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This study investigates whether the direction of U.S. implied volatility, VIX index, can be fore-
cast. Multiple forecasts are generated based on standard econometric models, but, more importantly,
on several machine learning techniques. Their statistical significance is assessed by a plethora of
performance evaluation measures, while real-time investment strategies are devised to appraise the
investment implications of the underlying modeling approaches. The main conclusion of the anal-
ysis is that the implementation of machine learning techniques in implied volatility forecasting can
be more effective compared to mainstream econometric models and model selection techniques, as
they are superior both in a statistical and an economic evaluation setting.

Keywords: Forecasting; Implied volatility; Binary logit; Machine learning; Penalized likelihood
models; Investment strategies

1. Introduction

Over time, a great deal of attention has centered on the pre-
dictability of equity market volatility, be it realized and/or
implied, as changes in market volatility have significant reper-
cussions on investor preferences. History shows that asset
performance and its associated volatility is distinct and asym-
metric during different market volatility regimes, as the pric-
ing of market risk and, as a result, investor sentiment is
time-varying. As such, identifying, but, more importantly,
predicting aggregate market volatility is of critical importance
for the implementation of effective asset allocation programs,
investment and/or trading strategies and for hedging purposes
in particular.

As periods of transition from a low to a high market volatil-
ity regime can be very abrupt and relatively short-lived, the
development of an effective modeling framework is of crit-
ical importance for the design and implementation of active
portfolio immunization strategies in order to avoid sizeable
drawdowns during periods of turmoil in particular.

In practice, a number of different metrics have been
introduced for the estimation of market volatility; the most
well-known and followed metrics, however, are realized
and implied volatility. Realized volatility gauges the fluc-
tuations of underlying securities or indices by measuring

*Corresponding author. Email: svrontos@essex.ac.uk

price changes over predetermined time periods, while implied
volatility is a forward-looking metric that represents future
expectations of the market’s uncertainty. This study focuses
on the Chicago Board Options Exchange’s (CBOE) VIX
index (VIX) that can be considered as a model-free estima-
tor of the equity market’s implied volatility. More specif-
ically, the VIX is designed to produce a measure of con-
stant, 30-day expected volatility, derived from real-time,
mid-quote prices of S&P 500 index call and put options.
The VIX is one of the most recognized volatility measures
globally.

A substantial amount of research by both academics and
practitioners has focused on the investigation of volatility
forecasting and, consequently, on identifying variables that
have predictive ability for time-varying volatility dynamics.
It is noteworthy that a large part of the empirical evidence on
implied volatility predictability is mixed. Dumas et al. (1998)
explore whether S&P 500 implied volatility dynamics are pre-
dictable across different strike prices and expiry dates over
alternative periods. They conclude that there is too much
instability in the underlying forecasts for them to be useful
for pricing and hedging purposes. By contrast, Goncalves and
Guidolin (2006) detect a statistically predictable pattern that
cannot be meaningfully exploited due to the high transaction
costs involved.

Part of the literature has concentrated on the predictabil-
ity of short-term at-the-money volatility; more specifically,
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Harvey and Whaley (1992) study at the money option volatil-
ity for the S&P 100 index, Guo (2000) for the Philadel-
phia Stock Exchange currency options, and Brooks and
Oozeer (2002) for LIFFE long Gilt futures and options mar-
kets. A set of macroeconomic predictors is used to conclude
that changes in implied volatility are partially predictable,
but, once again, the results are not economically significant.
In a similar study, Gemmill and Kamiyama (2000) find that
changes in index option implied volatilities in a certain mar-
ket are impacted by lagged changes in other markets implied
volatilities, i.e. there are large spillover effects. Moreover,
Goyal and Saretto (2006) use information stemming from the
cross-section of various stock option implied volatilities to
find predictable patterns in implied volatility dynamics and
they conclude that there is both significant statistical and
economic predictability.

The empirical evidence on the predictability of implied
volatility indices is less extensive. Early studies include
Aboura (2003), Ahoniemi (2006) and they conclude that the
evolution of implied volatility indices is statistically pre-
dictable. In addition, Ahoniemi (2006) investigates the eco-
nomic significance of the underlying forecasts and finds that
implementing a trading strategy based on S&P 500 options
does not achieve abnormal profits. Konstantinidi et al. (2008)
explore whether European and U.S. index implied volatil-
ity can be forecast. More specifically, four major U.S. (VIX,
VXO, VXN, VXD) and three European (VDAX, VCAC, and
VSTOXX) implied volatility indices are studied. A set of
economic and financial market variables that exhibit asset
return predictability, serve as potential predictors. Four dif-
ferent types of models are employed to generate forecasts;
an economic variables model, uni- and multivariate (VAR)
autoregressive models, a Principal Components (PCA) model,
as well as ARIMA and ARFIMA models. In sample, the esti-
mated models exhibit low explanatory power, with the VAR
and PCA ones performing better than the others. Moreover,
there is higher explanatory power associated with European
indices. Out of sample, both point and interval forecasts are
generated. Regarding point forecasts, the results show that in
28% of the cases one of the estimated models outperforms
the random walk model. Predictability is, once again, higher
within European indices, as in 41% of the cases there is out-
performance over the random walk model, compared to just
18% in the case of their U.S. counterparts. The VAR and
PCA models continue to generate the best forecasts related
to the European indices, while the ARIMA and ARFIMA
models perform best in the case of the U.S. indices. The
overall results suggest that there are implied spillover effects
between markets, as the information contained in all implied
indices can be used to predict separately every European
index. This is not true for the U.S. indices; their underly-
ing autocorrelation structure must be considered in order to
forecast their evolution. Regarding interval forecasts, pre-
dictability is present in 47% of the cases and is stronger for the
U.S. indices. Once again, volatility spillovers could be help-
ful for predictive purposes. However, there is no economic
significance associated with the statistically predictable pat-
terns. Clements and Fuller (2012) employ a semi-parametric
approach to create a forecasting model regarding the sign
of the change in the VIX index. More specifically, VIX

forecasts are generated using a weighted average of past
signed changes in the index, where the highest weight is
assigned to periods with comparable conditions to the time for
which the forecasts are being formed. The main focus of the
study is to correctly predict increases in the VIX index. The
underlying models are able to generate successful forecasts
marginally higher than 50% of the time, while the propor-
tion of increases being correctly predicted range from 49.86%
to 54.95%. The generated forecasts are then included in a
portfolio immunization context. An active volatility expo-
sure is considered to hedge an underlying long position in
the S&P 500 index. It is shown that a long volatility hedge
improves the risk-adjusted performance of a long-only equity
market position. This is especially true during periods of
market turbulence. Fernandes et al. (2014) perform a statis-
tical investigation of the time series properties of the daily
VIX index. To comprehend the statistical behavior of this
index, they employ a multivariate setting that controls for
different macroeconomic and financial market conditions.
Variants of the Heterogeneous Autoregressive (HAR) pro-
cess, including a semi-parametric neural network model with
Bayesian regularization, are estimated both in and out-of-
sample. Out-of-sample forecasts are generated for different
daily horizons which show that the simple HAR model seems
to exhibit superior performance when compared to alterna-
tive HAR specifications and a random walk model, while
the neural network model performs best at longer forecast
horizons.

Full-blown application of Machine Learning (ML) algo-
rithms in realized and implied volatility forecasting, how-
ever, has been relatively scarce. Vortelinos (2017) examines
whether nonlinear models, such as Principal Components
Combining, Neural Networks and GARCH, are better in fore-
casting realized volatility in numerous U.S. asset markets
relative to the HAR model. Recently, Hosker et al. (2018)
compare three established financial models that have been
used in equity market volatility forecasting to various
machine/deep learning supervised regression methods. More
specifically, their analysis provides forecasts for the 1-month
VIX futures contract three and five days ahead. They conclude
that ML methods based on Recurrent Neural Networks (RNN)
and Long Short-Term Memory (LSTM) generate improved
results over linear regression, Principal Components Analy-
sis (PCA), and ARIMA models. More recently, Audrino et
al. (2020) analyze the impact of sentiment indicators and
investor attention variables on realized equity market volatil-
ity. They apply an innovative sentiment classification system
to explore whether sentiment measures contain additional
information content for realized volatility, after controlling
for numerous macroeconomic and financial predictive vari-
ables. Using a penalized regression framework, they identify
the most relevant variables for volatility prediction. Their
results reveal that although attention and sentiment indica-
tors improve volatility forecasts, they are not significant from
an economic perspective. Hirsa et al. (2021) apply several
machine learning techniques and neural networks to replicate
the VIX index as well as VIX futures by using a small number
of S&P options, and thus, are able to exploit potential arbi-
trage opportunities between the VIX index and its underlying
derivatives.
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The majority of the empirical research conducted on real-
ized and implied volatility forecasting has been focused on
point or interval forecasts rather than directional ones. The
primary aim of this study is to create an effective forecasting
framework to predict the direction of the VIX index. Fore-
casts are generated using standard binary econometric mod-
els, combination of forecasts methodologies and numerous
machine learning techniques. Various statistical evaluation
metrics are employed to assess the predictive ability of the
underlying models and a number of investment strategies are
devised to appraise their economic significance.

More specifically, the contributions of our work are sev-
eral; first, a binary-valued dependent variable representing the
directional patterns of the VIX index is introduced to explore
whether the direction of the VIX can be forecast using a wide
set of predictor variables. Second, following the trend of new
variable detection, a number of less well studied predictors
are considered in the underlying analysis. Third, a plethora
of machine learning techniques is implemented in order to
find out which of these methods improve predictive perfor-
mance. Fourth, within the machine learning framework and
for penalized likelihood techniques, automatic variable selec-
tion is performed to identify important predictors that are
crucial in order to understand the evolution of market risk and
the way that market returns change over time, and to build
real-time investment strategies.

In general, the results reveal that machine learning tech-
niques can lead to substantial improvement in predicting the
directional patterns of the VIX index, as revealed by statistical
and economic evaluation metrics.

The remainder of the paper is organized as follows.
Section 2 provides an outline of the research methodology, i.e.
introduces the different model specifications and the machine
learning techniques; in Section 3 the data sets are described;
Section 4 summarizes the empirical design and findings and
finally, Section 5 concludes.

