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1 Introduction

Is there a relationship between income or wealth inequality and business

cycle fluctuations? Recent data concerning the Latin American and OECD

economies as well as the East Asian “tigers” suggests a positive answer. In

1990, the Gini coefficient of the distribution of income was on average 59.5%

for Brazil, Chile, Mexico and Venezuela, and respectively 34% for the OECD

countries and 35.5% for Hong Kong, Korea, Taiwan and Singapore. At the

same time, the former were subject to much greater fluctuations in their

respective growth rates than were the latter: during the 80’s, the standard

deviation of the rate of output growth was on average 5.9% for the above

mentioned Latin American countries, and respectively 2.7% for the OECD

and 2.8% for the East Asian countries. Building on these data, Breen and

Garćıa-Peñalosa [11] show the existence of a significant positive correlation

between a country’s volatility and income inequality.

In the present paper we explore the role of the distribution of wealth

on macroeconomic volatility from a theoretical perspective. The analysis

is based on the fact that instability easily occurs in perfectly competitive

multi-sector growth model. We then take the view that the link between

wealth inequality and volatility should be first understood in the absence

of any distortion. The simplest neoclassical economy allowing for dynamic

instability is the Uzawa two-sector model with a consumption good and an

investment good. We slightly enrich the standard model by endogeneising

the labor supply. In this model the level of wealth inequality is characterized

by the distribution of shares of capital. The message of the present paper

is that within this standard framework in most of the realistic situations

wealth equality is a stabilizing factor. More precisely, wealth inequality

generates macroeconomic volatility when agents are heterogenous in their

preferences and these belong to the HARA class, i.e. individual absolute risk

tolerance is linear, a result holding independently of the wealth distribution.

The conclusion also holds when agents have preferences characterized by

non linear absolute risk tolerance and individual wealth follows a Pareto

distribution.

The sharp results obtained in this paper are at odd with the previous

related literature. Truly, the role of income and wealth inequality on macroe-

conomic volatility has been until recently largely ignored by the theoretical
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literature. Furthermore, the studies that do treat this issue consider models

with externalities, increasing returns and rigidities in which dynamic insta-

bility of the long run equilibrium, either deterministic or stochastic, easily

occurs. In these models, the various forms of market imperfections intro-

duce many degrees of freedom and prevent from getting clear-cut results.

Indeed, in some cases inequality is shown to be a stabilizing factor, as in

Herrendorf et al. [26] or Ghiglino and Sorger [21], while in others the effect

has opposite sign. A good example is here Aghion et al. [1] where inequal-

ity in the form of unequal access to investment opportunities across agents

results in output and investment volatility. Closer to the present analysis,

is the paper by Ghiglino and Venditti [22] that also investigates the link

between inequality and instability in a neoclassical model. They conclude

that wealth inequality may have an effect on instability only when the co-

efficient of absolute risk tolerance is not linear and that the direction of the

effect depends on the fourth derivative of the utility function. The value of

these results is highly reduced by these restrictions. Indeed, the exclusion

of HARA preferences is not an advisable feature of the model while the sign

of the fourth derivative is difficult to assess empirically. 1

In the present paper we show that the lack of sharp results in Ghiglino

and Venditti [22] is in part due to their assumption of inelastic labor sup-

ply. This is not too surprising as we know that the inclusion of leisure in

the choices of the agents strongly affect the stability properties of the equi-

librium in neoclassical growth models. In the present paper we also exploit

preference heterogeneity further. Indeed, if agents with different wealth have

different preferences, and thus different attitudes toward risk, the degree of

inequality has a stronger effect than with homogeneous preferences. This al-

lows us to obtain a relationship even when preferences belong to the HARA

class. Finally, we exploit the shape of the wealth distribution, particularly

by assuming a Pareto wealth distribution in which inequality is characterized

by the Gini index. These three differences allow us to provide the clear-cut

result that wealth equality has a positive effect on macroeconomic stability

in realistic scenarios.

To conclude, we should note that there is a renewal of interest in the

1See also Ghiglino [18], Ghiglino and Olszack-Duquenne [19] and Bosi and Seegmuller

[10] for similar analysis based on particular specifications for technologies and/or prefer-

ences.
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possibility that macroeconomic volatility could affect the distribution of

wealth, an issue we do not consider in the paper. For instance, Caroli

and Garćıa-Peñalosa [13] show that higher volatility increases income in-

equality if agents with different endowments have different attitudes towards

risk,2 while Garćıa-Peñalosa and Turnovsky [16] provide a similar conclusion

through the effect of greater production uncertainty.3

The rest of the paper is organized as follows: The methodology and

the main results are briefly summarized in Section 2 while the model is

introduced in Section 3. Section 4 is concerned with the definition of the

equilibrium and the analysis of the effect of wealth inequality on the steady

state. Section 5 discusses the existence of endogenous business cycle fluctu-

ations. The occurrence of output volatility is related to wealth inequality

in Section 6. Section 7 focusses on the particular case of a Pareto distribu-

tion with homogeneous preferences characterized by non linear individual

absolute risk tolerance indices, while Section 8 concerns a general wealth

distribution in the case of HARA preferences. Section 9 shows the robust-

ness of our main conclusions when inelastic labor is considered and Section

10 concludes the paper. All the proofs are gathered into a final Appendix.

2 Summary of the paper

Starting from the decentralized model with many agents, our methodology

consists in aggregating heterogeneous preferences within a central planner

utility function which depends on a set of welfare weights. As the second

welfare theorem ensures that any Pareto efficient allocation can be decen-

tralized as a competitive equilibrium with transfer payments, we solve the

weighted central planner problem. The competitive equilibrium is then ob-

tained for a set of welfare weights associated with optimal allocations that

saturate the budget constraints of all the consumers. Then we show that the

welfare weights are continuous functions of the initial conditions so that the

local dynamic properties of the general equilibrium model with heteroge-

neous agents and those of the planners’ problem with welfare weights fixed

at their steady state value are identical.

Building on Bosi et al. [9], we provide conditions on the technologies

2See also Cecchi and Garćıa-Peñalosa [14].
3See also Garćıa-Peñalosa and Turnovsky [15].
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and the social utility function, aggregating individual preferences along the

steady state, for the existence of endogenous business cycles fluctuations

either damped in the long run or persistent through period-2 cycles.4 As

initially shown by Benhabib and Nishimura [5], we need a capital intensive

consumption good sector in order to allow some oscillations of the capital

stock “to get through” the Rybczinsky theorem. But the properties of pref-

erences also matter: first, fluctuations in the consumption levels along the

equilibrium path require a large enough social elasticity of intertemporal

substitution in consumption, i.e. a large enough social absolute risk toler-

ance with respect to consumption. Second, a low enough social elasticity of

labor supply, i.e. a low enough social absolute risk tolerance with respect to

labor, is necessary to prevent the agents from smoothing the fluctuations of

their wage and capital incomes associated to the fluctuations of the capital

stock.5

The next step is to relate the conditions for the existence of endogenous

fluctuations to the degree of wealth inequality. The measure of inequality in

our framework is based on the distribution of capital shares across agents.

Wealth inequality is thus rising when a bilateral transfer between two agents

consists in increasing the income of the agent who is initially richer than the

other. We show that when the social absolute risk tolerance indices with

respect to consumption and labor are non linear, a modification of the degree

of inequality affects the individual and the aggregate steady states and thus

affects the local stability properties of the equilibrium. The non linearity of

the social indices can be obtained in two cases: either when the individual

absolute risk tolerance indices are non linear, or when they are linear (as

with HARA preferences) but agents have heterogeneous preferences.

We then give clear-cut conditions on the slopes of the social absolute

risk tolerance indices with respect to consumption and labor in order to

4It is worth noticing that following Benhabib and Nishimura [6] a more standard def-

inition of macroeconomic volatility based on stochastic oscillations could be considered

through the concept of cyclic sets. Indeed introducing small stochastic shocks into a

deterministic model characterized by periodic cycles generates cyclic sets.
5When the labor supply is highly elastic, fluctuations of the wage rate and the rental

rate of capital may be compensated by large modifications of the labor supply. The

fluctuations of income are thus smoothed and the cycles can be eliminated. On the

contrary, when the labor supply is weakly elastic, fluctuations of the capital stock generate

fluctuations of incomes and cycles become persistent.

4



get a positive correlation between the degree of wealth inequality and the

occurrence of macroeconomic volatility. The basic intuition for this result

is the following: when a bilateral transfer increasing the degree of wealth

inequality is considered, the consumption and labor choices of the two agents

who are affected by the transfer are modified in such a way that the aggregate

steady state levels of consumption and labor are changed. This in turn

modifies the steady state values of the social absolute risk tolerance indices

with respect to consumption and labor. When these modifications are such

that the former increases while the latter decreases, or equivalently the social

elasticity of intertemporal substitution in consumption increases while the

social elasticity of labor decreases, endogenous business cycle fluctuations

occur. In other words, increasing the level of wealth inequalities modifies the

attitude towards risk of the planner and leads to macroeconomic volatility.

The conclusions appear quite robust as we are able to prove the results in

three leading cases. First, the positive relationship between inequality and

volatility is obtained when individual wealth is distributed according to a

Pareto distribution and agents have homogeneous preferences characterized

by non linear individual absolute risk tolerance indices. Second, a similar

result holds for general wealth distributions when agents have heterogeneous

HARA preferences characterized by linear individual absolute risk tolerance

indices. Finally, we also show that all these results still hold even if the labor

supply is inelastic. In particular, we prove that in this case the introduction

of some heterogeneity of preferences across agents is a fundamental driving

force leading to our results.

3 The model

3.1 Consumers

There are n agents and the total population is constant over time. In each

period consumers provide elastically an amount of labor li, i = 1, ..., n , with

li ≤ l̄ and
∑n

i=1 li = ℓ, l̄ > 0 being the agent’s endowment of labor. At the

initial period t = 0, each agent i is also endowed with a share θi of the initial

stock of capital k0 with
∑n

i=1 θi = 1. In order to simplify the formulation,

we will assume that the n agents are ordered according to their initial capital

endowment, i.e. θi > θj for i < j. Let (θi)
n
i=1 = θ be the vector of initial
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shares. Consumer’s preferences are characterized by a discounted additively

separable utility function of the form

U i(xi,Li) =

∞∑

t=0

δt [ui(xit) + vi(Lit)] (1)

where δ ∈ (0, 1) is the discount factor, xit the consumption of agent i at

time t, Lit = l̄ − lit its leisure at time t, and xi, Li are respectively its

intertemporal streams of consumption and leisure. Agents are therefore

different with respect to their preferences and their initial wealth. Each

instantaneous utility function satisfies the following basic restrictions:

Assumption 1. ui(xi) and vi(Li) are C2, such that u′i(xi) > 0, v′i(Li) > 0,

u′′i (xi) < 0, v′′i (Li) < 0 for any xi > 0, Li > 0, and satisfy the Inada

conditions limxi→0 u
′
i(xi) = +∞, limLi→0 v

′
i(Li) = +∞.

Denote by wt the wage rate, rt the gross rental rate of capital and pt

the price of investment good at time t, all in terms of the price of the

consumption good. In a decentralized economy, an agent i maximizes his

intertemporal utility function (1) subject to a single intertemporal budget

constraint
∞∑

t=0

Rtxit =

∞∑

t=0

Rtwtlit + θir0k0 with i = 1, ..., n. (2)

where the discount factors Rt are defined as:

Rt =

t∏

τ=0

1

1 + dτ

with dt the common interest rate which satisfies d0 = [r0 − p−1]/p−1 and

dt = [rt + (1 − µ)pt − pt−1]/pt−1 for any t ≥ 1.6

3.2 Producers

We consider a two-sector economy with a consumption good y0 and a capital

good y. The consumption good is entirely consumed and the capital good

6This equation reflects the absence of arbitrage opportunities in a perfect foresight

equilibrium. It is also called the portfolio equilibrium condition (see Becker and Boyd [2]).

The difference between the equation evaluated at time t = 0 and t ≥ 1 comes from the

fact that at the initial date there is no residual capital coming from the previous period

and in some sense we have k0 = y−1.
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partially depreciates in each period at a constant rate µ ∈ [0, 1]. There

are two inputs, capital and labor. Each good is produced with a standard

constant returns to scale technology:

y0 = f0(k0, l0), y = f1(k1, l1)

with k0 + k1 ≤ k, k being the total stock of capital, and l0 + l1 ≤ ℓ, ℓ being

the total amount of labor.

Assumption 2. Each production function f j : R
2
+ → R+, j = 0, 1, is C2,

increasing in each argument, concave, homogeneous of degree one and such

that for any x > 0, f j
1 (0, x) = f j

2 (x, 0) = +∞, f j
1 (+∞, x) = f j

2 (x,+∞) = 0.

Notice that by definition, as l1 ≤ ℓ ≤ nl̄, we have y ≤ f1(k, ℓ) ≤

f1(k, nl̄). The monotonicity properties and the Inada conditions in As-

sumption 2 then imply that there exists k̄ > 0 such that f1(k, nl̄) > k when

k < k̄ while f1(k, nl̄) < k when k > k̄. The set of admissible 3-uples (k, y, ℓ)

is thus defined as follows

D =
{

(k, y, ℓ) ∈ R
3
+|0 ≤ l ≤ nl̄, 0 ≤ k ≤ k̄, 0 ≤ y ≤ f1(k, ℓ)

}
(3)

It is easy to show that D is a compact, convex set.

There are two representative firms, one for each sector. For any given

(k, y, ℓ), profit maximization in each representative firm is equivalent to

solving the following problem of optimal allocation of productive factors

between the two sectors:

T (k, y, ℓ) = max
(k0,k1,l0,l1)

f0(k0, l0)

s.t. y ≤ f1(k1, l1)

k0 + k1 ≤ k

l0 + l1 ≤ ℓ

k0, k1, l0, l1 ≥ 0

(4)

The social production function T (k, y, ℓ) describes the frontier of the pro-

duction possibility set associated with interior temporary equilibria such

that (k, y, ℓ) ∈ D, and gives the maximal output of the consumption good.

It also summarizes the trade-off between production of the final good and

productive investment. Under Assumption 2, for any (k, y, ℓ) ∈ D, T (k, y, ℓ)

is homogeneous of degree one, concave and we assume in the following that
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it is at least C2.7 We formulate the aggregate profit maximization as follows

max
(k,y,ℓ)∈D

T (k, y, ℓ) + py − rk − wℓ (5)

and we derive that for any (k, y, ℓ) ∈ intD, with intD denoting the interior

of the set D, the first order derivatives of the social production function give

T1(k, y, ℓ) = r, T2(k, y, ℓ) = −p, T3(k, y, ℓ) = w (6)

4 Competitive equilibrium and Pareto optimum

From the first welfare theorem, we know that every competitive equilibrium

obtained in the decentralized economy is a Pareto optimal allocation. Let

∆ =

{

η1, . . . , ηn|ηi ≥ 0 and

n∑

i=1

ηi = 1

}

be the unit simplex of R
n. A Pareto optimal allocation is a solution to the

following planner’s problem for a given vector of nonnegative welfare weights

η = (η1, . . . , ηn) ∈ ∆:

max
{xit,lit,yt}t≥0

n∑

i=1

ηi

∞∑

t=0

δt
[
ui(xit) + vi(l̄ − lit)

]

s.t.

n∑

i=1

xit = T (kt, yt, ℓt)

n∑

i=1

lit = ℓt

kt+1 = yt + (1 − µ)kt

k0 given,

(7)

The solution to the above program depends on the vector η and on k0.

