurons in the (last) hidden layer and the activation function in
order to prevent the corresponding weights from being in a very small range.

Bhatia et al. [56] also proposed the same interval that was proposed by Boers and
Kuiper, and Wessels and Barnard for weight initialisation which is [−3/

√
n, 3/

√
n].

The main difference of this work is that the biases are set to appropriate value to
make the net input of neurons zero. This ensures that the derivatives in the neurons
are maximum, that is that the outputs of the neurons are in the most active region of
the activation function. This method was compared only against randomly initialised
networks using ten prediction problems.

Of course, there are many other weight initialisation methods for neural networks
in the literature [89, 90, 91, 92, 93, 94]. However, in this section, we reviewed only
some famous early works and some recent works in detail. The majority of these
works were tested on one specific and/or limited number of problems. Another
common shortcoming of these methods is that they were tested on shallow networks.

Training deep networks was very difficult because of the vanishing gradient
problem. This problem has been a research subject for a long time. In the second
half of the 2000s, deep networks were started to be trained using various methods
such as pre-training, use of different activation function, proper weight initialisation.
These methods, including weight initialisation methods, will be reviewed in the next
section.
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2.3.3 Methods for Vanishing Gradient Problem

Hinton et al. [46] showed that a deep belief network (DBN) could be trained using
a greedy layer-wise pre-training method. After this achievement, deep learning
became a popular machine learning technique [2, 95]. Nonetheless, deep neural
networks suffer from the vanishing gradient problem [40, 96, 97], which is a strong
obstacle to training the networks.

This problem usually happens when a sigmoidal activation function, such as
the logistic and tanh functions, is used in a deep network. The vanishing gradient
problem is that the gradients in the weights (usually in the earlier layers of a deep
network) is very small or zero. As previously described, the network error is
proportioned and back-propagated to the weights in the earlier layers using gradient
descent. Each weight is updated with a fraction of the derivative of the error with
respect to the weight. If the network is relatively deep and the activation function
is sigmoidal, the gradients in the earlier layers are more likely to be smaller than
those in the later layers. They may sometimes be very small depending on the
hyper-parameters of the network, such as the architecture, the activation function
used and the initial weights. In such cases, the network does not learn the training
set because the weights are updated with tiny changes preventing those layers from
being trained.

There are a small number of techniques to cope with this problem in the literature.
The use of ReLU based activation functions is an effective way to avoid this problem.
However, they suffer from other problems such as dying neurons, bias shift and noise
sensitiveness. Therefore, if the vanishing gradient problem of sigmoidal activation
functions would be overcome, networks with such activation function could be more
noise-robust and provide more stable learning than those which use other activation
functions.

The techniques proposed to overcome the vanishing gradient problem will be
reviewed below.

2.3.3.1 Pre-training

Bengio et al. [52] proposed unsupervised greedy layer-wise pre-training. This
method initially trains the first hidden layer and then adds a new hidden layer. The
outputs of the pre-trained layer are used as inputs for the added hidden layer. The
process of adding and pre-training layers continues until all hidden layers in the
architecture have been processed. At the end of pre-training, the algorithm adds an
output layer and trains the whole network. They reported that this method improves
not only the network performance but also generalisation. Sagheer and Kotb [98]
proposed a similar method for time-series prediction. In this work, a Long Short
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Term Memory (LSTM) based auto-encoder (AE) is used to initialise the weights.
Neither of these works directly addresses the vanishing gradient problem, but they
both can successfully train deep (up to three-hidden-layer) networks. The drawback
of these methods is that it is computationally expensive as the algorithms train the
weights in each layer separately.

2.3.3.2 Use of an Alternative Activation Function

Another way for deep networks to be trained without the vanishing gradient problem
is the use of non-sigmoidal activation functions such as ReLU [39] and its derivations.
ReLU function directly transfers the net input of a neuron to the output when the
net input is positive; otherwise, it transfers 0 to the output. Because its derivative
is 1 when the input is positive, the error can be propagated to the weights in the
earlier layers through the active neurons without getting smaller. Therefore, ReLU
does not suffer from the vanishing gradient problem as much as sigmoidal activation
functions. However, it has some other drawbacks.

If there is a large gradient for a connection weight, this may cause the corre-
sponding neuron to die when the weight is updated. A neuron with ReLU activation
is dead if the net input of the neuron is always negative as this implies that the
activation is zero and so is its derivative. A dying neuron can never be active again.
If the number of dying neurons increases, the network may suffer from the vanishing
gradient problem since inactive neurons do not have gradients and cannot transfer
the information in either forward or backward directions.

Another drawback of ReLU is that non-zero-mean activation functions lead to
the bias shift problem [96, 97, 66]. When the activation function of a network is
ReLU, the mean of the outputs in the layers is larger than zero. Therefore, layer by
layer, the outputs grow bigger and bigger. This causes oscillation in the learning.
This problem is called the bias shift or mean shift problem in the literature.

To overcome such ReLU disadvantages, other ReLU versions have been intro-
duced, such as the LReLU [40] and the PReLU [33]. The LReLU and PReLU
provide non-zero activations in the negative interval by replacing the constant part
of ReLU with a linear function, but with a very small slope. The slope of the line
(α) for the LReLU is a predefined constant value. Its default value is 0.01. For the
PReLU, the α is a parameter which is learnt by the network. These functions do
not have the dying neuron problem. However, Clevert et al. [96] reported that these
activation functions are not robust to noise.

The Exponential Linear Unit (ELU) [96] and Hyperbolic Linear Unit (HLU) [97]
were proposed to overcome this sensitivity to noise and the bias shift problem. The
ELU and HLU use the same function as the other ReLU family functions in the
positive interval. Their difference from the other ReLU family function is that they

33



CHAPTER 2. LITERATURE REVIEW

both have a non-linear function in the negative interval. Authors reported that these
functions not only allow neurons to have negative activation but also are more robust
to noise than the others. Also, they reported that these achievements allow networks
to learn faster than others.

Rectified Linear Hyperbolic Tangent (ReLtanh) [66] is another activation function
recently introduced that addresses the vanishing gradient problem and some of the
drawbacks of the ReLU family functions. This function uses the non-linear tanh
between positive (λ+) and negative (λ−) thresholds. It has straight lines on both
sides. These lines are defined between the corresponding λ± and ±∞. The designer
determines the slopes of the straight lines and their start points.

The more formal expression of these activation functions are follows:
PReLU is

f (x) =

x if x > 0,

αx if x≤ 0,
(2.17)

LReLU is

f (x) =

x if x > 0,

αx if x≤ 0,
(2.18)

ELU is

f (x) =

x if x > 0,

α(e−x−1) if x≤ 0,
(2.19)

HLU is

f (x) =

x if x > 0,

αx/(1− x) if x≤ 0,
(2.20)

ReLtanh is

f (x) =


tanh′(λ+)(x−λ+) if x≥ λ+,

tanh(x) if λ− < x < λ+,

tanh′(λ−)(x−λ−) if x≤ λ−.

(2.21)

In Equation (2.17) - (2.21), x is net input of the neuron. α is a negative slope
parameter which is learnt by the network in Equation (2.17), and it is a predefined
negative slope coefficient in Equation (2.18) - (2.20).

The common disadvantage of the ReLU based activation functions is that none
of them can be used for the output layer as a classifier. In other words, they can only
be used for hidden layers.

ReLU function has some alternatives such as PReLU, LRelu and ELU functions.
Although these functions overcome the dying neuron and bias shift problems of

34



CHAPTER 2. LITERATURE REVIEW

ReLU function, ReLU is still the most popular activation function in recent years.

2.3.3.3 Residual Network

He et al. [95] addressed the difficulty of training deep networks and proposed
Residual Network (ResNet) to cope with the vanishing gradient problem. The
proposed model is based on shortcut connections that jump over one or more layers.
For example, the output values in layer l are added to the output values of layer l+k.
Here, k is a small number. There are many shortcut connections on the networks from
the input layer to the output one. According to experimental results, the ResNets
provide higher accuracy and lower error than plain networks. However, this method
was tested using the ReLU activation function. Because this method has not been
tested using the sigmoid or tanh activation function, it is hard to say if the ResNet is
a general solution to the vanishing gradient problem.

2.3.3.4 Weight Initialisation

Weight initialisation is another technique that can overcome the vanishing gradient
problem. As described in Section 2.3.2, studies on this subject began approximately
three decades ago. They usually aimed to accelerate the training of networks.
Methods were tested on shallow networks. After the interest in deep networks
increased, weight initialisation approaches have also been used for deep networks
with the aim of reducing the impact of the vanishing gradient problem.

Glorot and Bengio [30] studied the reasons for the difficulty of training deep
neural networks. They analysed and compared the logistic, tanh and soft-sign [99], x/

(1+ |x|), activation functions. Moreover, they introduced a new weight initialisation
interval for deep MLPs. The argument was that the error gradients push the weights
to zero because the outputs of the hidden units are pushed to zero. This is good
for the tanh and soft-sign because around zero activation values can be propagated
backwards with these activation functions. This is useless for the logistic function
because the outputs in the saturation region do not allow the errors to be back-
propagated.

The proposed initialisation method in [30] is W l ∼ N (0, σ2). Here, σ is√
2/(nl +nl+1) where nl is the number of neurons in layer l. There is another

version of this method which uses a uniform distribution, in the interval [−
√

6/√
nl +nl+1,

√
6/
√

nl +nl+1]. According to the experimental results of [30], 5-
hidden-layer networks which use the logistic activation function can never learn
the training sets while 4-hidden-layer ones tend to learn the training sets. However,
4-hidden-layer networks with the logistic activation perform worse than the other
networks which use tanh or soft-sign activation function.
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Kumar [31] studied the problem of how one should initialise the weights in a
network in such a way that the variances of the outputs of neurons in all layers
are identical. Naturally the answer depends on the activation function used. He
studied three activation functions logistic, tanh and ReLU. The analysis showed that
σ=3.6/

√
nl produces the desired effect when the activation function is the logistic.

Mishkin and Matas [32] proposed a method and tested it against four different
methods using the logistic, tanh, ReLU and LReLU activation functions. The method
performs a pre-training stage followed by the normalisation of the variance of the
outputs in each layer. Performance of those methods varied depending on the
activation function used. However, no method was able to train deep networks when
the activation function was the logistic.

He et al. [33] introduced a new initialisation method for deep networks using
ReLU and PReLU activation functions. The method is an extension of the method
proposed by Glorot and Bengio [30]. It initialises the weights using W l ∼N (0, σ2).
Here, σ is

√
2/(nl) and, once again, nl is the number of neurons in layer l. This

initialisation method is one of the most commonly used for deep networks. However,
this method does not work well when the networks use sigmoid activation functions.

Since ReLU and its other alternatives made deep networks trainable, this achieve-
ment increased interest in deep learning. As a result of this, most neural network
research, including studies on the weight initialisation, consider deep networks that
use such activation functions. Because this thesis is concerned with the use of the
logistic activation function, other initialisation techniques which use non-sigmoid
activation functions will not be considered here.

2.4 Genetic Programming

EAs include several different population-based optimisation techniques such as Evo-
lutionary Programming (EP) [100], Evolution Strategies (ESs) [101, 102], GAs [103]
and GP [17]. These methods use similar principles and tools that take inspiration
from nature such as natural selection, creating offspring and undergoing mutation.

Natural selection is that being prefered the individuals that are well-adapted
to the environmental conditions for reproduction. This means that the individuals
which are fitter than the others to the environment condition have more chance to
create offsprings and others die without having offsprings over time [104]. This
is known as the Darwinian principle of survival of the fittest [105, 104]. All EAs,
including those listed above, use this principle. Although the original algorithms are
different from one another, it can sometimes be difficult to classify newer ones since
an algorithm can also be a hybrid of multiple others [106]. In this thesis, GP is used
to evolve learning and initialising rules for MLPs.
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One of the first studies for evolving algorithms was done by Cramer [18] in
1985. The author showed that GAs with a tree-based structure could produce simple
computer functions. However, GA, in that study, needed to predefine the size of
computer programs. This is a severe obstacle for the algorithm to search the space
freely. John Koza [17, 19] extended this approach, and in the early 1990s, introduced
GP that allows the size and shape of computer programs to be varying dynamically.
GP is an evolutionary program-induction technique that has produced numerous
human-competitive results in the last two decades. A particular feature of GP is that
it can not only solve problems but also discover problem solvers, i.e., algorithms that
can solve a specific class of problem [107, 108, 109].

Because discovering/developing new and efficient algorithms by manual trial-
and-error methods often requires mathematical principles, engineering knowledge,
and creativity, GP may achieve this faster than manual trial-and-error methods.
Therefore, in this thesis GP is used to discover learning and initialising rules for
MLPs.

A GP has a population of computer programs. These programs are also called
individuals that is the general term of the possible solutions in EAs. GP has two
sets of primitive elements called the ‘terminal’ and ‘function’ sets. These sets are
used to form and mutate the individuals in the population. The terminal set consists
of variables and constants that are used as an input such as x, y, 1 and 2 while
the function set consists of functions such as arithmetic, logical, mathematical and
conditional such as +, AND, sin and i f . Elements in the terminal and functions
sets are chosen depending on the problem. The population is randomly initialised
by choosing operands and operators from the terminal and function sets. Then, GP,
repeatedly, selects one or more individual(s) that are fitter than others among a group
of individuals and applies the crossover and/or mutation operators to them to evolve
the population [110]. These operators, crossover and mutation, are used to generate
new individuals from selected parents.

A well-known form of GP is the tree-based one. However, over time different
versions of GP have been introduced such as grammar-based GP, linear GP and
Cartesian GP (CGP) [111, 112, 113]. The cycle of the evolutionary process is
the same in all GP types. However, different GP system differ depending on the
representation used for individuals.

Figure 2.4 shows the cycle of an evolutionary process. The process starts by
generating the initial populations at random in step 1. Then, in step 2, the individuals
are measured how close they are to the problem’s solution. Step 3 sets generation
number to 1. Step 4 checks if the algorithm meets any stopping criteria. This can be,
for example, by checking whether any programs (individuals) provide an acceptable
solution for the problem or whether the generation number reaches the maximum
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number of generations predefined. If it does, the algorithm returns the best individual;
otherwise, the algorithm passes the next step to generate new individuals. Step 5
selects one or more individuals as parents based on a selection method. Step 6
creates offsprings by applying the crossover and/or mutation operators to the selected
parents based on a predefined probability criterion of applying the genetic operators.
Step 7 measures the fitness of offsprings. Then, step 8 replaces the offsprings with
lower-fitness-individuals among a group of selected individuals from the population.
The next step updates the generation number. Then, the algorithm passes the step 4
as a final step of each generation and check whether the stopping criteria are met.

Simple examples for the representation of an individual in a linear GP [114, 115]
and a tree-based GP [17] are shown in Figure 2.5. Different representations require
different operators. For example, the crossover and mutation operators swap/change
selected instructions of the parents in linear GP while they swap/change the selected
nodes (sub-trees or leaves) of the parents in a tree-based one. Since a register-based
linear GP is used in this thesis, only this type will be described, and the GP term will
refer to the register-based linear GP hereafter.

2.4.1 Representation

Individuals (programs) used in a linear GP are represented by sequences of instruc-
tions, as shown in Figure 2.5. Instructions, in a register-based linear GP, read their
inputs from one or more constants(c) and/or registers(r) and assign the resulting
values to a register such as ri = ri + ck, r j = ri ∗ r j, and rk = ri ∗ c j where i, j and
k are indexes of the register and constant [111, 114]. The output of an individual
is read from a predefined register after all instructions in the individual have been
sequentially executed.

A register based linear GP has a set of instructions. It is predefined by the user.
The table in Figure 2.6 shows an example set of instructions (from [116]). In the
example, four registers are used: r0 and r1 are used for mathematical calculations;
rs is used for swapping the registers; ri is the input register. The numbers in the
first column of the table are constants, and NOP means no-operations. The number
of input registers differs depending on how many inputs need to be used for the
problem. The initial values of registers are defined by the user (but are typically
zero).

Figure 2.6-(b) shows an example GP program (individual) which uses the set of
instructions in Figure 2.6-(a). If the output of the program is read from the register
r0, the result will be 2ri; if the output of the program is read from the register r1,
the result will be ri.
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Initialise the Population

Measure the Fitness of individuals

Generation=1

Are any
Stopping

Criteria Met?
Best Individual

Select Parent(s)

Apply Genetic Operator(s)
(Crossover and/or Mutation)

Measure the Fitness of Offsipring

Replace the offsprings with less
fit individuals in the populations

Generation = Generation+1

YES

NO

Figure 2.4: Flowchart of GP

2.4.2 Initialisation of the Population

Individuals are usually randomly initialised in population-based optimisation algo-
rithms. Over time, different initialisation methods have been introduced. These
methods vary depending on the GP type used. There are various initialisation forms
for linear GP including free, variable-length, constant-length and maximum initialisa-
tion methods [115]. It is hard to say which method is best as their performance may
vary depending on the comparison conditions. In general, according to Brameier and
Banzhaf [115], too-large initial lengths may cause the programs to be less flexible
while too-small ones may lead most programs in the population to be identical.
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instruction 1 instruction 2 . . . instruction n

(a) Linear GP (from [111])

+

∗

x 2

−

y 3

(b) Tree-based GP

Figure 2.5: Examples of the representation used in a linear GP (a) and a tree based GP (b)

NOP r0 <- -1 r1 <- r0 + r1
r0 <- 0 r1 <- 1 r0 <- r0 * r1
r1 <- 0 r0 <- -r0 r1 <- r0 * r1
r0 <- 0.5 r1 <- -r1 r0 <- r0 * r0
r1 <- -0.5 r0 <- r0 + ri r1 <- r1 * r1
r0 <- -0.1 r1 <- r1 + ri rs <-> r0
r1 <- 0.1 r0 <- r0 + r1 rs <-> r1

(a) An example for set of instructions (from [116])

r0 <- 0 r1 <- 0 r0 <- r0 + ri NOP r1 <- r1 + ri r0 <- r1 + ri

(b) An example program

Figure 2.6: Examples of a primitive set in linear GP (a) and a program which uses the
primitive set (b).

2.4.3 Fitness Function

The primitive set defines the search space of GP. In order for GP to search the
solution of the problem in good regions of the space, it needs to know which regions
are good or bad [111]. The fitness function measures how close individuals in the
population are to the solution.

The fitness function is one of the crucial elements for GP to solve problems.
Many notions of performance can be used for the design of the fitness function such
as the error (the difference between the desired output and actual output), time cost,
and the complexity of the program. It can be a simple function that uses a single
criterion or a sophisticated function that uses multiple criteria.

2.4.4 Selection

EAs need a selection operator to choose individuals that will undergo mutation and/or
be crossed-over. There are many different selection operators in the literature, such
as random pairing, roulette wheel and tournament selection, to name a few [117].
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PARENT 1

PARENT 2

OFFSPRING 1

OFFSPRING 2

Figure 2.7: Linear GP crossover (from [111])

In GP, tournament selection is the most commonly employed operator due to its
scalability and ease of use [111].

In tournament selection a group of individuals are randomly chosen from the
population. The one which has the best fitness is selected as a parent. When the
genetic operator is the mutation, it is applied to the chosen parent. When the operator
is the crossover, the selection process is repeated one more time as crossover requires
two parents [111].

2.4.5 Crossover and Mutation

The crossover operator is used for generating offspring from the parents in EAs.
Since the parents are selected based on the fitness, it is expected for crossover to
generate fitter offspring, which will be used as individuals for the next generation.
The main task of mutation is to keep diversity in the population by randomly changing
elements in selected individuals.

Various crossover and mutation methods are available in the literature [118].
Figure 2.7 illustrates a typical linear GP crossover. In each parent, two instructions
are randomly selected. The instructions between the selected ones are excised from
parents. The parents exchange the code blocks excised as shown in the figure.

The standard mutation operator, in linear GP, chooses an instruction from the
individual being mutated and then replaces a component of it (an operator, a register
or a constant) into another from the appropriate set [119]. This is called micro
mutation. The other mutation type is macro mutation. In this type, an instruction is
either deleted from the individual or inserted into the individual [115].

The population size over the generation is usually kept the same. This means that
offsprings are not directly inserted into the population. Instead, they are replaced with
selected individuals from the population. In other words, an individual is selected
from the population for each offspring, and the selected individual is permanently
discarded from the population; then, the offspring is inserted into the population. In
this process, usually, worse fit individuals are selected to be discarded while fitter
ones are kept in the population. This is known as elitism in the EAs [104].
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2.4.6 Summary of GP Process

GP is one of the most commonly used population-based EAs. GP is a program-
induction technique. It can not only solve problems, but it also produces problem-
solvers for a specific class of problems like computer programs and algorithms. A GP
has a population that includes possible solutions to the problem. These are initially
created at random using appropriate elements such as variables, constants, arithmetic
operators, logical operators, conditions for the problem. Fitness of programs to
the problem solution is measured by a fitness function. Based on this fitnesses, the
population is evolved by generating new programs (offsprings) from fitter programs
in the population over the generations. GP, like the other EAs, cannot guarantee the
optimal solution but it provides the optimal or near-optimal solution to the problem
at the end of the evolution process.

In this thesis, GP is used to evolve learning and initialisation rules for neural
networks. In the next section, the evolution of neural networks will be reviewed.

2.5 Integrating Neural Networks and EAs

As explained in Section 2.2.3, a supervised neural network aims to produce correct
outputs for the corresponding inputs shown during training [120]. To achieve this, the
network weights are usually optimised by error back-propagation using the gradient
descent principle. However, there are some drawbacks of this algorithm such as
trapping by local minimal, slow learning and over-fitting. In order to overcome these
problems, many methods have been proposed. In addition, the evolution of neural
networks is a frequently used approach to reduce the impact of such problems and
improve neural networks.

EAs can be applied to the neural networks for many purposes. They are mostly
used with the intent of weight optimisation, architecture optimisation and learning
rule evolution. We will look at each of these areas in the following sections.

2.5.1 Evolving Neural Network Weights

All methods that optimise neural network weights, including both back-propagation
and EAs, aim to minimise the network error. The error is usually computed by
considering the difference between the actual output and the desired output across a
training set. Connection weights optimisation is a search problem. Therefore, EAs
may be a good way to find optimal or near-optimal weights for the network [121].