2. Research methodology: model specifications and
machine learning techniques

The modeling approaches and machine learning techniques
used to forecast VIX index related directional patterns are
outlined in this section. More specifically, standard Logit
regression models, penalized likelihood Logit models, as well
as several machine learning techniques are briefly discussed.

2.1. Binary Logit regression models

A directional binary-valued dependent variable Yt of the
following form is considered throughout this paper:

Yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if VIXt > VIXt−1,

i.e. there is an increase in the VIX volatility index

at time t

0, otherwise, i.e. if VIXt ≤ VIXt−1,

there is a decrease in the VIX volatility index

at time t.

Generalized linear models (GLM) can be used to model the
dependence of the binary directional variable Yt, given a
set of N (lagged) covariates or predictor variables, Xj,t−l,
j = 1, . . . , N , l = 1, . . . , h and/or autoregressive components,
Yt−i, i = 1, . . . , p. In the analysis, GLM are considered
to model the mean μ of an observation of Y, which is
related to the predictor variables through a link function
and a linear predictor model of the form g(μ) = η, where
g(μ) is the link function, and η is the linear predictor.
Regarding the Logit regression model, the link function
g(μ) is the Logit transformation, g(μt) = ln(

pt

1−pt
), which

is a linear function of the predictor variables, the autore-
gressive components, and the unknown parameters. Zt−h =
(1, X1,t−1, . . . , X1,t−h, . . . , XN ,t−1, . . . , XN ,t−h, Yt−1, . . . , Yt−p)

′

denotes the augmented vector of predictors that contain the
lagged predictor variables and the autoregressive compo-
nents, h being the maximum number of lags used in the
model, and θ = (β ′, φ′)′ the total parameter vector with β =
(β0, β1,1, . . . , β1,h, . . . , βN ,1, . . . βN ,h)

′ and φ = (φ1, . . . , φp)
′.

Then, the Logit regression model can be written in the form:

ln

(
pt

1 − pt

)
= Z′

t−hθ = β0 +
N∑

j=1

h∑
l=1

βj,lxj,t−l +
p∑

i=1

φiyt−i,

(1)
where pt = Prob(Yt = 1|Z) is the conditional probability of
an upward directional move.

Maximum likelihood estimates of the Logit regression
model parameters, θ , can be obtained by assuming that each
Yt is the outcome of independent Bernoulli random variables
with an upward directional move probability pt. The log-
likelihood function for a sample of T observations is given
by

ln f (Y |Z, β)

=
T∑

t=1

[yt ln pt + (1 − yt) ln (1 − pt)]

=
T∑

t=1

ln [1 − pt] +
T∑

t=1

yt ln

[
pt

1 − pt

]

= −
T∑

t=1

ln

⎡
⎣1 + exp

⎛
⎝β0 +

N∑
j=1

h∑
l=1

βj,lxj,t−l +
p∑

i=1

φiyt−i

⎞
⎠

⎤
⎦

+
T∑

t=1

yt

⎛
⎝β0 +

N∑
j=1

h∑
l=1

βj,lxj,t−l +
p∑

i=1

φiyt−i

⎞
⎠ .

2.2. Penalized likelihood binary logit regression models

The Ridge, the Least Absolute Shrinkage and Selection Oper-
ator (LASSO), and the Elastic Net regularization techniques
are presented below, as they are implemented in the empir-
ical analysis, using variants based on the Area Under the
Curve (AUC), Deviance, and Class metrics. The specific
techniques are penalized least squares methods that impose
shrinkage in the regression coefficients and allow for auto-
matic variable selection. The inclusion of a parameterization
penalty in the likelihood function is strongly recommended
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to overcome overfitting issues, especially in the presence of
a large predictor set, and to improve out-of-sample predictive
performance.

2.2.1. The Ridge Logit model. The Ridge Logit model
(based on the Ridge regression model introduced by Hoerl
and Kennard 1970) can result in better prediction accu-
racy, by shrinking the estimated coefficients towards zero.
The specific process has numerous benefits, as it leads to
lower variance and decreases the complexity of the underly-
ing model, without reducing the number of predictors. Given
the log-likelihood function of the ordinary Logit model, with
parameter vector θ , the Ridge log-likelihood Logit function
introduces a shrinkage penalty that employs the �2-norm of θ ,

‖θ‖2 =
√∑

i θ
2
i , and a tuning parameter λ, λ > 0, that con-

trols the degree of regularization. Increasing the value of λ has
the tendency to reduce the magnitude of the estimated coef-
ficients, but does not result in the elimination of any of the
predictors. The maximum likelihood estimator of the Ridge
Logit model is given by

θ̂
Logit
R = argmaxθ

{
ln f (Y |Z, θ) − λ

∑
i

θ2
i

}
.

2.2.2. The LASSO Logit model. An alternative model-
ing approach is the Least Absolute Shrinkage and Selection
Operator (LASSO) model, introduced by Tibshirani (1996).
By imposing an alternative type of shrinkage, the LASSO
Logit model provides better interpretability relative to that
of the Ridge regression and also performs variable selection.
The LASSO Logit coefficients are estimated by maximizing
the corresponding log-likelihood function, while imposing a
shrinkage penalty based on the �1-norm of θ . The vector θ̂

Logit
L

is obtained by

θ̂
Logit
L = argmaxθ

{
ln f (Y |Z, θ) − λ

∑
i

|θi|
}

where ‖θ‖1 = ∑
i |θi| is the �1-vector norm of θ and λ, λ >

0, is the LASSO-related tuning parameter that controls the
degree of shrinkage of θ . The �1 penalty function shrinks
the underlying coefficients towards zero, forcing some of the
coefficient estimates to be exactly equal to zero, when the
tuning parameter λ is sufficiently large. The specific model-
ing approach eliminates entirely a number of predictors and
could, thus, result in a set of predictive variables that are the
most important to accurately forecast the direction of the VIX
index.

2.2.3. The Elastic Net Logit model. The Elastic Net is
an alternative modeling approach, proposed by Zou and
Hastie (2005) that has been extended to the Logit regression
framework. The Elastic Net was introduced as an improved
technique (to LASSO and Ridge), that is able to handle high
correlated variables in the predictor set that is, typically, inher-
ent in the analysis of high dimensional data. It combines the
penalty terms of the Ridge and LASSO regression by using a

convex combination scheme. In practice, this can be achieved
as the �1-norm of the Elastic Net performs automatic variable
selection, while the �2-norm stabilizes the solution, and, thus,
raises the out-of-sample predictive performance. The Elastic
Net Logit coefficient estimates are obtained by maximizing
the log-likelihood function that penalize the size of the model
coefficients based on both the �1-vector norm and �2-vector
norm of θ . Thus, the parameter estimates are obtained by

θ̂
Logit
EN = argmaxθ

{
ln f (Y |Z, θ)

−λ
(
(1 − α)

∑
i

θ2
i

2
+ α

∑
i

|θi|
)}

where λ and α are the Elastic Net tuning parameters. For tun-
ing parameter selection λ in Ridge, LASSO and Elastic Net
approaches, a validation set is needed in which the predictive
value of the specific penalized Logit model can be compared
for various values of the tuning parameter, and the optimal
parameter should be chosen in such a way that the error rate
is minimal. In the analysis, the optimal tuning parameter is
chosen through cross-validation.

2.3. Discriminant analysis

Both Linear and Regularized Discriminant analysis is applied
in this study. These techniques are alternative classification
tools that overcome certain limitations linked to standard Pro-
bit/Logit type regression models, i.e. when the binary-valued
dependent variable is well separated or when there are just a
few observations in a certain state, increasing the probability
that the Logit regression estimates become unstable.

2.3.1. Linear discriminant analysis. Linear Discriminant
Analysis (LDA) is a multivariate statistical technique used to
classify and generate forecasts with respect to a binary depen-
dent variable based on a set of predictors. The main idea is
to derive a linear combination of the predictors that ‘best’
differentiates the events related to a specific state. There are
several ways to determine discriminant criteria. One is to use
a Bayesian approach for classification and derivation of prob-
abilities. Based on the Bayes’ theorem, the probability of a
specific event given a set of predictors Z is estimated by:

Pr(Yt = k|Zt = zt) = πkfk(z)∑1
i=0 πifi(z)

, for k = 0, 1

where k = 0 and k = 1 denote the two possible outcomes
of the dependent variable, πk denotes the prior probability,
fk(z) = Pr(Z = z|Y = k) denotes the conditional density of
Z given Y = k, while Pr(Y = k|Z = z) denotes the posterior
distribution of higher or lower implied volatility, given the set
of predictors Z. Assuming that the conditional distribution of
the set of predictors Z given Y = k has a multivariate normal
density with mean vector μk and a common covariance matrix
Sk = S for k = 0, 1, i.e. fk(z) ∼ N(μk , S), LDA assigns an
observation Z = z to each regime based on the largest value
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of

z
′
S−1μk − 1

2
μ

′
kS−1μk + logπk

for k = 0, 1. For more details, please refer to James et
al. (2013).

2.3.2. Regularized discriminant analysis. The Regularized
Discriminant Analysis (RDA) technique replaces the class
specific covariance estimates used in LDA by their aver-
age, pooled covariance matrix and utilizes regularization to
enhance performance. The regularized covariance matrices
have the following form:

Sk(λ) = λSk + (1 − λ)S

where S is the pooled covariance matrix used in LDA, Sk , k =
0, 1, is the class specific covariance matrix used in Quadratic
Discriminant Analysis, and λ ∈ [0, 1] can be specified by
employing cross-validation in practice. An alternative way of
shrinkage is to use a convex combination that allows Sk to be
shrunk towards a scaled identity matrix, using the shrinkage
parameter γ as follows:

Sk(λ, γ ) = (1 − γ )Sk(λ) + γ
1

d
Tr[Sk(λ)]I

where 1
d Tr[Sk(λ)] is the mean of the diagonal elements of

Sk(λ), representing the mean variance of the class predictors.
The RDA classifier is given by the following equation:

�RDA
k (z) =

{
(z − z̄)

′
S−1

k (λ, γ )(z − z̄k) + log|Sk(λ, γ )|
}

where λ is the cross-validation parameter that controls the
degree of shrinkage of the individual class covariance matrix
estimates towards the pooled estimates and γ is an addi-
tional regularization parameter that controls shrinkage toward
a multiple of the identity matrix for a given value of λ. Please
refer to Friedman (1989) for more details.