The set of Pareto optima is obtained when η spans ∆. As markets are

complete and under Assumptions 1 and 2, the second theorem of welfare

economics also holds: any Pareto efficient allocation can be decentralized as

a competitive equilibrium with transfer payments. We may then characterize

an equilibrium with transfer by solving the weighted dynamic optimization

7Benhabib and Nishimura [4] show that T (k, y, ℓ) is C1 under Assumption 2.
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program (7).8 A given competitive equilibrium is then obtained for a η

such that the associated allocations saturate the budget constraint of all the

consumers.

In order to simplify the analysis, we formulate the weighted dynamic

optimization program (7) in reduced form. Let U(x, ℓ) be a social utility

function such that for η = (η1, . . . , ηn) ∈ ∆

U(xt, ℓt) = max
{xit,lit}t≥0

n∑

i=1

ηi

[
ui(xit) + vi(l̄ − lit)

]

s.t
n∑

i=1

xit = xt

n∑

i=1

lit = ℓt

(8)

The value function U(x, ℓ) can be characterized as follows:

Lemma 1. Under Assumption 1, the value function of program (8) is ad-

ditively separable, i.e. U(x, ℓ) = u(x) − v(ℓ) with u(x) and v(ℓ) some C2

functions such that u′(x) > 0, v′(ℓ) > 0, u′′(x) < 0, v′′(ℓ) > 0 for any x > 0,

ℓ > 0, and limx→0 u
′(x) = +∞, limℓ→nl̄ v

′(ℓ) = +∞.

We may then define the indirect social utility function

V (kt, kt+1, ℓt) = u(T (kt, kt+1 − (1 − µ)kt, ℓt)) − v(ℓt) (9)

From (3), we also derive the set of admissible paths. As ℓt ≤ nl̄ and kt+1 =

yt +(1−µ)kt, we have kt+1 ≤ f1(kt, ℓt)+(1−µ)kt ≤ f1(kt, nl̄)+(1−µ)kt ≡

g(kt). Assumption 2 implies that there exists k̃ > 0 such that g(kt) > kt

when kt < k̃ while g(kt) < kt when kt > k̃. It follows that it is not possible

to maintain stocks beyond k̃. The set of admissible paths (kt, kt+1, ℓt) is

thus defined as follows

D̃ =
{

(kt, kt+1, ℓt) ∈ R
3
+|0 ≤ ℓt ≤ nl̄,

0 ≤ kt ≤ k̃, (1 − µ)kt ≤ y ≤ f1(kt, ℓt) + (1 − µ)kt

}

The planner’s problem is then equivalent to

8This aproach has been pioneered by Negishi [31] and applied to dynamic models by

Bewley [7] and Kehoe et al. [27] among others.
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max
{kt,ℓt}t≥0

+∞∑

t=0

δtV (kt, kt+1, ℓt)

s.t. (kt, kt+1, ℓt) ∈ D̃

k0 given

(10)

Note that the solution depends on k0.

In the present framework it is a standard result that the set of interior

Pareto optima is the set of {kt, ℓt}t≥0 that are solutions to the following

system of Euler equations

V2(kt, kt+1, ℓt) + δV1(kt+1, kt+2, ℓt+1) = 0 (11)

V3(kt, kt+1, ℓt) = 0 (12)

and that satisfy the transversality condition

lim
t→+∞

δtktV1(kt, kt+1, ℓt) = 0

Notice that using (6) and (9), the Euler equations become:

−u′(xt)pt + δu′(xt+1) [rt+1 − (1 − µ)pt+1] = 0 (13)

u′(xt)wt − v′(ℓt) = 0 (14)

Our methodology consists in providing a local stability analysis of the

optimal path in a neighborhood of the steady state obtained as a station-

ary solution of the Euler equations. Within an optimal growth model with

heterogeneous agents, the steady state has to be considered along two di-

mensions. At the aggregate level, an interior steady state is a sequence

(kt, yt, ℓt) = (k∗, µk∗, ℓ∗), ∀t ≥ 0 , with xt = x∗ = T (k∗, µk∗, ℓ∗), pt = p∗ =

−T2(k
∗, µk∗, ℓ∗), rt = r∗ = T1(k

∗, µk∗, ℓ∗) and wt = w∗ = T3(k
∗, µk∗, ℓ∗),

that solves the Euler equations (13)-(14). Since T (k, y, ℓ) is a linear homo-

geneous function, and denoting κ = k/ℓ, an aggregate steady state may be

also defined as a pair (κ∗, ℓ∗).

At the individual level, an interior steady state for agent i is a sequence

of consumption and labor supply (xit, lit) = (x∗i , l
∗
i ) that solves the first order

conditions corresponding to the individual maximization of the intertempo-

ral utility function (1) subject to the intertemporal budget constraint (2).

Of course, the whole set of individual steady states (x∗i , l
∗
i ), i = 1, . . . , n,

satisfy x∗ =
∑n

i=1 x
∗
i and ℓ∗ =

∑n
i=1 l

∗
i . Moreover, the endogenous trade-off

between consumption and leisure implies that these stationay values of in-

dividual consumption and labor supply depend on the initial distribution of

10



capital θ = (θi)
n
i=1 with θj = 1−

∑n
i=1,i6=j θi. We then provide a comparative

statics analysis based on the consideration of an increase of some θi which

necessarily implies a decrease of some other θj, everything set equal beside.

Theorem 1. Let Assumptions 1 and 2 hold. Then:

i) There exists a unique aggregate steady state (κ∗, ℓ∗) which is the solu-

tion to the following pair of equations

−
T1(κ, µκ, 1)

T2(κ, µκ, 1)
= f1

1 (k1(κ, µκ, 1), l1(κ, µκ, 1)) = (δϑ)−1

u′(ℓT (κ, µκ, 1))T3(κ, µκ, 1) − v′(ℓ) = 0

with ϑ = [1 − δ(1 − µ)]−1.

ii) If v′i(l̄) < u′i((1− δ)ϑr∗κ∗ℓ∗θi) for any i = 1, . . . , n, there exist unique

steady state values for the individual consumptions x∗i (θ) ∈ (0, x∗) and labor

supplies l∗i (θ) ∈ (0, ℓ∗) that satisfy the following system

x∗i (θ) = w∗l∗i (θ) + (1 − δ)ϑr∗κ∗ℓ∗θi

u′i(x
∗
i (θ))w

∗ = v′i(l̄ − li(θ))
(15)

with w∗ = T3(κ
∗, µκ∗, 1), r∗ = T1(κ

∗, µκ∗, 1), ℓ∗ =
∑n

i=1 l
∗
i (θ) and x∗ =

ℓ∗T (κ∗, µκ∗, 1) =
∑n

i=1 x
∗
i (θ).

9

iii) x∗i (θ) and l∗i (θ) are C1-functions of θ, for any i = 1, . . . , n. Moreover,

a variation of the share θi implies for agent i

∂x∗
i (θ)

∂θi
> 0,

∂ℓ∗i (θ)
∂θi

< 0 (16)

and there is an agent j 6= i such that

∂x∗
j (θ)

∂θi
< 0,

∂ℓ∗j (θ)

∂θi
> 0 (17)

Remark 1. Using the linear homogeneity of T (k, y, ℓ), we get the following

expression of the wage rate at the steady state w∗ = x∗/ℓ∗ − (1− δ)ϑr∗κ∗ .

It follows from (15) that x∗i and l∗i can be also expressed as functions of the

aggregate steady state values for consumption x∗ and labor ℓ∗.

9In a similar but aggregate model, Sorger [36] shows that a continuum of stationary

equilibria occurs. In our framework, as the steady state is obtained for a given set of welfare

weights η, the same result is obtained and corresponds to the existence of a stationary

equilibrium for each η ∈ ∆.

11



The pair (κ∗, ℓ∗) is called the Modified Golden Rule. We may then

provide a characterization of the aggregate consumption and labor supply

(x∗, ℓ∗) which will be fundamental in the analysis of the link between wealth

inequality and macroeconomic volatility.

We introduce two elasticities characterizing the agents’ preferences: The

elasticity of intertemporal substitution in individual consumption

ǫix(xi) = −u′i(xi)/u
′′
i (xi)xi > 0 (18)

and the elasticity of the individual labor supply with respect to wage

ǫil(li) = dli
dw

w
li

= −v′i(l̄ − li)/v
′′
i (l̄ − li)li > 0 (19)

which is derived from the first order condition (15). From these expressions

we define the individual absolute risk tolerance indices for consumption and

labor as follows

ρi(xi) = ǫix(xi)xi, γi(li) = ǫil(li)li (20)

These are in fact the inverse of the corresponding absolute risk aversion.

Because leisure is an argument of the utility function, i.e. ǫil(li) > 0

for any i = 1, . . . , n, Theorem 1 implies that the individual decisions

(x∗i (θ), l
∗
i (θ)) and the aggregate levels of consumption and labor supply de-

pend on the initial distribution of capital. We have indeed:

Corollary 1. Let Assumptions 1 and 2 hold. Then ℓ∗ and x∗ are C1-

functions of θ, and ∂ℓ∗/∂θi > 0 if and only if

ǫj
l (lj)

ǫj
x(xj)

>
ǫi
l(li)

ǫi
x(xi)

(21)

Moreover, ∂x∗/∂θi = T (κ∗, µκ∗, 1)∂ℓ∗/∂θi.

Notice however that the aggregate consumption per worked hours, χ∗ =

x∗/ℓ∗, is invariant with respect to the initial distribution of capital, i.e.

∂χ∗/∂θj = 0 .

The main conclusions of Theorem 1 are quite intuitive. An increase of

agent i’s share of capital θi generates a higher wealth and allows him to

enjoy higher consumption xi and leisure Li . As a result his labor supply is

decreased. But at the same time, when θi is increased, there must be some

other agent j for which the share of capital is decreased as
∑n

i=1 θi = 1 and

thus θj = 1 −
∑n

i=1,i6=j θi. This explains why agent j has to lower his levels

12



of consumption xj and leisure Lj . As a result his labor supply is increased.

This explains the result of Theorem 1-iii).

Concerning the result of Corollary 1, the intuition is the following. From

a global point of view, an increase of θi will generate larger aggregate

amounts of consumption x∗ and labor ℓ∗ if agent i’s reaction is relatively

more important with respect to consumption and relatively less important

with respect to leisure than agent j’s reaction. This property is obtained

under condition (21).

5 Endogenous competitive business cycles

Near the steady state the behavior of the non-linear dynamic system (13)-

(14) is equivalent to the behavior of the linearized system. The dynamic

properties of the steady state are then related to the eigenvalues of the

Jacobian matrix associated with the linearized system. On the one hand,

the characteristic roots depend on the first and second order derivatives of

the social production function T (k, y, ℓ) through the relative capital intensity

difference across sectors

b(k, y, ℓ) = l0

T

(
k1

l1
− k0

l0

)
(22)

as well as on the elasticities of the consumption good’s output and the rental

rate with respect to the capital stock

εck(k, y, ℓ) = T1k/T > 0, εrk(k, y, ℓ) = −T11k/T1 > 0 (23)

Notice that b(k, y, ℓ) > (<)0 if and only if the investment (consumption)

good is capital intensive. As shown in Benhabib and Nishimura [5] and Bosi

et al. [9], the existence of endogenous fluctuations requires b(k, y, ℓ) < 0.

On the other hand, the characteristic roots depend on the first and

second order derivatives of the social utility function through some standard

curvature indices.

Definition 1. Let U(x, ℓ) = u(x) − v(ℓ) be the social utility function, as

defined by (8) and Lemma 1 , and ρ(x) = −u′(x)/u′′(x) > 0, γ(ℓ) =

v′(ℓ)/v′′(ℓ) > 0 be the social absolute risk tolerance respectively for con-

sumption and labor.

As shown in Wilson [38], the social absolute risk tolerance indices are

obtained from the individual ones, given by (20). The resulting expressions

are

13



ρ(x) =

n∑

i=1

ρi(xi(θ)), γ(ℓ) =

n∑

i=1

γi(li(θ)) (24)

For given discount factor δ and technology parameters (b, εck, εrk), the local

stability properties of the steady state also depend on ℓ∗, ρ(ℓ∗T ∗) and γ(ℓ∗).

Notice that the model with inelastic labor can be obtained by assuming

γ(ℓ∗) = 0.

As explained in Section 4, our strategy of analysis consists in character-

izing the competitive equilibrium through the analysis of the Pareto optimal

solution of the central planner’s program (10). The equilibrium path is then

the solution to the planner’s intertermporal maximation problem, where

the planner’s utility, or social utility, is the sum of the individual utilities

weighted by the welfare weights. Consequently, the social utility function

depends on the welfare weights, which themselves depend on the equilibrium

allocations that in turn depend on the initial condition and on the distribu-

tion of individual capital endowments. This means that without regularity

properties of the welfare weights, the local stability of the steady state can-

not be obtained directly from the local stability of the planner’s optimum

with fixed welfare weights.

In fact, we have shown in Theorem 1 and Corollary 1 that the aggregate

and individual steady states are continuous functions of the distribution

of capital shares θ = (θi)
n
i=1. As shown in Kehoe et al. [27] and Santos

[35], if the value function of the dynamic optimization program (10) is twice

continuously differentiable, the welfare weights are continuous functions of

θ, and the local dynamic properties of the competitive equilibrium can be

analyzed from the planner’s problem defined in terms of the social utility

function with welfare weights fixed at their steady state value. Indeed, local

stability means that with initial conditions slightly away from the steady

state, the welfare weights will be close to their steady state values. The

following Lemma gives a sufficient condition for the C2 -differentiability of

the value function of the dynamic optimization program (10) and thus for

the continuity of the welfare weights.

Proposition 1. Under Assumptions 1 and 2, the welfare weights

(η1, . . . , ηn) ∈ ∆ are continuous functions of the initial individual shares

of capital θ = (θi)i=1 if for any (kt, kt+1, ℓt) ∈ intD:

14



T2(kt, kt+1 − (1 − µ)kt, ℓt)

+ b(kt, kt+1 − (1 − µ)kt, ℓt)T1(kt, kt+1 − (1 − µ)kt, ℓt) 6= 0
(25)

A sufficient condition for (25) to hold is b(kt, kt+1 − (1 − µ)kt, ℓt) ≤ 0, i.e.

the consumption good is capital intensive.

From (24) and Proposition 1 we derive that ρ(x) and γ(ℓ) are continuous

functions of the initial individual shares of capital θ = (θi)
n
i=1. As a direct

consequence, we finally conclude that the dynamic properties of the com-

petitive equilibrium can be analyzed from the planner’s problem defined in

terms of the social utility function with fixed welfare weights.

Proposition 2. Under Assumptions 1 and 2, let condition (25) hold. Then

the stability properties of the steady state of the general equilibrium model

with equilibrium welfare weights and of the optimal growth model with ap-

propriate fixed welfare weights are equivalent.

Building on Proposition 2, we consider from now on capital intensity

configurations under which condition (25) is satisfied and we pursue our

analysis of the equilibrium path of the optimal growth model with welfare

weights fixed at their steady state values. Our objective is to derive a

relationship between the local dynamical properties of the equilibrium path

in a neighborhood of the steady state and the degree of inequality in the

economy referering to the distribution of capital across agents.