In this approach, mostly two types of representations, bit-string [122, 123, 124]
and real-valued [125, 126, 127, 128, 129, 130, 131, 132], are used for the weights.
In both models, all connection weights and biases of a network in a vector form
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constitute a chromosome. In the bit-string representation, each weight is represented
by a certain predefined number of bits; and it is easy for the algorithm to apply
the standard crossover and mutation operators for binary strings to the individuals.
However, the standard crossover operator may be inappropriate for evolving weights
or architectures of MLPs because it easily disrupts the structures or connection
distribution [133].

In the real-valued representation, each weight is represented by its real value
(within the limits of the floating-point representations) in a chromosome. The
binary crossover and mutation operators cannot be applied to real-valued chromo-
somes. Therefore, different forms of those operators have been developed [134,
135, 136, 117]. Most efforts to evolve connection weights have used mutation-based
EAs (i.e., EP and ESs). Mutation-based methods avoid the competing-conventions
problem which is also known as the permutation problem [137] encountered in
neuro-evolution [133]. This problem can be defined as genotypically different net-
works being phenotypically the same. The algorithm suffers from this problem when
the number of representations (genotypes) that lead to the same neural networks
(phenotype) increase [137].

The weight evolution methods mentioned above are also known as gradient-free
methods since the weights are optimised by an EA without using the knowledge
of the gradient for a network. The weights evolved by an EA are more likely to
be more optimal than those optimised by back-propagation since EAs search the
space more globally [133, 138]. However, using the direct encoding described
above, it is challenging for EAs to be applied to large-size networks such as deep

neural networks, since the evolution of many connections requires a long compu-
tational time [133, 139]. There are few studies done to evolve the weights of such
networks [140]. We will review them below.

David and Greental [141] evolved a fixed-sized deep autoencoder using a real-
valued direct encoding. The network had four hidden layers. So, it had five sets of
weights. The GA optimises the weights layer-by-layer. It firstly evolves the weights
between the input layer and the first hidden layer. After fixing the optimised weights,
it starts to evolve the next set of weights. This process is repeated until the last set
of weights. The back-propagation is applied to the network to fine-tune the weights
after the evolution of all weights in the network has been completed. This approach is
relatively cheap in terms of computational time because it avoids long chromosome
size thanks to layer-by-layer evolution.

In order to reduce the computational time of the evolution of deep networks,
some researchers have divided the data into parts. Each part is called a mini-batch.
Lander and Shang [142] proposed to evaluate each chromosome on a mini-batch of
training data. Morse and Stanley [143] proposed to evaluate all chromosomes using
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a mini-batch of training samples in each generation instead of using whole training
data.

One of the most important advantages of connection weight evolution is that
EAs search globally optimal weights of networks since they do not need an error
gradient [128]. Therefore, EAs are less sensitive to initial weights and the networks
optimised by this method are less likely to be trapped in local minima than those
optimised by the gradient descent principle [133].

Although EAs globally search the connection weights of neural networks, this
approach cannot always be guaranteed to find the optimal weights [140]. In order
to search for a more optimal set of connection weights than that found by EAs,
some researchers propose hybrid training methods which use both EAs and the
back-propagation [141, 144, 145, 146, 147, 148, 149]. In this approach, the optimal
weights of networks are locally searched using back-propagation after an EA fixes
the weights at the end of the evolution process like the work by David and Greental
mentioned above. From another point of view, it may be said that this method
initialises the network weights to reduce the sensitivity of back-propagation to the
initial conditions. Indeed, this hybrid method outperforms both EAs and back-
propagation, as it combines the powers of both. However, in terms of computational
cost, it is more expensive than either.

2.5.2 Evolving Neural Network Architecture

The architecture of a neural network is one of the most critical factors which affects
network performance. On the one hand, a small network may not learn the data,
because of insufficient degrees of freedom (weights, units). On the other hand, a
large network may cause poor generalisation by over-fitting the training data. In
short, to successfully train a network, it should have a good architecture. There are
some questions to be answered before designing the architecture of a network such
as (1) whether the network is fully connected; (2) if not so, how many connections
there should be between the layers; (3) how many hidden layers there should be in
the network and neurons on each layer. There is no simple rule or formula proposed
so far to answer these questions and determine the relevant parameters. The design
of a network structure is mostly based on the user experience and/or trial and error.
However, there are some methods proposed to optimise network structures such as
constructive (growing) [150, 151, 57], pruning [152] and EAs. These are described
in more detail in the next two sections.
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2.5.2.1 Constructive and Pruning Methods

Nicoletti et al. [153] and Sharma and Chandara [154] present a review in detail of
some of the early works of the constructive and pruning methods. In the general
working principle of constructive methods, a network starts training with a minimal
architecture; then, its size is increased gradually during the training process. The
stopping criteria of training and the maximum size of the network are defined
beforehand. The training of the network starts usually with a single hidden layer and
neuron. When convergence of the network error towards zero slows down or stops,
the algorithm adds a new neuron to the current layer or adds a new hidden layer to the
network. This process is repeated until the network reaches the stopping criteria or
the predefined maximum size. New component(s) can also be added at every single
epoch instead of waiting for the error to stop decreasing. Pruning methods work in
the opposite direction to the constructive ones. It starts training a large network and
deletes a hidden layer of the network and/or a neuron of the relevant layer at a time
during training. These methods have also been applied to deep neural networks in
recent years [155, 156, 157, 158].

2.5.2.2 Use of EAs to Evolve Neural Network Architecture

EAs have been one of the most commonly used methods to optimise neural network
architectures since the 1990s [138, 133, 140]. Every single parameter of the EA
used, such as population size, number of generations or mutation rate, affect the
results of the algorithm. However, the representation scheme, genetic operators and
EA used have the most important roles in determining how close the architecture
found is to the optimal architecture.

Direct and indirect encodings are the most widely used representation schemes in
this approach. In the direct encoding, chromosomes encode all features of networks
such as the connections, neurons and activation functions. In the indirect encoding,
chromosomes encode higher level information on the architectures, such as the
number of hidden layers and neurons in each layer [138].

The connectivity of a network can be represented using a direct encoding scheme
based on the traditional bit-string representation. Since layers in a network are
connected by weight matrixes, the chromosomes encode a binary matrix for each
weight matrix in the network. 1s in the chromosomes mean that there are connections
between corresponding nodes; 0s in the chromosomes mean that there are no connec-
tions between such nodes. When the real weight values of connections are used lieu
of 0s and 1s in the chromosomes, it is called real-valued representation, as explained
in Section 2.5.1. The real-valued representation allows the algorithm to optimise
the architecture and connection weights of the network simultaneously [133]. Both
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the binary and real-valued representations with the direct encoding scheme have
been employed to optimise neural network architectures. In the direct encoding,
algorithms usually search the optimal design under the maximum size of a network
defined by the user.

Pujol and Poli [159] improved the applicability of real-valued direct encoding
scheme to neural networks. The authors propose a parallel distributed GP with new
forms of genetic operators to optimise the architectures and weights of networks
simultaneously. In this method, the networks are represented as graphs using linear
chromosomes. The crossover operation is done by swapping sub-graph or transfer-
ring neurons. All chromosomes have the same length as the predefined maximum
size of the network at the beginning of the evolution. The lengths are not changed
during evolution; but, the network shapes may change as genetic operators change
the connectivity of networks.

Khan et al. [160, 161] and Turner and Miller [162] showed that CGP was another
efficient evolution technique to evolve the weights and architecture of the neural
network. CGP is a form of graph-based GP developed by Miller and Thomson. In
this approach, programs in the population consist of nodes which encode the input,
activation function connectivity and weights. The neurons of the networks in the
population do not have to be systematically connected with each other. Also, pairs
of neurons in the networks may have multiple connection weights. This approach is
described in detail in [161].

Stanley and Miikkulainen [163] developed an inventive method called ‘Neu-
roEvolution of Augmenting Topologies (NEAT)’ to evolve the network architecture
and its weights simultaneously. The presented algorithm used the direct encoding
scheme and real-valued connection weights. In this method, the chromosomes con-
sist of two lists that contain node genes and connection-genes, respectively. Each
node-gene keeps an innovation number of a neuron. When a new hidden neuron
is created during evolution, an innovation number is created for it and the number
inserted into the list of node-genes. A connection-gene involves every detail of the
connection, including which node the connection comes from or goes to, what the
value of the weight is, whether the connection is enabled and its innovation numbers.
In this method, even if the selected parents do not have the same length, the crossover
operator can be applied to them without suffering from the competing-conventions
problem.

Direct encoding based algorithms work satisfactorily when the search space is
not too big and the optimal network is in the space. Networks used in the present-day
have billions of connections. Unfortunately, when a direct encoding method is
applied to a large-size network, e.g., a deep network, it is difficult for the network to
perform well because of the enormous search space and the correspondingly large
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computational time [133, 138].
Indirect encoding schemes started to be used for the evolution of neural networks

in the early 1990s [164, 165, 166]. The chromosomes with this encoding represent a
coarser, higher-level, description of the network than direct encodings. Determining
what are the important parameters that need encoding is challenging and may require
experience. However, chromosome sizes in a direct encoding are usually much
bigger than those that use indirect encoding; and thereby the evolution with the latter
is computationally cheaper. Hence, the indirect encoding schemes may be a good
choice to evolve large-size neural networks. For example, Sun et al. [167] evolved
the initial weights and architectures of convolutional neural networks (CNNs) using
an indirect encoding. In this method, each gene contains the type of a layer in the
network (convolutional, pooling or fully connected), and summary information on
the layer, such as the filter sizes, pooling type and two statistical measures (standard
deviation and mean value) of the weights. The authors reported that this technique
was superior to other image classifier methods they compared.

Stanley et al. [168] proposed a method called ‘hypercube-based NEAT (Hyper-
NEAT)’ to evolve large scale neural networks. The method reduces the complexity of
NEAT by employing the ‘compositional pattern-producing networks (CPPN)’ which
is an indirect encoding. Locations of the nodes in all dimensions are mapped after
assigning a coordinate between −1 and 1 to each of them. This is called substrate
and is done by the user. The algorithm evolves the CPPN instead of directly evolving
the network. The evolved CPPN determines the weights and connectivity between
the nodes according to the position of the nodes in the substrate. The algorithm
has also a constant threshold defined by the user that is used to decide whether the
weight is used for the corresponding connection.

Verbancsics and Stanley [169] introduced an extended version of the HyperNEAT
called ‘HyperNEAT Link Expression Output (HyperNEAT-LEO)’. This method
has one more output neuron in the CPPN that has a step function. It decides
whether the value on the other output of the CPPN will be used as the weight for the
corresponding connection or not. Another extension of the HyperNEAT is presented
as ‘Evolvable-Substrate HyperNEAT (ES-HyperNEAT)’ [170]. This method differs
from the other versions mentioned above as it evolves the number of nodes and
their location in the substrate. Since the substrates evolved determines the network
architecture, this algorithm no longer needs to evolve the network architecture
through the connectivities of nodes.

Miikkulainen et al. [171] propose to apply a method called CoDeepNEAT, which
had a similar representation to that used in the NEAT, to deep neural networks
to evolve the network architectures. In the proposed approach the chromosomes
encode lists of layer-hyper-parameters and global-hyper-parameters. Both lists
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consist of boolean and real-valued variables. The algorithm evolves only the network
architectures.

CNN is a widespread form of deep networks. The CNNs have been used for
image or video recognition tasks in the last decade. Evolution of CNNs has become
another research area in neuroevolution in recent years. Various methods have been
proposed to evolve CNNs [140] such as GA with a binary string encoding [172], CGP
with a graph representation [173, 174], GA with grammar-based encoding [175] and
GA with a variable-length encoding [167].

Because this thesis is not focusing on the evolution of neural network architecture,
this subject is not reviewed in detail.

The constructive and pruning approaches, in comparison with EAs, are faster
but less effective than EAs. There may not always be a relation (linear or parabolic)
between the network size and its performance. The optimal network may also be far
from the starting point of the constructive method. Therefore, EAs may search the
optimal network structure better than constructive methods thanks to their globally
search feature.

2.5.3 Evolving Neural Network Learning Rules

Another critical element in a neural network is the learning rule used. In an MLP, the
network weights are usually optimised by the back-propagation algorithm. The SBP
algorithm, drawbacks of the original algorithm and well-known handcrafted methods,
including learning rules proposed to overcome those drawbacks, were described in
Sections 2.2 and 2.3. Most of the learning rules were manually crafted to carefully
modulate the learning rate in such a way to accelerate the learning process. This
process of discovering new rules is difficult and slow. Therefore, the evolution
of learning rules was proposed as an alternative way to obtain effective learning
algorithms in a reasonable time [176].

Bengio et al. [177, 25] demonstrated that a new learning rule, which can solve
simple problems, can be evolved by optimisation algorithms. In the proposed
methods, the learning rule is assumed to be linear combination of pre-and post-
synaptic activations, current weight, etc. and their products. Each term has a
coefficient. Then, the optimiser chosen evolves the coefficients. Earlier work [177]
used GA; and later work [25] used the gradient descent, GA and Simulated Annealing
(SA) [178] as the optimiser to evolve learning rules. Chalmers [26] presented a
similar method by applying GA to single-layer neural networks. He defined the
learning rule using the same terms as those used in the works of Bengio et al.

(which were W l−1
i j , al−1

i , al
j and ∑iW l

jiδ
l+1
i and their pairwise products). The GA

optimised eleven coefficients (the first one was for the learning rate covering the
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whole learning rule and others are for the terms of the learning rule) using 35-bit-
length chromosomes. Some of the evolved rules in this work were variations of the
delta rule [179]. Because the learning rules were evolved on single-layer networks
with linearly separable problems, they were only tested on the same kind of networks
and problems.

Fontanari and Meir [180] evolve a learning rule for boolean and linearly sepa-
rable problems using the same approach as that proposed by Chalmers [26]. The
presented method has seven parameters in the predefined parametric learning rule,
which includes third-order terms too. The proposed method uses a real-valued repre-
sentation for the chromosomes, but the coefficients are allowed to be only integer
values.

Although these early works show that optimisation algorithms can successfully
evolve learning rules for simple problems, these methods are not very effective for
obtaining learning rules that can solve more complex problems. Evolved learning
rules by this approach can only set the parameters of the predefined parametric rules.
For instance, none of the rules evolved by the methods explained above [177, 25, 26,
180] can include a power of one of the variables because exponents are not defined
in those parametric rules. Of course, it is not difficult to add the exponents or any
other parameters to the parameter list. However, it is not easy to think of all possible
composition of the parameters.

Bengio et al. and Chalmers reported that GP could be a better choice than
the other optimisation algorithms to obtain effective learning rules [25, 26]. The
significant advantage of GP is that it can design different rules, instead of optimising
coefficients of a fixed parametric rule.

Baxter [181] evolved a learning rule, architecture and connections of a network
simultaneously using GA for boolean induction problems. The weights are allowed
to be one of the values in the set {−1, 0, +1} while the learning rule can only
produce the values of −1 or +1. This means that there is no connection with a zero
weight. The proposed method may be computationally very expensive for complex
problems.

Bengio et al. [27] evolved a relatively more complex learning rule by GP. GP
uses the activations etc. of pre-synaptic and post-synaptic neurons shown above as
its terminal set and uses four fundamental arithmetic operators as its function set.
The evolved rule is the multiplication of the SBP by the square of derivative of the
activation function with respect to the output of the post-synaptic neuron. It is more
formally shown in the following equation:

∆W l−1
i j (t) = al−1

i δ
l
j f ′(net l

j)
2
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They reported that the learning rule found by the GP outperformed the SBP and
the rules found by the GA and SA. However, it was tested mostly on tasks of the same
kind and the same network structures used in training. The networks structures used
in training and testing are very small, having two input, one hidden and one output
neurons. The authors used only the seven-segment problem to see performance of
the evolved rule on a different task and network structure.

Radi and Poli [29, 23, 24, 121] extend the work of Bengio et al. [27] to obtain
more general neural networks learning rules. They carried out their all experiments
using three-layer neural networks and tree-based GP. The terminal set of GP consisted
of W l−1

i j , al−1
i , al

j, either ∑iW l
jiδ

l+1
i or y j, and a few constant values. The terminal

set includes ∑iW l
jiδ

l+1
i (error in the corresponding neuron) when the GP evolves

rules for the hidden layer; and y j (target value in the corresponding output neuron)
when the GP evolves rules for the output layer. The constant values defined in an
experiment were sometimes different from the ones used in another experiment.
The function set is {−, +, ×} and the same in all experiments. In their early
works [28, 23], they evolved learning rules for only the output layer of the networks
(connections between the hidden layer and output one). In both the evolution and
testing phases, the delta rule was used for the hidden layer of the networks (weights
between the hidden and input layers). They obtained the following learning rules:

Rule(1)output = 2al−1
i (yl

j−al
j)− y j (2.22)

and
Rule(2)output = (yl

j−al
j)(a

l−1
i (al−1

i +al
j)− y j) (2.23)

Radi and Poli [29], reported that those rules (1 and 2) had oscillating performance
when they were tested on different data. Here, they used the same approach in
previous works. The GP was used to discover learning rules only for the output layer.
However, this experiment differed from the previous one since, in this work, SBP
was used as the learning rule of the hidden layer. At the end of the evolution, the GP
returned the delta rule as the evolved rule for the output layer. So, as a result, the
authors propose to train networks using SBP rule for the hidden layer and delta rule
for the output layer of the networks.

The authors extended this work by evolving learning rules for hidden layer while
the rule previously evolved (the delta rule) was used for the output layer [176, 121].
They presented four different learning rules and reported that two of them are similar
to each other and outperform the others. In this experiment, they considered two
activation functions, the logistic and tanh. To make the rules found by GP be less
sensitive to the activation function, they replaced the term of al+1

j (1−al+1
i ) in the

rules with the derivative of the activation function used. The authors also manually
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simplify the rules. The resulting forms of them are:

Rule(3)hidden = βSBP+(1−β )HB (2.24)

and
Rule(4)hidden = SBP+βHB (2.25)

where β is a constant and the HB is (al−1
i − k1)(al

j− k2). Here one of the ks is zero
while the other one is a constant.

They did further experiments [182, 24] with a similar approach. They used
the step function as the activation function of the networks. They introduced three
learning rules for each of the hidden and the output layers given by:

Rule(5)output = η

[
0.1al−1

i (y j−al
j)−0.0005

]
, (2.26)

Rule(6)hidden = η

[
0.11al

j−

(
0.1−∑

i
W l

jiδ
l+1
i

)
(al−1

i al
j−al−1

i )

]
, (2.27)

Rule(7)output = η

[
0.1al−1

i (y j−al
j)−0.001

]
, (2.28)

Rule(8)hidden = η

[
0.11−

(
0.01−∑

i
W l

jiδ
l+1
i

)
(al−1

i al
j−al−1

i )

]
(2.29)

Rule(9)output = η

[
0.1(y j−al

j)(a
l−1
i −0.5)(al−1

i −0.1)
]

(2.30)

and

Rule(10)hidden =η

[
(al−1

i −0.51)

(
al+1

j ∑
i

W l
jiδ

l+1
i (al−1

i −0.1)

(
∑

i
W l

jiδ
l+1
i +0.1

))]
.

(2.31)
Radi and Poli did a substantial number of experiments to discover an ample space

of learning rules, including rules where the hidden and output layers were trained
differently. Experimental results indicated that this method can routinely produce
learning rules that were faster than the SBP, and also rules that would work even
with multi-layer networks with discontinuous activation function [24], which is a
substantial achievement given that the SBP cannot train such networks. However,
the generality of the evolved rules was tested on small network structures having
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a single hidden layer with a limited number of problem instances including parity,
multiplexer, 7-segment display, vowel recognition and sonar signal classification.

Risi and Stanley [183] extend the HyperNEAT approach, explained in Sec-
tion 2.5.2, to obtain indirectly encoded learning rules. This method is called Adaptive
HyperNEAT. In this method, the CNNP has three more input parameters which are
W l−1

i j , al−1
i and al

j as well as the locations of the neurons in the substrate. The output
of the evolved CPPN provides the ∆W l−1

i j . Here, the CPPN was used as a learning
rule of an autonomous robot and performed well. However, this approach was not
tested on other problem sets.

Runarsson and Jonsson [184] demonstrated a different approach to obtain a
neural network learning rule. The authors evolved the weights and learning rate of
an ANN using ES. The input layer of the ANN consists of the al−1

i , al
j and t j of

another neural network while the output neuron of the ANN is used as the ∆W l−1
i j for

the connection between the al−1
i and al

j. It is reported that the results are promising.
However, this method was tested only on synthetic linearly separable problems, so
it is unclear if it would work also on real-world problems that are, typically, not
linearly separable.

Orchard and Wang [185, 186] used a similar approach to that used by Runarsson
and Jonssons [184] to evolve learning rules. They applied the GA to three-layer
neural networks to optimise the weights of the networks. In their early work [185],
the ∆Wi j and ∆W0 j (the relevant delta weight and bias, respectively) are determined
by different neural networks that are evolved. The input layer of the network consists
of Wi j, al−1

i , ∑iWji and W0i if the network is for weight update; ∑iW
l−1
i j al−1

i and W0i

if the network is for bias update. In the later work [186], only one network, which
has two outputs, is evolved to determine the corresponding weight and bias. Its input
layer consists of Wji, al−1

i , al
j, W l−1

0 j and hl
j (hidden factor) if applicable.

In these studies, the learning rules (weight and bias update networks) were
specifically evolved to train networks that solved simulated foraging problems. The
evolved training algorithms showed promising performance when tested on the
reference task or even larger tasks of the same kind. However, it is hard to say
whether the evolved learning rules are general since these rules were not tested
outside the simulated foraging domain.

2.6 Conclusion

This chapter presented a review of improvements to the neural networks using
theoretical models and EAs. ANNs with many different network architectures are
among the most widely used machine learning techniques that can be applied to
many tasks such as classification, regression, recognition and clustering. However,
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neural networks still suffer from some problems such as slow learning, trapping by
local minima and overfitting networks and difficulty training deep networks.