2.4. Classification and Regression Trees

A classification problem can also be addressed using tree-
based classification methods. Classification and Regression
Tree (CART) models, introduced by Breiman et al. (1984),
offer a flexible way to analyze non-linear relationships
between a dependent variable and a set of predictors. In
tree-based models, the space of the predictor variables is par-
titioned into a number of simple regions created recursively
employing a sequence of binary decisions. The terminal nodes
of the tree correspond to distinct and non-overlapping regions
of the partition, and the partition is determined by splitting
rules associated with the set of predictors at each of the
internal (splitting) nodes.

The estimation procedure of the tree structure is usually
based on a top-down, greedy algorithm to grow a tree together
with a pruning algorithm to avoid overfitting. Starting from
a single node at the top of the tree, and then successively
splitting the predictor space, the tree is growing by sequen-
tially choosing the new partitions, based at each step on a

model fitting criterion, such as the Gini index or entropy. This
sequential procedure produces a maximal binary tree that is
corrected by pruning through a model selection criterion, such
as cost complexity pruning, cross-validation, or an informa-
tion criterion like AIC or BIC. Based on the estimated tree
structure, prediction for a given observation can be generated
by using the mode of the training observations in the partition
to which it belongs.

Even though tree-structured models are simple and easy
to interpret, they suffer, however, from reduced predictive
accuracy and non-robustness (small changes in the data can
lead to different tree-structures and, therefore, to different
predictions). Ensemble methods can substantially enhance
predictive performance by aggregating/combining numerous
different decision trees; see, for example, Breiman (1998),
Bauer and Kohavi (1999), Buhlmann and Yu (2002),
Biau et al. (2008), Dietterich (2000). Ensemble meth-
ods include Bagging (Breiman 1996), Boosting (Freund
and Schapire 1997, Friedman 2001), and Random Forest
(Breiman 2001).

2.4.1. Bagging. Bagging (Breiman 1996) improves the pre-
dictive accuracy of a classifier by generating multiple versions
of the classifier based on bootstrap replicates of the training
data set, and then combines these classifiers in order to cre-
ate a single one. The specific aggregated process produces
a stable forecast/classifier with smaller variance and, thus,
succeeds in achieving substantial gains in terms of accuracy.

The core idea of the algorithm is to create B bootstrap
samples S∗

1 , S∗
2 , . . . , S∗

B. From each bootstrap sample S∗
i , i =

1, . . . , B, the quantity of interest, i.e. the classifier, say Ĉ∗
i ,

is estimated based on the same learning procedure. Then,
the bagged estimator/classifier, Ĉbag, can be obtained by
aggregating the different bootstrap classifiers.

2.4.2. Random Forest. The Random Forest (Breiman 2001)
represents an alternative machine learning technique that gen-
erates improved predictive accuracy compared to the standard
classification and regression tree models. Random Forest can
reduce the classifier variance by aggregating a number of low
correlated trees obtained using different bootstrap training
samples. This can be achieved by creating multiple decision
trees, where the splitting variables of the internal nodes are
based on a random process, i.e. by introducing randomness in
the tree-growing procedure.

As in the case of bagging, B bootstrap samples
S∗

1 , S∗
2 , . . . , S∗

B are generated from the training data set. For
each bootstrap sample, a Random Forest classification tree is
created, Trf

i , and the classifier Ĉrf
i , i = 1, . . . , B, is estimated

based on the same learning procedure. Then, the Random For-
est classifier, Ĉrf , can be obtained by aggregating the different
bootstrap classifiers using the majority vote rule, i.e. Ĉrf =
majority vote {Ĉrf

i }B
1 .

The Random Forest classifier found by aggregating dif-
ferent bootstrapped classifiers is similar to that generated by
the Bagging technique. There is a significant modification in
the way that Random Forest classification trees are created,
however. The splitting variable is chosen to be the ‘best’ vari-
able among a random subset of m candidate variables taken
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from the full set of the N predictive variables. A new random
sample of m candidate splitting variables is taken at each split-
ting node of the tree. Thus, the Random Forest selects at each
node of each tree, a random subset of variables, and only these
variables are used as candidates to find the best split for the
node. The use of different bootstrap samples, i.e. create dif-
ferent classification trees, together with the introduction of
this randomness at each splitting node of each tree, provides
a number of uncorrelated trees and, as a consequence, the
Random Forest forecast/classifier achieves reduced variance.

2.4.3. Adaptive boosting. Boosting is an ensemble tech-
nique that combines several weak classifiers to produce a
more accurate and powerful classifier. The basic idea is to
combine classifiers that are iteratively created through the
resampling of the training data by assigning higher weight to
observations that were misclassified, to produce a new classi-
fier that could boost the underlying performance. This process
is repeated, generating several classifiers, which are then com-
bined into a final classifier by applying weighted majority
vote.

A very interesting feature of the Adaptive Boosting
algorithm was presented by Friedman et al. (2000) who
showed that Adaptive Boosting can be interpreted as a
forward stagewise additive model that minimizes exponen-
tial loss. In the analysis, the Adaptive Boosting (Adaboost)
algorithm proposed by Freund and Schapire (1997) is
employed.

2.4.4. Gradient boosting. Friedman (2001, 2002) devel-
oped a framework for the creation of a new generation of
boosting techniques, based on boosting’s link to the statisti-
cal principles of additive modeling and maximum likelihood
(Friedman et al. 2000). More specifically, Friedman (2001)
presented a general method for estimating/approximating a
function F(z), mapping the predictor variables Z to the depen-
dent variable, based on numerical optimization in the function
space. The function F(z) can be expressed in terms of for-
ward stagewise additive modeling and the application of
steepest-descent minimization. A generic gradient descent
‘boosting’ algorithm is developed (Gradient Boosting) for
additive expansions based on different fitting criteria. The
core idea of the Gradient Boosting algorithm is to create addi-
tive models by sequentially fitting a base (weak) learner to
current pseudo-residuals at each iteration. Thus, the learn-
ing process fits new models consecutively, to provide a more
accurate estimate of the dependent variable.

Assuming that each Yt (Yt = 1 denotes higher implied
volatility at time t) is the outcome of independent Bernoulli
random variables with probability of higher implied volatil-
ity pt, the quantity of interest is the log-odds, denoted by λ(z),
where λ(z) = ln(

pt

1−pt
) that is a function of the set of predictors

Zt. Under Gradient Boosting, λ(z) is the function F(z) that can
be expressed based on additive expansions of the form:

λ(z) = F(z) =
B∑

b=1

gb(z; γb)

where gb(z; γb) is the base learner (e.g. a tree), and γb is
the parameter vector to be estimated (for trees, it contains

identification of splitting variables, their splitting values, and
the constants in the terminal nodes). The steps of the Gradi-
ent Boosting algorithm can be found in Friedman (2001) and
Efron and Hastie (2016).

2.4.5. Recursive Partitioning Algorithm. Recursive Parti-
tioning Algorithms (rpart) are used to create classification
and regression models; that is, the resulting models can be
represented as binary trees. The tree structured model is cre-
ated using a two-stage procedure; in the first step, a single
predictor variable is found that best splits the data into two
groups. There are several measures that can be employed to
find the best split; possible choices can be the information
index and the Gini index. The dataset is partitioned using
this splitting variable into two child nodes, and this process
is applied independently to each sub-group (child node). This
is done recursively until the subgroups or the terminal nodes
either reach a minimum size, or until no improvement can
be achieved. The specific tree structure may be overly com-
plicated. The second step of the procedure entails pruning of
the full tree. A complexity parameter α, measuring the ‘cost’
of adding another variable, can be used. α is chosen using
cross-validation. More details can be found at Therneau and
Atkinson (2019).

2.4.6. k-Nearest Neighbor. k-Nearest Neighbor (k-nn) is
a non-parametric technique used for classification. It is a
distance-based classifier that takes into account the similar-
ity of the predictive variables at a future time period with the
observations of the training set. Then, the new observation
is classified based on the majority vote of its neighbors, i.e.
the new observation is assigned to the class that is most com-
mon among its k nearest neighbors. Implementation of this
technique, requires the specification of a distance metric, that
is needed to calculate the distance between the new observa-
tion and that of the training sample, and a positive integer k,
which determines the number of neighbors used in the voting
process. A Euclidean distance metric can be used for com-
puting distances in a multi-dimensional predictor space with
quantitative variables, as is the case in the underlying analy-
sis. The choice of k is very important, as it affects the classifier
obtained by the technique. A potential solution is to use cross-
validation to select the value of k. The specific classification
method does not require any model to be fitted, and does not
impose any strong assumption regarding the underlying data.

2.4.7. Naive Bayes. The Naive Bayes learning scheme (see,
e.g., Bauer and Kohavi 1999) applies the Bayes theorem and
assumes conditional independence of the predictors given
the classifier. The basic mechanism for classification can be
derived as follows:

Pr(Y = k|Z = z)

= Pr(Z = z|Y = k)π(Y = k)

Pr(Z = z)
∝ Pr(Z = z|Y = k)π(Y = k)

=
∏

i

Pr(Zi = zi|Y = k)π(Y = k)
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where Pr(Y = k|Z = z) denotes the posterior distribution of
higher implied volatility (k = 1), or lower implied volatil-
ity (k = 0), given the set of predictors Z, Pr(Z = z|Y = k)

denotes the conditional density of Z given Y = k, and π(Y =
k) denotes the prior distribution of the binary dependent
variable. Thus the Naive Bayes classifier can be found by
applying:

�NB(Z) = argmaxk

{
πk

∏
i

Pr(Zi = zi|Y = k)

}

where πk is estimated by the sample proportions. It is evi-
dent that the method assigns an observation Z = z to the class
with the largest posterior probability, known as the maximum
posterior decision rule.