As we will measure wealth inequality through the vector θ of shares of

capital and since the stability properties of the steady state depend on the

absolute risk tolerence indices (as well as on technology) it is useful to define

the bounds of the intervals of the admissible values for ρ(x) and γ(ℓ) when

the distribution of individual capital shares θi spans the feasible set. Let

ρ = min
θ
ρ(x∗(θ)), ρ̄ = max

θ
ρ(x∗(θ)), γ = min

θ
γ(ℓ∗(θ)), γ̄ = max

θ
γ(ℓ∗(θ))

We then have by definition ρ(x∗(θ)) ∈ (ρ, ρ̄), γ(ℓ∗(θ)) ∈ (γ, γ̄). As we will

see there are many situations in which these bounds nay be computed.

We are now ready to relate the stability of the steady state with the

absolute risk tolerance indices. However, first we analyse the role of tech-

nology. As shown in Bosi et al. [9], the existence of endogenous fluctuations

in a two-sector optimal growth model with elastic labor requires a capital
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intensive consumption good with b ∈ (−1/(1 − µ), 0). The intuition for

this fact, initially provided by Benhabib and Nishimura (1985), is based on

the Rybczinsky theorem: an instantaneous increase in the capital stock kt

implies a decrease of the output of the capital good yt which lowers the

investment and the capital stock in the next period kt+1. But, from the

same mechanism, this decrease of kt+1 implies an increase of the output of

the capital good yt+1 which increases the investment and the capital stock

in period t + 2, kt+2. Fluctuations of the capital stocks are obtained if

this mechanism is strong enough with respect to the depreciation rate of

capital.10 It is worth noticing that the restriction on the capital intensity

difference across sectors appears to be compatible with recent empirical ev-

idences. Building on aggregate Input-Output tables, Takahashi et al. [37]

have shown that over the last 30 years the OECD countries are characterized

by a more capital intensive consumption good sector than the investment

good sector.

The properties of preference also matter in the existence of fluctuations

via the absolute risk tolerence indices. Indeed, the existence of persistent

fluctuations requires two main ingredients. On the one hand, the agents

have to accept fluctuations in their consumption levels and thus need a

large enough elasticity of intertemporal substitution in consumption, i.e. a

large enough absolute risk tolerance with respect to consumption. On the

other hand, as labor is supplied endogenously a low enough elasticity of the

labor supply, i.e. a low enough absolute risk tolerance with respect to labor,

is necessary in order to prevent the agents from smoothing the fluctuations

of their wage and capital incomes implied by the fluctuations of the capital

stock.

The following two Propositions are adapted from Proposition 4 in Bosi

et al. [9] and will be the basis for our main results stated in the next Section.

The first one deals with the existence of damped fluctuations. Consider the

following two critical values for ρ(x∗) and γ(ℓ∗):

ρc = − δϑ2εckx∗

b[1+(1−µ)b]εrk
≡ Λcx

∗

γc = −
1−s

s

“

1
1−µb

”2
[(1−δ)ϑ+ 1−s

s ]b[1+(1−µ)b]
h

1−s
s

b
1−µb

+δϑ
ih

1−s
s

1+(1−µ)b
1−µb

+ϑ
i [ρ(x∗) − ρc] ≡ Γc [ρ(x∗) − ρc]

(26)

10From the capital accumulation equation in (7), we easily get dkt+1/dkt = b−1 +1−µ.
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and assume b ∈ (−1/(1 − µ),−1/(2 − µ)] ∪ [−δ/(1 + δ(1 − µ)), 0) so that

ρc > 0, and γc > 0 for ρ(x∗) > ρc.

Proposition 3. Under Assumptions 1 and 2, let the consumption good be

capital intensive with b ∈ (−1/(1 − µ),−1/(2 − µ)] ∪ [−δ/(1 + δ(1 − µ)), 0).

1. If ρ(x∗) < ρc, then for any γ(ℓ∗) ∈ (γ, γ̄), the steady state is saddle-

point stable with monotone convergence.

2. If ρ(x∗) > ρc, then the steady state is saddle-point stable with mono-

tone convergence when γ(ℓ∗) > γc while it is is saddle-point stable with

oscillating convergence when γ(ℓ∗) < γc.

Notice that the existence of damped fluctuations requires ρc < ρ̄ and

γc ∈ (γ, γ̄).

The second Proposition focusses on the existence of persistent oscilla-

tions. Let us introduce the following additional critical value:

ρf = − 2δ(1+δ)ϑ2εckx∗

[1+(2−µ)b]
[
δ+[1+(1−µ)δ]b

]
εrk

≡ Λfx
∗

γf = −
1−s

s

“

1
1−µb

”2
[(1−δ)ϑ+ 1−s

s ][1+(2−µ)b][δ+b(1+δ(1−µ))]
h

1−s
s

1+(2−µ)b
1−µb

+(1+δ)ϑ
ih

1−s
s

δ+b(1+δ(1−µ))
1−µb

+2δϑ
i [ρ(x∗) − ρf ]

≡ Γf [ρ(x∗) − ρf ]

(27)

and assume b ∈ (−1/(2 − µ),−δ/(1 + δ(1 − µ))) so that 0 < ρc < ρf , and

0 < γf < γc when ρ(x∗) > ρf .

Proposition 4. Under Assumptions 1 and 2, let the consumption good be

capital intensive with b ∈ (−1/(2 − µ),−δ/(1 + δ(1 − µ))).

1. If ρ(x∗) < ρc, then for any γ(ℓ∗) ∈ (γ, γ̄), the steady state is saddle-

point stable with monotone convergence.

2. If ρ(x∗) ∈ (ρc, ρf ), then the steady state is saddle-point stable with

monotone convergence when γ(ℓ∗) > γc while it is is saddle-point stable with

oscillating convergence when γ(ℓ∗) < γc.

3. If ρ(x∗) > ρf , then the steady state is saddle-point stable with mono-

tone convergence when γ(ℓ∗) > γc, saddle-point stable with oscillating con-

vergence when γ(ℓ∗) ∈ (γf , γc) and becomes locally unstable with oscillating

divergence when γ(ℓ∗) < γf . Moreover, γf is a flip bifurcation value and

there generically exist period-two cycles, in a left (or right) neighborhood of

γf , which are saddle-point stable (or unstable).
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Notice that ρf < ρ̄ and γf ∈ (γ, γ̄) are necessary conditions for the

existence of persistent oscillations.

6 The role of wealth inequality on output volatil-

ity

In this section we explore the link between wealth inequality and stabil-

ity. Focussing on inequality rises two issues. The first concerns the eco-

nomic variable under consideration. In the model, the primitives are the

shares in initial capital, hour endowments and preferences. However, the

relationship between these fundamentals and individual wealth at equilib-

rium is not straightforward because of the role of labor supply. Strictly

speaking, consumers use their income to buy the consumption good and

to consume leisure time. As time discount is identical across individuals,

their consumption along the steady state is a good representation of indi-

vidual wealth. Furthermore, in the present model commodity prices, inter-

est rates and wages are independent of the distribution of capital shares,

a property that greatly simplifies the computations. Formaly, the individ-

ual consumption is implicitly defined by equations (15). It follows that

along the steady state the individual wealth Ωi(θ) of an agent i is given by

Ωi(θ) =
∑∞

t=0 δ
txi

∗(θ) = 1
1−δ (w∗l∗i (θ) + (1 − δ)ϑr∗κ∗ℓ∗(θ)θi) ≡ φi(θ), i.e. it

depends on the individual labor supply and the steady state values of aggre-

gate labor which themselves depend on the vector of shares θ. Consequently,

the distribution of the initial shares of capital θ = (θi)
n
i=1 determines com-

pletely the distribution of individual wealth Ω = (Ωi(θ))
n
i=1. The notions of

inequality in wealth or in shares of capital will then be used equivalently.

The second issue concerns the characterization of inequality. On the ba-

sis of Propositions 3 and 4, we need a measure of wealth inequality which

can be linked with the steady state values of the absolute risk tolerance

indices ρ(x∗) and γ(ℓ∗). As the steady state values x∗ and ℓ∗ are functions

of the distribution θ = (θi)
n
i=1, we then consider a simple definition of in-

creasing inequality based on the distribution of shares of capital and on the

Pigou-Dalton transfer principle.

Definition 2. Assume that the n agents are ordered according to their ini-

tial share of capital in decreasing order, i.e. θi ≥ θj for i < j. Con-
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sider a benchmark economy A characterized by a distribution θA = (θA
k )nk=1.

There is a larger inequality in some economy B if the associated distribu-

tion θB = (θB
k )nk=1 is such that θA

i < θB
i and θA

j > θB
j for some agents i, j

such that j > i, while for the remaining agents k 6= i, j, θk is unaffected.

Such a case in which economy A is less unequal than economy B is denoted

θA ≺I θ
B.

We consider bi-lateral transfers between two agents i, j in which agent i,

who owns intially a larger share of capital than agent j, ends up holding an

even larger share while agent j, who initially owns a lower share of capital,

ends up with an even lower share. Notice also that the transfers are mean-

preserving so that the two distributions θA = (θA
k )nk=1 and θB = (θB

k )nk=1

may be easily compared.

The fact that wealth inequality may have an effect on macroeconomic

volatility is a consequence of Propositions 3 and 4. Indeed, as shown by

Theorem 1 and Corollary 1, a modification of the distribution of shares of

capital θ implies modifications of ρ(x∗) and γ(ℓ∗). Then the local stability

properties of the steady state are affected by changes in the wealth distri-

bution provided ρ(x∗), ρc and ρf on the one hand, and γ(ℓ∗), γc and γf on

the other hand, are changed at the same rate. In fact, the critical values

ρc, ρf , γc, γf are not constant but are linear functions of x∗ and ℓ∗ respec-

tively. In the optimal growth literature (see Benhabib and Nishimura [5])

this fact generates the usual difficulty that the conditions for local stability

or for the occurrence of cycles are implicit. In the present analysis, this

fact allows for the existence of a correlation between wealth inequality and

instability provided the social absolute risk tolerance indices ρ(x∗) and γ(ℓ∗)

are not linear functions of x∗ and ℓ∗. The difficulty is that the curvature

of these indices involves the third and fourth order derivatives of the utility

function, which are not limited by the standard assumptions on preferences.

However, an important point is that the non linearity of the social abso-

lute risk tolerance indices ρ(x∗) and γ(ℓ∗) does not requires the non lineariry

of the individual absolute risk tolerance indices. Building on Wilson [38],

Hara et al. [25] have recently provided a characterization of the curvature

properties of the social absolute risk tolerance index for consumption. Ap-

plied to our formulation and recalling from Remark 1 that the individual

stationary values for consumption x∗i are functions of the aggregate con-

sumption level x∗, we get from formula (24):
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Proposition 5. (Hara et al. [25]) The curvature of the social absolute risk

tolerance with respect to consumption is given by

ρ′′(x) =

n∑

i=1

(
∂xi

∂x

)2

ρ′′i (xi) +
1

ρ(x)

n∑

i=1

∂xi

∂x

[
ρ′i(xi) − ρ′(x)

]2
(28)

with

ρ′(x) =

n∑

i=1

∂xi

∂x
ρ′i(xi) (29)

A similar conclusion is obviously obtained for the social absolute risk

tolerance with respect to labor. This result shows that non linear social

indices are obtained either when the individual indices are themselves non

linear, or when there is some heterogeneity in agents’ preferences. We thus

introduce the following additional Assumption on individual preferences:

Assumption 3. Either agents have homogeneous preferences characterized

by non-linear ρi(xi) and γi(li), or agents have heterogeneous preferences.

Assumption 3 is not trully restrictive as we know that with homogeneous

preferences leading to linear ρi and γi, inequality has no effect on stability.

Building on Theorem 1 and Corollary 1, we need also to introduce condi-

tions that characterize the relationship between the aggregate steady state

and the distribution of individual wealth. Consider the bound Λj and Γj,

j = c, f , defined by (26) and (27), and let us denote Υj = ΓjT
∗ [ρ′(x∗) − Λj ].

Definition 3. Let (Ψ,Φ) ∈ {(Λc,Υc), (Λf ,Υf )} be given. Agents i and j

are said to be elasticity-ordered if and only if one of the following sets of

conditions hold:

i) ǫjl (lj)/ǫ
j
x(xj) < ǫil(li)/ǫ

i
x(xi), ρ

′(x∗) < Ψ and γ′(ℓ∗) > Φ,

ii) ǫjl (lj)/ǫ
j
x(xj) > ǫil(li)/ǫ

i
x(xi), ρ

′(x∗) > Ψ and γ′(ℓ∗) < Φ.

Conditions i) and ii) are motivated by the result in Corrolary 1. They ensure

that the aggregate labor supply is a decreasing or an increasing function of

the share of capital θi owned by agent i and thus require different properties

for the slopes of ρ(x∗) and γ(ℓ∗). We will then consider a transfer between

agents i and j with i < j, i.e. θi > θj. As θ = (θi)
n
i=1 with θj = 1 −∑n

k=1,k 6=j θk, this transfer will be such that the new distribution of capital

shares is θ̃ = (θ̃i)
n
i=1 with θ̃i = θi + ǫ, θ̃j = θj − ǫ and ǫ > 0.11

11Notice that many transfers may be considered consecutively.
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In order to simplify the formulation, we now introduce two different types

of assumption concerning the capital intensity difference that are based on

Propositions 3 and 4.

Assumption 4. The consumption good is capital intensive with b ∈

(−1/(1 − µ),−1/(2 − µ)] ∪ [−δ/(1 + δ(1 − µ)), 0), (Ψ,Φ) = (Λc,Υc), ρc < ρ̄

and γc ∈ (γ, γ̄).

Assumption 5. The consumption good is capital intensive with b ∈

(−1/(2 − µ),−δ/(1 + δ(1− µ))), (Ψ,Φ) = (Λf ,Υf ), ρf < ρ̄ and γf ∈ (γ, γ̄).

Moreover, γf is a flip bifurcation value giving rise to saddle-point stable

period-two cycles in its left neighborhood.

Assumption 4 is linked to the existence of damped fluctuations while

Assumption 5 concerns the occurrence of persistent fluctuations. Although

this last assumption concerns non trivial restrictions on the non-linear part

of the Euler equation, a number of robust examples of saddle-point stable

period-two cycles have been provided by Boldrin and Deneckere [8] and

Mitra and Nishimura [28].

The following Theorem is the most general result of the paper. It shows

that under the stated conditions a sufficiently high level of wealth inequality

leads to endogenous business cycle fluctuations in a neighborhood of the

steady state.

Theorem 2. Let Assumptions 1, 2 and 3 hold, together with either As-

sumption 4 or Assumption 5. Let ≺R
I be the restriction of ≺I to the pairs

of elasticity-ordered agents according to Definition 3. Then there exists a

distribution θ0 such that one of the following cases holds:

1 - If Assumption 4 is satisfied, the steady state is saddle-point stable

with monotone convergence for any economy E such that θE ≺R
I θ0 and is

saddle-point stable with oscillations otherwise.

2 - If Assumption 5 is satisfied, the steady state is saddle-point stable

with oscillating convergence for any economy E such that θE ≺R
I θ0 and is

unstable with oscillating divergence otherwise. Moreover, there generically

exist saddle-point stable period-two cycles for any economy E characterized

by a distribution θE in a right neighborhood of θ0.
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The results contained in the previous theorem are at the same time very

general and specific. They can be viewed as general as no restriction is im-

posed on the distribution of wealth and both technology and preferences are

not bound to belong to any given analytical class, as for example we do not

impose them to be CES. They are also specific in the sense that the restric-

tion to redistributions satisfying the property formalised in Definition 3 is

necessary because we state the result without specifying the set of feasible

wealth distributions. In fact, this condition is not necessary when individual

wealth follows a Pareto distribution.