Since, in this thesis, we focussed on the evolution and theoretical analyses of
learning and initialisation algorithms to accelerate the learning and to train deep
networks, here, we reviewed mostly such improvement.

In order to speed up learning, researchers developed a variety of improvement
methods such as momentum, Rprop, Adam optimiser and RMSProp. Even if these
algorithms can also be considered a new learning rule, in fact, they only opti-
mise/control the learning rate during the training. In order to develop new learning
rules, some researchers emphasised the use of GP providing efficient evolved learn-
ing rules approximately two decades ago. Despite these early successes, somehow
surprisingly, this approach went unnoticed by the machine learning community and
not being followed up by any new research. Because the generality of those evolved
rules is tested only on small networks and a limited number of problem instances,
it is worth seeing performance of GP and new learning rules evolved using large
networks with more complex problems.

Training deep networks was difficult because of the vanishing gradient problems.
In order to overcome such problems, the use of alternative activation functions,
pre-training and weight initialisation methods have been proposed. Pretraining was
the first successful method to train deep networks. However, it is not easy to apply
to the networks that have many hidden layers because of the computational cost.
There have been several weight initialisation methods proposed that considered deep
networks with the logistic activation function. Nevertheless, networks initialised with
those methods perform poorly when the networks are deep (e.g. more than 5-hidden-
layer networks). ReLU is the first activation function developed which does not
suffer from the vanishing gradient problem. After this achievement, various ReLU
based activation functions have been proposed. However, such activation functions
also have some problem such as dying neuron, bias shift, noise sensitiveness. If the
vanishing gradient problem of the sigmoid activation functions would be overcome,
this could help networks to train deep networks without suffering from problems of
the other activation functions.

Hence, in this thesis, we try to uncover learning and initialisation algorithms
using GP and theoretical analysis to improve shallow and deep neural networks that
use the logistic activation function.
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Evolving Learning Rules and a Fair
Methodology for Comparing
Learning Rule Performance

3.1 Introduction

A MLP is a commonly used form of ANNs. It is usually trained using gradient
descent back-propagation algorithm. However, the SBP has some drawbacks as
described in Section 2.3. In order to overcome those drawbacks, EAs and some other
optimisation algorithms have been applied to neural networks.

Evolving learning rules through GP is a particular interest of this thesis. The
most important feature that distinguishes GP from other EAs is that it can produce
problem solvers, such as algorithms and computer programs, that can solve a range
of problems rather than just produce solutions to a specific problem. It is thanks to
this property that, approximately two decades ago, GP enabled researchers [27, 29,
23, 24, 121] to evolve new learning rules.

Bengio et al. [27] were the first to try this. In their work, the emphasis was
on comparing alternative search techniques (GP, genetic algorithms and simulated
annealing) to obtain new learning rules rather than improving over the SBP. It was
found that GP was the best out of the techniques tested, and that, in one case, it
managed to evolve a rule which was faster than the original SBP. The rule was a
small variation of the back-propagation rule where the derivative of the activation
function was cubed, changing slightly the behaviour of the rule in proximity of the 0
and 1 saturation points for the activation function.

Radi and Poli [29, 23, 24, 121] extended the work by Bengio et al. [27] to explore
a larger space of learning rules. They reported that the GP could not simultaneously
evolve learning rules for both hidden and output layers because of a large search
space. Therefore, they applied the GP to one of those layers in each experiment.
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Experimental results showed that this method can produce faster learning rules than
SBP. However, the performance of the evolved rules was not widely tested.

Yet, as indicated in the previous chapter, there are still many open problems
in ANN learning, and progress with traditional methods is difficult. These early
successes received little attention from the machine learning community and no
follow on work has appeared in the literature. This chapter attempts to fill this gap. In
particular, it focused on using GP to evolve rules that: (1) are faster than the SBP, (2)
do not require different formulations for the output and hidden layers, (3) generalise
well beyond the learning tasks which were used for inducing them, (4) present a
monotonic improvement in the error over time, with minimal oscillations, and (5)
are rigorously compared against their competitors. This last point is particularly
difficult and required the development of the new theoretical tools described in the
next section.

3.2 Comparing Learning Rules

Of course, in order to determine whether a learning rule produced by the GP system
used in this thesis, which it will be termed GP-MLP hereafter, is competitive, it is
not enough for it to outperform SBP on the training problems and with the specific
choice of parameters used in the fitness function. It needs to be tested a broad range
of problems and conditions.

For instance, neural networks are initialised with random weights and biases,
which make their training produce stochastic results. Therefore, for a fair comparison,
it is clear that one needs to perform many re-initialisations and repetitions of the
training. For this reason, in Section 3.4, 200 different initial sets of weights will be
used for each problem set.

Also, a fair comparison requires one to set the maximum number of epochs to be
large enough for each problem and the same for each pair of comparisons so that
both rules have a reasonable and the same chance to solve problems.

In the rest of this section other requirements and techniques for a fair comparison
of learning rules are discussed.

3.2.1 Pairwise Comparisons

One interesting way of comparing learning rules is to use the error obtained at each
epoch of the learning process (as opposed to just at the end of it) as, in principle, a
rule could initially converge faster than another but the former could be more likely
trapped by local optima leading to worse end-of-training performance than the latter.

However, even after having performed a large set of runs, it is not sufficient to
just compare the mean performance of learning rules: one needs to compare the
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corresponding distributions of performance obtained for each learning rules using
statistical tests.

Because performance distributions are typically non-Gaussian, non-parametric
tests were used for these comparisons. To increase the reliability of the tests, the
learning rules under comparison used exactly the same set of seeds for the random
number generator used for weight and bias initialisation. In other words, with each
seed the learning rules were pitted against each other starting from the same initial
conditions. This paired the corresponding error data, making it possible to use more
powerful statistical tests. More specifically, the Wilcoxon signed rank test was used,
which is effectively a test of statistical significance of differences between medians.
For this reason, in Section 3.4 the median error at each training epoch (instead of the
more traditional mean) and the corresponding p value of the test are reported.

3.2.2 Success Criteria

Multiple ways of defining success for a training run exist. For instance, one could
say that if the error is below a certain threshold, a run is successful. An alternative is
to set a threshold on the accuracy of the network, defined as the fraction of patterns
in the training set which have been learnt correctly.

Because different dataset can be learnt to different degrees, in order to obtain
meaningful success criteria, one would need to adjust error or accuracy thresholds
manually for each problem, which makes success dependent on some subjective
elements such as the experimenter’s objectives and experience as well as to the
hyper-parameters of the algorithm (learning rate, network architecture, maximum
number of epochs, etc.).

Irrespective of the definition, if the performance level required for success can
be formalised numerically, then each run may or not be successful. Given that
random initialisation makes the training of neural networks a stochastic algorithm,
it is standard practice to train a neural network multiple times until one finds one
that has satisfactory peformance. It is clear that different learning rules (with the
associated hyper-parameters) could have different success rates, interpreted as the
fraction of runs in which a particular level of performance was reached.

In general when one performs multiple runs, the effort is deemed successful if
the error/accuracy is acceptable, and unsuccessful otherwise. In other words, one
applies one of the success criteria discussed above to decide whether the effort of
multiple runs is successful.

As it will be shown below, success rates are key in defining the optimality of
learning rates and number of epochs.
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3.2.3 Optimal Learning Rates

Decades of experience has been accumulated on setting good values for the learning
rate, number of epochs, etc. for SBP. So, typically users set the values based on such
prior knowledge (for instance η ≤ 0.5) and then adjust them to a limited degree in
preliminary runs. This is a form of manual optimisation which normally gives good
results.

However, when one evolves a new learning rule, there is no prior experience on
setting η for such a rule. Also, the fitness function may promote quicker training
convergence. So, evolution may implicitly tune the learning rate of the evolved rules
for maximum performance (on the training problems). Thus, adopting values of η

for new learning rules using the traditional values used for SBP may be unfair. Also,
while manual optimisation of η for SBP based on experience is normally successful
at training a network, in no way one can claim that that the adopted learning rates
are optimal.

Given the above-mentioned considerations, a fair comparison requires setting
the learning rate for both SBP and the learning rules evolved by GP-MLP to their
respective optimal values (based on success rates, as it will be shown later).

For this reason, in Section 3.4 each network will be trained with 30 different
learning rates, η ∈ {0.1,0.2, . . . ,3.0}, and the best learning rate will be selected for
each rule and problem. Also, four-fold cross validation will be used to measure error
in continuous problems (the Boolean induction problems do not require this as there
is no way of overfitting their corresponding truth tables).

Because these runs require high computational cost, the learning rate ranges and
the number of epochs were determined with preliminary tests conducted with the
same configuration but with a small number of independent runs.

3.2.4 Optimal Number of Epochs

The success rate of each learning rule is likely to depend on the number of training
epochs. Of course, the more epochs, the more the training performance will improve
and, so, the more likely success will be. However, it is not clear whether one would
be better off doing more training attempts with a smaller number of epochs or fewer
attempts with large number of epochs or something in between.

In the following subsections, two ways will be considered in which comparisons
between learning rules could account for all this. In both cases the computational

effort, i.e., the total number of training epochs required to obtain at least one success-
fully trained network within a batch of runs is estimated. The first method guarantees
(with a high probability) that, if one can execute all runs in parallel, at least one run
will succeed within a batch of runs. The second method assumes that one executes
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runs one by one and provides the expected value of the computation required to
obtain a successful run. However, there are many other ways of performing runs.
For example, one could do runs in small batches, checking the result of each batch
and stopping as soon as one batch contains at least one solution. Or one could do
runs sequentially and consider the computational effort required if one wanted to be
successful with a given probability (say 99%) in at least one of the sequential runs.
In these cases, the computational effort required could be computed using a hybrid
of the two approaches reported below.

Here success is defined as the network achieving a certain level of training

accuracy, which is defined as the fraction of the training patters in the training set
correctly learnt.1

Note that computational effort depends on the training (hyper) parameters (here
this work focuses on learning rate and number of epochs). The minimal computa-

tional effort is the minimum computational effort recorded by varying the learning
rate and number of epochs in all possible ways within a large range of values. The
minimum computational effort may be a fair yardstick to compare learning rules.

3.2.4.1 Minimum Computational Effort for Parallel Training

This method considers the situation where multiple attempts to train a network (with
different initialisations) are performed in parallel (e.g., if multi-processing is used to
train multiple instances concurrently) or in a manner equivalent to parallel training
(e.g., if multiple runs are scheduled sequentially overnight, so that the results are
available to the user the following morning).

In this case, relatively simple adaptations of Koza’s computational effort [17]2

can tell us how much computation is needed to obtain at least one satisfactorily
trained network out of a certain number of parallel training runs.

Let pi(a,η) be cumulative probability of training a network to the desired degree
of accuracy a (the fraction of patterns in the training set the network has correctly
learnt) by epoch i and with a learning rate η . Also, let z be the prescribed success

probability with which we want to be able to solve the problem (e.g., z = 0.95)
when doing multiple runs of the learning algorithm. It should be noted that pi(a,η)

depends not only on a and η but also the learning problem at hand, the architecture for
the network, the initialisation strategy, etc. However, for brevity, such dependencies
are not explicitly represented here.

1Of course success could have also been defined as reaching an error below a certain threshold.
However, an absolute threshold would not work well across different problems. So accuracy is used
instead.

2Koza’s notion of minimum computational effort was used in the context of genetic programming
to represent problem difficulty and to allow fair comparisons between alternative genetic programming
systems.
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The probability of not solving the problem by epoch i is clearly 1− pi(a,η). Be-
cause each run is independent (assuming weights and biases are initialised randomly)
the probability of not solving the problem in R runs is given by (1− pi(a,η))R.
Naturally, its complement, 1− (1− pi(a,η))R, is the probability of us being able to

solve the problem in at least one run, i.e.,

z = 1− (1− pi(a,η))R. (3.1)

Solving for R yields

R(a,η , i,z) =
log(1− z)

log(1− pi(a,η))
, (3.2)

where the fact that R depends also on z (plus all the other dependencies of pi) is
made explicit.3

If all runs are stopped at epoch i then the expected total number of learning
steps, or computational effort, required to solve the problem with probability z when
executing runs in parallel training is simply

Ep(a,η , i,z) = i×R(a,η , i,z) = i× log(1− z)
log(1− pi(a,η))

, (3.3)

where the fact that the computational effort depends also on the choice of i (i.e., the
epoch at which one stops the training) and η is made explicit.

Note that normally Ep(a,η , i,z) is a monotonically increasing function of a —
the accuracy required before training is declared successful — and z — the success
probability required. However, it is not necessarily a monotonic function of η , as
beyond a certain value of η , gradient-descent-type of algorithms, such as SBP, may
climb up the error surface rather than the other way around. Also, and this may
appear conter-intuitive, Ep(a,η , i,z) is not a monotonically increasing function of i.
For instance, in some cases performing many short runs yields a correctly trained
network with less overall effort than a few long runs. However, making runs too
short collapses the success probability to zero making Ep(a,η , i,z)→ ∞. More
obviously, for a fixed i, Ep(a,η , i,z) is a monotonically increasing function of a —
the accuracy required before training is declared successful— and z — the success
probability required — it is not a monotonic function of i. For instance, in many
cases more shorter runs cost less effort than fewer longer ones, but making runs too
short collapses the success probability to zero.

The availability of Ep(a,η , i,z) makes it possible to optimise the effort over i and

3In Equation (3.2), R(a,η , i,z) is the expected number of runs required to solve the problem, which
may not be integer. Obviously, in practice one cannot do a non-integer number of training attempts.
So, we need to do dR(a,η , i,z)e runs, which yields a success probability 1− (1− pi(a,η))dR(a,η ,i,z)e

that may be strictly bigger than the desired success probability z.
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η , yielding the following minimum computational effort required to achieve success
with probability z:

E∗p(a,z) = min
i,η

Ep(a,η , i,z) (3.4)

with corresponding optimal values for the number of epochs and the learning rate
given by

(i∗,η∗) = argmin
i,η

Ep(a,η , i,z), (3.5)

which in turn allows us to determine the optimal number of training runs:

R∗(a,z) = dR(a,η∗, i∗,z)e. (3.6)

3.2.4.2 Minimum Computational Effort for Sequential Training

This method considers the situation where multiple attempts to train a network (with
different initialisations) are performed sequentially. Here after each attempt the
training accuracy is checked against the predefined desired level, a, and further
attempts are stopped upon recording the first success.

Because each attempt is independent of the others, whether or not the actual
accuracy at epoch i is greater or equal than a or not is a Bernoulli trial, with success
probability pi(a,η) (see Section 3.2.4.1). So, the expected number of runs required
to obtain one that is successful one [187] is simply given by

R(a,η , i) =
1

pi(a,η)
. (3.7)

Hence, the expected computational effort and minimal computational effort for

sequential training are given by

Es(a,η , i) = i×R(a,η , i) =
i

pi(a,η)
, (3.8)

and
E∗s (a) = min

i,η
Es(a,η , i), (3.9)

respectively. The corresponding optimal parameters are, therefore,

(i∗,η∗) = argmin
i,η

Es(a,η , i), (3.10)

which in turn allows us to determine the optimal number of training runs:

R∗(a) = dR(a,η∗, i∗)e. (3.11)
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3.3 GP System, Fitness Measure and Datasets

3.3.1 Linear GP System

Experiments in this chapter were performed using a linear register-based GP sys-
tem [111, 188]. The basic cycle of GP-MLP is described in Algorithm 1. Step 1: The
algorithm starts with randomly generating as many learning rules as the population
size at random. Step 3: Each learning rule is applied to multiple problems and is
applied to each problem with multiple initial sets of weights and biases to measure
the rule’s fitness. Step 7: Firstly, either crossover or mutation operator is selected.
Then, one or two learning rules (parents) are selected based on the chosen genetic
operator. Finally, an offspring is created by applying the chosen operator to the
selected parent(s). Step 8: To measure the created offspring’s fitness, it is applied
to the same networks (problems and the initial conditions) as those used in step
3. Step 9: The offspring created is replaced with the worst learning rule among a
group of rules selected from the population. Here the learning rules that are better
(fitter) than the worst one in the selected group of rules do not have any chance to
be discarded from the population. Therefore, this step includes the application of
elitism method too. Steps 7, 8 and 9 are repeatedly and respectively executed as
many as the population size for each generation. Step 12: The algorithm returns the
best learning rule when it reaches the maximum number of generations.

The system uses a population of 400 individuals, each including 30 instructions,
a steady-state update schedule, tournament selection with a tournament size of 3,
point mutation applied with 50% probability and two-point crossover also applied
with 50% probability. When mutation is used, if visits every instruction in a program
replacing it with a random instruction with a low probability (15%). Runs lasted
for 100 generations. While all programs in the population are of the same length,
the presence of a no-operation (NOP) instruction in the primitive set allows for
programs of different complexity to evolve. These parameters were determined after
having conducted some preliminary experiments. The choice of a small number of
instructions leaded to obtain poor learning rules while a large number caused high
computational cost. Therefore, we set the number of instructions to 30 considering
such situations. A small population was used because of the heavy computational
load associated with the fitness evaluation (more on this later). A small tournament
size was used and a high mutation rate to avoid premature convergence, given small
population size.

Table 3.1 shows the instructions used in the GP system. In order for the evolved
rule not to be very complex, we used basic primitive elements in the instructions.
More specifically, the terminal set consisted of the SBP, its fundamental components
and a few constants while the functions set consisted of the fundamental arithmetic
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algorithm 1 Pseudo-code illustrating how GP-MLP evolves learning rules
1: Generate a population of random learning rules
2: for all learning rules in the population do
3: Apply a learning rule to all problems and conditions to measure fitness
4: end for
5: for generation = 1 to maximum generations do
6: for epoch = 1 to population size do
7: Create an offspring learning rule using mutation or crossover, selecting one

or two parents, respectively
8: Apply the offspring rule to all problems and conditions to measure fitness
9: Insert the offspring created into the population

10: end for
11: end for
12: return the fittest individual ever found

Table 3.1: Primitive set used in the experiments

Instructions Instructions Instructions
NOP r0 <- -r0 r1 <- r1 + rSBP
r0 <- 0 r1 <- -r1 r0 <- r0 + r1
r1 <- 0 r0 <- r0 + ra r1 <- r0 + r1
r0 <- 0.5 r1 <- r1 + ra r0 <- r0 * r1
r1 <- -0.5 r0 <- r0 + ra_prev r1 <- r0 * r1
r0 <- -0.1 r1 <- r1 + ra_prev r0 <- r0 * r0
r1 <- 0.1 r0 <- r0 + re r1 <- r1 * r1
r0 <- -1 r1 <- r1 + re rs <-> r0
r1 <- 1 r0 <- r0 + rSBP rs <-> r1

operators except the division. The system uses seven registers which are defined
by: r0 and r1 are used for mathematical calculations; the register rs is used for
swapping the registers. These registers are set to 0. After all instructors in the
program are sequentially executed, r0 reports the output of the program. Also, there
are input registers in the table, ra_prev, ra, re and rSBP, for each of the input
variables used in learning rule. These are defined as follows:

ra_prev = al−1
i ,

ra = al
j,

re =

ek
j if l = n,

∑iW l
jiδ

l+1
i otherwise,

rSBP = ra_prev×ra× (1−ra)×re,

where ek
j is the j-th component of ek and the last formula represents the SBP learning

rule. The output produced by SBP rule is added into the input register rSBP to give
evolution a good starting point on which to improve.
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3.3.2 Fitness Measure

Assuming fitness is a function that needs to be minimised by GP-MLP, the most
natural fitness for a learning rule would be the network error measured after having
applied the rule for a number of epochs to train a network to solve a problem.
However, in order to obtain general and stable learning rules one needs to use a more
sophisticated strategy where fitness is the result of: (1) applying each learning rule
to multiple problems, (2) applying each learning rule with multiple initial conditions
(random weights and biases) for each problem, and (3) considering also the error
values recorded throughout the training, not just at the end of it.

More specifically, in relation to point (1) above — applying each learning rule to
multiple problems — one issue that arises when using errors measured in different
problems to guide evolution is that such problems may present widely different
errors due to the size of the input and output layers, the number of training examples
and the degree to which a training set can actually be learnt by a MLP (e.g., because
of the noise/inconsistencies in the training data or the limitations of the network
architecture used). If this happens, then, of course, given a problem set, evolution
will be more likely to optimise learning rules to problems with naturally larger errors
than problems with smaller errors, thereby leading to rules that do not generalise
well. For this reason the TSEs obtained with new learning rules were normalised
to the corresponding TSEs obtained by the SBP rule, whereby normalised TSE
values below 1 would indicate an improvement with respect SBP. This makes TSE
values obtained in different problems comparable, and avoids unduly biasing the
evolutionary search. Then evolution was forced to consider all training problems by
driving it (through its fitness function) to minimise the worst normalised TSE across
problems.

In relation to point (2) above — applying each learning rule with multiple initial
conditions — preliminary runs showed that it was important to evaluate all learning
rules with the same set of initial weights and biases, to avoid some rules gaining
unduly higher fitness than others simply due to a lucky initialisation. This, however,
introduces the problem that learning rules would evolve that exploited the initial sets
of weights and biases, thereby producing rules that would not work well in unseen
problems and/or with unseen initial conditions. So, for each problem, weights and
biases had to be re-initialised n times using different seeds for the random number
generator, and after each initialisation the corresponding network was trained for m

epochs.
In relation to point (3) above — considering also the TSE values recorded

throughout the training, not just at the end of it — preliminary runs showed that look-
ing at only the TSE at the end of training was not enough to encourage generalisation.
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The issue is that in order to reduce TSE evolution would try to amplify the learning
rate of new rules, effectively obtaining rules that were not stable, and by pure luck
could obtain low end-of-training TSEs after having widely oscillated. With relatively
few problems and initial conditions, the likelihood of this happening in a population
of hundreds of rules is quite high. Such rules would then hijack evolution and when
tested with different initial conditions, problems or number of epochs, evolved rules
would likely prove very poor. To prevent this from happening, penalties and rewards
were also added to the fitness measure based on the directions of change of the TSE
during the whole training process, effectively encouraging a monotonic descent.