The method is implemented in classification problems,
especially when the dependent variable is qualitative, as the
independence assumption is less restrictive than might be
expected, and, usually, the method assigns maximum prob-
ability to the correct class. Its good performance can be
attributed to the use of the zero-one loss function.

2.4.8. Bayesian generalized linear models. The Bayesian
approach to inference regarding the estimation of stable Logit
regression coefficients is briefly outlined. In Bayesian anal-
ysis, inference regarding the model parameters is based on
the posterior distribution that is computed using the Bayes
theorem:

f (θm|D) = f (D|θm)f (θm)

f (D)

= f (D|θm)f (θm)∫
f (D|θm)f (θm)dθm

∝ f (D|θm)f (θm)

where f (θm|D) is the posterior distribution of a specific
model’s m parameters, θm, given the data D, f (D|θm) is the
likelihood function, and f (θm) is the prior density of model
m parameters. The posterior distribution summarizes all that
is known about the model parameters after ‘seeing’ the data.
To reflect the ex-ante opinion of the uncertainty regarding the
model parameters, a prior distribution is assigned. Conditional
on having observed the data, the prior opinion can then be
updated to a posterior opinion on model parameters using the
Bayes theorem.

To implement the Bayesian generalized linear model in
the problem of interest, the approach proposed by Gelman et
al. (2009) is applied, using the ’bayesglm’ function, that finds
the approximate posterior mode and variance using extensions
of the classical generalized linear model computations. Gel-
man et al. (2009) propose the use of a new prior distribution,
the Student-t family, focusing on the Cauchy sequence as a
conservative choice, for the Logit regression model param-
eters by first scaling the predictor variables. The proposed
prior distribution setting enables the production of stable, reg-
ularized estimates, even when there is separation in Logit
regression, and allows for an automated process in applied
data analysis.

3. Data

As the primary sources of equity market volatility stem from
either exogenous and/or endogenous shocks in the economic,
credit, and financial cycle, it is only rational to include a set of
economic and financial variables as likely predictors. A rela-
tively large number of predictive variables is considered, as
empirical research has shown that their effectiveness is, to
a large extent, time dependent. More specifically, the set of
predictors contains 31 macroeconomic and financial market
related indicators. Part of them is widely-followed by both
policy makers and practitioners, and has been used in the
existing literature for implied volatility prediction, while a
number of less studied indicators is also included in the anal-
ysis. In general, the forecasting variables are representative of
risk categories related to macroeconomic and financial market
risk, momentum, as well as investor sentiment factors with
monthly frequency.

The set of macroeconomic risk factors includes variables,
such as the term spread, the oil price, the dollar index, the U.S.
Economic Policy Uncertainty index and a proxy for macroe-
conomic volatility based on the annualized 12-month standard
deviation of industrial production growth. Equity market risk
is proxied by numerous equity related factor portfolios. Apart
from the well-known Fama–French three factor portfolios,
HML (Value), SMB (Size), and MKT (Market), additional
factor portfolios are employed, representing alternative risk
factors, such as QMJ (Quality), BAB (Low Volatility), and
RVAR (Residual Variance). In addition, financial and credit
risk is proxied by the default and the TED spread, and the
Chicago Financial Conditions Leverage index, among others.

The use of medium and short-term equity momentum fac-
tors is supported by the large literature on the predictability
of asset returns. As a result the Fama–French MOM (medium
term price momentum) and STR (short-term reversal) port-
folio returns are apparent candidates. However, momentum
factors from various other asset classes (fixed income, com-
modity, and foreign exchange) are also employed, due to the
existence of cross-asset or inter-market linkages. Last, a series
of investor sentiment related factors based on the American
Association of Individual Investor survey is included in the
analysis.

The directional indicator is calculated from the Chicago
Board Options Exchange (CBOE) Volatility index (VIX). The
indicator is a binary variable that takes the value of 1, if the
VIX trends higher in month t, and 0, if the VIX trends lower.
Autoregressive components of the directional indicator are
used as predictors, to capture the likely underlying persistence
in the implied volatility series. A comprehensive list of the
predictors, as well as their source, is presented in table A1 in
the appendix.

The data cover the period between January 1990 to Decem-
ber 2019 (360 monthly observations). As the initial data point
of the VIX index is January 1990, the directional indicator
begins in February 1990. The full sample is divided into an
in-sample and an out-of-sample period; the in-sample period
ranges from February 1990 to December 2003 (167 monthly
observations), while an out-of-sample period ranging from
January 2004 to December 2019 (192 monthly observations)
is used to evaluate predictive performance. Out-of-sample
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forecasts are generated recursively, using a forecast horizon
of 1-month.

When CART techniques are implemented, each classifica-
tion model is trained; the training dataset is preprocessed both
in a closed center and scale form, the parameter(s) of each
model is tuned by cross-validation as well as resampling, and
variable importance is determined before out-of-sample fore-
cast generation. The resampling approach in specific, seeks
to determine the values of each of the model parameters
(if any) and uses the best tuning parameter(s) based on fit-
ted (in-sample) accuracy measures to produce out-of-sample
forecasts. In each model, the best tuning parameter(s) are
used to run the out-of-sample forecasts recursively, and their
respective performance evaluation measures are obtained.

4. Empirical design and analysis

The empirical findings of the analysis are presented in this
section. The main objective is to evaluate the out-of-sample
statistical and economic performance of the different model-
ing approaches under consideration. First, the out-of-sample
predictive performance of the underlying models will be
investigated based on several statistical evaluation measures.
Next, the economic significance of the generated forecasts
will be assessed through the creation of real-time investment
strategies.

Initially, the out of sample performance of various uni-
variate Logit regression models is examined using the set
of predictor variables, as well as autoregressive components.
Motivated by the inferior performance of these basic models,
the attention is directed to alternative modeling approaches
to find out whether they are able to substantially improve
the underlying predictive ability. In this sense, the imple-
mented class of models is extended to a multiple Logit
regression framework, and the use of penalized likelihood
Logit regression models, as well as other machine learning
techniques.

In general, under the multiple regression framework esti-
mation of the model parameters is straightforward, the iden-
tification of the most important set of predictors, however,
is not an easy task, due to the high dimensionality of the
problem. More specifically, with a set of N = 31 predictor
variables, using a Logit autoregressive model of order three,
i.e. p = 3, and individual predictor variables with one up
to three lagged terms, i.e. h = 3, the maximum number of
potential lagged predictors is 96, and the number of compet-
ing models vast. Different model/variable selection strategies
have been used in the literature to address this issue. Stepwise
regression (and/or its variants), standard information criteria
such as Akaike’s (AIC) 1973 or Schwarz’s 1978 Bayesian
Information Criterion (BIC), the Bayesian approach to model
selection, or penalized likelihood methods, such as the Elas-
tic Net, could be used to narrow down and identify important
predictors. While the majority of these approaches is imple-
mented, the Elastic Net regularization approach, that imposes
shrinkage in the regression coefficients and allows for auto-
matic variable selection, is the core approach followed in this
study, and in a real-time out-of-sample framework in specific.

The total sample is divided into an in-sample and an out-
of-sample period to assess the predictive performance of
different modeling approaches and machine learning tech-
niques. To obtain out-of-sample forecasts, the model selection
algorithm that identifies important predictors is implemented,
and the predictive models are estimated recursively using
an expanding window scheme. That is, the model selection
algorithm and the fitted models are first estimated using data
from the beginning of the dataset to the end date of the in-
sample period and a one month-ahead forecast is generated.
Then, the estimation window is updated by adding one obser-
vation to the estimation sample at each step. As such, model
selection is conducted and coefficients are re-estimated after
each step of the recursion. Proceeding iteratively in this way
through the end of the out-of-sample period, a series of P
out-of-sample forecasts is generated.

The proposed algorithm is briefly presented below:

(1) Set the out-of-sample period P.
(2) For iteration = 1, . . . , P

(a) Specify the estimation window, which is updated
based on a recursive (expanding) scheme

(b) Apply the Elastic Net regularization approach and
identify the important predictors

(c) Implement the proposed modeling approaches, i.e.
the machine learning techniques and the standard
predictive models

(d) Compute VIX directional one-step ahead forecasts
(e) Construct different investment strategies

(3) Compute Statistical and Economic Evaluation mea-
sures

4.1. Predictive performance evaluation based on statistical
metrics

The results of the statistical performance evaluation of the
analyzed modeling approaches are presented in this section.
The out-of-sample performance of the directional VIX fore-
casts obtained by the univariate Logit models based on autore-
gressive (lagged) terms and individual predictor variables of

the form ln
(

pt

1−pt

)
= φ0 + ∑p

l=1 φlyt−l, and ln
(

pt

1−pt

)
= β0 +∑h

j=1 βijxi,t−j, i = 1, . . . , N , respectively, are presented first,
in order to illustrate the potential benefits and the motivation
behind the use of machine learning techniques.

Table 1 (panel A) presents the statistical evaluation metrics
for the VIX index directional forecasts obtained by the uni-
variate Logit models. The majority of the performance eval-
uation metrics reported, are based on the confusion matrix,
which summarizes the forecasting outcomes regarding the
classification problem. A detailed description and analysis
of several performance evaluation measures used in such
problems can be found in Sokolova and Lapalme (2009),
Hossin and Sulaiman (2015) and Tharwat (2020), among sev-
eral others. In particular, metrics such as Area Under the
ROC curve (AUC), Misclassification Error (MCE), Accuracy,
Kappa statistic, Sensitivity and Specificity portion, Precision,
F1-Score, and Balanced Accuracy are presented. For all met-
rics, with the exception of MCE, high positive values indicate
superior forecasting performance. In addition, the statistical
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Table 1. Univariate and multiple Logit models: Statistical Performance Evaluation.