In the following two Sections we will sharpen our results by imposing

reasonable restrictions on the fundamentals. The next Section restricts the

attention to Pareto distributed individual wealth and preferences giving rise

to individual absolute tolerance to risk which are not linear. The second

next Section deals with the case in which the absolute tolerance to risk are

linear. In this case, a preference heterogeneity is necessary, even in a very

mild form, but the conclusions hold independently of the wealth distribution.

Finally, note that the results in Theorem 2 are obtained provided the

stated conditions on absolute risk tolerance index for consumption ρ(x∗)

hold. This is important in respect with two recent contributions. First,

as shown in Calvet et al. [12],12 an increasing social absolute risk toler-

ance ρ(x) is obtained when the individual absolute risk tolerance indices

are increasing.13 Second, Guiso and Paiella [24] have provided an empirical

investigation of the absolute risk tolerance. They use household survey data

to construct a direct measure of absolute risk tolerance based on the maxi-

mum price a consumer is willing to pay to buy a risky security. They relate

this measure to consumers’s endowment and attributes, and to measures

of background risk and liquidity constraints. They find that risk tolerance

is an increasing function of endowment. Theorem 2 then shows that with

some appropriate restrictions on the slopes of ρ(x∗) and γ(ℓ∗) which are

compatible with standard positive individual elasticities of intertemporal

substitution in consumption and of the labor supply, more wealth inequality

generates more macroeconomic volatility.

12See also equation (29) in Proposition 5.
13Using (15) in Theorem 1 and Remark 1, and applying the same methodology as in

Appendix 11.2 (proof of Theorem 1), it is easy to show that ∂xi/∂x > 0 and ∂li/∂ℓ > 0

for any i = 1, . . . , n.
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7 The role of inequality when wealth is Pareto dis-

tributed

The analysis presented so far holds for arbitrary distributions of shares in

initial capital. However, there is strong empirical evidence that income and

wealth distributions follow specific patterns and that these are persistent.

In the case of the US economy, over the last century the data are character-

ized by skewed distributions of income and wealth with relatively large top

shares,14 and with heavy upper tails (power law behavior).15 Building on

these characteristics, in this Section we restrict the analysis to the family of

Pareto wealth distributions and investigate the effect of increasing inequal-

ities on the dynamics within this familly. Pareto wealth distributions are

common choices as they are skewed to the right, display a heavy upper tail

(slowly declining top wealth shares) and are very concentrated.

In the case of Pareto distributed wealth a useful result is that the Gini

index G is connected to the exponent α of the Pareto distribution by

G = 1
2α−1

Therefore, within this class of wealth distributions, large values of α corre-

spond to more equal societies. Estimates of G vary greatly depending on

the country and on the used data set. For the US in the 90’s some studies

indicate a Gini index as high as 0.78. Across countries the Gini index typi-

cally varies between 0.2 for very equal societies to 0.8 for unequal societies.

These bounds on G imply a range for α, α = 1
2G + 1

2 ∈ [1.125, 3], where the

upper bound is for the most unequal societies. As the degree of inequality

is directly given by the Gini index G throughout the parameter α, our aim

is then to show that variations of α imply variations of the absolute risk

tolerance indices ρ(x∗) and γ(ℓ∗).

It should be noted that while Pareto distributions appear to cover some

stylized facts characterizing the data, there are however several issues related

to this specific choice. First, Pareto distributions are not a good represen-

tation of the empirical distribution for low values of individual wealths. For

the low wealth region, log-normal distributions provide a better fit. A sec-

ond problem is that Pareto distributions have unbounded support, a fact

14See Piketty and Saez [33], Wolff [39, 40].
15See Nirei and Souma [32].
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that generates a bias when compared to the data. Finally, a third set of

issues concern whether the variable is continuous or discrete and whether

it is assumed that the population is finite and countable or not. As the

present model is specified for a discrete and finite set of individuals, we need

to focus on the discrete version of the Pareto distribution, which is the Zeta

distribution. In this case, the variable itself is also discretized.

7.1 The Zeta distribution and its implementation

The discrete version of the Pareto distribution is the Zeta distribution. Note

that for a discrete random variable, the associated probability measure µ

has a countable support S = {x1, x2, ...} and µ is completely determined by

µ(x1), µ(x2), .... In the case of the Zeta distribution S is normalized in a way

such that S = {1, 2, 3, ...}

Definition 4. The Zeta distribution is characterized by the probability mea-

sure µ defined for natural values s ∈ N with µ(s) = s−α
P∞

j=1 j−α .

We will assume that the true distribution of wealth is a Zeta distribution

in which the support S is obtained by letting s = w
wmin

where w is individual

wealth and wmin the minimum of w, i.e. the subsistence level of wealth.

This implies that wealth can only take values which are multiples of wmin.

The model of the present paper involves a countable and finite population

n. This implies that only integer values of µ(s)n can be modeled. However,

in the sequel we show that for a sufficiently large population n, the Zeta

distribution can be approximated by a distribution µ̂ (of finite support) with

integer values of µ̂(s)n for all s. We also show that this distribution can be

decentralized, i.e. it is implementable. Consider the following definition.

Definition 5. Let µ be the probability measure associated to the Zeta dis-

tribution. Let Γn be the distribution with probability measure ηn such that

when µ(s)n /∈ N
∗, ηn(s) is defined by the condition |µ(s) − ηn(s)| < 1/2n

with ηn(s)n ∈ N
∗, and when µ(s)n ∈ N

∗, ηn(s) = µ(s).

For sufficiently large populations, Γn is a good approximation to the

original Zeta distribution. Indeed, if we consider the sequence of economies

indexed by their population n and characterized by a measure ηn we get:
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Lemma 2. The sequence of distributions Γn of measure ηn converges to the

distribution of measure µ, i.e. limn→∞ |µ(s) − ηn(s)| = 0 for all s.

The previous results implies the following.

Corollary 2. For any (xmin, α, ǫ, ε) with xmin > 0, 0 < α < 1, ǫ > 0, ε > 0,

there exists n0 such that for any n > n0, there exists a distribution Γ = Γn

of measure η = ηn such that nη(s) only takes integer values for all s ∈ N and

which is ǫ-close to the original Zeta distribution, i.e. ‖η − µ‖ < ǫ, where ‖.‖

is the weak (pointwise) norm for distributions. Furthermore, the associated

Gini index is ε-close to 1/(2α − 1) :∣∣∣G(Γ) − 1
2α−1

∣∣∣ < ε

The final issue is wether the distribution η can be implemented. We obtain

the following conclusion

Lemma 3. The distribution Γ of measure η obtained in Corollary 2 corre-

sponds to a feasible finite sequence of individual endowments in initial capital

θ, with
∑n

i=1 θi free but finite.

We may then consider that the distribution of individual wealth follows

with a sufficiently high level of approximation a Zeta distribution. As noted

above, along the steady state the distribution of wealth and the distribution

of individual consumption are identical.

Assumption 6. Individual wealth is distributed according to a Zeta distri-

bution of support S = {wmin, 2wmin, 3wmin, ...}

7.2 Inequality, Gini index and endogenous fluctuations

In order to obtain clear results we assume that agents are homogeneous

with respect to their utility function and we focus on a specific class of

preferences which corresponds to the slightest deviation with respect to the

CRRA formulation.

Assumption 7. Individual preferences are such that individual absolute

risk tolerance indices regarding consumption and leisure are of the form

ρi(xi) = −
u′

i(xi)
u′′

i (xi)
=

xϕ
i
σ and γi(li) = −

v′i(Li)
v′′i (Li)

= (l̄−Li)
ν

γ =
lνi
γ

with σ, ϕ, γ, ν > 0 and where Li = l − li is individual leisure.
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The class of preferences generating such individual risk tolerances is large

and includes the CES (or CRRA) utility function. In fact a sufficient con-

dition is that

u′i(xi) = exp

(
−σ

x1−ϕ
i

1−ϕ

)
and v′i(Li) = exp

(
γ (l̄−Li)1−ν

1−ν

)
(30)

For consumption, when ϕ < 1 individual absolute risk tolerance ρi(xi) is a

strictly concave function while for ϕ > 1, ρi(xi) is a strictly convex. When

ϕ 6= 1 and according to Gollier [23], the most plausible value for σ is σ = 2.

The CRRA specification is obtained when ϕ = 1. In this case x1−ϕ
i /(1 − ϕ)

becomes log xi and u′i(xi) = exp(−σ log xi) = x−σ
i . The associated utility

function is then ui(xi) = x1−σ
i /(1 − σ). A similar expression holds for the

utility of leisure. As a result, choosing values for ϕ and ν close enough to

one allows to consider individual absolute risk tolerance indices arbitarily

close to the linear formulation characterizing CRRA utility functions.

From Assumption 6 normalized incomes follow a Zeta distribution. As

noted before, along the steady state we have xi = ωi so that normalized

individual consumption x̃i = xi/xmin also follows a Zeta distribution. The

associated value of ρ(x) is

ρ(x) =
xϕ
min
σ

ζ(α−ϕ)
ζ(α) = ρ̄(α) (31)

where ζ(α) =
∑∞

s=1 s
−α is the Riemann Zeta function. Notice that to ensure

a finite value for ζ(α−ϕ) we need to assume α > 1+ϕ. From the distribution

of consumption we compute the risk tolerance to leisure as follows

γ(ℓ) =
x

1−ϕ
1−ν ν

min
γ

[
ν−1

γ(1−ϕ) [σ − (1 − ϕ)ŵ]
] ν

1−ν ζ(α+ 1−ϕ
ν−1

ν)

ζ(α) ≡ γ̄(α) (32)

with ŵ = logw and w as defined in (6). As soon as (ν − 1)(1 − ϕ)[σ −

(1 − ϕ)ŵ] > 0, the functions ρ̄(α) and γ̄(α) are respectively decreasing and

increasing in α. As inequalities increase when α decreases, we conclude that

ρ(x∗) = ρ̄(α) and γ(ℓ∗) = γ̄(α) are respectively increasing and decreasing

functions of the level of inequality.

If the technologies are such that Assumption 4 or 5 holds, we then derive

the following result:

Theorem 3. Let Assumptions 2, 6 and 7 hold, together with either As-

sumption 4, or Assumption 5. Assume also that (1 − ϕ)ŵ ≤ 0 , α > 1 + ϕ

and (ν − 1)(1 − ϕ) > 0. Then there exists σ̄ > 0, ᾱ > 1 + ϕ and a level

of wealth inequality characterized by a Gini index Ḡ = 1/(2ᾱ− 1) such that
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when σ ∈ (0, σ̄), one of the following cases holds:

1 - If Assumption 4 is satisfied, the steady state is saddle-point stable

with monotone convergence for any economy E such that GE < Ḡ and is

saddle-point stable with oscillations otherwise.

2 - If Assumption 5 is satisfied, the steady state is saddle-point stable

with oscillating convergence for any economy E such that GE < Ḡ and is

unstable otherwise. Moreover, there generically exist period-two cycles, in a

right neighborhood of Ḡ, which are saddle-point stable.

Theorem 3 improves the results of Theorem 2 when wealth is Pareto

distributed. Importantly, we drop any restriction on the set of agents where

the redistributions can take place. We provide in this particular case clear-

cut conditions on the level of wealth inequality to get endogenous business

cycle fluctuations. We show indeed that an increase of the Gini index implies

the occurrence of macroeconomic volatility. Of course such a result is based

on a large enough individual elasticity of intertemporal substitution xϕ−1
i /σ

as each consumer has to accept fluctuations of his consumption level.

Notice that if ϕ = 1, i.e. if the utility function is of the CES type with

respect to consumption, the expression (56) no longer depends on α, while

if ν = 1, i.e. if the utility function is of the CES type with respect to leisure,

the expression (56) is equal to zero as limν→1 ζ(α + (1 − ϕ)ν/(ν − 1)) = 1.

Therefore, when (ν−1)(1−ϕ) = 0 the occurrence of endogenous fluctuations

no longer depends on the degree of inequality. As the nature of the results

does not depend on whether ϕ, ν < 1 or ϕ, ν > 1, the problem occurring at

ϕ = 1 or ν = 1 can be considered as a discontinuity corresponding to the

fact that Assumption 3 is not satisfied. It is worth pointing out however

that Theorem 3 still holds for any values of ϕ or ν arbitrarily close to one.

8 The role of inequality with heterogeneous CES

preferences

In Section 7, we have shown that large enough inequalities generate macroe-

conomic volatility when wealth is distributed in the economy according to a

Pareto distribution and the common utility function of each agent is charac-

terized by non linear individual risk tolerance to fluctuations in consumption

and leisure. However, these results do not apply to CES utility functions be-
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cause in this case risk tolerance is linear. In the current Section, we consider

a general distribution of wealth and introduce a mild heterogeneity across

agents concerning preferences. We then show that large enough inequalities

may generate macroeconomic volatility even with CES utility functions.

We assume that consumer i’s intertemporal utility function is given by

U(xi,Li) =
∞∑

t=0

δt

[
x1−σi

it

1 − σi
−

(l̄ − Lit)
1+γi

1 + γi

]
(33)

with δ ∈ (0, 1), σi ≥ 0 and γi ≥ 0. Consequently, ρi(xi) = xi/σi and

γi(li) = li/γi, with li = l̄ − Li. Notice that the individual absolute risk

tolerance indices are increasing functions of consumption and labor. As

mentioned previously (see footnote 13 ), it is easy to show that ∂xi/∂x > 0

and ∂li/∂ℓ > 0 for any i = 1, . . . , n, and Proposition 5 implies that the

aggregate absolute risk tolerance indices are also increasing functions of

consumption and labor.

We consider the simple case in which except agent 1, all the other n− 1

agents have identical preferences. More precisely, agent 1 is characterized

by the pair of parameters’ values (σ1, γ1), while each agent j = 2, . . . , n

is characterized by the common pair (σj , γj) = (σ, γ). We also assume

that all agents j = 2, . . . , n own the same share of capital θ2 while agent

1 owns a share θ1 > θ2. For a given share θ1 ∈ (1/n, 1), we thus derive

θ2 = (1 − θ1)/(n − 1).

The aggregate absolute risk tolerance indices are such that

ρ′(x) = ∂x1
∂x

1
σ1

+ ∂x2
∂x

n−1
σ > 0 γ′(ℓ) = ∂l1

∂ℓ
1
γ1

+ ∂l2
∂ℓ

n−1
γ > 0

It follows that for given values of (σ1, γ1) and a given set of technologies

leading to the bounds (Ψ,Φ), appropriate choices of (σ, γ) allow to satisfy

one of the two cases of the conditions reated to Definition 3 and thus show

that an increase of wealth inequality may generate macroeconomic volatility.

However, in order to prove that all the conditions of Theorem 2 may be

satisfied, we need to specify a set of production functions.

Following Nishimura et al. [29] and Nishimura and Venditti [30], let us

consider CES technologies such that

y0 =
(
α0l

1−1/ς
0 + α1k

1−1/ς
0

)ς/(ς−1)
, y1 =

(
β0l

1−1/ς
1 + β1k

1−1/ς
1

)ς/(ς−1)
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with α0 + α1 = β0 + β1 = 1. Both sectors are characterized by the same

elasticity of capital-labor substitution ς > 0. In order to simplify the formu-

lation, we assume that the capital stock fully depreciates within one period,

i.e. µ = 1. We have also to impose the following restriction

ς >
(
1 + lnβ1

lnδ

)−1
≡ ς̂ ∈ (0, 1)

in order to ensure the existence and uniqueness of the steady state values for

the capital-labor ratio κ∗ and the consumption per capita T ∗ = T (κ∗, κ∗, 1).