More formally
fitness = max(NTSE1, . . . ,NTSEk) (3.12)

where k is the number of problems used in the GP run and

NTSEp =
∑

n
s=1

(
NLRTSEs

p,m +∑
m
i=1 Ps

p,i

)
∑

n
s=1 SBPTSEs

p,m
(3.13)

is the normalised TSE error in problem p, NLRTSEs
p,m is the end-of-run TSE of the

New Learning Rule (NLR) being evaluated on problem p and with seed s, SBPTSEs
p,m

is the corresponding end-of-run TSE of the SBP, n is the number of reinitialisations
(seeds) of the network’s weights, m is the number of training epochs, and Ps

p,i are
penalties/rewards encouraging the monotonic descent of TSEs. These are given by:

Ps
p,i =

λ+(NLRTSEs
p,i−NLRTSEs

p,i−1), if NLRTSEs
p,i > NLRTSEs

p,i−1,

λ−(NLRTSEs
p,i−NLRTSEs

p,i−1), if NLRTSEs
p,i ≤ NLRTSEs

p,i−1,

(3.14)
where λ+ is the penalty coefficient and λ− is the reward coefficient. Assuming both
learning rules compared start with the same error at the first epoch and reach the
same error at the last epoch, the use of the same reward and penalty coefficients does
not make any sense to compare the training processes. However, a higher penalty
coefficient than the reward coefficient should be used to encourage a monotonic
descent of the error. In our experiments λ+ was set to 0.1 and λ− was set to 0.001
with a small amount of trial and error.

3.3.3 Training and Test Problems

In the experiments, k = 2, i.e., two (training) problems were used — the parity and
iris classification problems— for fitness evaluation. These problems were chosen
so that they would be representatives of continuous and binary problems. Also,
n = 4 reinitialisations and m = 250 epochs of each learning rule were used. Small
network structures, a low number of re-initialisations and a low number of epochs
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Table 3.2: Network structure and parameters for the two problems used for evolving
learning rules

PROBLEM HIDDEN

LAYER

SIZES

OUTPUTS η RUNS

PARITY 5, 5 1 0.8 4
IRIS 2, 2 3 0.1 4

Table 3.3: Information on the data sets used in this study

PROBLEM INST. NF CLASSES IM
IRIS 150 4 3 0.0000
WINE 178 13 3 0.0125
AUTHORSHIP 841 70 4 0.0833
BCW 699 9 2 0.0963
E-COLI 327 7 5 0.1089
DNA 3186 180 3 0.0776
PARITY 16 4 2 0.0000

were purposely chosen to speed up the evolution process. The network structures
and other parameters used are shown in Table 3.2.

In addition to the 4-bit parity and iris classification problems that were used in the
evolution process, the 7-segment display, iris, wine recognition (wine), analcatdata
authorship (authorship), e-coli, breast-w (BCW) and DNA classification problems
were additionally used to test performance of the new learning rules. The reasons
why being selected these problems are that they are commonly used to compare
algorithms and do not lead a high computational cost when we apply our comparison
methods to them. These problems were taken from the Penn Machine Learning
Benchmarks [189] as this repository includes a wide range of accessible real-world
data for comparing machine learning algorithms. Information of these data sets —
number of instances (Inst.), number of features (NF), number of classes (classes)
and imbalance metric (IM) — are provided in Table 3.3. Imbalance metric shows the
level of the imbalance of data. The imbalance metric values were provided by the
Penn Machine Learning Benchmarks [190] and computed by the following formula:

I = K ∑
i

(
mi

M
− 1

K

)2

(3.15)

where K is the number of classes in the data, M is the number of examples in the
data and mi is the number of examples of class i in the data.

The network structures (number of neurons in the layers) used for comparing
NLR’s and the SBP were manually chosen with a small amount of trial and error (to
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Table 3.4: Network structures adopted for the different test problems used for comparing
NLR and SBP

PROBLEM INPUT HIDDEN OUTPUT

IRIS 4 10, 10 3
WINE 13 10, 10 3
AUTHORSHIP 70 30, 30 4
BCW 9 20, 20, 20 2
E-COLI 7 20, 20 5
DNA 180 100, 100, 100 3
7-SEGMENT 4 5, 5 7
THE PARITY 16 7, 7 1

balance convergence accuracy, computational load and overfitting) and are shown
in Table 3.4. Note that parity and iris problems were used both for training (during
evolution) and for testing the performance of evolved rules, although the networks
used in testing where significantly bigger. This was done to verify that evolution had
not “overfitted” the few random seeds and the tiny topologies used in training.

3.4 Experimental Results

As indicated above, GP-MLP was applied to the parity and iris classification problems
with 4 different initial weights for each problem. The sigmoid activation function
was used for the neurons of the output layer of networks of both the parity and iris
classification problems’ networks. TSE was used during the training of the networks
as previously explained. With this configuration, several runs were performed, all
of which produced learning rules that were competitive with SBP, although not
always general. However, at the end of one run, GP-MLP returned the following
new learning rule

NLR = SBP× (SBP+al
j +3al−1

i ). (3.16)

The generality of the rule and its performance advantages over the SBP will be
discussed and shown below.

3.4.1 Qualitative Interpretation of Evolved Rule

To start understanding the behaviour of this rule, we can simply divide both sides of
Equation (3.16) by SBP, obtaining:

NLR
SBP

= SBP+al
j +3al−1

i (3.17)

= al
j(1−al

j)a
l−1
i δ

l
i j +al

j +3al−1
i . (3.18)
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Table 3.5: Different effective learning rates of NLR as a function of the activations of the
pre-synaptic and post-synaptic neurons associated with a connection weight

al−1
j al

i
NLR
SBP

0.1 0.1 0.009×δ l
i j +0.4

0.1 0.5 0.025×δ l
i j +0.8

0.1 0.9 0.009×δ l
i j +1.2

0.5 0.1 0.045×δ l
i j +1.6

0.5 0.5 0.125×δ l
i j +2.0

0.5 0.9 0.045×δ l
i j +2.4

0.9 0.1 0.081×δ l
i j +2.8

0.9 0.5 0.225×δ l
i j +3.2

0.9 0.9 0.081×δ l
i j +3.6

It is clear that where the ratio NLR
SBP is greater than 1, the new learning rule amplifies the

moves in weight-space of the SBP, while where the ratio is less than 1, NLR makes
more cautious moves than SBP. So, we could interpret the NLR in Equation (3.16) as
a form of SBP but with a variable effective learning rate, provided in Equation (3.18).
This is made explicit in Table 3.5, where the effective learning rate is tabulated for
different values of al−1

j and al
i .

From the table one sees that the bigger the activations al−1
j and al

i , the bigger the
learning rate of the NLR w.r.t. SBP. However, for any given values of al−1

j and al
i , it

is also clear that the effective learning rate is bigger when δ l
i j > 0 than when δ l

i j < 0.
In other words, the NLR is asymmetric in that it attempts to reduce positive errors
faster/sooner than negative ones.

Beyond this, the effect of the linear term in δ l
i j will become smaller and smaller as

the learning process proceeds, so that eventually the effective learning rate depends
mainly only on al−1

j and al
i , thereby restoring symmetry.

Of course, as shown in the table, averaging over the values of δ l
i j, for most values

of al−1
j and al

i we see that the effective learning rate is bigger than 1. So, if we
apply the two learning rules with the same learning rate η , we should expect the
NLR to have a faster descent on the TSE surface. However, in terms of asymptotic
values for weights and biases, we should also find that the NLR is not behaving in a
radically different manner from a SBP-like gradient descent. This is illustrated for a
typical run with the XOR problem in Figure 3.1. The figure reports the changes of
the TSE over time (top) as well as the temporal dynamics of the weights and biases
in the network (bottom) for SBP and NLR. Note how both rules start from the same
TSE and weights and after training, by and large, the same asymptotic values for
the parameters are achieved. NLR, however, reaches good parameters values much
more quickly as explained above. This, of course, does not imply anything about
relative performance, as it could easily be matched by the SBP by simply increasing
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its learning rate.

3.4.2 Choice of Performance Criteria

As explained in Section 3.3.3, NRL was compared with the SBP rule on the following
problems: 7-segment display, 4-bit parity, iris classification, wine classification,
breast cancer classification, e-coli classification, DNA classification and authorship
classification problems.

In pairwise comparisons between NLR and SBP, TSE was used as a performance
indicator for the Boolean induction problems, while, for the other problems, a soft-
max output layer was used to facilitate classification, in which case the average
cross-entropy loss was used as a performance indicator.4

For the definition of success, the fraction of training patterns correctly predicted
was used, setting the threshold a (see Section 3.2.4.1) to 100% for all problems
except iris where it was 95%, as not all patterns in iris can be learnt without badly
overfitting.

Both for sequential execution and parallel execution of training runs, the leaning
rate η∗ and number of epochs i∗ which yielded the minimum computational effort
required to solve each problem were identified using Equations (3.4) and (3.9). To
compute these, pi(a,η) was estimated — the cumulative probability of training a
network to the desired degree of accuracy a by epoch i and with a learning rate η —
using 200 training attempts (with different initial sets of weights) for each problem
and 30 different learning rates. It was not needed to repeat the training for different
values of i as the runs used a maximum number of epochs imax such that i∗ < imax.

In the calculations of the minimal computational effort, both for sequential and
parallel evaluation, a was 0.95 for the iris problem and 1.0 for all other problems.
For parallel evaluation, z a probability of solving the problem was 0.99.

3.4.3 Results with Parallel Evaluation

Figure 3.2 reports results for all test problems when parallel evaluation is consid-
ered. This should be analysed jointly with Table 3.6 that provides the values of
the maximum number of epochs (imax) used to compute cumulative probability, the
required number of independent runs (R∗), the required number of epochs (i∗), the
minimum computational effort (E∗p(a,z)) and the best learning rate (η∗) to solve
each test problem.

More specifically, each of the plots named ‘Computational Effort’ in Figure 3.2
shows: (a) the values of pi(a,η∗) for both SBP and NLR (blue and orange solid

4When the soft-max output layer is used in a network, the weights between the soft-max layer and
the last hidden layer are updated using the normal operations of the soft-max layer. The other weights
and biases of the network are updated according to either the NLR or the SBP learning rule.
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Figure 3.1: Illustrative comparison of the TSE (top) and weight (bottom) changes over
time for an XOR problem with a classical 2-2-1 architecture when training is done by the

SBP and NLR, both starting from the same initial set of weights and biases
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lines, respectively, to be interpreted using the ordinate scale on the left) as a function
of the epoch number, i; (b) the corresponding values of the computational effort
Ep(a,η∗, i,z) (purple and brown dashed lines, respectively, to be interpreted using
the ordinate scale on the right); (c) the corresponding values of i∗ where the minimal
computational effort E∗p(a,z) is achieved for each rule (orange and blue marks,
respectively). It is apparent that the probability of successfully training the network
pi(a,η∗) for NLR always dominates the corresponding probability for SBP. The
superiority of NLR is also illustrated by the values of the minimal computational
effort E∗p(a,z) reported in Table 3.6. While the advantage of NLR over SBP is small
for relatively easy problems, the gap is quite big for the harder ones (parity, BCW
and e-coli).

Also, looking at values of R∗ reported in Table 3.6, it is immediately clear
that there is a distinction between Boolean induction problems and continuous
problems. In the case of the Boolean problems, irrespective of the learning rule, it is
computationally more convenient to do many short training attempts than to try to
achieve success with one long run. However, with continuous problems the opposite
is almost always true.

Finally, it is interesting to look at values of η∗ reported in Table 3.6. Here one
sees that in most cases the optimal learning rate for SBP is way above the values
typically suggested in the literature. For instance, for the parity function, where it is
notoriously difficult to avoid being trapped in sub-optimal states resulting in people
using very small learning rates, the optimal learning rate is 2.

Let us now focus on the plots named ‘Error’ in Figure 3.2. They report the
median error on the training set vs epoch number obtained in the 200 runs executed
with the optimal learning rate η∗ for the NLR and SBP (solid orange and blue lines, to
be interpreted using the ordinate scale on the left), respectively, as well as the p value
(green dashed line, to be interpreted using the ordinate scale on the right) obtained by
applying the Wilcoxon signed rank test to the 200 pairs of errors values recorded for
NLR and SBP over all training time-steps to analyse which differences are statistically
significant (p value≤ 0.05). Error plots and their p-value plots obtained with each
rule’s optimal learning rates also show the performance advantages of NLR over the
SBP on almost all problems. The only exception is the 7-segment problem, and its
reason is explained below.

The plots named ‘Accuracy’ in Figure 3.2 show the median accuracy (i.e., the
proportion of patterns correctly learnt) vs epoch number, obtained in 200 training
runs executed with the optimal learning rate η∗ for each learning rule. Solid orange
and blue lines show the training accuracy of the NLR and SBP, respectively, while
the dotted orange and blue lines show the testing accuracy of the corresponding
rule. These accuracy lines were plotted according to the ordinate scale on the left.
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Because for Boolean induction problems there is no distinction between train and
testing set, only the orange and blue lines are reported.

As seen from the accuracy plots of continuous problems, both rules, SBP and
NLR, reach almost the same level of train and testing accuracy; and have a similar
generalisation error on each problem at the end of the training. However, NLR

converges to the maximum train and testing accuracy faster than SBP on all problems.
These plots also show that neither NLR nor SBP has overfitting on iris, wine,
authorship, and DNA problems, and they both have some overfitting on e-coli and
BCW problems.

In addition, the plots report dashed green and brown lines which represent the p

values obtained when doing a pairwise comparison of the accuracy data obtained at
each epoch by the NLR and SBP rules, for training and (where appropriate) testing
accuracy. The p value lines were plotted according to ordinate scale on the right and
were obtained by applying the Wilcoxon signed rank test to the 200 pairs, similarly
to what was done for the error plots in Figure 3.2.

One may think that, in Figures 3.2.21 and 3.2.23, the performance of NLR in
the 7-segment problem looks worse than that of SBP. However, this ignores the fact
that central tendencies (specifically, medians) in such figures are plotted. However,
in relation to the performance of learning rules, the proposed approach cares more
about the part of the distribution (in this case the lower tail) that solves the problem
than about central tendencies. In other words, the results of the 200 independent
runs performed with SBP and NLR are not equally distributed, NLR having a thicker
tails than SBP. That is, the NLR has more successful runs than SBP within those 200
independent runs, but also more runs where it is significantly worse than SBP.

In a nutshell, NLR was evolved (trained) on two problems and tested on those
two training (with different network structures) and six additional problems, as
shown in Table 3.2 and 3.4, respectively. Figure 3.2 and Table 3.6 provide strong
evidence that shows the generality of the evolved rule and its performance advantages
over SBP. The table shows that NLR requires less computational effort (number of
epochs) than SBP to solve the problems. This superiority is also shown with the
computational effort plots in Figure 3.2. In the relevant plots, NLR Ep(a,η∗, i,z)

decreases faster than SBP Ep(a,η∗, i,z) for all problems except 7-segment. Also,
Figure 3.2 shows the performance advantages of NLR over SBP in terms of the
training error, training accuracy and (if appropriate) testing accuracy of the test
problems. The accuracy plots illustrate that while both learning rules have almost
the same level of generalisation error on each problem at the end of the training,
NLR reaches the maximum learning faster/sooner than SBP. Note that the boolean
induction problems were not evaluated in terms of the generalisation as they cannot
be divided into training and testing data. These results answer two of our research
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3.2.21 7-Segment Error
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Figure 3.2: Results for all test problems when parallel evaluation is used (see text for
explanations).
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Table 3.6: Minimal effort and associated optimal learning rate, number of epochs and
number of runs for parallel evaluation

Problem Rule imax R∗ i∗ E∗p(a,z) η∗

Iris
NLR 1000 1 62 62 1.8
SBP 1000 1 89 89 3.0

Wine
NLR 200 1 56 56 1.9
SBP 200 1 65 65 2.5

Authorship
NLR 500 1 24 24 1.3
SBP 500 1 33 33 2.9

BCW
NLR 10000 1 5703 5703 0.2
SBP 10000 2 9497 18994 0.3

Ecoli
NLR 10000 1 9587 9587 0.7
SBP 10000 2 9530 19060 1.2

DNA
NLR 200 1 30 30 0.3
SBP 200 1 43 43 0.9

7-segment
NLR 5000 12 266 3192 0.5
SBP 5000 24 196 4704 2.3

Parity
NLR 50000 3 1381 4143 0.7
SBP 50000 3 9583 28749 2.0

questions. More specifically, the results show that GP can produce new learning
algorithms that solve problems with less computational efforts than the SBP and is
faster than SBP.

3.4.4 Results with Sequential Evaluation

When SBP and NLR are used with the sequential evaluation method, results are
very similar to those reported in Section 3.4.3, as illustrated in Figure A.1 (see
Appendix A) and Table 3.7. The difference between these and Figure 3.2 and
Table 3.6 is that here we use the computational effort definition of Section 3.2.4.2.

We should note that while the sequential evaluation computational efforts are
lower than the corresponding parallel-evaluation ones, one should not conclude that
one approach is faster than the other. The calculations for the two cases and the
corresponding experimental results are different because they answer two different
questions. As we explained at the beginning of Section 3.2.4, the first method
computes the computational required to guarantee (with a high probability) at least
one successful run within a batch of runs if all runs are executed in parallel. The
second method assumes that runs are executed one by one and computes the expected
value of the computational effort required to obtain a successful run.
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Table 3.7: Minimal effort and associated optimal learning rate, number of epochs and
number of runs for sequential evaluation

Problem Rule imax R∗ i∗ E∗s (a) η∗

Iris
NLR 1000 1 63 63 1.7
SBP 1000 1 91 91 2.8

Wine
NLR 200 1 65 65 1.5
SBP 200 1 78 78 2.4

Authorship
NLR 500 1 25 25 1.5
SBP 500 1 35 35 2.9

BCW
NLR 10000 2 1645 3290 0.7
SBP 10000 2 5177 10354 0.7

Ecoli
NLR 10000 2 4830 9660 0.9
SBP 10000 2 6788 13576 1.3

DNA
NLR 200 1 30 30 0.3
SBP 200 1 45 45 1.0

7-segment
NLR 5000 5 169 845 1.1
SBP 5000 6 192 1152 2.3

Parity
NLR 50000 2 808 1616 1.2
SBP 50000 2 5905 11810 3.0

3.5 Summary

In this chapter, a single rule was evolved that can be applied to both the hidden and
the output neurons. The NLR was evolved by the GP-MLP using one continuous and
one Boolean induction problems. It was tested using relatively (1) wide set of test
problems, including six real-world, large scale, problems — iris, wine, authorship,
BCW, e-coli, DNA — and two boolean induction problems — 7-segment and parity
— (2) networks with more than one hidden layer, (3) wide networks including up to
100 neurons in each hidden layer.

This chapter also presented theoretical tools (based on the notion of compu-
tational effort) developed to perform much more rigorous comparisons than the
traditional comparison method that considers just the mean of a batch of runs. In
relation to this point, a wide range of learning rates, η ∈ {0.1,0.2, . . . ,3.0}, was
considered, always choosing the maximum number of epochs in such a way that
SBP would not be at a disadvantage for its slower convergence; and we tested also
for generalisation accuracy, not just error.

This rigorous bench-marking process showed that the evolved rule was faster
than SBP and required less computational effort than the SBP to solve the problems.
The generality of the evolved rule was tested on six continuous and two Boolean
induction problems. The evolved rule successfully solved all problems tested. The
analysis of the evolved rule showed that it was fundamentally a form of asymmetric
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SBP where the learning rate of different weights was modulated both by the error
and the activations of the pre- and post-synaptic neurons in such a way to reduce
positive errors faster/sooner than negative ones. Thus, we can conclude that rather
than learning all classes at the same time, learning the training data on a class by
class basis helps to speed up the learning process.
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Chapter 4

Using Unstable Learning Rules to
Speed up Learning

4.1 Introduction

In this chapter, like in the previous chapter, GP was used to evolve neural network
learning rules. The previous chapter successfully evolved a learning rule. However,
the fitness function restricted for GP to search the search space because it used the
penalty and reward functions to encourage monotonic error descent. Therefore, this
chapter tried to answer the question that arose whether it would be possible to speed
up learning by allowing the evolution of unstable learning rules.

As described in the previous chapter, preliminary experiments showed that the
evolved rules did not perform well on previously unseen problems if the error at the

end of the training was used as the fitness function. The point was that in order to
reduce the error, the GP would try to increase the learning rate of evolved programs,
effectively finding unstable rules, and it could obtain low end-of-training errors by
pure luck after the error having widely oscillated. In relatively few problems and
with some initial conditions, this is likely to happen in a population of hundreds of
rules. Such rules would then take over evolution, and when tested with different
initial conditions, problems or number of epochs they would likely perform poorly.
To prevent this from happening we postulated that not only errors at the end of
training but also errors obtained during training should contribute to the evaluation
of the fitness of rules.

As one of the possible ways to reduce the impact of this situation, in the previous
chapter, penalty and reward were added to the fitness measure based on the directions
of change of the error during the whole training process. At the end of the evolution,
GP provided a more general and stable learning rule than the SBP rule. This
approach encourages rules in the population to perform a monotonic descent on the
error surface. However, this may also lead the network to get trapped in a local
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Table 4.1: Primitive set used in the experiments

Instructions Instructions Instructions
NOP r1 <- -r1 r1 <- r1 + rSBP
r0 <- 0 r0 <- r0 + ra r0 <- r0 + r1
r1 <- 0 r1 <- r1 + ra r1 <- r0 + r1
r0 <- 0.5 r0 <- r0 + ra_prev r0 <- r0 * r1
r1 <- -0.5 r1 <- r1 + ra_prev r1 <- r0 * r1
r0 <- -0.1 r0 <- r0 + re r0 <- r0 * r0
r1 <- 0.1 r1 <- r1 + re r1 <- r1 * r1
r0 <- -1 r0 <- r0 + rd rs <-> r0
r1 <- 1 r1 <- r1 + rd rs <-> r1
r0 <- -r0 r0 <- r0 + rSBP

minimum.
In this chapter, GP was employed to the intent with evolving learning rules that

are fast, general and can escape local minima. To do this, in contrast to the previous
chapter, we did not penalise oscillations on the error during the training because we
see oscillations as a potential mechanism to escape local minima. In addition, we
used a fitness measure based on the lowest errors recorded throughout the whole
training process.