Method AUC MCE Accuracy Kappa Sensitivity Specificity Precision F1Score Balanced Pesaran -
Accuracy Timmermann

Panel A: Univariate Logit Models
VIX-lagged 0.617 0.401 0.599 0.192 0.570 0.623 0.551 0.560 0.596 2.659
SMB 0.513 0.500 0.500 − 0.070 0.151 0.783 0.361 0.213 0.467 − 1.162
HML 0.548 0.505 0.495 − 0.067 0.209 0.726 0.383 0.271 0.468 − 1.030
MKT 0.608 0.422 0.578 0.133 0.442 0.689 0.535 0.484 0.565 1.863
MOM 0.537 0.453 0.547 0.030 0.198 0.830 0.486 0.281 0.514 0.497
STR 0.592 0.453 0.547 − 0.003 0.035 0.962 0.429 0.065 0.499 − 0.105
RVAR 0.573 0.479 0.521 − 0.013 0.233 0.755 0.435 0.303 0.494 − 0.205
BAB 0.573 0.484 0.516 − 0.062 0.047 0.896 0.267 0.079 0.471 − 1.470
QMJ 0.485 0.500 0.500 − 0.050 0.244 0.708 0.404 0.304 0.476 − 0.748
Term Spread 0.559 0.531 0.469 − 0.126 0.163 0.717 0.318 0.215 0.440 − 1.971
Credit Spread 0.593 0.484 0.516 − 0.050 0.105 0.849 0.360 0.162 0.477 − 0.948
10-year Treas. 0.617 0.531 0.469 − 0.144 0.081 0.783 0.233 0.121 0.432 − 2.573
3-month T-bill 0.603 0.474 0.526 − 0.047 0.023 0.934 0.222 0.042 0.479 − 1.395
Oil Price 0.488 0.495 0.505 − 0.026 0.314 0.660 0.429 0.362 0.487 − 0.377
Dollar Index 0.579 0.505 0.495 − 0.087 0.116 0.802 0.323 0.171 0.459 − 1.532
TED Spread 0.588 0.474 0.526 − 0.029 0.105 0.868 0.391 0.165 0.486 − 0.582
Skew 0.494 0.505 0.495 − 0.018 0.453 0.528 0.438 0.446 0.491 − 0.252
CF Leverage 0.486 0.464 0.536 0.021 0.256 0.764 0.468 0.331 0.510 0.320
TS MOM 0.561 0.469 0.531 0.011 0.256 0.755 0.458 0.328 0.505 0.168
MOM CM 0.536 0.474 0.526 − 0.020 0.151 0.830 0.419 0.222 0.491 − 0.349
MOM EQ 0.570 0.458 0.542 0.059 0.407 0.651 0.486 0.443 0.529 0.824
MOM FI 0.488 0.484 0.516 − 0.014 0.279 0.708 0.436 0.340 0.493 − 0.204
MOM FX 0.532 0.469 0.531 0.018 0.291 0.726 0.463 0.357 0.509 0.262
HMLD 0.537 0.432 0.568 0.095 0.337 0.755 0.527 0.411 0.546 1.401
ECU 0.513 0.479 0.521 − 0.004 0.279 0.717 0.444 0.343 0.498 − 0.061
MACVOL 0.540 0.448 0.552 0.028 0.140 0.887 0.500 0.218 0.513 0.549
Bullish Aver. 0.551 0.474 0.526 − 0.039 0.058 0.906 0.333 0.099 0.482 − 0.929
Neutral Aver. 0.529 0.490 0.510 − 0.050 0.151 0.802 0.382 0.217 0.477 − 0.847
Bearish Aver. 0.523 0.453 0.547 0.004 0.070 0.934 0.462 0.121 0.502 0.102
Spread Aver. 0.494 0.469 0.531 − 0.029 0.058 0.915 0.357 0.100 0.487 − 0.709
BB Ratio Aver. 0.567 0.490 0.510 − 0.080 0.012 0.915 0.100 0.021 0.463 − 2.272
8-week MAVB 0.542 0.479 0.521 − 0.040 0.105 0.858 0.375 0.164 0.482 − 0.768

Panel B: Multiple Logit Models—Stepwise approach
AIC 0.525 0.453 0.547 0.093 0.547 0.547 0.495 0.519 0.547 1.291
BIC 0.606 0.385 0.615 0.214 0.523 0.689 0.577 0.549 0.606 2.973
Deviance 0.597 0.391 0.609 0.206 0.535 0.670 0.568 0.551 0.602 2.856

significance of the corresponding forecasts is assessed by
the Pesaran and Timmermann (1992) test statistic. Positive
(negative) values of the Pesaran–Timmermann (PT) statistic
indicate that the true or hit rate is larger (smaller) than the
false rate, and, therefore, higher (than the critical value) posi-
tive test statistic values indicate significant forecasting ability.
The results presented in table 1 suggest that a Logit autore-
gressive model of order three, i.e. with three VIX lagged
terms, emerges as the best predictor, as it has the highest
(and statistically significant) PT statistic (2.659). Moreover,
the predictive accuracy of the specific model is relatively
high based on the elevated values of AUC (61.7%), Accu-
racy (59.9%), F1-Score (0.56), Balanced Accuracy (59.6%),
and the lowest value of the MCE (40.1%). Not surprisingly,
another useful predictor is the market variable, MKT, with
high values in terms of AUC (60.8%), Accuracy (57.8%),
Precision (53.5%), Balanced Accuracy (56.5%), and the PT
statistic (1.863), as well as a relatively low (42.2%) MCE. It is
evident that only a limited number of individual predictors are
successful in forecasting the future direction of the VIX. The
results are consistent and confirm previous studies, such as
Konstantinidi et al. (2008), that point out that autoregressive

terms and the market variable are important predictors for the
evolution of implied volatility.

The most rational move is to focus on multiple Logit regres-
sion models, where the basic set up remains the same, i.e.
both autoregressive components and predictor variables up to
lag three, i.e. p = 3 and h = 3 are considered. A real-time
stepwise regression framework based on the Akaike Infor-
mation Criterion (AIC), the Schwarz Bayesian information
criterion (BIC), and the Deviance metrics was implemented.
Table 1 (panel B) reports the relevant statistical measures
that indicate that the stepwise Logit model based on BIC and
Deviance outperform the corresponding model based on the
AIC criterion, and are slightly better than the univariate Logit
model with three autoregressive terms, but clearly superior
compared to all the rest of the univariate models, as they pro-
duce higher AUC (around 60%), lower MCE (around 39%),
higher Accuracy (around 61%), kappa statistic (around 0.21),
Precision (around 57%, 58%), and a significant statistical
predictive performance based on the PT statistic (2.973 and
2.856, respectively). It is noteworthy that the inferior results
of the AIC based model might be due to its tendency to over-
estimate the number of predictors (possible overfitting as it
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Table 2. Elastic Net—Deviance Model (α = 0.50)—
Selected predictor variables and frequencies.

Variable Lag Inclusion frequency Inclusion frequency
(# of times) (%)

VIX 1 192 100.00%
MOM EQ 1 192 100.00%
MKT 1 190 98.96%
RVAR 1 135 70.31%
Oil Price 1 49 25.52%
MOM 1 14 7.29%
VIX 3 11 5.73%
QMJ 2 10 5.21%
HMLD 3 10 5.21%
Skew 3 9 4.69%
MOM FI 3 8 4.17%
TS MOM 1 6 3.13%
MOM FX 2 5 2.60%
QMJ 3 4 2.08%
ECU 2 2 1.04%
MOM 2 2 1.04%
Term Spread 1 2 1.04%
TS MOM 3 1 0.52%
MOM FI 2 1 0.52%

selects a larger number of predictors in each out-of-sample
iteration) compared to the BIC and Deviance criteria.

The next step is to use a penalized likelihood method
for variable selection. More specifically, the Elastic Net

Table 3. Elastic Net—Deviance Model (α = 0.75)—
Selected predictor variables and frequencies.

Variable Lag Inclusion frequency Inclusion frequency
(# of times) (%)

VIX 1 192 100.00%
MOM EQ 1 192 100.00%
MKT 1 178 92.71%
RVAR 1 121 63.02%
Oil Price 1 38 19.79%
QMJ 2 8 4.17%
Skew 3 8 4.17%
VIX 3 7 3.65%
HMLD 3 6 3.13%
MOM 1 5 2.60%
MOM FX 2 4 2.08%
QMJ 3 3 1.56%
MOM FI 3 3 1.56%
Term Spread 1 1 0.52%
ECU 2 1 0.52%

regularization method based on the Deviance metric is used
for predictor selection and inclusion. Table 2 presents the
predictive variables that are included at each out-of-sample
iteration in the Elastic Net Deviance model using an a = 0.50,
ranked on their underlying frequency of inclusion. The results
indicate that the first order autoregressive component, lagged
binary variable, (VIXt−1), and the medium term equity market

Table 4. Machine learning techniques: Statistical Performance Evaluation – Preselection with Elastic Net (α = 0.50).

Method AUC MCE Accuracy Kappa Sensitivity Specificity Precision F1Score Balanced Pesaran -
Accuracy Timmermann

Panel A: Ridge Logit Models
Ridge AUC 0.589 0.438 0.562 0.066 0.233 0.830 0.526 0.323 0.531 1.085
Ridge Class 0.624 0.391 0.609 0.190 0.430 0.755 0.587 0.497 0.592 2.714
Ridge Dev. 0.627 0.349 0.651 0.292 0.593 0.698 0.614 0.604 0.646 4.049
Panel B: LASSO Logit Models
LASSO AUC 0.621 0.365 0.635 0.261 0.581 0.679 0.595 0.588 0.630 3.620
LASSO Class 0.628 0.370 0.630 0.245 0.535 0.708 0.597 0.564 0.621 3.408
LASSO Dev. 0.626 0.359 0.641 0.273 0.593 0.679 0.600 0.596 0.636 3.777
Panel C: Elastic Net Logit Models
EN AUC 0.622 0.359 0.641 0.273 0.593 0.679 0.600 0.596 0.636 3.777
EN Class 0.629 0.375 0.625 0.235 0.535 0.698 0.590 0.561 0.616 3.269
EN Dev. 0.626 0.359 0.641 0.273 0.593 0.679 0.600 0.596 0.636 3.777
Panel D: Discriminant Analysis Models
LDA 0.623 0.354 0.646 0.284 0.605 0.679 0.605 0.605 0.642 3.934
RDA 0.636 0.370 0.630 0.264 0.674 0.594 0.574 0.620 0.634 3.709
Panel E: Bayesian Models
Naive Bayes 0.679 0.344 0.656 0.318 0.721 0.604 0.596 0.653 0.662 4.490
Bayes GLM 0.625 0.365 0.635 0.263 0.593 0.670 0.593 0.593 0.631 3.642
Panel F: Trees, Forest and Boosting Techniques
Bagging 0.613 0.406 0.594 0.182 0.570 0.613 0.544 0.557 0.591 2.527
Random Forest 0.642 0.396 0.604 0.200 0.558 0.642 0.558 0.558 0.600 2.766
Ada. Boosting 0.662 0.344 0.656 0.306 0.628 0.679 0.614 0.621 0.654 4.248
Grad. Boosting 0.640 0.396 0.604 0.207 0.605 0.604 0.553 0.578 0.604 2.873
Panel G: K-nn and Recursive Partitioning
knn 0.630 0.411 0.589 0.169 0.547 0.623 0.540 0.543 0.585 2.341
rpart 0.621 0.385 0.615 0.219 0.558 0.660 0.571 0.565 0.609 3.035