In order to show that the local stability of the steady state is modified

when the degree of wealth inequality is increased, i.e. when the value of θ1
is increased, we provide illustrations for each of the cases 1- and 2- exhibited

in Theorem 2. In the following results, we define an economy as a 8-uple

of parameters (α1, β1, ς, δ, σ1, γ1, σ, γ). Following Propositions 3 and 4, we

have to assume that the consumption good sector is capital intensive, namely

α1/α0 > β1/β0.

The next Proposition deals with the correlation between wealth inequal-

ity and the existence of damped oscillations.

Proposition 6. There exist a non-empty set of values of n and an open set

of economies (α1, β1, ς, δ, σ1, γ1, σ, γ) with ς > 1, 1 > σ1 > σ and γ > 1 > γ1,

such that case 1- in Theorem 2 holds. Then, a sufficiently high level of wealth

inequality leads to the existence of damped fluctuations in the neighborhood

of the steady state.

The following Proposition finally deals with the correlation between

wealth inequality and the existence of persistent fluctuations.

Proposition 7. There exist a non-empty set of values of n and an open set

of economies (α1, β1, ς, δ, σ1, γ1, σ, γ) with ς > 1, σ1 > 1 > σ and γ > γ1 ≥ 1,

such that case 2- in Theorem 2 holds. Then, a sufficiently high level of wealth

inequality leads to the existence of period-two cycles in the neighborhood of

the steady state.

Persistent fluctuations, i.e. the occurrence of saddle-point stable period-

two cycles, is obtained if the flip bifurcation is super-critical, i.e. if the second

part of Assumption 5 holds. In such a case, Proposition 7 shows that a low

level of wealth inequality is associated to the existence of damped fluctu-

ations in the neighborhood of the steady state, and an increase of wealth

29



inequality will lead to the occurrence of persistent fluctuations. Although

the second part of Assumption 5 corresponds to non-trivial conditions on

the non-linear part of the Euler equation, a number of robust examples pro-

vided in the literature on optimal growth show that these conditions are

usually satisfied.16

Propositions 6 and 7 then show that as soon as heterogeneous preferences

are considered, a positive correlation between wealth inequality and business

cycle fluctuations can be exhibited. Importantly, this can happpen even

with increasing individual absolute risk tolerance in accordance with recent

empirical findings by Guiso and Paiella [24].

9 The case with inelastic labor: comparisons and

further results

In Ghiglino and Venditti [22], we have considered a similar two-sector op-

timal growth model but with inelastic labor. In such a framework, the

aggregate amount of labor is normalized to 1 and each agent has a fixed

endowment of labor li such that
∑n

i=1 li = 1. Consumer i’s preferences are

then characterized by a discounted utility function of the form

U i(xi) =

∞∑

t=0

δtui(xit)

with ui(xi) satisfying the corresponding part of Assumption 1 . If we con-

sider the individual elasticities of the labor supply with respect to wage as

defined by (19), assuming inelastic labor supplies yields ǫil(li) = 0 for any

i = 1, . . . , n. It follows that the individual and social absolute risk toler-

ance indices for labor as defined by (20) and (24) are equal to zero, i.e.

γi(li) = γ(ℓ) = 0. A straightforward modification of Theorem 1 then gives

the individual steady states as follows

xi
∗(x∗, θi) = li [x∗ − (1 − δ)ϑT ∗

1 k
∗] + (1 − δ)ϑT ∗

1 k
∗θi (34)

where x∗ = T (k∗, µk∗, 1) ≡ T ∗ is the aggregate consumption which is now

independent from the distribution of wealth. Notice that the consumption

level x∗i of agent i only depends on the individual share of capital θi while

in the case of endogenous labor, x∗i depends on the whole distribution of

shares θ = (θi)
n
i=1.

16See for instance Boldrin and Deneckere [8] and Mitra and Nishimura [28].
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As the continuity of the welfare weights when labor is inelastic is obtained

under the same condition given in Proposition 1, simple modifications of

Propositions 3 and 4 when γ(ℓ) is set equal to 0 provide conditions for the

existence of damped and persistent fluctuations. Consider indeed the critical

bounds ρc and ρf respectively given by (26) and (27):

i) When b ∈ (−1/(1−µ),−1/(2−µ)]∪ [−δ/(1+ δ(1−µ)), 0), the steady

state is saddle-point stable with oscillations if ρ(x∗) > ρc.

ii) When b ∈ (−1/(2−µ),−δ/(1 + δ(1−µ))), the steady state is saddle-

point stable with oscillating convergence if ρ(x∗) ∈ (ρc, ρf ) with ρf a flip

bifurcation value, and there generically exist period-two cycles, in a right

(or left) neighborhood of ρf , which are saddle-point stable (or unstable).

As in the case with endogenous labor, we now show that a positive corre-

lation between wealth inequality an macroeconomic volatility can be easily

obtained in two basic configurations: either when agents have heterogeneous

preferences characterized by a linear absolute risk tolerance index under a

general unspecified distribution of wealth, or when agents have homogeneous

preferences characterized by a nonlinear absolute risk tolerance index under

a Pareto distribution of wealth.

9.1 Preferences heterogeneity and output volatility

Although the aggregate consumption level is independent of the initial dis-

tribution of wealth when labor is inelastic, a modification of the degree of

inequality based on bi-lateral transfers may still have an effect on the ag-

gregate value of the absolute risk tolerance index ρ(x∗). Indeed, building

on (24) and the criteria introduced by Rothschild and Stiglitz [34], Ghiglino

and Venditti [22] show that a rise of the degree of inequality characterizing

the distribution of capital shares θ = (θi)
n
i=1 increases the value of ρ(x∗)

provided this function is strictly convex. As the local stability properties of

the optimal path depend on the value of ρ(x∗), this implies that sufficiently

high levels of wealth inequality lead to endogenous fluctuations in a neigh-

borhood of the steady state if the social absolute risk tolerance ρ(x) is a

strictly convex function.

These conclusions a priori suffer from a strong limitation. Indeed, re-

strictions on the curvature of the aggregate absolute risk tolerance index

refer to the fourth order derivative of utility functions, and except weak
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indirect evidence given for instance by Gollier [23], the literature does not

provide a clear characterization of the sign of this derivative. From this

point of view, the conclusions obtained in Theorem 2 under elastic labor ap-

pear to be more powerful as they only refer to the third derivatives of utility

functions which have been recently characterized on empirical ground.17

However, Proposition 5 implies that a convex social absolute risk toler-

ance index is obtained even when the individual indices are linear as soon as

there is some heterogeneity of preferences across agents. As an illustration

of this last case, consider the class of preferences given by a HARA utility

function such that
ui(xi) = 1−σi

σi

(
aixi
1−σi

+ ei

)σi

(35)

with ai > 0, ei ≥ 0, σi > 0. The associated individual absolute risk tolerance

is then

ρi(xi) = xi
1−σi

+ ei
ai

As shown in Ghiglino and Venditti [22], if all agents have homogeneous

HARA preferences with (ai, ei, σi) = (a, e, σ), the social absolute risk tol-

erance is linear, i.e. ρ′′(x) = 0, and wealth inequality plays no role on the

occurrence of macroeconomic volatility.18 However, building on Proposition

5, we get from (34) that ∂xi/∂x > 0 and formula (28) implies ρ′′(x) > 0 as

soon as there are two agents i, j with different utility functions such that

(ai, ei, σi) 6= (aj , ej , σj).

Let us adapt Assumptions 4 and 5 to the case of inelastic labor.

Assumption 8. b ∈ (−1/(1 − µ),−1/(2 − µ)] ∪ [−δ/(1 + δ(1 − µ)), 0) and

ρc ∈ (ρ, ρ̄).

Assumption 9. b ∈ (−1/(2 − µ),−δ/(1 + δ(1 − µ))), ρf ∈ (ρ, ρ̄) and

the flip bifurcation generates saddle-point stable period-two cycles in a right

neighborhood of ρf .

We have then

Proposition 8. Assume that individual preferences are represented by util-

ity functions of the HARA class as defined by (35 ). If there exist at least

two agents i, j with utility functions such that (ai, ei, σi) 6= (aj , ej , σj), then

17See Guiso and Paiella [24].
18Indeed, ρ′′

i (xi) = 0 and when (ai, ei, σi) = (a, e, σ), then ρ′
i(xi) = ρ′(x) = 1/(1 − σ).
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the social absolute risk tolerance is convex and there exists a distribution θ0

such that one of the following cases holds:

i) If Assumption 8 is satisfied, the steady state is saddle-point stable

with monotone convergence for any economy E such that θE ≺I θ
0 and is

saddle-point stable with oscillations otherwise.

ii) If Assumption 9 is satisfied, the steady state is saddle-point stable

for any economy E such that θE ≺I θ
0 and is unstable otherwise. Moreover,

there generically exist period-two cycles for any economy E characterized

by a distribution θE in a right neighborhood of θ0, which are saddle-point

stable.

This Proposition provides a strong and clear-cut result in the sense that

individual HARA preferences always imply a positive relationship between

wealth inequality and macroeconomic volatility provided a slight amount of

preference heterogeneity across agents is considered.19

These results echo the conclusions obtained with endogenous labor. In-

deed, in Section 8 we considered an economy with heterogeneous agents

characterized by CES preferences leading to individual linear absolute risk

tolerance indices. With Theorem 2 we showed a positive correlation between

wealth inequality and macroeconomic volatility. Therefore, the present anal-

ysis show that this conclusion does not depend on whether the labor supply

is elastic or not and that it is compatible with standard utility functions.

9.2 Pareto wealth distribution and output volatility

As in Section 7 we assume now that the distribution of individual wealth

follows a Pareto distribution of parameter α (or more precisely its discrete

analogue as given by the Zeta distribution, see Assumption 6). We also

assume that agents are homogeneous with respect to their preferences and

focus on a specific class of preferences. In particular, we assume that As-

sumption 7 holds so that their preferences give rise to ρi(xi) = xϕ
i /σ, with

σ, ϕ > 0. The associated absolute risk tolerance index ρ(x) is obtained by

equation (54). For any value of ϕ ∈ (0, 1)∪ (1,+∞) such that α > 1 +ϕ we

19In Ghiglino and Venditti [22], we also provide illustrations of the correlation between

wealth inequality and macroeconomic volatility using homogeneous preferences character-

ized by a non linear individual absolute risk tolerance index. We use the specification as

given by Assumption 7 and (30).
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find that ρ(x∗) = ρ̄(α) is an increasing and convex function of the level of

inequality, because inequalities increase when α decreases (see Figure 1 in

Appendix 11.7 for an illustration). Supposing that the technology is such

that Assumption 8 or 9 holds, Theorem 3 implies the following result:

Proposition 9. Let Assumptions 2, 6 and 7 hold, together with either As-

sumption 8, or Assumption 9. Assume also that ϕ ∈ (0, 1) ∪ (1,+∞) and

α > 1+ϕ. Then there exists σ̄ > 0, ᾱ > 1+ϕ and a level of wealth inequality

characterized by a Gini index Ḡ = 1/(2ᾱ−1) such that when σ ∈ (0, σ̄), one

of the following cases holds:

1 - If Assumption 8 is satisfied, the steady state is saddle-point stable

with monotone convergence for any economy E such that GE < Ḡ and is

saddle-point stable with oscillations otherwise.

2 - If Assumption 9 is satisfied, the steady state is saddle-point stable

with oscillating convergence for any economy E such that GE < Ḡ and is

unstable otherwise. Moreover, there generically exist period-two cycles, in a

right neighborhood of Ḡ, which are saddle-point stable.

To conclude, we have shown that when individual wealth follows a Pareto

distribution, an increase in inequality cannot reduce the level of macroe-

conomic volatility, a result that holds independently of whether labour is

provided elastically or inelastically,

10 Conclusion

We have considered a two-sector optimal growth model with endogenous

labor and heterogeneous agents with respect to preferences and their cap-

ital share. We have provided conditions on the slopes of the absolute risk

tolerance indices for consumption and labor in order to get a positive cor-

relation between wealth inequality and macroeconomic volatility. We have

shown that such a conclusion is easily obtained either when the absolute

risk tolerance indices are non linear, even with homogeneous preferences, or

when the absolute risk tolerance indices are linear provided some degree of

preference heterogeneity across agents is introduced.
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11 Appendix

11.1 Proof of Lemma 1

Without loss of generality assume that there are three types of consumers.

Let ni be the number of agents of type i = 1, 2, 3 with n1 + n2 + n3 = n. It

is easy to show that all agents of the same type are given the same Pareto

weight.20 The social utility function is thus defined by

U(x, ℓ) = max
(xi,li)2i=1

{
η1n1u1(x1) + η2n2u2(x2) + η3n3u3((x− n1x1 − n2x2)/n3)

+ η1n1v1(l̄ − l1) + η2n2v2(l̄ − l2) + η3n3v3(l̄ − (ℓ− n1l1 − n2l2)/n3)
}

with ηi ≥ 0 and η1 + η2 + η3 = 1. The first and second order derivatives of

the social utility function can be related to the derivatives of the individual

utility function of the agents. Indeed, the first order conditions associated

with program (8) give

Ψ1(x1, x2, x; η1, η2) = η1n1u
′
1(x1) − η3n1u

′
3

(
x−n1x1−n2x2

n3

)
= 0 (36)

Ψ2(x1, x2, x; η1, η2) = η2n2u
′
2(x2) − η3n2u

′
3

(
x−n1x1−n2x2

n3

)
= 0 (37)

Φ1(l1, l2, ℓ; η1, η2) = −η1n1v
′
1(l̄ − l1) + η3n1v

′
3

(
l̄ − ℓ−n1l1−n2l2

n3

)
= 0 (38)

Φ2(l1, l2, ℓ; η1, η2) = −η2n2v
′
2(l̄ − l2) + η3n2v

′
3

(
l̄ − ℓ−n1l1−n2l2

n3

)
= 0 (39)

Notice that the first order conditions with respect to xi are independent from

the first order conditions with respect to li. It follows that the social utility

function is additively separable, i.e. U(x, ℓ) = u(x) − v(ℓ). The following

expressions are easily obtained

u′(x) = η3u
′
3

(
x−n1x1−n2x2

n3

)
= η1u

′
1(x1) = η2u

′
2(x2) > 0

u′′(x) = η1u
′′
1(x1)

∂x1
∂x

v′(ℓ) = η3v
′
3

(
l̄ − ℓ−n1l1−n2l2

n3

)
= η1v

′
1(l̄ − l1) = η2v

′
2(l̄ − l2) > 0

v′′(ℓ) = −η1v
′′
1 (l̄ − l1)

∂l1
∂ℓ

(40)

20The first order conditions associated with the maximization program (8) that defines

the social utility function give ηi = λ/u′
i(xi) with λ ≥ 0 the Lagrange multiplier associated

with the resources constraint. Consider then two agents j and k, j 6= k, of the same type,

i.e. such that uj = uk, ωj = ωk and θj = θk. It follows that xj and xk are solutions of

two optimizations problems with the same utility function, the same initial resources and

the same budget constraint. Therefore we obviously derive xj = xk and thus ηj = ηk.
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where x represents the aggregate consumption. The implicit function theo-

rem applied to (36) and (37) allows us to express x1 as a function of x. In

matrix form we can write
(

∂x1
∂x

∂x2
∂x

)
= −




∂Ψ1

∂x1

∂Ψ1

∂x2

∂Ψ2

∂x1

∂Ψ2

∂x2




−1


∂Ψ1

∂x

∂Ψ2

∂x





We then get

∂x1
∂x =

η2η3u′′
2 (x2)u′′

3 (x3)
η1η2n3u′′

1 (x1)u′′
2 (x2)+η1η3n2u′′

1 (x1)u′′
3 (x3)+η2η3n1u′′

2 (x2)u′′
3 (x3)

> 0 (41)

and thus u′′(x) < 0. Similarly, the implicit function theorem applied to (38)

and (39) allows us to express l1 as a function of ℓ. In matrix form we have

(
∂l1
∂ℓ

∂l2
∂ℓ

)

= −




∂Φ1

∂l1
∂Φ1

∂l2

∂Φ2

∂l1
∂Φ2

∂l2




−1


∂Φ1

∂ℓ

∂Φ2

∂ℓ





We then get

∂l1
∂ℓ =

η2η3v′′2 (l̄−l2)v′′3 (l̄−l3)

η1η2n3v′′1 (l̄−l1)v′′2 (l̄−l2)+η1η3n2v′′1 (l̄−l1)v′′3 (l̄−l3)+η2η3n1v′′2 (l̄−l2)v′′3 (l̄−l3)
> 0 (42)

and v′′(x) > 0. Under Assumption 1, we also derive from (40) that

limx→0 u
′(x) = +∞ and limℓ→nl̄ v

′(ℓ) = +∞.