4.2 GP System, Fitness Measure and Datasets

4.2.1 Linear GP System

Experiments in this chapter were performed using the same GP system that was
presented in the previous chapter. The only differences were that (1) the size of the
GP population was increased from 400 to 600; (2) the derivative of the post-synaptic
neuron was used as a terminal in the primitive set defined as follows:

rd = al−1
i × (1−al−1

i ).

Although this derivative is a fundamental component of the SBP and its construction
is possible with the primitive set used in the previous chapter, non of the evolved
rules included this derivative. Therefore, we used it as a terminal in the experiments
conducted in this chapter to help the evolution process. The primitive set used in the
GP system is shown in Table 4.1. The primitives that are new in comparison with
those used in Chapter 3 are highlighted in the table.

4.2.2 Fitness Measure

The main purpose of the fitness function is to minimise the training error of the
learning rules in the population. However, there is not only one form of it. In this
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chapter, to allow the GP to search for a wider space of possible learning rules in
comparison with the previous section, we used two different fitness functions that do
not penalise learning rules. These functions have some differences from that used in
the previous chapter. Here, functions do not penalise and reward the rules based on
the oscillations during the training. Also, instead of the end-of-run error, fitness is
the sum of a fraction of the lowest errors/highest accuracies recorded during training.
Removing the penalty and reward may cause errors to oscillate in the error descent
during the training. The oscillations can be controlled by adjusting the fraction of
errors contributing to the fitness.

Of course, like in the previous chapter in order to obtain more general learning
rules, each rule is applied to multiple problems and is applied to each problem with
multiple initial conditions (random weights and biases).

Here are the equations that are used to compute the fitness of the evolved learning
rules:

fitness = max(fitness1, . . . ,fitnessk), (4.1)

where k is the number of problems used in the GP run,

fitnessp =
∑

n
s=1 ∑

b
t=1 sort

(
NLRlosss

p
)

t

∑
n
s=1 ∑

b
t=1 sort

(
SBPlosss

p
)

t

(4.2)

is the fitness contribution of problem p, sort() is a function which sorts its argument
and NLRloss and SBPloss are the average cross-entropy loss values of the NLR and
SBP, respectively, obtained throughout the whole training process, p is the problem,
n is the total number of seeds (randomly initialised set of weights and biases), and b

is the number of loss values that contribute to the fitness evaluation. b is given by

b =
⌈ cm

100

⌉
(4.3)

where c is percentage of errors that contribute to fitness evaluation and m is the total
number of epochs. In the experiments the c was defined as 10. That is only the
bottom decile of the loss values recorded in training.

As described in the previous chapter, both the parallel and the sequential compari-
son methods require a certain level of training accuracy (defined as the fraction of the
training patterns in the training set correctly learnt) to declare the training successful.
Therefore, in a second set of experiments in this chapter, for the fitness evaluation
of the rules, training accuracy, was used instead of the error. More formally, the
following equations were used:

fitness = min(fitness1, . . . ,fitnessk) (4.4)

81



CHAPTER 4. USING UNSTABLE LEARNING RULES TO SPEED UP
LEARNING

Table 4.2: Network structures and parameters for the problems used for evolving learning
rules

PROBLEM INPUTS HIDDEN

LAYER

SIZES

OUTPUTS η RUNS

IRIS 4 10, 10 3 3.4 4
NOISY WINE 5 10, 10 3 2.9 4
SPIRAL 2 20, 20 3 0.4 4

and

fitnessp =
∑

n
s=1 ∑

b
t=1 sort

(
NLRaccuracys

p
)

t

∑
n
s=1 ∑

b
t=1 sort

(
SBPaccuracys

p
)

t

. (4.5)

where NLRaccuracy and SBPaccuracy are accuracy values of the NLR and SBP,
respectively, obtained throughout the whole training.

4.2.3 Training and Test Problems

In this work, two different data sets — noisy wine and randomly generated spiral
(taken from [191]) classification problems — were additionally used during evolution.
The reason why the use of these problems in the evolution (training) process is that
they are challenging and small problems; thereby, GP can obtain efficient learning
rules without paying high computational costs. The noisy wine was derived from the
wine classification problem by reducing its input dimension from thirteen to five to
make the problem harder. The spiral classification problem was randomly generated.
This has three classes where sets of examples of classes are surrounding each other.
Such problems are not easily separable.

Two different learning rules were evolved. In the first set of experiments, which
uses error-based fitness function, k = 3, i.e., three (training) problems were used —
iris, noisy wine and randomly generated spiral classification problems — for fitness
evaluation. In the second set of experiments, which uses accuracy-based fitness
function, the noisy wine, and spiral classification problems were used for fitness
evaluation, i.e., k = 2. Also, n = 4 re-initialisation and m = 500 epochs of each
learning rule were used in both sets of experiments. The networks for these problems
were purposely chosen to be small to speed up evolution. The network structures
and other parameters used are shown in Table 4.2.

In addition to the problems used in the evolution process, as in the previous
chapter, the evolved rules were tested on different problem sets. The test problems
are the same as those used in the previous study. Network structures (number of
neurons in layers) used to compare NLRs and SBP are shown in Table. 3.4.
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4.3 Experimental Results

As indicated above, GP-MLP was applied to the noisy wine, iris, and spiral classi-
fication problems using the error-based fitness; and applied to the noisy wine and
spiral problems using the accuracy-based fitness. Each problem in each experiment
was run with four different initial sets of weights. The soft-max activation function
was used for the neurons of the output layer of networks. The weights and biases
between the last hidden layer and the output layer were updated using the normal
operations of the soft-max layer in both the evolution and testing phases. The other
weights and biases of the networks were updated according to the corresponding
learning rule. The average cross-entropy loss was used during the training of the
networks, as previously explained. With these configurations, at the end of the runs,
GP-MLP returned the following new learning rules

NLR(1) = SBP× ((al−1
i )

2
+al−1

i ) (4.6)

and
NLR(2) = SBP× (al−1

i +al
j), (4.7)

which were general and usually required less computational effort than the SBP

according to the comparison methods presented in the previous chapter to solve the
problems (as we will discuss later).

4.3.1 Qualitative Interpretation of Evolved Rules

Similar to what was found in the previous chapter, evolved rules show that GP-MLP
tends to make the learning rate of SBP vary depending on the activation values
of pre-synaptic and/or post-synaptic neurons. The following equations show the
learning rates of the SBP provided by NLR(1) and NLR(2) respectively that are
obtained by simply dividing both sides of the Equations (4.6) and (4.7) by the SBP.

NLR(1)
SBP

= (al−1
i )

2
+al−1

i (4.8)

NLR(2)
SBP

= (al−1
i )+al

j (4.9)

Simple calculations show that NLR(1) increases the learning rate of SBP when
the pre-synaptic activation value of the corresponding connection is greater than
0.618, while it decreases the learning rate when the pre-synaptic activation value is
less than that. NLR(2) not only considers the activation values of the pre-synaptic
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neuron, but it also takes into account the activation values of the post-synaptic neuron
to adjust the learning rates. More specifically, it increases the learning rate when
the sum of activation values of the pre- and post-synaptic neurons is greater than 1,
while it decreases the learning rate when it is less than 1.

The results show that NLRs usually have faster convergence than the SBP on the
error surface when the same learning rate is chosen for them.

4.3.2 Choice of Performance Criteria

As explained in Section 4.2.3, NRLs were compared with the SBP rule on the same
problems — two Boolean induction and six continuous problems — as in Chapter 3.

For the comparisons of the learning rules, the minimal computational efforts
that are obtained with both parallel training (see Section 3.2.4.1) and the sequential

training (see Section 3.9) were considered.
In the calculations of the minimal computational effort, both for sequential and

parallel evaluation, the fraction of training patterns correctly predicted (success), a

was set to 0.99. For parallel evaluation, z a probability of solving the problem was
0.99.

The leaning rate η∗ and the number of epochs i∗ for both sequential execution
and parallel execution of training runs were identified using Equation (3.4) and (3.9).
To compute these, each network was trained with 60 different learning rates, η ∈
{0.1,0.2, . . . ,6.0}. For each learning rate, the networks were trained 100 times (with
different initial sets of weights). Cross-validation was not applied to the networks
because of the heavy computational load. Instead, each data set was divided into two
parts, i.e., training and testing sets.

4.3.3 Results with Parallel and Sequential Evaluations

Figure 4.1 and Figure B.1 report results for all test problems when parallel and
sequential evaluation are considered respectively. They should be evaluated jointly
with Table 4.3 and 4.4, respectively. The figures and tables use the same parameters
and notations as those used to describe the results of the previous chapter. However,
the colours of the plots in the figures are different since each graph shows the
corresponding plot(s) of three learning rules (NLR(1), NLR(2) and the SBP). Also,
in order to increase visibility, the accuracies of the continuous problems are shown
here in two different figures, called ‘Training Accuracy’ and ‘Testing Accuracy’.

Tables 4.3 and 4.4 provide the values of the maximum number of epochs (imax)
used to compute the cumulative probability, the required number of independent
runs (R∗), the required number of epochs (i∗), the minimum computational effort
(E∗p(a,z)) and the best learning rate (η∗) to solve each test problem.
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4.3.3.1 Parallel Evaluation

The plots named ‘Computational Effort’ in Figure 4.1 show: (a) the values of
pi(a,η∗) for SBP, NLR(1) and NLR(2) (blue, orange and green solid lines, respec-
tively, to be interpreted using the ordinate scale on the left) as a function of the epoch
number, i; (b) the corresponding values of the computational effort Ep(a,η∗, i,z)

(purple and brown and teal dashed lines, respectively, to be interpreted using the
ordinate scale on the right); (c) the corresponding values of i∗ where the minimal
computational effort E∗p(a,z) is achieved for each rule (orange, blue and green marks,
respectively).

As one can see from Figure 4.1, the probabilities of successfully training the
network pi(a,η∗) for NLRs increase faster than the probability for SBP in all testing
problems/networks. Tables 4.3 provides key elements to compare these curves. The
E∗p values in the tables show that the NLRs usually need less computational efforts
than the SBP to solve the testing problems. However, there are some exceptions
which are that (a) NLR(1) and the SBP require almost the same computational effort
on the BCW problem, and (b) NLR(2) requires more computational effort than the
SBP on the e-coli problem. The amounts of advantage of NLRs over the SBP vary
depending on the difficulties of the problems. Based on the average computational
effort across all test problems, NLR(1) and NLR(2) need 26.0% and 19.1% less
efforts than the SBP, respectively.

Similarly to the behaviour of NLR presented in the previous chapter, in Boolean
induction problems, NLR(1) and NLR(2) also tend to achieve success with many
short training attempts rather than with one long run.

Let us now look at the plots named ‘Error’ in Figures 4.1. The plots report the
median error on the training set obtained in 100 runs executed with the optimal
learning rate η∗ for the SBP, NLR(1) and NLR(2) (solid blue, orange and green
lines, to be interpreted using the ordinate scale on the left), respectively. Also, the
plots report the p values obtained by applying the Wilcoxon signed rank test to
the 100 pairs of errors values recorded for NLR(1) and SBP (the purple dotted line)
and NLR(2) and SBP (brown dotted line) over all training time-steps to analyse
which differences are statistically significant (p value≤ 0.05). The p value lines are
interpreted using the ordinate scale on the right.

As seen from the ‘Error’ figures, typically the error with NLRs drops more quickly
than for SBP. These figures also show that the errors obtained with NLR(1) and
NLR(2) for relatively easy problems — wine, DNA, and authorship — are statistically
significantly better than for SBP almost for the whole duration of the training.
However, for relatively harder problems — iris, e-coli, BCW and parity — error
differences are usually not statistically significant after the learning rules approached
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the minimum error they could reach. More specifically, error differences in iris,
e-coli, BCW and parity problems are not statistically significant after approximately
100, 3600, 600 and 6500 epochs respectively. Because the errors of the learning
rules for the 7-segment problem converge to the same level at the very beginning of
the training (approximately epoch 25), error differences for the 7-segment problem
are not statistically significant for most of the training.

The plots named ‘Train Accuracy’ and ‘Testing Accuracy’ in Figures 4.1 show
the median accuracy of the corresponding training and testing set, respectively, vs

epoch number obtained in 100 training runs executed with the optimal learning rate
η∗. The plots also report the p values for the pairwise comparisons NLR(1) vs SBP

and NLR(2) vs SBP. The learning rule and the p value lines are represented by the
same colour and type of lines as those used in the ‘Error’ figures. The Boolean
induction problems have only the ‘Train Accuracy’ figures as their train and testing
sets are identical.

The training accuracy plots illustrate that the accuracy of the NLRs nearly always
is above the corresponding accuracy for SBP, at least it increases faster than for
SBP. As expected, for each problem (except for parity) and each pair of learning
rules compared, the p value plots in the figures named ‘Error’ and corresponding
figures named ‘Train Accuracy’ are almost the same throughout the whole training.
In other words, the p value plots in the error figures and training accuracy figures are
very similar for the same problem (except the parity) and the same pair of learning
rules. The parity problem differs in this respect simply because in the early phases
of learning all algorithms get stuck into near local minima for over 2000 epochs.
However, NLR(1), NLR(2) and SBP tend to get stuck on different loss values, which
therefore are all statistically different. However, all three levels correspond to the
same train accuracies (50%). These are therefore not statistically different.

In addition, the p value trajectories plotted in corresponding ‘Testing Accuracy’
and ‘Train Accuracy’ figures are very similar for the relatively easy problems (wine,
DNA, and authorship) while the trajectories are slightly different for the relatively
harder problems (iris, e-coli and BCW).

One can see from the accuracy plots, for iris, wine, authorship, DNA there is no
evidence of overfitting, and once again the testing accuracy is higher for the NLRs
sooner. For e-coli and BCW there is some evidence of overfitting, which suggests
one should stop training sooner.

As seen in the cases of 7-segment and e-coli problems, although a learning rule is
better than the other according to the comparison of minimum computational efforts
provided in Tables 4.3, this superiority may sometimes not be seen in their pairwise
comparison plots in Figure 4.1. As explained in Section 3.4.3, the comparison
method, which computes the minimum computational effort, considers the lower
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Table 4.3: Minimal effort and associated optimal learning rate, number of epochs and
number of runs for parallel evaluation

Problem Rule imax R∗ i∗ E∗p(a,z) η∗

Iris
NLR(1) 3000 1 319 319 3.6
NLR(2) 3000 1 369 369 3.2

SBP 3000 1 478 478 4.1

Wine
NLR(1) 3000 1 41 41 2.8
NLR(2) 3000 1 41 41 3.8

SBP 3000 1 53 53 4.1

E-coli
NLR(1) 10000 1 4395 4395 1.2
NLR(2) 10000 1 6938 6938 1.1

SBP 10000 1 6079 6079 1.1

Authorship
NLR(1) 200 1 16 16 3.7
NLR(2) 200 1 17 17 3.9

SBP 200 1 21 21 4.2

BCW
NLR(1) 3000 1 1190 1190 3.0
NLR(2) 3000 1 847 847 3.2

SBP 3000 1 1188 1188 3.5

DNA
NLR(1) 200 1 17 17 1.4
NLR(2) 200 1 18 18 1.8

SBP 200 1 22 22 1.5

7-segment
NLR(1) 5000 12 216 2592 1.6
NLR(2) 5000 22 128 2816 3.1

SBP 5000 31 126 3906 4.4

Parity
NLR(1) 10000 2 7366 14732 2.3
NLR(2) 10000 3 6435 19305 0.5

SBP 10000 4 6652 26608 5.7

tail of the distribution that solves the problem while the pairwise comparisons plot
the medians of those 100 runs in such figures. In a nutshell, such problem happens
when the evolved rule has a higher number of successful runs and also has a higher
number of overly poor runs than SBP within the 100 independent runs.

In summary, NLRs were compared with SBP using six continuous problems
and two Boolean induction problems (see Table 3.4). As seen in Table 4.3, NLRs

and SBP can solve all test problems. However, NLRs achieve this with usually less
computational effort than SBP. The plots named ‘Computational Effort’ in Figure 4.1
also show this superiority. For almost all networks, the probability of successfully
training networks for NLRs increases faster than for SBP, and naturally required
number of epochs to solve problems for NLRs decreases faster than for SBP. Plots
named ‘Error’, ‘Train Accuracy’ and ‘Testing Accuracy’ in Figure 4.1 show pairwise
comparisons for the learning rules. NLRs and SBP reach almost the same training
error, train accuracy and testing accuracy values at the end of the training. However,
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4.1.1 Iris Computational Effort
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4.1.2 Wine Computational Effort
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4.1.3 Iris Error
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4.1.4 Wine Error
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4.1.5 Iris Train Accuracy
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4.1.6 Wine Train Accuracy
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4.1.7 Iris Testing Accuracy
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4.1.8 Wine Testing Accuracy
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4.1.9 E-coli Computational Effort
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4.1.10 Authorship Computational Effort
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4.1.11 E-coli Error
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4.1.12 Authorship Error
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4.1.13 E-coli Train Accuracy
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4.1.14 Authorship Train Accuracy
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4.1.15 E-coli Testing Accuracy
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4.1.16 Authorship Testing Accuracy
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4.1.17 BCW Computational Effort
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4.1.18 DNA Computational Effort
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4.1.19 BCW Error
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4.1.20 DNA Error
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4.1.21 BCW Train Accuracy
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4.1.22 DNA Train Accuracy

0 200 400 600 800 1000 1200
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

SBP
NLR(1)
NLR(2)
p-values of SBP & NLR(1)
p-values of SBP & NLR(2) 0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

4.1.23 BCW Testing Accuracy
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4.1.24 DNA Testing Accuracy
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4.1.25 7-Segment Computational Effort
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4.1.26 Parity Computational Effort
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4.1.27 7-Segment Error
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4.1.28 Parity Error
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4.1.29 7-Segment Train Accuracy
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4.1.30 Parity Train Accuracy

Figure 4.1: Results for all test problems when parallel evaluation is used (see text for
explanations).
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NLRs reach minimum error and maximum accuracy values faster than SBP in all
problems/networks. These findings show that GP can routinely evolve learning rules
that are faster than SBP. However, these rules evolved in this chapter, NLR(1) and
NLR(2), do not outperform NLR, which was evolved in the previous chapter.

4.3.3.2 Sequential Evaluation

The computational efforts of the learning rules that were compared were computed
using Equation (3.11) in sequential evaluation. The results are usually very similar
to those obtained with parallel evaluation when the problem sets are continuous.
Figure B.1 (see Appendix B) and Table 4.4 provide the relevant plots and numerical
results respectively. For the Boolean induction problem, the gains in percentage
of the NLRs with respect to SBP obtained with sequential and parallel evaluation
are similar. However, the computational efforts for such problems with sequential
evaluation are significantly bigger than with parallel evaluation. Once again, note
that it should not be concluded that one approach is superior to the other since they
answer different questions.

4.4 Summary

In this chapter, GP-MLP is applied with the intent of speeding up the learning by
evolving unstable learning rules. To do this, instead of penalising and/or rewarding
the learning rules (individuals in the population) based on the oscillation on the error
trajectory, they were allowed to oscillate.

Although in the work presented in this chapter, the training (evolution) problems
are harder and the fitness functions are different than in the previous chapter, GP-
MLP tends to produce learning rules that have similar behaviours. More specifically,
here too, experimental results show that the GP-MLP can routinely produce faster
learning rules than the SBP by adjusting the learning rate of the SBP on a weight by
weight basis.

According to computational effort computed by both the parallel and sequential
evaluation, NLR(1) and NLR(2) require less computational efforts than the SBP to
solve the problems in the test suite. There are only three exceptions that NLR(2)
is worse than the SBP on e-coli problem in the case of both parallel and sequential
evaluations and on BCW problem in the case of parallel evaluation. However, in
comparison with the NLR evolved in the previous chapter, they usually need more
efforts to solve such problems.

GP-MLP in this chapter used less restrictive fitness function than previously used.
The evolved rules in this chapter outperform the SBP on almost all testing problems.
However, they are not as efficient as NLR. Its reason may be the configurations of
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Table 4.4: Minimal effort and associated optimal learning rate, number of epochs and
number of runs for sequential evaluation

Problem Rule imax R∗ i∗ E∗p(a,z) η∗

Iris
NLR(1) 3000 1 333 333 3.6
NLR(2) 3000 2 182 364 3.2

SBP 3000 2 242 484 4.5

Wine
NLR(1) 3000 1 42 42 2.8
NLR(2) 3000 1 42 42 3.0

SBP 3000 1 56 56 2.7

E-coli
NLR(1) 10000 1 4656 4656 1.3
NLR(2) 10000 2 3496 6992 1.4

SBP 10000 1 6565 6565 1.1

Authorship
NLR(1) 200 1 17 17 3.5
NLR(2) 200 1 18 18 3.3

SBP 200 1 22 22 3.9

BCW
NLR(1) 3000 2 539 1078 3.3
NLR(2) 3000 2 470 940 6.0

SBP 3000 1 1262 1262 3.4

DNA
NLR(1) 200 1 17 17 1.9
NLR(2) 200 1 19 19 1.4

SBP 200 1 22 22 1.5

7-segment
NLR(1) 5000 4 163 652 1.3
NLR(2) 5000 4 174 696 3.3

SBP 5000 5 194 970 4.4

Parity
NLR(1) 10000 2 3557 7114 2.7
NLR(2) 10000 2 3256 6512 0.6

SBP 10000 2 5168 10336 5.2

GP-MLP such as training problems chosen, the number of training epochs and the
number of errors/accuracies that contribute to the fitness evaluation. Therefore, the
GP-MLP with more appropriate configuration could provide learning rules which
are faster and more general than NLR.
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Chapter 5

Evolving Initialisation Rules to
Overcome the Vanishing Gradient
Problem

5.1 Introduction

A particular interest of this thesis is to overcome the vanishing gradient problem,
which is a long-standing obstacle to gradient-based training. As it was described in
Chapter 2, the problem is that the gradients of the error with respect to the weights
(usually in the earlier layers of a deep network) are very small or zero. It usually
occurs when the network is deep, and the neurons use a sigmoidal activation function.