Panel H: Combination of forecasts
Mean (k = 1) 0.639 0.375 0.625 0.221 0.442 0.774 0.613 0.514 0.608 3.175
Mean (k = 2) 0.643 0.359 0.641 0.268 0.558 0.708 0.608 0.582 0.633 3.720
Median (k = 1) 0.645 0.375 0.625 0.221 0.442 0.774 0.613 0.514 0.608 3.175
Median (k = 2) 0.629 0.370 0.630 0.251 0.581 0.670 0.588 0.585 0.626 3.485
BMA 0.621 0.370 0.630 0.247 0.547 0.698 0.595 0.570 0.622 3.425
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momentum factor, MOMEQt−1, are selected by the algorithm
at all the out-of-sample iterations. Another important predic-
tor is the equity market factor, MKTt−1, with frequency of
inclusion of around 99%. In addition, the residual variance
factor, RVARt−1, and the oil price, Oilt−1 are part of the top
ranked list, with frequency of inclusion about 70% and 25%,
respectively. Other predictors that affect the VIX direction,
but, to a smaller extent, and at different lags, are the Fama-
French momentum factor, MOMt−1, the lagged autoregressive
components of VIX, VIXt−3, the quality minus junk factor,
QMJt−2, and the high minus low devil factor, HMLDt−3.

The list of relevant predictors is not surprising; the lagged
binary variable and the market factor have already exhib-
ited their significance in the univariate Logit model setting.
In addition, the presence of medium-term price momentum
factors is consistent with empirical evidence that show that
they are significant for asset return predictability. The low
volatility, quality, and value-related factor portfolios approxi-
mate equity market risk factors. Last, but not least, it has been
shown that commodity markets tend to be forward-looking
and exhibit leading properties; as such, the inclusion of the oil
price is not unforeseen.

To assess the sensitivity of the selected predictors, the
variable selection exercise is repeated using the Elastic Net
Deviance model, but with an a = 0.75. Table 3 presents the

selected predictors together with their inclusion frequency
across the out-of-sample iterations. The results are robust, as
they are similar to those of table 2, as the first autoregressive
component, the equity market momentum factor (MOM EQ),
the equity market factor (MKT), the residual variance factor
(RVAR) and the oil price (Oil price) are, once again, identified
as important predictors.

Having preselected the set of predictors, next, the abil-
ity of the machine learning techniques is evaluated with the
aim to provide even more accurate VIX directional fore-
casts. Table 4 reports the statistical evaluation measures for
different modeling approaches (panels A to H). More specif-
ically, the analysis involves the application of the Ridge,
LASSO and Elastic Net regularization techniques, Discrim-
inant analysis and Bayesian methods, as well as Classification
Tree related techniques, k-nn and partitioning methods. Use-
ful insights emerge from the reported results. It is evident
that the majority of the machine learning techniques pro-
duces significant predictive performance based on the high
positive values of the PT statistic and the different confu-
sion matrix-related measures. In particular, the Naive Bayes
and the Adaptive boosting methods seem to be the top per-
forming models, which clearly outperform the univariate and
the multiple stepwise Logit regression models, as well as the
other machine learning techniques. Naive Bayes and Adaptive

Table 5. Machine Learning Techniques: Statistical Performance Evaluation—Preselection with Elastic Net (α = 0.75).

Method AUC MCE Accuracy Kappa Sensitivity Specificity Precision F1Score Balanced Pesaran -
Accuracy Timmermann

Panel A: Ridge Logit Models
Ridge AUC 0.614 0.422 0.578 0.099 0.244 0.849 0.568 0.341 0.547 1.629
Ridge Class 0.620 0.391 0.609 0.192 0.442 0.745 0.585 0.503 0.594 2.725
Ridge Dev. 0.631 0.344 0.656 0.303 0.605 0.698 0.619 0.612 0.651 4.205

Panel B: LASSO Logit Models
LASSO AUC 0.628 0.365 0.635 0.263 0.593 0.670 0.593 0.593 0.631 3.642
LASSO Class 0.635 0.370 0.630 0.247 0.547 0.698 0.595 0.570 0.622 3.425
LASSO Dev. 0.632 0.359 0.641 0.274 0.605 0.670 0.598 0.601 0.637 3.799

Panel C: Elastic Net Logit Models
EN AUC 0.629 0.359 0.641 0.274 0.605 0.670 0.598 0.601 0.637 3.799
EN Class 0.638 0.365 0.635 0.258 0.558 0.698 0.600 0.578 0.628 3.582
EN Dev. 0.630 0.359 0.641 0.274 0.605 0.670 0.598 0.601 0.637 3.799

Panel D: Discriminant Analysis Models
LDA 0.630 0.354 0.646 0.284 0.605 0.679 0.605 0.605 0.642 3.934
RDA 0.642 0.365 0.635 0.272 0.663 0.613 0.582 0.620 0.638 3.804

Panel E: Bayesian Models
Naive Bayes 0.682 0.339 0.661 0.327 0.709 0.623 0.604 0.652 0.666 4.581
Bayes GLM 0.630 0.359 0.641 0.274 0.605 0.670 0.598 0.601 0.637 3.799

Panel F: Trees, Forest and Boosting Techniques
Bagging 0.620 0.406 0.594 0.179 0.547 0.632 0.547 0.547 0.589 2.475
Random Forest 0.644 0.396 0.604 0.198 0.547 0.651 0.560 0.553 0.599 2.743
Ada. Boosting 0.673 0.359 0.641 0.277 0.628 0.651 0.593 0.610 0.639 3.848
Grad. Boosting 0.639 0.375 0.625 0.238 0.558 0.679 0.585 0.571 0.619 3.307

Panel G: K-nn and Recursive Partitioning
knn 0.626 0.417 0.583 0.158 0.535 0.623 0.535 0.535 0.579 2.183
rpart 0.626 0.365 0.635 0.261 0.581 0.679 0.595 0.588 0.630 3.620

Panel H: Combination of forecasts
Mean (k = 1) 0.633 0.391 0.609 0.193 0.453 0.736 0.582 0.510 0.595 2.737
Mean (k = 2) 0.638 0.359 0.641 0.269 0.570 0.698 0.605 0.587 0.634 3.738
Median (k = 1) 0.635 0.391 0.609 0.193 0.453 0.736 0.582 0.510 0.595 2.737
Median (k = 2) 0.621 0.365 0.635 0.263 0.593 0.670 0.593 0.593 0.631 3.642
BMA 0.621 0.370 0.630 0.247 0.547 0.698 0.595 0.570 0.622 3.425
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boosting achieve top rankings for almost all the statistical
measures reported in table 4. They produce the smallest MCE
of 34.4% (versus 40.1% of the univariate Logit autoregressive
model, and 38.5% of the multiple stepwise BIC model), the
highest AUC (67.9% and 66.2%), Accuracy (65.6%), kappa
statistic (0.318 and 0.306), Sensitivity (72.1% and 62.8%),
Balanced Accuracy (66.2% and 65.4%) as well as the highest
PT statistic (4.49 and 4.248, respectively). This is a sizeable
and non-negligible improvement of 5.7% over the univariate
Logit autoregressive model, based on the Accuracy metric.
Having said that, notable improvements emerge for nearly all
measures. Additional modeling approaches that rank among
the most accurate are the Ridge-Deviance and the Linear Dis-
criminant Analysis (LDA), followed by the Elastic Net (AUC
and Deviance), the LASSO, the Regularized Discriminant
Analysis (RDA), and the Bayes GLM.

To assess the robustness of the results the real-time out-
of-sample forecasting exercise is repeated using the Elastic
Net Deviance model with an a = 0.75. Table 5 presents the
statistical evaluation measures for the different models and
confirms the superior predictive performance of the Naive
Bayes method over the competing techniques, since it ranks
first with respect to almost all statistical measures. The pre-
dictive ability of the Naive Bayes method has been reported in
the literature; see, for example Domingos and Pazzani (1997)
and the references therein. Additional modeling approaches
that produce high predictive ability and rank among the best
performers are the Ridge Deviance model and the Adap-
tive Boosting method. In general, the results are robust,
and similar in spirit with those of table 4, as the major-
ity of the machine learning techniques produces significant
out-of-sample performance.

Table 6. Univariate and Multiple Logit models: Economic Performance Evaluation.