11.2 Proof of Theorem 1

Denoting κ = k/ℓ, we derive from (13)-(14) and the first order conditions

associated with program (4) that an aggregate steady state may be defined

as a pair (κ∗, ℓ∗) solution of the following equations

−
T1(κ, µκ, 1)

T2(κ, µκ, 1)
= f1

1 (k1(κ, µκ, 1), l1(κ, µκ, 1)) = δ−1 − (1 − µ) (43)

u′(ℓT (κ, µκ, 1))T3(κ, µκ, 1) − v′(ℓ) = 0 (44)

Consider in a first step equation (43). Notice that the steady state

value for κ only depends on the characteristics of the technologies and is

independent from the utility function. Moreover, equation (43) is equivalent

to the equation which defines the stationary capital stock of a two-sector

optimal growth model with inelastic labor. The proof of Theorem 3.1 in

Becker and Tsyganov [3] applies so that there exists one unique κ∗ solution

of (43).

Consider in a second step equation (44) evaluated at κ∗. We get:
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T3(κ
∗, µκ∗, 1) = v′(ℓ)

u′(ℓT (κ∗,µκ∗,1)) ≡ ϕ(ℓ)

The function ϕ(ℓ) is defined over (0, ℓ̄) and satisfies

ϕ′(ℓ) = u′(x)v′′(ℓ)−u′′(x)v′(ℓ)T
u′(x)2

> 0

This monotonicity property together with the boundary conditions provided

by Lemma 1 finally garantee the existence and uniqueness of a solution

ℓ∗ ∈ (0, ℓ̄) of equation (44).

Let us now consider the first order conditions corresponding to the indi-

vidual maximization of the intertemporal utility function (1) subject to the

intertemporal budget constraint (2):

δtu′i(xit) = πiRt (45)

δtv′i(l̄ − lit) = πiRtwt (46)
∞∑

t=0

Rtxit =

∞∑

t=0

Rtwtlit + θir0k0 (47)

∀t ≥ 0 and i = 1, . . . , n, where πi is the Lagrange multiplier associated with

the intertemporal budget constraint (2). From (6) we conclude that the

interest rate satisfies

1 + dt = rt+(1−µ)pt

pt−1
= −T1(kt,yt)−(1−µ)T2(kt,yt)

T2(kt−1,yt−1)

for any t ≥ 1 and 1 + d0 = r0/p−1 for t = 0. The Euler equation (13)

evaluated at a steady state xit = x∗i gives 1 + d∗ = δ−1 and thus Rt = δt.

Recall that from (6) we also get T ∗
1 = r∗, T ∗

2 = −p∗ and w∗ = T ∗
3 . The

intertemporal budget constraint (47) evaluated along the stationary path

with kt = k∗ for all t ≥ 0 and p−1 = p∗ becomes x∗i = w∗l∗i +(1−δ)θip
∗k∗/δ,

with p∗ = δϑr∗. We then get

x∗i = w∗l∗i + (1 − δ)ϑr∗κ∗ℓ∗θi (48)

with κ∗ = k∗/ℓ∗. Using (45) and (46), we finally obtain

u′i(w
∗l∗i + (1 − δ)ϑr∗κ∗ℓ∗θi)w

∗ = v′i(l̄ − l∗i ) (49)

Assumption 1 implies limli→l̄ v
′
i(l̄−li) = +∞ > u′i(w

∗ l̄+(1−δ)ϑr∗κ∗ℓ∗θi)w
∗.

Therefore, if v′i(l̄) < u′i((1 − δ)ϑr∗κ∗ℓ∗θi) for any i = 1, . . . , n, there exist

unique steady state values for all individual consumptions x∗i and labor

supplies l∗i solutions of equations (48) and (49). Notice that since equation

(48) depends on θi and ℓ∗ =
∑n

i=1 l
∗
i , we conclude that x∗i and l∗i are functions

of the distribution of capital shares θ = (θi)
n
i=1, namely x∗i (θ) and l∗i (θ). For
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all i = 1, . . . , n, consider finally equations (48) and (49) expressed as follows:

x∗i − w∗l∗i − (1 − δ)ϑr∗κ∗

(
n∑

i=1

l∗i

)

θi = 0

u′i(x
∗
i )w

∗ − v′i(l̄ − l∗i ) = 0

(50)

with θj = 1 −
∑n

i=1,i6=j θi. Applying the implicit function theorem, we now

show that x∗i (θ) and l∗i (θ) are C1-functions. The 2n × 2n Jacobian matrix

of (50) with respect to (x∗i , l
∗
i )

n
i=1 is

J(xi,li) =

(
J11 J12

J21 J22

)

with J11 = In×n,

J21 = w∗





u′′1(x∗1) 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 u′′n(x∗n)




, J22 =





v′′1 (l̄ − l∗1) 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 v′′n(l̄ − l∗n)





and

J12 = −T ∗In×n + (1 − δ)ϑr∗κ∗





1 − θ1 θ1 · · · · · · · · · · · · · · · · · · θ1
θ2 1 − θ2 θ2 · · · · · · · · · · · · · · · θ2
...

. . .
...

...
...

θj−1 · · · θj−1 1 − θj−1 θj−1 · · · · · · · · · θj−1

1 −

n∑

i=1
i6=j

θi · · · · · · 1 −

n∑

i=1
i6=j

θi

n∑

i=1
i6=j

θi 1 −

n∑

i=1
i6=j

θi · · · · · · 1 −

n∑

i=1
i6=j

θi

θj+1 · · · · · · · · · θj+1 1 − θj+1 θj+1 · · · θj+1

...
...

...
. . .

...
...

...
...

. . .
...

θn · · · · · · · · · · · · · · · · · · θn 1 − θn





Consider the matrix B = J22−J21J12. Tedious computations available upon

request show that |B| 6= 0 with sign|B| = (−1)n and B−1 = |B|−1 [bij ]
n
i,j=1

with signbii = (−1)n−1 and signbij = (−1)n for i 6= j. The Jacobian matrix

J(xi,li) therefore admits an inverse such that

J−1
(xi,li)

=

(
In×n + J12B

−1J21 −J12B
−1

−B−1J21 B−1

)

Tedious computations available upon request also show that
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In×n + J12B
−1J21 = |B|−1 [|B|In×n + J12 [bij ]J21] ≡ |B|−1 [cij ]

n
i,j=1

with signcii = (−1)n and signcij = (−1)n−1 for i 6= j. The 2n × (n − 1)

Jacobian matrix of (50) with respect to θ = (θi)
n
i=1 with θj = 1−

∑n
i=1,i6=j θi

Jθ = (1 − δ)ϑr∗κ∗ℓ∗





−1 0 · · · 0 0 · · · · · · · · · 0

0
. . .

...
...

...
...

. . . 0
...

...

0 · · · 0 −1 0 · · · · · · · · · 0

1 · · · · · · 1 1 1 · · · · · · 1

0 · · · · · · 0 0 −1 0 · · · 0
...

...
...

. . .
...

...
...

...
. . . 0

0 · · · · · · 0 0 · · · · · · 0 −1

0 · · · · · · · · · · · · · · · · · · · · · 0
...

...

0 · · · · · · · · · · · · · · · · · · · · · 0





)

j − 1

line j

)

n − j

)

n

We then conclude from the implicit function theorem that x∗i (θ) and l∗i (θ)

are C1-functions with

h

∂li
∂θj

i

n×(n−1)
= (1−δ)ϑr∗κ∗ℓ∗

|B|
[bij ] J21

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−1 0 · · · 0 0 · · · · · · · · · 0

0
. . .

...
...

...
...

. . . 0
...

...

0 · · · 0 −1 0 · · · · · · · · · 0

1 · · · · · · 1 1 1 · · · · · · 1

0 · · · · · · 0 0 −1 0 · · · 0
...

...
...

. . .
...

...
...

...
. . . 0

0 · · · · · · 0 0 · · · · · · 0 −1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= (1−δ)ϑr∗κ∗w∗ℓ∗

|B|
[bij ]

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−u′′
1 (x∗

1) 0 · · · 0 0 · · · · · · · · · 0

0
. . .

...
...

...
...

. . . 0
...

...

0 · · · 0 −u′′
j−1(x

∗
j−1) 0 · · · · · · · · · 0

u′′
j (x∗

j ) · · · · · · u′′
j (x∗

j ) u′′
j (x∗

j ) u′′
j (x∗

j ) · · · · · · u′′
j (x∗

j )

0 · · · · · · 0 0 −u′′
j+1(x

∗
j+1) 0 · · · 0

...
...

...
. . .

...
...

...
...

. . . 0

0 · · · · · · 0 0 · · · · · · 0 −u′′
n(x∗

n)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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and

[
∂xi

∂θj

]

n×(n−1)
= − (1−δ)ϑr∗κ∗ℓ∗

|B| [cij ]





−1 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 −1

1 · · · · · · 1





It follows that

∂x∗
i (θ)

∂θi
= −

(1−δ)ϑr∗κ∗ℓ∗(cij−cii)
|B| > 0

∂x∗
j (θ)

∂θi
= −

(1−δ)ϑr∗κ∗ℓ∗(cjj−cji)
|B| < 0

∂l∗i (θ)
∂θi

=
(1−δ)ϑr∗κ∗w∗ℓ∗(biju′′

j (x∗
j )−biiu

′′
i (x∗

i ))

|B| < 0

∂l∗j (θ)

∂θi
=

(1−δ)ϑr∗κ∗w∗ℓ∗(bjju′′
j (x∗

j )−bjiu
′′
i (x∗

i ))

|B| > 0

(51)

11.3 Proof of Corollary 1

As ℓ∗(θ) =
∑n

i=1 l
∗
i (θ) and x∗(θ) =

∑n
i=1 x

∗
i (θ) with l∗i (θ) and x∗i (θ) some C1-

functions, we conclude that ℓ∗(θ) and x∗(θ) are also C1-functions. Moreover,

we derive from (51)
∂ℓ∗(θ)

∂θi
=

n∑

k=1

∂l∗k(θ)

∂θi

Recalling that θj = 1 −
∑n

i=1,i6=j θi, tedious computations available upon

request then give

∂ℓ∗(θ)

∂θi
=

(1 − δ)ϑr∗κ∗w∗ℓ∗

|B|

∏

k 6=i,j

[
v′′k(l̄ − l∗k) + w∗2u′′k(x

∗
k)
]

× v′′i (l̄ − l∗i )v
′′
j (l̄ − l∗j )

[
u′′

j (x∗
j )

v′′j (l̄−l∗j )
−

u′′
i (x∗

i )

v′′i (l̄−l∗i )

]

Under Assumption 1, we know that sign
∏

k 6=i,j[v
′′
k(l̄ − l∗k) + w∗2u′′k(x

∗
k)] =

(−1)n−2 and thus sign|B|
∏

k 6=i,j[v
′′
k(l̄ − l∗k) + w∗2u′′k(x

∗
k)] = (−1)2(n−1) > 0.

It follows therefore that ∂ℓ∗(θ)/∂θi > 0 if and only if

u′′
j (x∗

j )

v′′j (l̄−l∗j )
>

u′′
i (x∗

i )

v′′i (l̄−l∗i )

Using (18) and (19), this condition becomes (ǫjl (lj)/ǫ
j
x(xj))(lj/xj) >

(ǫil(li)/ǫ
i
x(xi))(li/xi). But, as the n agents are ordered according to their
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capital endowment, i.e. θi > θj for i < j, starting from a configuration

of pure equality with θk = 1/n for all k, we know from Theorem 1 that if

we increase θi and thus decrease θj we get xi > xj and ℓi < ℓj . It follows

that lj/xj > li/xi. The last result is finally obtained from the fact that

x∗(θ) = T (κ∗, µκ∗, 1)ℓ∗(θ).

11.4 Proof of Proposition 1

In a one-sector economy with heterogeneous agents, Kehoe et al. [27] show

that the welfare weights are continuous functions of the initial capital stock.

This continuity property happens to be satisfied because the value function

of the planner’s problem (10) is C2. However, in a multisector economy such

a property is much more difficult to obtain. Santos [35] shows that the main

sufficient condition to get this property is to assume strong concavity for the

indirect utility function V(kt, kt+1) (see Assumption B and Theorem 2.2 in

Santos [35]). On a compact set, a C2 function V(kt, kt+1) is strongly concave

if its Hessian matrix is always non-singular and negative-definite. In other

words, the smallest eigenvalue in absolute value of the Hessian matrix needs

to be strictly positive over the domain of definition of V(kt, kt+1). In our

two-sector model with endogenous labor, the indirect social utility function

also depends on ℓt:

V (kt, kt+1, ℓt) = u(T (kt, kt+1 − (1 − µ)kt, ℓt)) − v(ℓt)

with ℓt a solution of equation (14):

u′(T (kt, kt+1 − (1 − µ)kt, ℓt))wt − v′(ℓt) ≡ φ(kt, kt+1, ℓt) = 0

Since under Assumptions 1 and 2

φ3(kt, kt+1, ℓt) = u′′(xt)w
2
t + u′(xt)T33 − v′′(ℓt) < 0

we derive from the implicit function theorem that ℓt = ψ(kt, kt+1) with ψ(.)

a C1-function such that

ψ1(kt, kt+1) = −u′′(xt)(rt+(1−µ)pt)wt+u′(xt)(T31−(1−µ)T32)
u′′(xt)w2

t +u′(xt)T33−v′′(ℓt)

ψ2(kt, kt+1) = − u′(xt)T32−u′′(xt)ptwt

u′′(xt)w2
t +u′(xt)T33−v′′(ℓt)

We then obtain

V(kt, kt+1) = u(T (kt, kt+1 − (1 − µ)kt, ψ(kt, kt+1))) − v(ψ(kt, kt+1))
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Consider now the social production function T (kt, yt, ℓt) with yt = kt+1 −

(1 − µ)kt and ℓt = ψ(kt, kt+1). Proceeding in a similar way as for the

set of admissible paths D̃, we derive that T (kt, yt, ℓt) = 0 if and only if

kt+1 = h(kt). Assumption 2 then implies that there exists k̂ > 0 such that

h(kt) > kt when kt < k̂ while h(kt) < kt when kt > k̂. As a result, V(kt, kt+1)

is defined over the compact, convex set

D̂ =
{

(kt, kt+1) ∈ R
2
+|0 ≤ kt ≤ k̂, (1 − µ)kt ≤ kt+1 ≤ h(kt)