The previous chapters presented three different learning rules evolved to speed
up the learning process of MLPs. The evolved rules (NLR, NLR(1) and NLR(2)) can
successfully train the networks tested. However, they also suffer from the vanishing
gradient problem when they are tested on deeper (more than four-hidden-layer)
networks that use the sigmoid activation function and the standard initialisation
method.

As described in Chapter 2, multi-hidden-layer networks outperformed single
hidden layer networks in the early 1990s. However, they were abandoned due
to the vanishing gradient problem. As reviewed in Section 2.3.3, there are a few
approaches to overcome the vanishing gradient problem of deep networks such
as greedy layer-wise pre-training, use of a different activation function, residual
network, batch normalisation and weight initialisation. In fact, after the advent of
newer activation functions such as ReLU, PReLU and LReLU that overcame this
problem, research efforts on the use of the logistic function for deep networks were
effectively abandoned.

An associated issue is that the training success and speed of neural networks are
very sensitive to initial conditions. Several methods have been proposed to address
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these issues via clever initialisation of the connection weights, but only very few
considered deep networks with the logistic activation function.

The main purpose of this chapter is to show that a deep MLP which uses the
logistic activation function can be trained without being affected by the vanishing
gradient problem. This is obtained by a method that pre-trains the network using
a weight-update rule evolved by GP to initialise the connection weights. As the
learning rule evolved by GP is used only for initialisation of networks, it will be
called evolutionary initialisation method (EIM).

The proposed method was tested on six classification problems using various
network structures. The numbers of hidden layers on the networks vary between
10 and 15 while the numbers of neurons in the hidden layers vary between 10
and 100. The method was compared with Glorot [30], Kumar [31] and standard

(SIM) initialisation methods (as reviewed in Section 2.3.2). As we will see, when
the networks were initialised by EIM, they could successfully learn all training
problems. The networks, initialised by Kumar initialisation, could also learn almost
all problems. However, it is slower than EIM when the test networks are deep and
wide. None of the networks initialised by using the SIM and Glorot initialisation
methods learned any of the problems.

5.2 GP System, Fitness Measure and Datasets

5.2.1 Linear GP System

In this chapter, GP was used to evolve a learning rule that was used to initialise
the network weights, not for the whole training. The same GP system used in the
previous chapters was used to perform the experiment in this chapter. As described
in Chapter 3, the system uses a tournament selection with a tournament size of 3;
point mutation applied with 50% and two-point crossover applied with 50%. Here,
the population size is 600, and the program length (the number of instructions in each
program) was set to 50 to obtain more complex rules because the system performed
poorly when the program length was the one used in the previous chapters, i.e., 30.

The primitive sets used (see Table 5.1) consisted of some fixed constants and
input registers which are the activations of pre- and post synaptic neurons, the
derivative of the activation function, the error in the post-synaptic neuron and the
SBP rule. Preliminary experiments showed that the modified SBP algorithm, which
uses the network’s layer numbers as an exponent of components of the derivative
of the activation function, speeds up learning on deep networks. Considering this
situation, in this chapter, two new constants and a variable were added to the standard
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Table 5.1: Primitive set used in the experiments

Instructions Instructions Instructions

NOP r0 <− −r0 r1 <− r1+cl
r0 <− 0 r1 <− −r1 r0 <− r0+(1−ra)r1
r1 <− 0 r0 <− r0+ra r1 <− r1+(1−ra)r0
r0 <− 0.5 r1 <− r1+ra r0 <− r0+r1
r1 <− −0.5 r0 <− r0+ra_prev r1 <− r0+r1
r0 <− −0.1 r1 <− r1+ra_prev r0 <− r0∗r1
r1 <− 0.1 r0 <− r0+re r1 <− r0∗r1
r0 <− −1 r1 <− r1+re r0 <− r0∗r0
r1 <− 1 r0 <− r0+rd r1 <− r1∗r1
r0 <− cL r1 <− r1+rd rs<−> r0
r1 <− cL r0 <− r0+rSBP rs<−> r1
r0 <− cRL r1 <− r1+rSBP
r1 <− cRL r0 <− r0+cl

primitives previously used. They are defined as follows:

cl = l,

cL = L,

cRL = 1/L

where l and L are the layer number and the number of hidden layers in the network,
respectively. In addition to the derivative of the activation function, its components
(ra and 1− ra) are also separately used as inputs. New instructions used in this
chapter are highlighted in the table.

5.2.2 Fitness Measure

The fitness function in this experiment was defined considering the same approach as
that used for experiments in Chapter 4. Fitness is the sum of a fraction of the lowest
errors recorded during training. The function measures the fitness of each program
(EIM) considering network errors of the whole training process (pre-training by EIM

and main training by SBP). Because two different learning rules are used to complete
training, for simplicity, both rules used are denoted as new training algorithm (NTA)
in the fitness equations.

Similar to the fitness evaluation approach used in the previous chapters, each rule
is applied to multiple problems and applied to each problem with multiple initial
conditions (random weights and biases). Initially, the fitness values of each program
were computed for every single problem. Then, each value was normalised to the
corresponding fitness value evaluated with the SBP. Finally, the worst (highest)
normalised value was assigned to the corresponding program as its fitness value.
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Here are the equations that are used to compute the fitness of the rules:

fitness = max(fitness1, . . . ,fitnessk) (5.1)

where k is the number of problems used in the GP run.

fitnessp =
∑

n
s=1 ∑

b
t=1 sort

(
NTAlosss

p
)

t

∑
n
s=1 ∑

b
t=1 sort

(
SBPlosss

p
)

t

(5.2)

is the fitness contribution of problem p, sort() is a function which sorts its argument
and NTAloss and SBPloss are the average cross-entropy loss values of the NTA and
SBP, respectively, obtained throughout the whole training process, n is the total
number of seeds (randomly initialised set of weights and biases), and b is the number
of loss values that contribute to the fitness evaluation. b is given by

b =
⌈ cm

100

⌉
(5.3)

where c is percentage of errors that contribute to fitness evaluation and m is the total
number of epochs. In the experiments the c was defined as 10.

In Equation (5.2), NTAlosss
p,t is computed by

NTAlosss
p,t =

error produced by EIM, if t ≤ switching point,

error produced by SBP, if switching point < t ≤ m.

(5.4)

5.2.3 Training and Test Problems and Their Structures

In this chapter, two (training) problems — iris and wine classification problems
— were used with four different initial sets of weights for fitness evaluation, i.e.,
k = 2 and n = 4. The networks were trained using programs in the populations
until epoch 500, and then they were trained using the SBP from this point until
epoch 2000, i.e., switching point = 500 and m = 2000. The number of pre-training
epochs and the total number of training epochs were set after some preliminary
experiments. The GP parameters and the network parameters, including the problems
used for training (evolution) were chosen considering the low computational cost of
evolution. However, relatively deep networks were chosen to obtain general rules
that can successfully initialise different sizes of deep networks. Table 5.2 reports the
structures and parameters of the training networks.

The proposed initialisation method, EIM, was compared with three different
initialisation methods using six classification problems — iris, wine, authorship,
DNA, BCW and 4-bit multiplexer — with two network structures. Once again,
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Table 5.2: Network structure and parameters for the two problems used for evolving the
initialisation rule

PROBLEM INPUT NUMBER

OF HL
NN IN

EACH

HL

OUTPUT η NE
FOR

EIM

NE
FOR

SBP

SEEDS

IRIS 4 10 7 3 1 500 1500 4
WINE 13 10 7 3 1 500 1500 4

HL: Hidden layer. NN: Number of neuron. NE: Number of epoch.

Table 5.3: Network structures adopted for the different test problems used for comparing
NTA and SBP

PROBLEM INPUT NUMBER

OF HL
NN IN

EACH

HL

OUTPUT NE FOR

PRE-
TRAINING

IRIS 4 10 10 3 2000
WINE 13 10 10 3 2000
AUTHORSHIP 70 10 10 4 2000
DNA 180 10 10 3 2000
BCW 9 10 10 2 2000
MUX 6 10 10 2 2000
IRIS 4 15 100 3 600
WINE 13 15 100 3 500
AUTHORSHIP 70 15 100 4 50
DNA 180 15 100 3 20
BCW 9 15 100 2 100
MUX 6 15 100 2 1000

HL: Hidden layer. NN: Number of neuron. NE: Number of epoch.

the reasons why being selected these problems are that they are commonly used to
compare algorithms and do not lead a high computational cost when we used our
testing architectures.

The network structures (number of neurons in the layers) used for comparisons
were manually chosen with a small amount of trial and error (to balance convergence
accuracy, computational load and overfitting) and are shown in Table 5.3. The input
layer of each network consists of as many neurons as the features of in the problem.
The output layer of each network has as many neurons as the number of classes in
that problem. All networks were trained using a learning rate of η = 0.25. Each
problem set has two network structures to test whether the initialisation method is
sensitive to the network structure: one with depth L = 10 and one with depth L = 15.
The L = 10 networks have relatively small size having of the order of 1,000 weights
and 100 neurons, while the L = 15 networks, with approximately 150,000 weights
and 1,000 neurons, have a much larger size.
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5.3 Initialisation Methods Used for Comparison

When a network is initialised with random weights, the values are usually assigned
using zero-mean normal distribution with a small standard deviation such as 0.01,
0.05, 0.1 and 0.2. To determine if EIM was competitive with other methods, here
it was pitted against a standard initialisation, Glorot and Benjo’s method [30] and
Kumar’s method [31] reviewed in Section 2.3.2.

So, the following distributions of initial weights were used for comparison:

• SIM: W l ∼N (0, 0.01),

• Glorot: W l ∼N (0, 2/(nl +nl+1)),

• Kumar: W l ∼N (0, 12.96/nl),

nl being number of neurons (including bias) in layer l.
The initial weights of the networks which will be initialised by EIM are assigned

using the SIM before the pre-training process and then, the EIM initialises the
networks by pre-training.

The input data of each network was scaled between 0 and 1, i.e., the min-max
scale was applied to the input data.

5.4 Experimental Results

As indicated above, the EIM was evolved using GP to pre-train deep MLPs. In this
experiment, iris and wine classification problems were used with 4 initial conditions
(seed) for evolving the initialisation rule. The networks have 10 hidden layers, while
each hidden layer of the networks has 7 neurons. As happened in the previous
chapters, the last layer (softmax) of the networks were not included the evolution. In
other words, the weights and biases between the last hidden layer and the output layer
were updated using the standard update rule of the softmax function. The GP-MLP
evaluated the individuals in the population considering both the initialisation phase
(training until epoch 500 with EIM) and the training phase (training from epoch 501
until 2000 with SBP). The GP-MLP returned the following pre-training rule at the
end of the evolution:

EIM =

(
1
L

)2

×
(

δ
l
j +
(

9×SBP2× (SBP+al
j−0.1)+al

j× (1−al
j)+δ

l
j

)2
)2

(5.5)

99



CHAPTER 5. EVOLVING INITIALISATION RULES TO OVERCOME THE
VANISHING GRADIENT PROBLEM

5.4.1 Qualitative Interpretation of the Evolved Initialisation Method

As one can see from Equation (5.5), the EIM always returns a positive value. In
other words, when this rule updates a weight for a period of time, the weight always
decreases (on average becoming more and more negative) as long as the delta weight
is not zero. The EIM re-initialised the network weights that were initialised at
random using a zero-mean normal distribution with a standard deviation of 0.1 at the
beginning of pre-training. According to our analysis at the end of the pre-training,
the weights had approximately the same standard deviation as before the pre-training
(i.e., approximately 0.1) but had a negative-mean. The mean of weights at the end of
pre-training varied depending on the network structure.

We should note that the task of the EIM is to pre-train the networks to initialise
their weights and biases. If one uses the EIM as a learning rule for main training of
a network, most probably the network cannot learn the training set since the EIM
always returns a positive value.

More specifically, in the proposed method, there is a parabolic relation between
the number of pre-training epochs and the optimal initial weights. In other words,
the initial weights of a network approach optimal values during pre-training of the
network over a period of time. However, if the networks are pre-trained with more
than the desired number of epochs, the optimal or near-optimal initial weights begin
to worsen.

The problem in this initialisation method is that there is no rule or formula
to determine the optimal number of pre-training epochs. Determination of this
number is based on trial and error and user experience. It mostly depends on
network structures and the number of input features of the problem. In preliminary
experiments, it was found that a relatively wide network requires a relatively small
number of pre-training epoch while a deep one requires a large number of epochs.

In this experiment, the GP showed that deep MLPs needed to be initialised using
an appropriate negative-centred normal distribution to solve the problems without
suffering from the vanishing gradient problem. The reason why the weights of such
networks require a negative-centred normal distribution and the relation between the
centre value of the distribution and the network structure are the subjects of the next
chapter. They will be explained theoretically there.

5.4.2 Results with the Evolved Initialisation Rule

As mentioned above, the proposed method was compared with three different initiali-
sation methods using six classification problems and two different network structures
for each problem.

Plots in Figures 5.1 (for networks with L=10 and L=15) report comparison
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results of those initialisation methods that are Glorot initialisation (red lines), Kumar
initialisation (orange lines), SIM (green lines) and EIM (blue lines). The solid lines
are used for networks with L=10 and the dotted ones are used for networks with
L=15. Since plots start from very similar positions, they usually overlap in the early
epochs of graphs. The blue circle (for networks with L=10) and blue diamond shape
(for networks with L=15) marks are used to show where the error is after the EIM
has finished pre-training.

All networks were trained by SBP using the learning rate of 0.25 after each
network was initialised by the corresponding initialisation method. The plots (losses,
train accuracies and test accuracies) in the figures are the medians of values obtained
in 30 independent runs (initial weights and biases).

The plots in Figure 5.1 indicate comparative results of the initialisation methods
when the network sizes are similar to those used in evolution and when they are
deeper and wider. Table 5.3 shows the network structures. The networks with ten
hidden layers are indicated as L=10, and those with 15 hidden layers are indicated
as L=15 in Figure 5.1. The plots named ‘Loss’ in Figure 5.1 report average cross-
entropy loss of training sets obtained with SBP after networks are initialised. Note
that if the initialiser is EIM, the plots report average cross-entropy loss of training
sets obtained with EIM until pre-training has finished. The plots named ‘Train
Accuracy’ and named ‘Testing Accuracy’ in the figure show training and testing
accuracy of the corresponding problems/networks. The same learning rate (0.25)
was used for each problem set and networks’ pre-training phase. The number of
pre-training epochs was manually adjusted depending on the networks structures and
the number of input features of the problem (as shown in Table 5.3).

As one can see from the figure, in general, the results obtained with the large
networks (with L = 15) are similar to those obtained with the networks (with L =
10). The networks initialised with the SIM and Glorot initialisation method cannot
learn the data sets. When the networks were initialised using Kumar initialisation
and EIM, the networks are not only successfully trained but also perform well on the
testing data.

EIM and Kumar initialisation method, both, reach almost the same level of
learning when the networks are trained with enough epochs. Although the plots are
the median value of thirty independent runs, it is interesting that Kumar initialisation
usually causes networks to oscillate on the training and testing plots. In contrast,
EIM usually allows SBP to have smoother error descent and accuracy ascent than
Kumar initialisation.

Let us compare these initialisation methods on the small networks (with L=10
and 10 neurons in each layer). The networks initialised with Kumar initialisation
usually converge to the maximum performance faster than those initialised with the
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Figure 5.1: Results for our six test problems when the SIM, Glorot, Kumar and EIM
methods are used to initialise networks of depth L = 10 and depth L=15.
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EIM. This is because EIM initialises the small networks (L=10) for 2000 epochs.
Let us now focus on these methods’ performance on the large networks (with

L= 15 and 100 neurons in each layer). EIM allows these networks to start learning
as soon as SBP has begun main training. When the problems are the iris, wine,
authorship and DNA, EIM obtains an accuracy of 80% within approximately 1000
epochs; it gets there within approximately 100 epochs and 2200 epochs when the
problems are BCW and mux, respectively. Note that these values include the pre-
training phase too. Kumar initialisation requires networks to do thousands of epoch
for the accuracy to reach 80% for each problem.

Finally, let us compare the initialisation methods’ performance on small networks
(solid lines), and large networks (dotted lines) plotted in Figures 5.1. It is clear that
EIM accelerates learning when the networks are large (with L = 15) in comparison
with its results obtained using the small networks (with L = 10). These accelerations
are also shown in Table 5.4 with numerical values of comparison methods’ testing
accuracies obtained on the small and large networks. The third and fourth columns
— Testing accuracy (epoch 2000) and (epoch 5000) — of the table indicate that large
networks converge faster than the small networks in the case of EIM initialisation.
The opposite of this is true in the case of Kumar method. In other words, in the
comparison of the networks initialised by the Kumar initialisation, it is seen that
the large networks learn the problems slower than the small networks. One of the
reasons why those networks initialised with the EIM solve the problems quickly is
that they require relatively fewer pre-training epochs.

Figure 5.2 reports the sum of the gradient magnitudes in the layers of networks.
The plots are obtained during the training of iris problem with the small network
(L=10) (Plots, for EIM, include the pre-training phases too). The layer numbers
in the figure are labelled increasing from the input layer to the output layer. The
last layer’s gradient magnitudes are not plotted in the figure as the networks use a
softmax output layer. Note that in Figure 5.2, the plots for the networks initialised by
the EIM and Kumar methods are plotted using a linear scale while those initialised by
SIM and Glorot are plotted using a logarithmic scale. It is expected that the network
will learn relatively quickly if the layers have a relatively large gradient. Figure 5.2
shows that gradients in their layers (particularly in the hidden layers close to the
input layer) do not vanish when the networks initialised with the EIM and Kumar
initialisation. As a result of this, Figure 5.1 and 5.2 indicate that these initialisation
methods allow SBP to train deep networks without suffering from the vanishing
gradient problem. The figure also shows that learning in all layers of the network
initialised using EIM immediately begins after pre-training. The network initialised
by Kumar initialisation requires approximately 2,000 epoch to start learning.

In summary, the evolved initialisation method, EIM, is compared with three
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Figure 5.2: Sum of gradient magnitudes in each layer when the EIM, Kumar, SIM and
Glorot initialisation methods are applied to the small (L=10) and large (L=15) networks of

iris problem.
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Table 5.4: Testing accuracy of the EIM and Kumar initialisation method on test networks.

Problem Method

Testing Testing Testing
accuracy accuracy accuracy
(epoch: (epoch: (epoch:
2500) 5000) 1000)

Iris

EIM (L=10) 0.7333 0.9333 0.9333
Kumar (L=10) 0.8667 0.9333 0.9333
EIM (L=100) 0.9333 0.9333 0.9333
Kumar (L=100) 0.6333 0.7333 0.9333

Wine

EIM (L=10) 0.6667 0.9722 1.00
Kumar (L=10) 0.6667 0.9722 0.9722
EIM (L=100) 0.9167 0.9167 0.9444
Kumar (L=100) 0.3889 0.9167 0.9722

Authorship

EIM (L=10) 0.7560 0.9226 0.9524
Kumar (L=10) 0.3750 0.9226 0.9583
EIM (L=100) 0.8274 0.8810 0.9464
Kumar (L=100) 0.3750 0.5536 0.9583

DNA

EIM (L=10) 0.5196 0.7535 0.9309
Kumar (L=10) 0.5196 0.8556 0.9262
EIM (L=100) 0.8964 0.9168 0.9089
Kumar (L=100) 0.5196 0.5196 0.9403

BCW

EIM (L=10) 0.9571 0.9571 0.95
Kumar (L=10) 0.95 0.95 0.95
EIM (L=100) 0.95 0.95 0.95
Kumar (L=100) 0.6571 0.95 0.95

4-bit Mux

EIM (L=10) 0.6562 0.6875 1.00
Kumar (L=10) 0.6094 0.8750 1.00
EIM (L=100) 0.8125 0.7969 1.00
Kumar (L=100) 0.6250 0.6406 0.8750

different initialisation methods using six classification problem and two different
network structures for each problem. As seen from Figure 5.1, only EIM and
Kumar initialisation can successfully train the networks. On the small networks,
the networks initialised by Kumar initialisation converge faster than those networks
initialised by EIM while the opposite is almost always true for the large networks.
The results show that Kumar initialisation is sensitive to the network size while
EIM is more robust than Kumar initialisation. In the case of the networks initialised
by Kumar method, the large networks begin and complete the learning later than
the small ones. In EIM-initialised networks, learning begins immediately in both
large and small networks when SBP starts training (after the pre-training phases are
completed). Also, large networks usually learn problems faster than small networks.
This is because EIM pre-trains the small networks for 2000 epochs and this number
is usually much lower for large networks.
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In conclusion, in this work, GP provided a pre-training rule (EIM) and taught
us that the logistic activation function efficiently works in deep networks without
suffering from the vanishing gradient problem when the networks’ initial weights
are initialised with a negative-mean distribution. Deep networks can successfully
be trained by SBP after they are pre-trained by EIM. The drawback of this method
is that the number of pre-training epochs varies depending on the networks, and it
is defined by trial and error or user experience. However, after having this lesson
from the GP, we theoretically developed an efficient initialisation method, that does
not require a pre-training phase, to overcome the vanishing gradient problem. The
details of the theoretical initialisation method will be presented in the next chapter.

5.5 Summary

In this chapter, an initialisation algorithm was evolved for deep MLPs to be success-
fully trained without suffering from the vanishing gradient problem. The proposed
algorithm, EIM, was evolved by GP and is used as a pe-training rule, which updates
the network weights. After the EIM initialises (pre-trains) the networks, the SBP
takes over to complete the training of the networks.

The EIM was compared with three different initialisation methods using six
classification problems. For each problem, two different network structures (L=10
and 10 neurons in each hidden layer and L=15 and 100 neurons in each hidden layer,
given in Table 5.3) were used. Results showed that both networks could solve the
test problems when the corresponding network is initialised using the EIM. When
the networks were small, the performance of the EIM was competitive to the Kumar
initialisation on all problems. Howeover, when the networks are relatively deep and
wide (i.e., L=15), the networks initialised using EIM solve the problems faster than
those initialised using Kumar initialisation.