Method Strategy Annual. Annual. Sharpe Sortino Downside Average Alpha Beta
Return Risk Ratio Ratio Risk Drawdown (Equity & Cash) (Equity & Cash)

Panel A: VIX Long
VIX Long − 1.76 70.54 − 0.04 − 0.08 38.61 − 71.33 2.2 − 7.23

Panel B: Univariate Logit Models
VIX Lagged Strategy 1 25.33 45.65 0.53 0.82 29.18 − 26.34 2.84 − 2.86

Strategy 2 59.11 69.20 0.84 1.44 40.07 − 40.78 3.45 1.50
Strategy 3 29.10 46.87 0.59 1.11 25.07 − 25.70 2.66 − 1.53
Strategy Con. 2 44.82 61.99 0.70 0.97 45.09 − 51.53 2.52 1.85
Strategy Con. 3 16.41 39.82 0.38 0.55 27.33 − 45.23 1.57 − 0.91

MKT Strategy 1 14.09 31.43 0.41 0.53 24.01 − 23.75 1.59 − 1.47
Strategy 2 32.25 70.07 0.44 0.58 53.17 − 63.37 0.94 4.29
Strategy 3 17.73 33.60 0.49 0.81 20.37 − 35.77 1.33 0.11
Strategy Con. 2 40.69 50.04 0.79 0.77 51.27 − 42.67 1.83 3.20
Strategy Con. 3 6.69 20.87 0.26 0.30 18.35 − 24.24 0.31 0.71

HMLD Strategy 1 15.05 46.25 0.30 0.29 46.84 − 31.78 2.21 − 3.14
Strategy 2 34.46 70.01 0.47 0.75 44.48 − 37.79 2.18 0.95
Strategy 3 24.94 47.24 0.50 0.65 36.41 − 23.76 2.51 − 1.93
Strategy Con. 2 9.57 46.60 0.18 0.16 52.73 − 41.87 0.48 0.87
Strategy Con. 3 3.77 30.99 0.08 0.06 45.02 − 18.81 0.50 − 0.57

MOM EQ Strategy 1 3.67 44.24 0.05 0.06 42.79 − 41.42 1.21 − 2.74
Strategy 2 9.37 70.50 0.11 0.17 48.44 − 74.44 0.17 1.75
Strategy 3 8.17 45.41 0.15 0.20 35.29 − 39.65 1.19 − 1.60
Strategy Con. 2 38.06 57.57 0.64 0.77 47.96 − 49.13 2.16 1.70
Strategy Con. 3 14.57 36.65 0.36 0.44 30.36 − 19.65 1.41 − 0.81

Panel C: Multiple Logit Models—Stepwise approach
AIC Strategy 1 11.37 46.68 0.22 0.29 35.17 − 54.91 1.73 − 2.50

Strategy 2 26.09 70.22 0.35 0.54 45.55 − 73.98 1.21 2.23
Strategy 3 13.74 48.01 0.26 0.40 30.90 − 57.78 1.45 − 1.12
Strategy Con. 2 32.70 65.49 0.48 0.66 47.40 − 69.03 1.76 1.88
Strategy Con. 3 14.67 45.82 0.29 0.43 31.48 − 58.08 1.49 − 1.04

BIC Strategy 1 30.20 43.81 0.66 1.00 28.82 − 26.69 3.14 − 2.76
Strategy 2 71.46 68.72 1.02 1.66 42.30 − 47.17 4.03 1.70
Strategy 3 38.03 44.77 0.82 1.52 24.20 − 19.74 3.24 − 1.57
Strategy Con. 2 53.08 60.12 0.86 1.13 45.68 − 45.80 3.02 1.80
Strategy Con. 3 23.81 38.01 0.59 1.01 22.27 − 16.68 2.10 − 0.91

Deviance Strategy 1 28.89 44.35 0.62 0.97 28.62 − 29.09 3.06 − 2.78
Strategy 2 68.10 68.85 0.97 1.59 42.13 − 48.42 3.87 1.67
Strategy 3 36.44 45.32 0.78 1.43 24.54 − 22.23 3.15 − 1.59
Strategy Con. 2 52.49 60.44 0.85 1.14 44.98 − 46.60 3.02 1.69
Strategy Con. 3 25.01 38.79 0.61 1.08 21.93 − 16.07 2.21 − 1.01
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As a final check, a series of combined† implied volatility
probability forecasts is generated based on linear weighting
schemes, as well as Bayesian methods (Bayesian Model Aver-
aging). Even though the accuracy of the forecasts generated
by the combination methods is, in general, higher compared
to the univariate Logit and stepwise Logit regression mod-
els, in most cases they fail to outperform the higher ranked
machine learning techniques.

In conclusion, the evidence clearly supports the implemen-
tation of machine learning techniques in implied volatility
prediction, as it significantly improves the accuracy of out-
of-sample forecasts, based on numerous statistical evaluation
measures.

4.2. Economic performance evaluation based on real-time
trading strategies

To evaluate the economic significance of the forecasts gener-
ated by each of the estimated models, a number of investment
strategies based on the VIX index and the S&P 500 index
have been devised. The strategies are implemented also for
models with inferior statistical performance, as statistical evi-
dence is not always confirmed by the underlying financial
performance.

A good starting point would be to focus on the performance
of the most naive strategy. That would result in being con-
stantly long the VIX index. It is not surprising that the specific
strategy would constitute a suboptimal investment choice, as
the long periods of VIX range trading combined with the
relatively short periods of sizeable rise are clearly against
long positioning. This is reflected in the performance evalu-
ation metrics (see table 6, panel A) with negative Sharpe and
Sortino ratio readings, as well as high average draw downs.
Table 6 presents the various metrics, including an estimated
alpha and a beta coefficient versus a reference benchmark that
consists of 50% cash (the return on 1-month Treasury bill) and
50% equities (the return of the S&P 500 index). The specific
composition tries to reflect an investor that is long an equity
portfolio, but at the same time aims to protect his downside
risk.

The first strategy (Strategy 1) goes long the VIX index
when implied volatility is expected to rise, and remains on the
sidelines when implied volatility is expected to fall. The sec-
ond strategy (Strategy 2) is leveraged, as it invests in the VIX
index when implied volatility is forecast to rise and shorts the
VIX index when it is forecast to decline. In the third strat-
egy (Strategy 3), the S&P 500 index is bought when implied

† Elliott et al. (2013) introduced a new method for combining fore-
casts based on complete subset regressions. For a given set of
potential predictors, the authors propose combining forecasts from
all possible linear regressions that keep the number of predictors
fixed. For K possible predictors, there are K univariate models and
Nk,K = K!/((K − k)!k!) different k-variate models for k ≤ K. The
set of models for a fixed value of k is referred to as a complete sub-
set and the authors propose to use equal-weighted combinations of
the forecasts from all models within these subsets indexed by k. See,
also, Meligkotsidou et al. (2019) and Meligkotsidou et al. (2021),
who developed quantile forecast combination schemes for real-
ized volatility prediction and a complete subset quantile regression
approach for equity premium prediction.

volatility is expected to trend lower. For robustness and con-
fidence reasons variants of Strategies 2 and 3 are also formed.
More specifically, when the underlying forecast lies between
the 45%-55% probability interval, no position is taken; if the
estimated probability is above 55% the strategy goes long the
VIX index, alternatively, when the probability is below 45%
the strategy goes short the VIX index (similar to Strategy
2) and long the S&P 500 index (similar to Strategy 3). The
specific strategies are tagged Confidence Strategy 2 (Strategy
Con. 2) and Confidence Strategy 3 (Strategy Con. 3), respec-
tively. All the outlined strategies are fully implementable, as
the recent rise in passive investing or indexing has enabled
investors gain exposure to previously inaccessible market
segments through innovative index-linked financial products.
More specifically, all strategies can be executed through the
use of Exchange Traded Funds (ETFs), as nowadays there are
available long and short VIX-related Short-Term ETFs. No
transaction costs are taken into account in the calculations.

Table 6 (panel B) shows the economic performance evalua-
tion metrics of a selected number of univariate Logit models.
More specifically, the performance of the four top ranked
models, i.e. of the VIX lagged autoregressive, the equity mar-
ket factor (MKT), the High minus Low Devil factor (HMLD),
and the equity market momentum factor (MOM EQ) model,
based on the statistical evaluation measures, such as the
PT statistic, Balanced Accuracy, Precision, is presented. The
results reaffirm the predictive ability of the autoregressive
model, as well as the market factor one, as they achieve
relatively high risk adjusted performance as reflected in the
Sharpe and Sortino ratios, as well as the high estimated alphas
versus the reference benchmark. In general, the rest of the
univariate models produce suboptimal performance.

Next, the economic performance of the multiple Logit
models based on the real-time stepwise regression frame-
work (AIC, BIC and Deviance metrics) is reported in table 6
(panel C) and suggest that an investor that generates fore-
casts through the stepwise BIC approach will achieve higher
positive annualized returns, ranging from 23.81% (Strategy
Con. 3) to 71.46% (Strategy 2), compared to the correspond-
ing returns based on the univariate Logit models, as well as
those of the stepwise AIC and Deviance approach. More-
over, the BIC-related forecasts attain higher risk adjusted
performance, as the Sharpe and Sortino ratios record values
ranging from 0.59 (Strategy Con. 3) to 1.02 (Strategy 2),
and from 1.00 (Strategy 1) to 1.66 (Strategy 2), respectively.
Strategy 2 provides the investor with the highest annualized
returns (71.46%) and also higher risk adjusted performance
metrics, i.e. Sharpe (1.02) and Sortino (1.66) ratios. The step-
wise Deviance approach ranks second with relatively high
economic performance metrics.

The economic performance evaluation measures related
to the machine learning techniques is depicted in table 7
(a = 0.5 in the Elastic Net variable selection algorithm). As
in the case of the univariate and multiple Logit regression
models, the results mostly confirm the statistical evaluation
rankings. Investment strategies constructed based on forecasts
generated by the Naive Bayes, Ridge Deviance, Discriminant
Analysis models, and combination of forecasts produce the
best annualized returns and risk adjusted performance mea-
sures. In particular, the Naive Bayes and the Ridge Deviance
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Table 7. Machine Learning Techniques: Economic Performance Evaluation—Preselection with Elastic Net (α = 0.50).