}

We know that T is homogeneous of degree one so that its Hessian matrix

HT (kt, kt+1) is singular for any (kt, kt+1) ∈ D̂. As shown in Benhabib and

Nishimura [5] and Bosi et al. [9], the second order derivatives of the social

production function depend on the allocations of capital and labor across

the two sectors. We get indeed

T12(k, y, ℓ) = −T11(k, y, ℓ)b(k, y, ℓ)

T22(k, y, ℓ) = T11(k, y, ℓ)b(k, y, ℓ)
2

T13(k, y, ℓ) = −T11(k, y, ℓ)a(k, y, ℓ)

T23(k, y, ℓ) = T11(k, y, ℓ)a(k, y, ℓ)b(k, y, ℓ)

T33(k, y, ℓ) = T11(k, y, ℓ)a(k, y, ℓ)b(k, y, ℓ)
2

(52)

where

b(k, y, ℓ) = l0

T

(
k1

l1
− k0

l0

)
(53)

is the relative capital intensity difference across sectors and a(k, y, ℓ) =

k0/l0 > 0 is the capital-labor ratio in the consumption good sector. We

derive from (52):

HT (kt, kt+1) = T11




1 −bt −at

−bt b2t atbt
−at atbt a2

t





with at = a(kt, kt+1 − (1 − µ)kt, ψ(kt, kt+1)) and bt = b(kt, kt+1 − (1 −

µ)kt, ψ(kt, kt+1)). The Hessian matrix of V is then

HV(kt, kt+1) = u′T11

(
1 −(1 − µ)

0 1

)(
1 −bt

−bt b2t

)(
1 0

−(1 − µ) 1

)

+ u′T11

(
1 −(1 − µ)

0 1

)(
−at −at

atbt atbt

)(
ψ1 0

0 ψ2

)

+ u′′

(
T1 − (1 − µ)T2

T2

)
( T1 − (1 − µ)T2 + T3ψ1 T2 + T3ψ2 )
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Tedious but straightforward computations finally give the determinant of

HV(kt, kt+1) as

|HV | = −u′(xt)u′′(xt)v′′(ℓt)T11(btrt−pt)2

u′′(xt)w2
t +u′(xt)T33−v′′(ℓt)

≥ 0

Under Assumptions 1-2, we conclude from Lemma 1 that the Hessian matrix

of V is non singular if over the interior of the set D̂ we have btrt − pt 6= 0 or

equivalently, T2(kt, kt+1−(1−µ)kt, ℓt)+b(kt, kt+1−(1−µ)kt, ℓt)T1(kt, kt+1−

(1 − µ)kt, ℓt) 6= 0. This property also implies that the value function of the

planner’s problem (10) is C2.

11.5 Proof of Theorem 2

We begin by showing that if the social curvature indices ρ(x∗) and γ(ℓ∗) are

linear functions, then the degree of inequality does not have any influence

on the existence of endogenous fluctuations. Linear expressions for ρ(x∗)

and γ(ℓ∗) are obtained in particular when agents are identical with respect

to preferences and their utility function is CES (see (33)). In this case,

ρi(xi) = xi/σ, γi(li) = li/γ, with li = l̄ − Li, σ ≥ 0, γ ≥ 0, and thus

ρ(x∗) = x∗/σ and γ(ℓ∗) = ℓ∗/γ. As a result, the inequalities entering the

conditions in Propositions 3 and 4 become:

ρ(x∗) > ρi ⇔ 1
σ > Λi

γ(ℓ∗) < γi ⇔ 1
γ < T ∗Γi

[
1
σ − Λi

]

for i = c, y, since x∗ = ℓ∗T ∗. As they are based only on parameters, it

follows that inequality does not have any effect on the occurrence of cycles.

Assume therefore that Assumption 3 is satisfied. We focus on bilateral

transfers between pairs of agents i and j that are elasticity-ordered according

to Definition 3. Consider first the case in which Assumption 4 holds. Let

us denote ζc(θ) = ρ(T ∗ℓ∗(θ))− ρc and ξc(θ) = γ(ℓ∗(θ))− γc with ρc < ρ̄ and

γc ∈ (γ, γ̄) as defined by (26). Proposition 3 shows that the steady state is

saddle-point stable with oscillating convergence if ρ(x∗) > ρc and γ(ℓ∗) < γc.

Therefore, an increase of wealth inequality implied by an increase of the

share of capital θi owned by agent i, and thus a decrease of the share of

capital θj owned by agents j, leads to damped fluctuations if the functions

ζc(θ) and ξc(θ) are respectively increasing and decreasing with respect to θi.

We easily get
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∂ζc(θ)
∂θi

= T ∗ ∂ℓ∗(θ)
∂θi

[ρ′(x∗) − Λc]

∂ξc(θ)
∂θi

= ∂ℓ∗(θ)
∂θi

[
γ′(ℓ∗) − ΓcT

∗ [ρ′(x∗) − Λc]
]

These derivatives are respectively positive and negative in the following two

configurations:

i) if ∂ℓ∗(θ)/∂θi < 0, ρ′(x∗) < Λc and γ′(ℓ∗) > ΓcT
∗ [ρ′(x∗) − Λc],

ii) if ∂ℓ∗(θ)/∂θi > 0, ρ′(x∗) > Λc and γ′(ℓ∗) < ΓcT
∗ [ρ′(x∗) − Λc].

The final result then follows from Corollary 1.

Consider now the case in which Assumption 5 holds. Let us denote

ζf (θ) = ρ(T ∗ℓ∗(θ))−ρf and ξf (θ) = γ(ℓ∗(θ))−γf with ρf < ρ̄ and γf ∈ (γ, γ̄)

as defined by (27). Proposition 4 shows that the steady state is locally

unstable with oscillating divergence if ρ(x∗) > ρf and γ(ℓ∗) < γf , and γf

is a flip bifurcation value so that there generically exist period-two cycles,

in a left neighborhood of γf , which are saddle-point stable. Therefore, an

increase of wealth inequality implied by an increase of the share of capital

θi owned by agent i, and thus a decrease of the share of capital θj owned by

agents j, leads to persistent fluctuations if the functions ζf (θ) and ξc(θ) are

respectively increasing and decreasing with respect to θi. We easily get

∂ζf (θ)
∂θi

= T ∗ ∂ℓ∗(θ)
∂θi

[ρ′(x∗) − Λf ]

∂ξf (θ)
∂θi

= ∂ℓ∗(θ)
∂θi

[
γ′(ℓ∗) − ΓfT

∗ [ρ′(x∗) − Λf ]
]

These derivatives are respectively positive and negative in the following two

configurations:

i) if ∂ℓ∗(θ)/∂θi < 0, ρ′(x∗) < Λf and γ′(ℓ∗) > ΓfT
∗ [ρ′(x∗) − Λf ],

ii) if ∂ℓ∗(θ)/∂θi > 0, ρ′(x∗) > Λf and γ′(ℓ∗) < ΓfT
∗ [ρ′(x∗) − Λf ].

The final result then follows from Corollary 1.

11.6 Proof of lemma 3

As there is a unique consumption good and agents have a common time

discount factor, along the steady state the distribution of wealth is identical

to the distribution of individual consumption. On the other hand we have

seen that xi(θ) = wli(θ) + (1 − δ)ϑrκlθi = wli(θ) + (1 − δ)ϑrkθi. However,

the steady state quantities depend on the distribution of shares of capital, so

that even if k∗ is a steady state with a distribution θ, it is not a steady state

with a distribution θ′. We therefore define a distribution χ such χi = kθi
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so that
∑n

i=1 χi is not constrained to be 1. We then have xi(χ) = wli(χ) +

(1 − δ)ϑrχi. For given values of all the xi it is possible to find values of the

χi such that the above n equations hold. Note that this is true even when

several agents have the same consumption and therefore get associated with

the same χ.

11.7 Proof of Theorem 3

As normalized incomes follow a Zeta distribution and along the steady state

xi = ωi, normalized individual consumption x̃i = xi/xmin also follows a Zeta

distribution. The associated value of ρ(x) is

ρ(x) =
∞∑

s=1

1

ζ(α)

1

sα
ρ(x(s)) =

1

ζ(α)

∞∑

s=1

s−α (x(s))ϕ

σ

=
1

ζ(α)

∞∑

s=1

s−α (sxmin)
ϕ

σ
=
xϕ

min

σ

ζ(α− ϕ)

ζ(α)
= ρ̄(α) (54)

where ζ(α) =
∑∞

s=1 s
−α is the Riemann Zeta function. As explained in

Section 7.1, the sequence x is not implementable. However, it can be ap-

proximated by an implementable distribution of measure η that gives rise

to a ρ which is arbitrarily close to ρ(x). Indeed, consider the distribution Γ

obtained in Lemma 2. Clearly, in this case

lim
n→∞

ρ(v(x)) = ρ(x)

We therefore can ignore this issue and assume that x is implementable.

Notice that to ensure a finite value for ζ(α−ϕ) we need to assume α > 1+ϕ.

As the stability properties depend also on the risk tolerance to leisure

we need to know the distribution of leisure along the steady state. From

(15) we derive that within the class of preferences considered here, leisure is

related to consumption as follows

−σ
x1−ϕ

i
1−ϕ + ŵ = γ

l1−ν
i
1−ν

with ŵ = logw and w as defined in (6), giving

li =
[

ν−1
γ(1−ϕ) [σ − (1 − ϕ)ŵ]

] 1
1−νi x

1−ϕ
1−ν

i
(55)

Notice that this last equation requires (ν − 1)(1 − ϕ)[σ − (1 − ϕ)ŵ] > 0.

Combining (54) and (55) we then get
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γ(ℓ) =
1

γ

[
ν − 1

γ(1 − ϕ)
[σ − (1 − ϕ)ŵ]

] ν
1−ν 1

ζ(α)

∞∑

s=1

s−α(x(s))
1−ϕ
1−ν

ν

=
x

1−ϕ
1−ν

ν

min

γ

[
ν − 1

γ(1 − ϕ)
[σ − (1 − ϕ)ŵ]

] ν
1−ν ζ(α+ 1−ϕ

ν−1 ν)

ζ(α)
≡ γ̄(α) (56)

Some calculations show that as soon as (ν − 1)(1 − ϕ)[σ − (1 − ϕ)ŵ] > 0,

the functions ρ̄(α) and γ̄(α) are respectively decreasing and increasing in α.

An illustration is given by the following Figure with ϕ = 0.5 and ν = 1.5:

ρ̄(α)

α2 2 α

γ̄(α)

Figure 1: ρ̄(α) and γ̄(α).

Notice that these properties do not depend on the curvature of ρ(x∗) and

γ(ℓ∗), i.e. on whether ϕ or ν are larger or smaller than 1. For instance, a

similar table is obtained if we set ϕ = 1.1 and ν = 0.5

As inequalities increase when α decreases, we then conclude that ρ(x∗) =

ρ̄(α) and γ(ℓ∗) = γ̄(α) are respectively increasing and decreasing functions

of the level of inequality. Building on Propositions 3 and 4, we may then

drop the conditions on the elasticity in Definition 3 which simply becomes

in the current framework: ρ′(x∗) > Ψ with Ψ ∈ {Λc,Λf}. For a given set of

technologies giving ŵ = logw, and assuming that ϕ is such that (1−ϕ)ŵ ≤ 0,

it follows that this new version of Assumption 3 will be satisfied if the slope

of ρ̄(α) is large enough in absolute value, i.e. if σ is low enough. Notice

that as γ̄(α) is an increasing function of α , we do not need any particular

restriction on its slope. We may also compute precisely the bounds ρ, ρ̄, γ

and γ̄. As limα→1+ϕ ζ(α − ϕ) = +∞ and limα→+∞ ζ(α) = 1, we get from

(54) and (56):

ρ = lim
α→+∞

ρ̄(α) =
1

σ
, ρ̄ = lim

α→1+ϕ
ρ̄(α) + ∞ (57)
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and

γ = lim
α→1+ϕ

γ̄(α) = 1
γ

[
ν−1

γ(1−ϕ) [σ − (1 − ϕ)ŵ]
] ν

1−ν ζ(1+ϕ+ 1−ϕ
ν−1

ν)

ζ(1+ϕ)
(58)

γ̄ = lim
α→+∞

ρ̄(α) = 1
γ

[
ν−1

γ(1−ϕ) [σ − (1 − ϕ)ŵ]
] ν

1−ν (59)

11.8 Computations for the CES example

As shown in Nishimura et al. [29] and Nishimura and Venditti [30], with the

externality parameters set equal to zero and an identical elasticity of capital-

labor substitution across sectors, the steady state values for the capital-labor

ratio κ∗ and the consumption per capita T ∗ = T (κ∗, κ∗, 1) are given by:

κ∗ =

“

α1β0
α0β1

”ς
„

(δβ1)1−ς−β1
β0

«
ς

1−ς

1−(δβ1)ς
“

1−
“

α1β0
α0β1

”ς”

T ∗ =
[1−(δβ1)ς ]

“

α1β0
α0β1

”ς

1−(δβ1)
ς
“

1−
“

α1β0
α0β1

”ς”

[
α0

(
α1β0

α0β1

)1−ς
+ α1

β0

(δβ1)1−ς−β1

] ς
ς−1

with (δβ1)
1−ς > β1. We also derive the prices

r∗ = T ∗
1 = α1

[
α0

(
α1β0

α0β1

)1−ς
(δβ1)1−ς−β1

β0
+ α1

] 1
ς−1

and
p∗ = −T ∗

2 = δr∗, w∗ = T ∗
3 = r∗ β0

β1

(
(δβ1)1−ς−β1

β0

) 1
1−ς

At the steady state we get the capital intensity difference across sectors

b = (δβ1)
ς
[
1 −

(
α1β0

α0β1

)ς]

the share of capital in total income

s =

[
1 + β0

β1

(
α1β0

α0β1

)−ς ( (δβ1)1−ς−β1

β0

)
(1 − δb)

]−1

and the ratio of elasticities

εck
εrk

= α1β0

α0

ς((δβ1)1−ς−β1b)

(δβ1)1−ς
“

α1β0
α0β1

”ς−1
[1−(δβ1)ς ][(δβ1)1−ς−β1]

> 0

Consider now the consumption side of the model. Recall that except

agent 1, all the other n−1 agents have identical preferences. More precisely,

agent 1 is characterized by the pair (σ1, γ1), while each agent j = 2, . . . , n

is characterized by the common pair (σj , γj) = (σ, γ). We also assume
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that all agents j = 2, . . . , n own the same share of capital θ2 while agent 1

owns a share θ1 > θ2. It follows that for a given share θ1 ∈ (0, 1), we get

θ2 = (1 − θ1)/(n − 1). The first order conditions (48) give

x1 = w∗l1 + (1 − δ)r∗κ∗ (l1 + (n− 1)l2) θ1

xj = x2 = w∗l2 + (1 − δ)r∗κ∗ (l1 + (n− 1)l2) (1 − θ1)/(n − 1)

with
l1 = x

−σ1/γ1

1 (w∗)1/γ1 , l2 = lj = x
−σ/γ
j (w∗)1/γ

(60)

Solving the first equation with respect to l2 gives

l2 = l2(x1) =
x1−x

−σ1/γ1
1 (w∗)1/γ1 [w∗+(1−δ)r∗κ∗θ1]

(1−δ)r∗κ∗θ1(n−1)

Solving the second equation and using the previous one then yields:

(l2(x1))
−γ/σ(w∗)1/σ − l2(x1) [w∗ + (1 − δ)r∗κ∗(1 − θ1)]

− (1 − δ)r∗κ∗ 1−θ1
n−1 x

−σ1/γ1

1 (w∗)1/γ1 = 0

x∗1(θ) is obtained as a solution of this equation and allows to compute l∗2(θ),

l∗1(θ) and x∗2(θ). We then get x∗(θ) = x∗1(θ) + (n − 1)x∗2(θ), ℓ
∗(θ) = l∗1(θ) +

(n − 1)l∗2(θ), and thus ρ(x∗(θ)) = x∗1(θ)/σ1 + (n − 1)x∗2(θ)/σ, γ(ℓ∗(θ)) =

l∗1(θ)/γ1 + (n− 1)l∗2(θ)/γ.