The EIM has also a drawback. There is no simple rule or formula to determine the
number of pre-training epochs. It is defined based on user experience. However, one
could train the networks until being sure that the network is getting worse and could
record the set of weights that provide the minimum error throughout the pre-training.
Then, one could use the set of weights for the initial weights of the network. This is
expensive in terms of the computational time but safer and easier than trial and error.

In the last decade, the logistic activation function has been abandoned because
of the vanishing gradient problem which prevents the deep networks from learning.
This work showed that the logistic activation does not suffer from the vanishing
gradient problem when the network is properly initialised.
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Chapter 6

A Simple Initialisation Method to
Train Deep Neural Networks Using
the Logistic Activation Functions

6.1 Introduction

The previous chapter reported that deep MLPs which use logistic activation function
can successfully be trained with the SBP when the weights in the networks are
initialised with a negative-mean of distribution. This chapter is an extension of the
previous chapter and proposes an initialisation rule that does not require pre-training
process.

This chapter focuses on networks using sigmoid activation functions and want to
verify to what extent the vanishing gradient problem depends on the choice of the
mean (as opposed to the variance) of the initial weight distribution. This investigation
is both theoretical and empirical.

This chapter: (1) presents a simple theoretical model that illustrates how the
expected value of the gradient is affected by the expected value of the initial weight
distribution; (2) presents a set of empirical tests that corroborate the main findings
of the theory in relation to the initial gradients; (3) provides further insights on
how to initialise networks to maximise such gradients; (4) further refines these
insights through an analysis of variance of the initial net inputs; (5) as a result of
these, develops a new initialisation strategy which sets the mean initial weights
to −min(1,8/number of neurons in layer) — a method that will be called as new

initialisation method (NIM) hereafter; (6) applies a stochastic hill-climber to the
networks to optimise the magnitude of initial gradients in the first layer; and also
experimentally compares NIM- and hill-climber-initialised networks, finding that
NIM provides near-optimal initial weights.
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6.2 Simple Theoretical Model of Initial Gradients

6.2.1 Expected Values of Network State and Parameters after First For-
ward and Backward Propagations

The dynamic of netlj, al
j, δ

l+1
j and ∆wl

i j were presented in Section 2.2 in Chapter 2.
This section attempts to perform an analysis of the magnitude ∆wl

i j from these
equations at the very first iteration of the learning process, i.e., when a training
example has been propagated forward once and error has been back-propagated once,
but the weights have not been updated yet, in a batch-type back-propagation learning
algorithm. This analysis will be performed by introducing drastic approximations.
Results will then be empirically verified for veridicity in Section 6.3.

In relation to the initialisation phase of a network, the weights can be seen as
stochastic variables wl−1

i j ∼N (µ l, σ2) (normally µ1 = µ2 = · · ·= 0, but here we
do not make this assumption, while we assume that the same σ is used for all layers
of weights). Because of this, also the net input netlj is a stochastic variable, and so
are the activations, al

j and the delta’s, δ
l+1
j .

Let us consider the expectation of the net input:

E[netlj] = E
[
wl−1

0 j +∑
i

al−1
i wl−1

i j

]
= µ

l +∑
i

E[al−1
i wl−1

i j ] = µ
l
(

1+∑
i

E[al−1
i ]
)
,

(6.1)
where the last step is the result of al−1

i and wl−1
i j being initially uncorrelated and, so,

E[al−1
i wl−1

i j ] = E[al−1
i ]E[wl−1

i j ].
Note that this equation shows that E[netlj] does not depend on j, so we can use

the term E[netl] to indicate the expected net input of any neuron in layer l. Note also,
that with the exception of the input and output layers, due to symmetries, E[al

i] does
not depend on i. So, we can use the term E[al] to indicate the expected activation of
any neuron in layer l. Thus:

E[netl] = µ
l
(

1+∑
i

E[al−1]
)
= µ

l
(

1+nl−1E[al−1]
)
. (6.2)

Let us now consider the expectation for of al
j. By definition, we have that

E[al] = E
[

f (netl)
]
, (6.3)

where we omitted the subscript j for the reasons mentioned above. This cannot be
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computed readily. However, as a first order approximation we could write

E[al] � f
(

E
[
netl
])

= f
(

µ
l
(

1+nl−1E[al−1]
))

, (6.4)

where we used Equation (6.2). We should note that this equation gives us a recursion
(forward propagation) which, with initial condition E[a1] = E[x], x being the mean
value of the input activation across all neurons and input patterns in the training set,
allows us to estimate E[al] for the whole network.

Turning now our attention on the expectation for the δ ’s, we have

E[δ l+1
j ] = E[ f ′(netl+1

j )∑
i

wl+1
ji δ

l+2
i ] � E[ f ′(netl+1

j )]E[∑
i

wl+1
ji δ

l+2
i ], (6.5)

where the last step is true on the assumption that f ′(netl+1
j ) and ∑i wl+1

ji δ
l+2
i are

weakly correlated. However, also since δ
l+2
i and wl−1

i j are initially uncorrelated, this
transforms into:

E[δ l+1
j ] � µ

l+1E[ f ′(netl+1
j )]∑

i
E[δ l+2

i ]. (6.6)

For the same reasons that E[netlj] does not depend on j, so do any functions of netlj.
Hence, in Equation (6.6), the subscript can be omitted in E[netl+1

j ]. So, this can be
rewritten as E[netl+1]. For reasons of symmetry also E[δ l+1

j ] (except for the output
neurons) does not depend on the subscript j. So, hereafter, we will denote these
quantity E[δ l+1]. Then the previous equation can be rewritten as

E[δ l+1] � E[ f ′(netl+1)]µ l+1nl+1E[δ l+2]. (6.7)

If we further assume that E[ f ′(netl+1)] � f ′
(
E
[
netl+1]), then we have

E[δ l+1] � f ′
(

E
[
netl+1

])
µ

l+1nl+1E[δ l+2]

= f ′
(

µ
l+1
(

1+nlE[al]
))

µ
l+1nl+1E[δ l+2], (6.8)

where in the last step we used Equation (6.2) once again. We should note that, once
the values of E[al] are known for all l, this equation gives us a recursion on the δ ’s
(backward propagation). The initial conditions are E[δ L] � E[aL](1−E[aL])E[e],
where e is the error for a generic output in a generic teaching input in the training set.
This recursion allows us to estimate E[δ l+1] for the whole network.1

1In the initial conditions for the two recursions, we have ignored, without loss of generality, the
fact that the expected E[x] and E[e] may differ from neuron to neuron. This is because with all
weights in a layer having the same mean in the first training epoch, any neuron-to-neuron differences
are averaged out at the level of first hidden layer and penultimate hidden layer, respectively.
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With similar arguments we have that E[∆wl
i j] will not depend on either i or j and,

so, we will denote it E[∆wl] hereafter. Then

E[∆wl] = ηE[al
δ

l+1] � ηE[al]E[δ l+1], (6.9)

on the assumption that al and δ l+1 are weakly correlated. In conjunction with the
results of the previous recursions for E[δ l+1] and E[al], this equation allows us to
estimate the expected gradient in weight-space for every layer in the network.

6.2.2 Relationship between the Mean of the Distribution of Initial Weights
and Network Gradients

These expressions allow one to calculate the approximate magnitude of the initial
gradient ∆wl for all l within a network as a function of the choice of the mean initial
weights µ l , the depth of the network L, the number of neurons in each layer nl ,
the characteristics of the problem with its encoding (represented by E[x] and E[e])
and, of course, the learning rate η . One could then numerically optimise such a
function, to determine the architecture, encoding and initial conditions that produce
the maximum initial gradient. Our hypothesis is that starting from such a good
position, the standard back-propagation algorithm would then be able to train even
very deep networks (large L).

However, this simplified analysis already suggests that if one wants to maximise
the magnitude of the gradient the traditional choice of µ l = 0 for all l is poor, as
it guaranteed to result in E[δ l] = 0 (see Equation (6.8)). Based on this, we should
expect the optimisation process described in the previous paragraph to result in
weight initialisation with non-zero means, µ l , 0.

Furthermore, it is clear from Equation (6.8), that to have some hope of success-
fully back-propagating errors, we also need to ensure that f ′

(
µ l+1 (1+nlE[al]

))
,

0.
In fact, the equation allows us to infer that a necessary condition to have no

attenuation in the expected δ ’s during backward propagation (so gradients would
not vanish) is

f ′
(

µ
l+1
(

1+nlE[al]
))

µ
l+1nl+1 �±1 (6.10)

for all l.
One way to ensure that this equation is satisfied would be to require that

f ′
(
µ l+1 (1+nlE[al]

))
takes some non-zero value e.g., 1

d , d being a positive (given
the monotonicity of activation functions) constant, which would then allows us to
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solve Equation (6.10) for µ , obtaining the relationship

µ
l �± d

nl
. (6.11)

This surprising result suggests that in order to preserve initial gradients, the mean of
the initial weights should vary, from layer to layer, in a manner inversely proportional
to the size of the hidden layers. Even more surprisingly, the theory predicts that, if
|µ l|> d

nl
, errors can even be amplified as they are back-propagated.

Of course, for this strategy to work, one would need to choose d such that the
expected activation in each layer E[al] satisfied

f ′
(
± d

nl+1

(
1+nlE[al]

))
=

1
d
. (6.12)

However, typically, this is not difficult to achieve. For instance, if we use d = 8
and the logistic activation function, if nl+1 = nl = 5, the equation is satisfied by
E[al] � 0.02, if nl+1 = nl = 10 it is satisfied by E[al] � 0.12, while E[al] � 0.21
satisfies the equation for nl+1 = nl = 100. For our experiments conducted in this
chapter, we will use d = 8 or d = 6.

The theory and its main findings will be tested in Section 6.3 with the set of
problems listed in Section 6.3.1.

6.3 Corroboration of the Theory and Resulting Insights

6.3.1 Benchmark Problems and Network Structures

As indicated in Section 6.1, six classification problems were used to test the proposed
initialisation method in this chapter. These problems — the iris, wine, analcat data
authorship (authorship), DNA, breast cancer (BCW) and 4-bit multiplexer — are the
same as those used in the previous chapter.

6.3.2 Empirical Estimation of Gradients in Deep Networks with Identically-
sized Hidden Layers

This section aims to corroborate the main findings of the theory in relation to
the initial gradients and provide further insights on how to initialise networks to
maximise such gradients. To achieve this, it presents a set of empirical tests.

In order to do a first corroboration of the theory, deep networks that use the
logistic activation function and that have the same number of neurons, n, in the
hidden layers were considered and the following was done:
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• the networks were initialised using different width (n) and depth (L) with
distributions of weights having different means, µ , which were the same for
all layers (as a result of all layers having the same number of neurons n)),2

• the weight distributions were Gaussian with standard deviation 0.1 in all cases,

• one step of forward propagation of the training set and one of error back-
propagation were performed and the mean |∆W | in all layers was recorded,

• the process was repeated 30 times with different initial random seeds and the
corresponding results were averaged,

• the process described above was repeated for the 6 different problems in
Section 6.3.1.

As an illustrative example, plots in Figure 6.1 show the mean |∆W | of a particular
layer of a network that uses the authorship problem, has 15 hidden layers and is
initialised with different distributions of initial weight having different mean. Each
plot in the subfigures shows those mean |∆W |s for a network with a different number
of neurons in the hidden layers. Figure 6.1.1, 6.1.2 and 6.1.3 show the mean |∆W | of
the input layer, an intermediate layer and the output layer of the network respectively.
Very similar results were obtained for other problems and depths.

Figure 6.2 shows the heat map of those |∆W | plotted in Figure 6.1. The scale at
the bottom of each subfigure shows the relationship between the colour and |∆W |
values. The blackest is the lowest value, almost zero; the whitest is the highest value
which vary from problem to problem and layer to layer. The lightest colour for the
corresponding n shows the optimal µ for that n.

As indicated in Section 6.2, the input and output layers were ignored when the
theory was developed. However, we should expect the theory to hold for layers
far from these two layers. As one can see for an intermediate layer (Figure 6.1.2),
the magnitude of the weight changes, |∆W |, is biggest for values of µ which are
different from 0 (in fact, negative). Furthermore, we see how the optimal µ depends
on the number of neurons in a layer, in an inversely proportional manner, following
approximately the relationship µ =−8

n , as we postulated in Section 6.2. The inverse
relationship between the optimal µ and n is clearly visible in Figure 6.2.2, where as
a reference we plotted the line µ =−6

n .

2This of course, in general, could not apply to the input layer, for which in principle we should
use a different µ based on our simplified theory. However, for homogeneity of treatment and also
to avoid departing too heavily from the theory, we have constrained the values of n tested to be not
too different from the number of input features of each problem. Values of n, L and µ used in these
tests vary from problem to problem. In the illustrative example, authorship problem, they were set to
n ∈ {30,40, . . . ,70}, L=15, µ ∈ {−0.35,−0.34, . . . ,0.35}.
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Figure 6.1: Mean |∆W | for the authorship problem for a network with L = 15 layers and
different numbers of neurons, n, in the hidden layers, for three representative layers.

Looking at the output layer (Figures 6.1.3 and 6.2.3), we see that the optimal µ

does not depend much on n and it is close to zero or slightly positive. For the input
layer, however, zero or positive values of µ produce virtually zero gradients. Instead,
µ needs to be near −0.1 to produce non-zero weight changes.3

In summary, this empirical corroboration shows that the initial gradients in the
input layer and hidden layers are very sensitive to the specific value of µ . While
giving good initial gradients to the output layer and hidden layers near it, the standard
practice of setting µ = 0 would result in near-zero gradients to the input layer and
many hidden layers, as one can see from Figures 6.1.1, 6.1.2, 6.2.1 and 6.2.2. On the
contrary, selecting a value of µ that gives a good initial gradient in the input layer
(such as µ =−0.1 for this problem) produces non-zero gradients also in the hidden
layers following it and the output layer.

This may be a key element in the vanishing gradient problem: the inability
of the weights in the first layer to change from their initial random values due
to infinitesimally small gradients may effectively prevent the propagation of the

3Also, in this case, the optimal µ does not depend on n, but this had to be expected as n is the
number of neurons in the hidden layers, while ∆W for the input layer depends on the number of inputs
to the problem, which is a constant.

115



CHAPTER 6. A SIMPLE INITIALISATION METHOD TO TRAIN DEEP
NEURAL NETWORKS USING THE LOGISTIC ACTIVATION FUNCTIONS

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

30
40
50
60
70
80
90

100
n

= 6/n

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

6.2.1 |∆W | between layers 0 and 1.

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

30
40
50
60
70
80
90

100

n

= 6/n

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010

6.2.2 |∆W | between layers 8 and 9.

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

30
40
50
60
70
80
90

100

n

= 6/n

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008

6.2.3 |∆W | between layers 13 and 14.

Figure 6.2: Heat maps representing the mean |∆W | for the authorship problem for a
network with L = 15 layers and different numbers of neurons, n, in the hidden layers, for

three representative layers.

information contained in the input patterns towards the output, thereby making it
impossible for the network to learn. Selecting a value of µ that gives a good initial
gradient in the input layer, implies non-zero activation and non-zero errors in that
layer. Because errors are back-propagated, also the errors in previous layers must
be non-zero and neurons in previous layers must not be saturated (else f ′ would be
zero, zeroing the corresponding δ ), implying that the activation of such neurons is
non-zero. In other words, non-zero initial gradients in the input layer, imply non-zero
gradients in the hidden layers and the output layer.

All of this suggests that the first layer of a network is the one where the vanishing
of initial gradients needs to be solved for the learning process to have a chance of
starting well. Therefore, µ should be set accordingly. However, whether this is
enough to prevent the gradients from vanishing again after the training has started
should need to be seen.

We should note that in all other problems the value of µ that gives maximum

initial gradients in the input layer is negative, although it varies from problem to
problem (approximately as a function of the number of inputs).
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Finally, we should note that, in the tests reported above, the same µ were used
for all layers although the number of neurons in the hidden layers (except in the case
of n = 70) is different from that in the input layer. This is, in fact, a contradiction to
the rule in Equation (6.11). So, we should expect that better (higher) initial gradients
would be obtained if we follow this rule.

6.4 Refining the Initialisation Strategy

Sections 6.2 and 6.3 focused mostly on expected values. However, this section
attempts to see how the variance on the initial weights affects the variance on the
net inputs, as a low variance may induce symmetries and competing-conventions
problems.

6.4.1 Analysis of Variance of Initial Net-inputs

From Equation (2.9) it is seen that the net input is a sum of products of stochastic
variables. At the very first forward-propagation in the network all activations should
on average have smaller variance than the initial weights when initialised with the
rule µ l = −d/nl . So, to a first-order approximation, we can consider net input
as a weighted sum of stochastic variables wl−1

i j ∼N (µ l, σ2), where the al−1
i are

replaced by their expectations E[al−1
i ]. That is

E[netlj] � wl−1
0 j +∑

i
E[al−1

i ]wl−1
i j . (6.13)

The proposed initialisation strategy suggests to use different µ l for different layers
so that the expected derivative of the activation function of all (hidden) neurons in
a network, E[al

i(1−al
i)], take one particular value, 1

d . So, initially all coefficients,
E[al−1

i ], in the weighted sum will be identical. So, we can approximate

netlj � wl−1
0 j +E[al−1]∑

i
wl−1

i j . (6.14)

Under this approximation

netl ∼N
(

µ
l−1(1+nl−1E[al−1]), σ

2(1+nl−1E[al−1])
)
. (6.15)

6.4.2 New Initialisation Method

As we have seen at the end of Section 6.2.2, for the logistic activation function
simple numerical approximations allows us to find a value of E[al] that satisfies
Equation (6.12) for any reasonable value of d. We specifically tested this for the
pairs (nl,E[al]) ∈ {(5,0.02),(10,0.12),(100,0.21)}.
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For simplicity, let us assume that all the layers in a network have an identical num-
ber of neurons, n. Substituting µ l =−8/n, for all (n,E[al])∈{(5,0.02),(10,0.12),(100,0.21)}
into Equation (6.15) and simplifying, we obtain

netl ∼N
(
−1.76, 0.22nσ

2
)
, (6.16)

for n = 5, n = 10 and n = 100 (although the relationship is general). So, the variance
of the net input grows linearly with the number of neurons in the previous layer.

To see what effect this may have, let us substitute the actual value of σ used in this
chapter (σ = 0.1) in Equation (6.16). We then see that StdDev[net] = 0.047

√
n. This

indicates that narrow networks may suffer from insufficient initial variation in net
inputs that translates into an even smaller variation if initial activations, potentially
leading to symmetries/competing-conventions problems. For instance, if we compute
the activations corresponding to the net inputs E[net]±1.96×StdDev[net], we see
that 95% of initial activations fall within a very narrow interval, [0.12,0.17], for
n = 5, but a nearly five times wider interval, [0.06,0.30], for n = 100.

Based on these observations, we reduce the symmetries in narrow (deep) net-
works, thereby increasing the likelihood of them being trainable, by slightly modify-
ing Equation (6.11), obtaining the following New Initialization Method (NIM):

wl ∼N

(
max

(
µmin,−

d
nl

)
, σ

2
)

(6.17)

where µmin, d and σ are constants that in this chapter, after having done some
preliminary experiments, we set to µmin =−1, d = 8 and, once again, σ = 0.1. With
such choices of µmin and d, we effectively prevent the µ l from being less than −1 in
networks with 7 or fewer neurons in the hidden layers.4

6.5 Training Deep Networks after the Proposed New Initialisation

In both the theory developed in Section 6.2 and its corroboration in Sections 6.3
and 6.4, we focused on amplifying the initial gradient. The question we now need
to address is to what degree this solves the vanishing gradient problem when we
continue training the network with the SBP algorithm for many interactions. In this
section, we address this question.

4An alternative method to counteract the reduced variance in the initial activations of narrow
networks would have been to make σ a function of nl . This is something that will be explored in
future research.
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6.5.1 Problems and Network Structures

We tested the NIM with a few independent runs using the test problems on deeper (up
to 25 hidden layers) and/or wider (up to 150 hidden neurons) networks. The results
showed that the NIM allow the SBP to train the networks successfully. Tests with
such networks and with many independent runs require a high computational cost.
Therefore, to make this comparison cheaper, we used the same network structures
like those used in the previous chapter. They are shown in Table 5.3. Each problem
has two network structures (one with depth L = 10 and 10 neurons in each hidden
layer and one with depth L = 15 and 100 neuron in each hidden layer). All networks
were trained using a learning rate of η = 0.25 which is also the same as that used for
the networks in the previous chapter.

6.5.2 Initialisation Methods Compared

The proposed method, NIM, was compared with three different initialisation methods
which were used to compare against the EIM (the initialisation method developed in
the previous chapter). As listed in the previous chapter, the distributions of the initial
weights of those methods are shown below. The distribution of initial weights of the
NIM is also listed below.

• SIM: W l ∼N (0, 0.01),

• Glorot: W l ∼N (0,2/(nl +nl+1)),

• Kumar: W l ∼N (0, 12.96/nl),

• NIM: W l ∼N (max(−1,− d
nl ), 0.01)

nl being number of neurons (including bias) in layer l and d = 8 a constant.
Figure 6.3 shows plots of the average cross-entropy loss and (test- and training-

set) accuracy when training networks initialised with the four initialisation methods
mentioned above. The network structures and problems are those listed in Table 5.3.
All networks were trained by SBP using learning rate of η = 0.25. Results are
medians of 30 independent runs.

As seen from Figure 6.3, SIM- and Glorot-initialised networks could solve none
of the problems applied to deep MLPs with the logistic activation function. Only the
proposed simple initialisation method, NIM, and Kumar initialisation methods allow
standard back-propagation to train those networks. In the case of NIM initialised
networks, SBP trains the networks reliably, quickly and effectively. Furthermore, it
is apparent from the figures that NIM converge faster than the Kumar initialisation
method, which eventually trains the networks. The only exception is mux for L = 15
where with NIM initialisation the network needed more than the 10,000 epochs
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Figure 6.3: Results for our six test problems when the SIM, Glorot, Kumar and NIM
methods are used to initialise networks of depth L = 10 and depth L = 15

122



CHAPTER 6. A SIMPLE INITIALISATION METHOD TO TRAIN DEEP
NEURAL NETWORKS USING THE LOGISTIC ACTIVATION FUNCTIONS

provided to reach the same accuracy as with Kumar’s initialisation. We can conclude
from this figure that focusing on the initial gradients is an effective approach to
understand and deal with the vanishing gradient problem.