We need also to define the intervals of admissible values for ρ(x) and

γ(ℓ). We start with the most equal distribution θe = (1/n, 1/n, . . . , 1/n).

The first order conditions (48) give

xe
1 = w∗le1 + (1 − δ)r∗κ∗ (le1 + (n− 1)le2) /n

xe
j = xe

2 = w∗le2 + (1 − δ)r∗κ∗ (le1 + (n− 1)le2) /n

with (60). Solving the first equation with respect to le2 gives

le2 = le2(x
e
1) =

n[xe
1−(xe

1)−σ1/γ1 (w∗)1/γ1 [w∗+(1−δ)r∗κ∗/n]]
(1−δ)r∗κ∗(n−1)

Solving the second equation and using the previous one then yields:

(le2(x
e
1))

−γ/σ(w∗)1/σ − le2(x
e
1)
[
w∗ + (1 − δ)r∗κ∗ n−1

n

]

− (1 − δ) r∗κ∗

n (xe
1)

−σ1/γ1(w∗)1/γ1 = 0

x1(θ
e) is obtained as a solution of this equation and allows to compute

l2(θ
e), l1(θ

e) and x2(θ
e). We then get x(θe) = x1(θ

e) + (n − 1)x2(θ
e),

ℓ(θe) = l1(θ
e) + (n − 1)l2(θ

e), and thus ρ̂ = x1(θ
e)/σ1 + (n − 1)x2(θ

e)/σ,

γ̂ = l1(θ
e)/γ1 + (n− 1)l2(θ

e)/γ.
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We deal now with with the most unequal distribution θu = (1, 0, . . . , 0).

From the first order conditions (48) we get

xu
1 = w∗lu1 + (1 − δ)r∗κ∗ (lu1 + (n− 1)lu2 )

xu
j = xu

2 = w∗lu2

with (60). From the second equation we derive

x2(θ
u) = (w∗)

1+γ
σ+γ , l2(θ

u) = (w∗)
1−σ
σ+γ

Solving the first equation with respect to xu
1 then yields:

xu
1 − (xu

1)−σ1/γ1(w∗)1/γ1T ∗ − (1 − δ)r∗κ∗(n− 1)(w∗)
1−σ
σ+γ = 0

since T ∗ = w∗ + (1 − δ)r∗κ∗. It follows that x1(θ
u) is obtained as a solu-

tion of this equation and allows to compute l1(θ
u). We then get x(θu) =

x1(θ
u) + (n − 1)(w∗)(1+γ)/(σ+γ), ℓ(θu) = l1(θ

u) + (n − 1)(w∗)(1−σ)/(σ+γ),

and thus ρ̃ = x1(θ
e)/σ1 + (n − 1)(w∗)(1+γ)/(σ+γ)/σ, γ̃ = l1(θ

e)/γ1 + (n −

1)(w∗)(1−σ)/(σ+γ)/γ.

11.9 Proof of Proposition 6

We proceed numerically by finding parameters’ values which satisfy b ∈

(−∞,−1] ∪ [−δ, 0), or equivalently

α1β0/(α0β1) ∈ (0, (1 + (δ(ς−1)/ςβ1)
−ς)1/ς ] ∪ [(1 + (δβ1)

−ς)1/ς ,+∞) (61)

with ρc < ρ̄ and γc ∈ (γ, γ̄).

Let α1 = 0.45, β1 = 0.2, δ = 0.6, ς = 1.187, ς̂ = 0.241, n = 25,

σ1 = 0.65, σ = 0.582, γ1 = 0.5 and γ = 7.9. Then, using the expressions

given in Appendix 11.8, we find that b ≈ −0.249, i.e. (61) is satisfied,

x1(θ
e) ≈ 0.246, x2(θ

e) ≈ 0.349, l1(θ
e) ≈ 0.6, l2(θ

e) ≈ 0.93, x1(θ
u) ≈ 1.458,

x2(θ
u) ≈ 0.294, l1(θ

u) ≈ 0.059 and l2(θ
u) ≈ 0.944. It follows that x(θe) ≈

8.62, ℓ(θe) ≈ 22.98, x(θu) ≈ 8.52, ℓ(θu) ≈ 22.72, ρ = ρ̃ = ρ(x(θu)) = 14.38,

ρ̄ = ρ̂ = ρ(x(θe)) = 14.768, γ = γ̃ = γ(ℓ(θu)) = 2.987 and γ̄ = γ̂ =

γ(x(θe)) = 4.036.

Let us first consider an economy A with θA
1 = 0.05, θA

2 = 0.038 and

thus θA = (0.05, 0.038, · · · , 0.038). We get x∗1(θ
A) ≈ 0.253, x∗2(θ

A) ≈ 0.348,

l∗1(θ
A) ≈ 0.579, l∗2(θ

A) ≈ 0.932 and thus x∗(θA) ≈ 8.61, ℓ∗(θA) ≈ 22.96,

ρ(x∗(θA)) ≈ 14.754, γ(ℓ∗(θA)) ≈ 3.99, ρc ≈ 11.277 and γc ≈ 3.79.

Let us now consider an economy B with θB
1 = 0.5, θB

2 = 0.0208 and

thus θB = (0.5, 0.0208, · · · , 0.0208). We get x∗1(θ
B) ≈ 0.76, x∗2(θ

B) ≈ 0.322,
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l∗1(θ
B) ≈ 0.138, l∗2(θ

B) ≈ 0.937 and thus x∗(θB) ≈ 8.49, ℓ∗(θB) ≈ 22.648,

ρ(x∗(θB)) ≈ 14.46, γ(ℓ∗(θB)) ≈ 3.12, ρc ≈ 11.123 and γc ≈ 3.64.

For any θ1 ∈ (0.05, 0.5), we then find that ρc < ρ < ρ̄, γc ∈ (γ, γ̄),

ρ(x∗(θ)) ∈ (ρ, ρ̄) and γ(ℓ∗(θ)) ∈ (γ, γ̄). For economy A, we have

γ(ℓ∗(θA)) ∈ (γc, γ̄) while for economy B we have γ(ℓ∗(θB)) ∈ (γ, γc).

Therefore there exists θ0
1 ≈ 0.1058 ∈ (0.05, 0.5), θ0

2 ≈ 0.03726 and thus

θ0 = (0.1058, 0.03726, · · · , 0.03726) such that γ(ℓ∗(θ0)) = γc. Case i) in

Definition 3 and Assumption 4 hold. Therefore, case 1- in Theorem 2 im-

plies that a sufficiently high level of wealth inequality leads to a value of

γ(ℓ∗) lower than γc and thus to the existence of damped fluctuations. By

continuity there exists an open set of parameters’ values close to the previ-

ous values such that the same result holds.

11.10 Proof of Proposition 7

We proceed numerically by finding parameters’ values which satisfy b ∈

(−1,−δ), or equivalently

α1β0/(α0β1) ∈ ([1 + (δ(ς−1)/γβ1)
−γ ]1/γ , [1 + (δβ1)

−γ ]1/γ) (62)

with ρf < ρ̄ and γf ∈ (γ, γ̄).

Let α1 = 0.85, β1 = 0.2, δ = 0.1, ς = 1.49, ς̂ = 0.589, n = 26, σ1 = 1.666,

σ = 0.375, γ1 = 1 and γ = 24.2. Then, using the expressions given in

Appendix 11.8, we find that b ≈ −0.304, i.e. (62) is satisfied, x1(θ
e) ≈ 0.175,

x2(θ
e) ≈ 0.168, l1(θ

e) ≈ 1.044, l2(θ
e) ≈ 0.913, x1(θ

u) ≈ 2.927, x2(θ
u) ≈

0.053, l1(θ
u) ≈ 0.0096 and l2(θ

u) ≈ 0.93. It follows that x(θe) ≈ 4.38,

ℓ(θe) ≈ 23.88, x(θu) ≈ 4.267, ℓ(θu) ≈ 23.26, ρ = ρ̃ = ρ(x(θu)) = 5.33,

ρ̄ = ρ̂ = ρ(x(θe)) = 11.32, γ = γ̃ = γ(ℓ(θu)) = 0.97 and γ̄ = γ̂ = γ(x(θe)) =

1.987.

Let us first consider an economy A with θ1 = 0.04, θ2 = 0.0384 and thus

θA = (0.04, 0.0384, · · · , 0.0384). We get x∗1(θ
A) ≈ 0.178, x∗2(θ

A) ≈ 0.168,

l∗1(θ
A) ≈ 1.016, l∗2(θ

A) ≈ 0.914 and thus x∗(θA) ≈ 4.377, ℓ∗(θA) ≈ 23.86,

ρ(x∗(θA)) ≈ 11.3, γ(ℓ∗(θA)) ≈ 1.96, ρf ≈ 1.496 and γf ≈ 1.72.

Let us now consider an economy B with θ1 = 0.2, θ2 = 0.032 and

thus θB = (0.2, 0.032, · · · , 0.032). We get x∗1(θ
B) ≈ 0.587, x∗2(θ

B) ≈ 0.145,

l∗1(θ
B) ≈ 0.14, l∗2(θ

B) ≈ 0.915 and thus x∗(θB) ≈ 4.22, ℓ∗(θB) ≈ 23.03,

ρ(x∗(θB)) ≈ 10.05, γ(ℓ∗(θB)) ≈ 1.086, ρf ≈ 1.44 and γf ≈ 1.51.
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For any θ1 ∈ (0.04, 0.2), we then find that ρf < ρ < ρ̄, γf ∈

(γ, γ̄), ρ(x∗(θ)) ∈ (ρ, ρ̄) and γ(ℓ∗(θ)) ∈ (γ, γ̄). For economy A, we have

γ(ℓ∗(θA)) ∈ (γf , γ̄) while for economy B we have γ(ℓ∗(θB)) ∈ (γ, γf ).

Therefore there exists θ0
1 ≈ 0.05792 ∈ (0.04, 0.2), θ0

2 ≈ 0.03768 and thus

θ0 = (0.05792, 0.03768, · · · , 0.03768) such that γ(ℓ∗(θ0)) = γf . Case i) in

Definition 3 and Assumptions 5 hold. Therefore, case 2- in Theorem 2 ap-

plies: increasing the level of wealth inequality leads to decreasing values

of γ(ℓ∗) that will cross the flip bifurcation value γf , and thus imply the

existence of period-two cycles. By continuity there exists an open set of

parameters’ values close to the previous values such that the same result

holds.
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[16] Garćıa-Peñalosa, C. and S. Turnovsky, 2005, “The Personal Distribu-

tion of Income in a Stochastic Growth Model, in Economic Growth

and Distribution: On the Nature and Causes of the Wealth of Nations,

Salvadori, N. (Ed.), Edgar-Allen.

[17] Ghiglino, C., 2002, “Introduction to Economic Growth and General

Equilibrium”, Journal of Economic Theory 105, 1-17.

[18] Ghiglino, C., 2005, “Wealth Inequality and Dynamic Stability”, Journal

of Economic Theory 124, 106-115.

52



[19] Ghiglino, C. and M. Olszak-Duquenne, 2001, “Inequalities and Fluc-

tuations in a Dynamic General Equilibrium Model”, Economic Theory

17, 1-24

[20] Ghiglino, C. and M. Olszak-Duquenne, 2005, “The Impact of Hetero-

geneity on Indeterminacy”, International Economic Review 46, 171-

188.

[21] Ghiglino, C. and G. Sorger, 2002, “Indeterminacy, Wealth Distribution

and Poverty Traps”, Journal of Economic Theory 105, 120-139.

[22] Ghiglino, C. and A. Venditti, 2007, “Wealth Inequality, Preference Het-

erogeneity and Macroeconomic Volatility in Two-Sector Economies”,

Journal of Economic Theory 135, 442-457.

[23] Gollier, C., 2001, “Wealth Inequality and Asset Pricing”, Review of

Economic Studies 68, 181-203.

[24] Guiso, L. and M. Paiella, 2003, “Risk Aversion, Wealth and Background

Risk”, CESifo Working paper, Munich.

[25] Hara, C., J. Huang and C. Kuzmics, 2007, “Representative Consumer’s

Risk Aversion and Efficient Risk-Sharing Rules”, Journal of Economic

Theory 137, 652-672.

[26] Herrendorf, B., A. Valentinyi and R. Waldmann, 2000, “Ruling Out

Multiplicity and Indeterminacy: the Role of Heterogeneity”, Review of

Economic Studies 67, 295-307.

[27] Kehoe, T., D. Levine and P. Romer, 1990, “Determinacy of Equilib-

rium in Dynamic Models with Finitely Many Consumers”, Journal of

Economic Theory 50, 1-21.

[28] Mitra, M. and K. Nishimura, 2001, “Discounting and Long-Run Behav-

ior: Global Bifurcation Analysis of a Family of Dynamical Systems”,

Journal of Economic Theory 96, 256-293.

[29] Nishimura, K., H. Takahashi and A. Venditti, 2006, “Endogenous Fluc-

tuations in Two-Sector Models: Role of Preferences”, Journal of Opti-

mization Theory and Applications 128, 309-331.

53



[30] Nishimura, K. and A. Venditti, 2007, “Indeterminacy in Discrete-Time

Infinite-Horizon Models with Non-Linear Utility and Endogenous La-

bor”, Journal of Mathematical Economics 43, 446-476.

[31] Negishi, T., 1960, “Welfare Economics and Existence of Equilibrium

for a Competitive Economy”, Metroeconomica 23, 92-97.

[32] Nirei, M. and W. Souma, 2004, “Two Factor Model of Income Distri-

bution Dynamics”, mimeo, Utah State University.

[33] Piketty, T. and E. Saez, 2003, “Income Inequality in the United States,

1913-1998”, Quarterly Journal of Economics 118, 1-39.

[34] Rothschild, M. and J. Stiglitz, 1970, “Increasing Risk: I. a Definition”,

Journal of Economic Theory 2, 225-243.

[35] Santos, M., 1992, “Differentiability and Comparative Analysis in

Discrete-Time Infinite-Horizon Optimization”, Journal of Economic

Theory 57, 222-229.

[36] Sorger, G., 2000, “Income and Wealth Distribution in a Simple Model

of Growth”, Economic Theory 16, 23-42.

[37] Takahashi, H., K. Mashiyama and T. Sakagami, 2003, “Measuring Cap-

ital Intensity in the Postwar Japanese Economy: a Two-Sector Ap-

proach”, Mimeo, Meiji-Gakuin University, Tokyo.

[38] Wilson, R., 1968, “The Theory of Syndicates”, Econometrica 36, 119-

132.

[39] Wolff, E., 1987, “Estimates of Household Wealth Inequality in the US,

1962-1983”, Review of Income and Wealth 33, 231-256.

[40] Wolff, E., 2006, “Changes in Household Wealth in the 1980s and 1990s

in the US”, in International Perspectives on Household Wealth, Wolff,

E. (Ed.), Elgar Publishing Ltd..

54