To start understanding the reasons for the success of NIM and Kumar and the
failure of SIM and Glorot, we will look at the sum of the magnitudes of the gradients
measured in each layer and how this changed over time. Figure 6.4 reports the results
for the iris problem and a network of depth L = 10 for the four initialisation methods.
The layers in the figure are numbered in an increasing from the input layer to the
output layer. The gradient magnitudes of the last layer are not plotted as the networks
use a soft-max output layer.

For networks initialised with SIM and Glorot, we used a logarithmic time scale
because all of the dynamics is concentrated in the first 70 or so training epochs. As
it was predicted with the theoretical model presented above, setting µ = 0 produces
reasonably big gradients near the output layers which progressively become smaller
and smaller as we move towards the input layer. This happens for SIM, Glarot and
Kumar. In all three cases, within the first tens of training epochs, such gradients
become progressively even smaller, thereby apparently freezing the networks into a
very-low-gradient state from which it is very hard to recover.

Surprisingly, in the case of Kumar, after a few thousand iterations the network
manages to escape and gets into a phase where the first hidden layer has fairly
large gradients (with the following layers having progressively smaller and smaller
gradients) which is required to train the network successfully. This may happen
because of the bigger variance used in Kumar when compared to SIM and Glarot,
which makes it possible to have subsets of the network with negative weights large
enough that gradients can locally back-propagated without too much attenuation.
These trickles progressively become wider and wider until a network can learn.
Some networks get to that state quickly, but most (as shown by the plot in Figure 6.3
which is flat until approximately 2,000 epochs for L=10) take 2+ thousand of epochs
for L=10.

In the case of NIM, the situation is quite different. Firstly, in the first iterations,
the gradients are ordered with the biggest magnitudes being in the input layer. Also,
from such an initial state, the gradients grow progressively bigger rather than smaller
like in (SIM, Glorot and Kumar). The dynamics is not monotonic and there are
bursts where gradients become even bigger, but, in all cases, the biggest gradients
are in the input layer. Therefore, for NIM, both the loss function and the accuracy
grow fairly smoothly and rapidly (NIM allows the accuracy to reach 80% within tens
of epochs whereas Kumar does not get there until several thousands of epochs, and
SIM and Glarot never get there).
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Figure 6.4: Sum of gradient magnitudes in each layer when for a network of depth L = 10
for four different initialisation methods in the iris problem.

6.6 Numerical Optimisation of µ

NIM has a clear advantage in terms of simplicity of use. However, it sets the value of
µ only on the basis of the number of neurons in a layer, which may be sub-optimal as
we have seen in Section 6.3 (e.g., see Figure 6.1) that different values of µ (including
positive ones) produce maximal initial gradients in different layers.

Here, we want to remove the constraints imposed by NIM and numerically
optimise the value of µ for each layer, as already suggested in Section 6.2. This
might provide even bigger gradients than with NIM, as the theory in Section 6.2 is
approximate.

6.6.1 Hill-climbing the Initial Gradient Surface

As a numerical optimisation algorithm, a stochastic hill-climber was used to optimise
the set of µ values. To provide a good starting point, the hill-climber was initialised
with the µ values proposed by NIM. The algorithm then searches for an optimal or
near-optimal set of µ values by maximising mean initial |∆W | in the first hidden
layer. The search process lasts for 500 generations with 5 restarts. Figure 6.5
reports the results of these further tests for the six problems from Section 6.5.1 and a
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Figure 6.5: Optimal µ values prescribed by NIM in Equation (6.11) and those found by a
hill-climber (optimising the mean |∆W | in the first hidden layer) the six problems in

Table 5.3 for a network with L = 10 layers and 10 neurons in each hidden layers.

network with L = 10 layers and 10 neurons in each hidden layer. The µ values for
the hill-climber are averages over 30 independent runs of the algorithm.

Naturally, with the exception of layer 0 (the input layer), all µ values obtained
from NIM in Equation (6.11) (where, for uniformity, we chose d = 8 for all problems)
are identical across problems and layers l > 0. Interestingly, for most problems, the
values of µ identified by the hill-climber are similar in magnitude and identical in
sign to those prescribed by NIM. There are bigger discrepancies between the µ’s for
different problems and initialisation strategies for the first 2–3 hidden layers and for
the last couple.

Figure 6.6 reports the same results but for a network with L = 15 layers and 100
neurons in each hidden layers. Here the µ values selected by the hill-climber are also
all negative. Additionally, except for the DNA and BCW problems where all runs
were unable to improve over the hill-climber initial position (i.e., NIM initialisation),
they tend to vary a bit more from layer to layer and can be up to 2–5 times bigger in
magnitude than those set by NIM.

A question that arises then is: to what degree do the discrepancies between µ

values prescribed by the NIM and hill-climber translate into differences in gradient
magnitude in the first hidden layer? An answer to this question comes from Figure 6.7
and 6.8, which show the mean absolute gradient in the first layer of weights obtained
when using the optimal µ values prescribed by NIM and the hill-climber reported in
Figures 6.5 and 6.6. As one can see from the figures, while the |∆W |’s for the two
methods are of the same order of magnitude for the smaller network, the differences
are much more marked (up to 3 orders of magnitude) for the larger network.

This suggests that, while for relatively small networks, NIM is a good default,
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Figure 6.6: Same as in Figure 6.5 but for a network with L = 15 layers and 100 neurons in
each hidden layers.

for larger networks and problems the small computational effort required to optimise
µ with the hill-climber might pay off massively in terms of initial gradients.

6.6.2 NIM-initialised vs Hill-climber-initialised Gradient Descent

The gradient descents (controlled by the SBP algorithm) obtained for networks
initialised with the µ values identified by NIM and the hill climber were pitted.

Figure 6.9 shows the average dynamics produced for the six problems in Table 5.3
for a network with L = 10 layers and 10 neurons in each hidden layer. As we have
seen in Section 6.6.1, in this case, the µ values and, correspondingly, the initial
gradients obtained with the two initialisation algorithms are not too different. It is
then not surprising to see in the figure that the gradient descent produced by SBP
after initialisation is very similar to that of the hill-climber having a slight edge on
NIM only in the mux and wine problems.

Figure 6.10 shows the average dynamics produced for the same six problems
but this time for a network with L = 15 layers and 100 neurons in each hidden
layers. As we have seen in Section 6.6.1, in this case, the µ values obtained
with the two initialisation algorithms are quite different except for the DNA and
BCW problems where all hill-climber runs converged onto the NIM solution. For
these two exceptions, rather obviously, the gradient descent produced by SBP with
η = 0.25 after initialisation with the two algorithms is identical, as shown in the
figure. However, after a sharp start, the descent (with η = 0.25) produced by hill-
climber-based initialisation plateaued prematurely in all other problems and for most
runs of the 30 independent runs done for each problem.

Effectively, thanks to its success at increasing the initial gradient, the hill-climber
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Figure 6.7: Mean absolute gradient in the first layer of weights obtained when using the
optimal µ values prescribed by NIM in Equation (6.11) and those found by a hill-climber
for the six problems in Table 5.3 for a network with L = 10 layers and 10 neurons in each

hidden layers.

has made the learning process with this relatively large learning rate unstable. As
Figure 6.10 shows, this problem can be solved to a significant degree just by reducing
the learning rate to 0.05.

6.7 Summary

This chapter investigated to what extent the vanishing-gradient problem depends on
the choice of the mean (as opposed to the variance) of the initial weight distribution
in networks using the logistic activation function.

Focusing on the initial gradients, a simple theoretical model was developed.
This model predicted that to obtain non-vanishing initial gradients in all layers of a
network, the magnitude of the mean of the initial distribution of weights had to be
inversely proportional to the number of neurons in a layer. Empirical corroboration
of this prediction showed that there is an asymmetry by which gradients do not
vanish only if the mean is negative. In the light of this investigation, we developed
an initialisation strategy which was called NIM.

The experimental results showed that the back-propagation algorithm was both
successful and efficient at training deep networks with 10 and 15 hidden layers
(and 10 and 100 neurons per hidden layer, respectively) on a standard set of bench-
mark classification problems, including real-world, large-scale problems when the
networks were initialised by the proposed method.

It was also tested whether the initialisation produced by NIM could be improved
by hill climber. It was found that while this could be achieved in some problems
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Figure 6.8: Same as in Figure 6.7 but for a network with L = 15 layers and 100 neurons in
each hidden layers.

for the smaller architecture (10 layers, 10 neurons each), this causes too big initial
gradients and failed convergence in most problems for the larger architecture (15
layers, 100 neurons each).

The vanishing gradient problem is a long-standing obstacle to the training of
deep neural networks with neurons using the logistic activation function. Although
other activation functions developed over the years overcome this problem, they have
other drawbacks, as reviewed in Section 2.3.3.2. This work showed that a simple
initialisation method could solve the vanishing gradient problem in deep networks
that use the logistic activation function.
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6.9.1 Gradient descent for Iris
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6.9.2 Gradient descent for Wine
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6.9.3 Gradient descent for Authorship
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6.9.4 Gradient descent for DNA
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6.9.5 Gradient descent for Mux
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6.9.6 Gradient descent for BCW

Figure 6.9: Cross-entropy loss as a function of the number of training epochs for
NIM-initialised an hill-climber-initialised networks trained with the SBP for the six

problems in Table 5.3 for a network with L = 10 layers and 10 neurons in each hidden
layers. The learning rate was η = 0.25. Results are averages of 30 independent runs.
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6.10.1 Gradient descent for Iris
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6.10.3 Gradient descent for Authorship
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6.10.4 Gradient descent for DNA
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6.10.6 Gradient descent for BCW

Figure 6.10: Cross-entropy loss as a function of the number of training epochs for
NIM-initialised an hill-climber-initialised networks trained with the SBP for the six

problems in Table 5.3 for a network with L = 15 layers and 100 neurons in each hidden
layers. The learning rate was η = 0.25 for NIM and both η = 0.25 and η = 0.05 for

hill-climber initialisation. Results are averages of 30 independent runs.
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Chapter 7

Conclusions and Future Work

Deep and shallow neural networks with many different structures have been widely
used for machine learning problems. Although neural networks have been improved
over time, there are still some problems to be overcome.

This thesis addressed two main problems of neural networks which are related
to learning and initialisation algorithms; and tried to find answers of the following
questions:

1. Would it be possible to develop fair comparison methods to compare leaning
algorithms used in neural networks?

2. Can GP develop faster learning algorithms than SBP algorithm while being
general?

3. Can GP develop new initialisation algorithms to make deep neural networks,
that use the logistic activation function, trainable?

4. Would it be possible to find ways of initialising the weights so that the algo-
rithms converge faster or more reliably?

7.1 Contributions of the Research

7.1.1 Comparison Methods for Learning Rules

Chapter 3 presented two general rigorous methodologies that were developed for
fairly comparing the performance of learning rules.

Both methods compute the total number of training epochs required to obtain
at least a successful run in a group of runs. The first method assumes that all runs
are executed in parallel and compute how many epochs are required to obtain at
least one satisfactorily trained network out of a certain number of parallel training
runs using relatively simple adaptations of Koza’s computational effort for GP. The
second method considers the situation where multiple attempts to train a network

131



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

(with different initialisations) are performed sequentially and provides the expected
number of epochs required to obtain a successfully trained network.

Computational effort depends on the training (hyper) parameters. The proposed
methods consider the learning rate and the number of epochs. The maximum number
of epochs is set to be large enough for each problem and the same for each pair
of comparisons so that both rules have a reasonable and the same chance to solve
problems. This process is repeated for both rules with different learning rates to
provide optimum or near-optimal learning rate for each learning rule. The minimal
computational effort is the minimum computational effort recorded by varying the
learning rate and the number of epochs in all possible ways within a large range of
values. These processes make the developed comparison methods fair.

7.1.2 Learning Rules Evolved for MLPs

Chapter 3 also evolved a back-propagation learning rule by applying GP to neural
networks. In order to prevent programs (learning rules) in the populations from
having wide oscillations on the training errors, penalty and reward functions were
added to the fitness function based on the error directions during the training. GP
found a form of SBP algorithm but with a variable effective learning rate. Chapter 3
reported that the rule was fast, stable, and general; and provided a qualitative
interpretation that explains why the evolving rule performs well; and also provided
strong evidence of its superiority with respect to the SBP.

Chapter 4 presented similar work that applies GP to neural networks to evolve
learning rules. In Chapter 3, the search space of GP was restricted by a penalty
function that considers oscillations on the error during the training. This approach
encouraged learning rules in the populations to perform monotonic error descent that
may cause the network to get trapped in a local minimum. Therefore Chapter 4, by
changing the GP-MLP configuration, aimed to evolve learning rules that are fast,
general; and that can escape local minimum. Here, the GP parameters, the training
problems and network structures were changed. The most important changes were
done to the fitness functions. It was designed to allow learning rules to oscillate
on the training error surface. Here, in contrast to the work in Chapter 3, the fitness
function did not penalise and reward the rules as it did not care about the oscillations
on the training error. It was simply the sum of the lowest errors or sum of the highest
accuracies of a pre-defined percentage of the number of training epochs.

Two different learning rules were evolved. The fitness function considered the
error for the first one like in the previous chapter. It considered the training accuracy
for the second one since the comparison methods compute the computational efforts
using the training accuracy as the success criterion. The rules were compared with
the SBP using the comparison methods developed in Chapter 3. The results showed
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that both rules evolved outperformed the SBP but they had worse performance than
the rule evolved in Chapter 3.

Each learning rule found by GP in Chapters 3 and 4 was a form of SBP with a
variable learning rate that was formed from pre- and post-synaptic activations of the
corresponding connection. In other words, in these experiments, GP showed us that
the SBP with a variable learning rate can be faster and more general than the SBP
with a constant learning rate.

7.1.3 Initialisation Rules for Deep MLPs

As described in Chapter 2, relatively deep networks suffer from the vanishing
gradient problem especially when a sigmoidal activation function is used in the
neurons of the networks. There are some efficient methods that solve this problem.
However, they mostly do not work with the logistic activation function. This thesis
also developed initialisation methods that allow deep MLPs, which use the logistic
activation function, to be trained with the SBP.

In relation to this, Chapter 5 developed a method that initialised the networks by
pre-training. GP was applied to deep MLPs to evolve a weight-update rule which
would only be used during the pre-training process of the networks. In this model,
after having completed the pre-training phase of the networks, the SBP algorithm is
used for completing the training of the networks.

In order to evaluate the efficiency of the proposed algorithm, EIM, it was com-
pared with three different initialisation methods — SIM, Glorot and Kumar — using
six classification problems (four multi-class and two binary). For each problem, two
networks structures (10 hidden layers with 10 neurons in each hidden layer and 15
hidden layers with 100 neurons in each hidden layer) were used. In order to make a
fair comparison, the number of pre-training epochs used for the proposed model was
included in the total number of training epochs. The experimental results showed
that the SIM and Kumar initialisation could not be successful on the test networks
and also showed that EIM and Kumar were successful and eventually reached almost
the same level of accuracy/error. Because the number of pre-training epochs was
relatively large for the small (L = 10) networks, Kumar initialisation provided usually
faster convergence than the EIM for these networks. However, the opposite was
always true for the large (L = 15) networks as they were pre-trained with a relatively
small number of epochs.

Another initialisation method, NIM, was developed in Chapter 6. Because at the
end of the pre-training process the EIM made the mean of the weight distributions
in the networks negative, this chapter investigated to what extend the vanishing
gradient problem depends on the choice of the mean of the distribution. In this
investigation, the theory predicted that initial gradients in the layers are maximised
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when the mean of the initial weights is negative and inversely proportional to the
number of neurons in each layer. The knowledge gained on initial gradients from
theory and the empirical tests suggested that a rule that sets the mean initial weights
to −min(1,8/number of neurons in layer) would maximise such gradients. The
developed simple initialisation rule does not require a pre-training process.

In that chapter, for comparing NIM, the same initialisation methods, the same
problems and the same network structures those used for comparison of the EIM in
Chapter 5 were used. The experimental results showed that SBP initialised by the
NIM not only successfully trained the networks but also learned the corresponding
problem efficiently and quickly.

As mentioned above, EIM initialises the networks by pre-training, while NIM
initialised the networks using the initial weight distribution that is determined based
on the number of neurons in the layers. Both EIM and NIM allow SBP to train deep
networks that use logistic activation function without suffering from the vanishing
gradient problem. However, for EIM, there is no simple rule to determine the optimal
number of epoch for pre-training. Determination of this number is based on trial
and error. Therefore, the NIM could be more useful than EIM since it can easily
initialise the networks without waiting for pre-training.

7.2 Limitations in the Research

7.2.1 Limitations in the Works that Evolved Learning Rules

As mentioned above, in this thesis, GP evolved learning rules in Chapters 3 and 4.
Although different fitness functions and slightly different primitive sets were used,
the methodologies used were the same. Therefore, the limitations were almost the
same.

This thesis only reported on NLR in Chapter 3 and NLR(1) and NLR(2) in
Chapter 4. Of course, other rules were evolved in different runs that satisfied
the criteria of speed and stability but were not always completely general (e.g.,
some worked well on all Boolean problems, but did not work well with continuous
problems, and vice versa).

Also, here we took as a reference the SBP. Of course, there are many improve-
ments that have been produced over the years to the original SBP, such as the
momentum term, RMSProp, Adam optimiser, etc. The reason why the rules evolved
were not tested with the momentum term is that the momentum term has one more
parameter to be optimised and so the computational time for this comparison would
be quite long. Since the RMSProp and Adam optimiser optimise the learning rate
during the training, the evolved rules can also use such models. However, in these
models, the learning rates are initialised with a relatively small number while the
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comparison methodologies developed in this thesis chose the optimal learning rates
from the results of runs done with a number of learning rates. Because it is quite hard
to optimise the initial learning rates for the models that use RMSProp and Adam
optimiser with the proposed comparison methods, in this thesis, the evolved rules
were not tested using such optimiser.

Finally, the theoretical analyses were limited to the optimisation of learning rates
and the number of epochs. While the extension to other hyper-parameters is possible,
it is not unlikely that the extension would be of limited practical applicability due to
a combinatorial explosion in the number of test conditions.

7.2.2 Limitations in the Works that Developed Initialisation Rules

Chapter 5 considered only the logistic activation function to evolve an initialisation
rule for deep MLPs. Chapter 6 developed theoretical models in such a way that they
could accommodate other activation functions. However, all empirical validation of
ideas and study of the learning process in that chapter were also conducted only for
the logistic activation function.

Both initialisation methods were tested with a limited number of benchmark
problems and network structures.

Also, these studies did not consider more sophisticated forms of training, includ-
ing the used of a momentum term or Rprop, RMSProp and Adam optimiser.

7.3 Future Work

This section presents some possible research that can be done in the future. While
each of the limitations stated above could be considered as future work, changing the
configurations in the GP-MLP system used for the experiments could also provide
some interesting results.

7.3.1 Changing the Configurations Used in the Experiment

In relation to the configurations in the GP-MLP, the operator and terminal sets can
be expanded. Of course, this makes the algorithm more expensive. However, this
provides a larger search space; thereby, the system is more likely to evolve more
efficient learning and initialisation rules.

The fitness function has a crucial role in EAs. In this thesis, the main parameter
of the fitness functions was either the network error or the training accuracy. The
computational efforts formulae developed in Chapter 3 can be another good choice
for the fitness function.

The number of problems and runs used in evolution are also important to obtain
more general rules. While a small number of problems may cause learning rules

135



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

to overfit to the problems, the large numbers may make the algorithm expensive.
If at each generation, the algorithm chooses a small number of problems from a
problem list predefined and forms the network structures randomly, this may allow
the algorithm to produce general rules while avoiding a costly run.

7.3.2 Considering the Limitations of this Thesis

As mentioned above, all experiments in this thesis were done considering the logistic
activation function. In relation to the work in Chapter 6 which developed a theoretical
initialisation method, NIM, it may be a good idea to use other activation functions
(such as ReLU, soft-sign and tanh) to see whether the proposed method is successful
and efficient with the SBP when connection weights in deep neural networks are
optimised by maximising the initial gradients.

Furthermore, it is clear from the theory in Chapter 6, that it would be possible
to refine our initialisation rule so as to consider E[inputs]. Also, while focusing on
µ allowed us to make significant progress, as shown in Section 6.4.1, the standard
deviation σ of the initial weight distribution does matter too. Therefore, developing
a similar theory for σ would be possible and could lead to speeding up learning.
This can be investigated in the future.

Finally, the vanishing gradient problem is particularly insidious in applications
involving recurrent neural networks. Training of such networks could benefit from
the proposed method. This can be a good research subject.
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Additional Results from Chapter 3

In this appendix, we report additional results that show the comparison figures of
NLR and SBP for test problems when sequential evaluation is used.
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Figure A.1: Comparison results of NLR and SBP for test problems when sequential
evaluation is used.
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Appendix B

Additional Results from Chapter 4

In this appendix, we report additional results that show the comparison figures of
NLR(1) NLR(2) and SBP for test problems when sequential evaluation is used.
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B.1.9 E-coli Computational Effort
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B.1.11 E-coli Error
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B.1.13 E-coli Train Accuracy
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B.1.14 Authorship Train Accuracy
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B.1.17 BCW Computational Effort
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B.1.19 BCW Error
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B.1.20 DNA Error
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B.1.21 BCW Train Accuracy
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B.1.22 DNA Train Accuracy
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B.1.23 BCW Testing Accuracy
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B.1.25 7-Segment Computational Effort
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B.1.26 Parity Computational Effort
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B.1.27 7-Segment Error
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B.1.28 Parity Error
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B.1.29 7-Segment Train Accuracy
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B.1.30 Parity Train Accuracy

Figure B.1: Comparison results of NLR(1), NLR(2) and SBP for test problems when
sequential evaluation is used.
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