Method Strategy Annual. Annual. Sharpe Sortino Downside Average Alpha Beta
Return Risk Ratio Ratio Risk Drawdown (Equity & Cash) (Equity & Cash)

VIX Long − 1.76 70.54 − 0.04 − 0.08 38.61 − 71.33 2.2 − 7.23
Ridge AUC Strategy 1 8.57 21.41 0.34 0.33 22.41 − 17.38 0.90 − 0.63

Strategy 2 19.88 70.35 0.26 0.34 54.55 − 79.37 − 0.45 5.97
Strategy 3 13.69 24.76 0.50 0.78 16.00 − 20.41 0.72 1.09
Strategy Con. 2 16.90 41.19 0.38 0.30 52.61 − 58.81 0.34 2.92
Strategy Con. 3 4.12 14.10 0.20 0.18 15.54 − 24.51 0.04 0.90

Ridge Class Strategy 1 25.29 37.20 0.65 1.05 22.92 − 16.09 2.56 − 2.01
Strategy 2 59.01 69.21 0.83 1.27 45.44 − 50.55 2.88 3.20
Strategy 3 32.65 38.78 0.81 1.65 18.98 − 19.29 2.55 − 0.49
Strategy Con. 2 33.99 46.38 0.71 0.75 43.65 − 31.97 1.49 2.96
Strategy Con. 3 3.22 19.20 0.10 0.11 18.26 − 19.54 0.03 0.72

Ridge Dev. Strategy 1 42.32 42.34 0.97 1.87 21.99 − 21.39 3.79 − 2.44
Strategy 2 103.91 67.27 1.53 2.33 43.98 − 43.44 5.34 2.35
Strategy 3 49.46 43.50 1.11 2.45 19.66 − 25.55 3.76 − 1.06
Strategy Con. 2 46.26 53.53 0.84 0.92 49.16 − 43.37 2.26 2.92
Strategy Con. 3 17.29 28.25 0.57 0.86 18.59 − 20.78 1.27 0.22

LASSO AUC Strategy 1 38.22 42.78 0.86 1.66 22.30 − 20.29 3.51 − 2.36
Strategy 2 92.65 67.80 1.35 2.12 43.07 − 42.57 4.79 2.51
Strategy 3 44.77 44.02 0.99 2.16 20.15 − 26.31 3.44 − 0.93
Strategy Con. 2 59.17 58.25 0.99 1.21 47.77 − 42.61 3.13 2.48
Strategy Con. 3 28.30 36.51 0.74 1.46 18.48 − 21.32 2.18 − 0.24

LASSO Class Strategy 1 29.65 38.31 0.74 1.22 23.19 − 13.93 2.83 − 1.96
Strategy 2 70.03 68.77 1.00 1.42 48.42 − 46.09 3.43 3.31
Strategy 3 35.68 39.83 0.86 1.71 20.17 − 20.87 2.73 − 0.48
Strategy Con. 2 47.85 55.64 0.84 0.95 49.19 − 36.91 2.33 2.96
Strategy Con. 3 16.37 31.43 0.48 0.81 18.54 − 16.23 1.21 0.20

LASSO Dev. Strategy 1 39.96 42.76 0.90 1.76 21.95 − 23.10 3.65 − 2.45
Strategy 2 97.38 67.58 1.42 2.22 43.38 − 45.24 5.06 2.33
Strategy 3 46.79 43.93 1.04 2.28 19.99 − 27.00 3.60 − 1.07
Strategy Con. 2 61.51 58.42 1.03 1.26 47.77 − 42.32 3.25 2.50
Strategy Con. 3 28.45 36.51 0.74 1.47 18.48 − 21.26 2.19 − 0.24

Elastic Net AUC Strategy 1 39.51 42.88 0.89 1.71 22.30 − 22.71 3.62 − 2.45
Strategy 2 96.17 67.63 1.40 2.19 43.37 − 44.54 5.01 2.32
Strategy 3 46.30 44.05 1.02 2.22 20.29 − 26.70 3.58 − 1.08
Strategy Con. 2 60.38 58.38 1.01 1.24 47.77 − 42.03 3.19 2.50
Strategy Con. 3 27.93 36.49 0.73 1.44 18.48 − 21.24 2.15 − 0.24

Elastic Net Class Strategy 1 29.64 39.27 0.72 1.24 22.90 − 19.31 2.84 − 1.97
Strategy 2 70.01 68.78 1.00 1.47 46.89 − 49.80 3.43 3.29
Strategy 3 35.22 40.77 0.83 1.69 20.14 − 25.43 2.71 − 0.49
Strategy Con. 2 46.99 51.18 0.89 0.96 47.53 − 29.45 2.37 2.70
Strategy Con. 3 13.05 24.40 0.48 0.67 17.55 − 13.08 0.94 0.27

Elastic Net Dev. Strategy 1 39.96 42.76 0.90 1.76 21.95 − 23.10 3.65 − 2.45
Strategy 2 97.38 67.58 1.42 2.22 43.38 − 45.24 5.06 2.33
Strategy 3 46.79 43.93 1.04 2.28 19.99 − 27.00 3.60 − 1.07
Strategy Con. 2 55.81 57.70 0.95 1.14 47.77 − 40.64 2.92 2.55
Strategy Con. 3 25.13 35.31 0.68 1.29 18.48 − 21.33 1.94 − 0.18

knn Strategy 1 24.54 39.37 0.59 0.93 24.91 − 24.66 2.75 − 2.73
Strategy 2 57.15 69.27 0.81 1.11 50.27 − 51.85 3.25 1.77
Strategy 3 30.80 40.39 0.73 1.33 22.23 − 22.21 2.81 − 1.66
Strategy Con. 2 52.90 60.55 0.85 0.98 52.87 − 41.80 3.19 1.24
Strategy Con. 3 23.07 35.30 0.62 0.96 22.73 − 20.26 2.19 − 1.34

rpart Strategy 1 27.43 42.12 0.62 0.84 30.99 − 23.56 3.06 − 3.08
Strategy 2 64.38 69.00 0.91 1.35 46.86 − 39.61 3.88 1.06
Strategy 3 35.08 42.91 0.79 1.33 25.34 − 20.24 3.23 − 2.11
Strategy Con. 2 69.13 67.77 1.00 1.46 46.53 − 34.00 4.15 0.98
Strategy Con. 3 34.79 42.91 0.78 1.32 25.46 − 20.69 3.22 − 2.12

Mean (k = 1) Strategy 1 20.40 29.10 0.66 0.84 22.64 − 21.92 1.94 − 1.15
Strategy 2 47.06 69.63 0.66 0.82 55.68 − 66.05 1.64 4.92
Strategy 3 25.88 31.39 0.78 1.33 18.46 − 28.19 1.78 0.48
Strategy Con. 2 40.42 46.25 0.85 0.82 47.61 − 34.65 1.77 3.33
Strategy Con. 3 5.66 16.32 0.27 0.26 16.86 − 13.12 0.16 0.91

Mean (k = 2) Strategy 1 39.98 41.60 0.93 1.86 20.85 − 22.66 3.61 − 2.32
Strategy 2 97.45 67.57 1.42 2.22 43.24 − 46.93 4.98 2.59
Strategy 3 47.32 42.82 1.08 2.47 18.62 − 25.88 3.58 − 0.89
Strategy Con. 2 43.58 53.68 0.79 0.83 50.78 − 52.81 1.89 3.55
Strategy Con. 3 9.75 23.82 0.36 0.43 19.55 − 28.54 0.60 0.55

(Continued).
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Table 7. Continued.

Method Strategy Annual. Annual. Sharpe Sortino Downside Average Alpha Beta
Return Risk Ratio Ratio Risk Drawdown (Equity & Cash) (Equity & Cash)

Median (k = 1) Strategy 1 21.81 33.42 0.61 0.96 21.38 − 19.55 2.10 − 1.35
Strategy 2 50.46 69.51 0.71 1.00 49.01 − 62.82 1.97 4.52
Strategy 3 27.24 35.50 0.73 1.46 17.73 − 27.89 1.92 0.33
Strategy Con. 2 41.31 48.97 0.82 0.69 58.08 − 54.84 1.74 3.59
Strategy Con. 3 3.14 15.95 0.12 0.09 21.22 − 31.49 − 0.04 0.91

Median (k = 2) Strategy 1 35.69 43.29 0.80 1.32 26.17 − 27.78 3.39 − 2.46
Strategy 2 85.85 68.10 1.24 1.92 43.99 − 51.67 4.54 2.30
Strategy 3 42.05 44.49 0.92 1.80 22.71 − 30.22 3.32 − 1.08
Strategy Con. 2 45.20 54.25 0.81 0.89 49.61 − 54.03 2.19 2.93
Strategy Con. 3 14.10 27.08 0.47 0.64 20.00 − 34.45 1.07 0.09

BMA Strategy 1 27.73 40.93 0.65 0.92 28.86 − 19.45 2.85 − 2.38
Strategy 2 65.15 68.97 0.93 1.36 47.11 − 38.07 3.45 2.47
Strategy 3 34.41 42.07 0.79 1.39 23.76 − 18.26 2.87 − 1.14
Strategy Con. 2 71.71 58.76 1.20 1.57 44.85 − 24.74 4.07 1.64
Strategy Con. 3 30.93 38.12 0.78 1.38 21.49 − 10.23 2.57 − 0.90

LDA Strategy 1 40.94 43.02 0.92 1.78 22.30 − 21.74 3.72 − 2.48
Strategy 2 100.09 67.45 1.47 2.26 43.67 − 43.35 5.20 2.26
Strategy 3 47.97 44.16 1.06 2.29 20.36 − 26.18 3.69 − 1.11
Strategy Con. 2 60.61 58.46 1.01 1.26 47.17 − 42.05 3.21 2.48
Strategy Con. 3 28.32 36.65 0.74 1.49 18.16 − 20.15 2.18 − 0.25

RDA Strategy 1 39.83 47.15 0.82 1.35 28.49 − 19.67 3.92 − 3.29
Strategy 2 97.04 67.59 1.42 2.21 43.32 − 32.39 5.60 0.64
Strategy 3 46.90 47.85 0.95 1.80 25.32 − 17.58 4.01 − 2.29
Strategy Con. 2 81.93 61.65 1.31 1.71 47.15 − 29.47 4.70 1.25
Strategy Con. 3 43.54 40.94 1.03 2.16 19.54 − 12.15 3.54 − 1.47

Naïve Bayes Strategy 1 42.37 40.97 1.00 1.70 24.21 − 22.38 3.94 − 2.90
Strategy 2 104.03 67.26 1.53 1.92 53.60 − 29.48 5.65 1.43
Strategy 3 49.89 41.76 1.16 2.26 21.53 − 17.94 4.05 − 1.86
Strategy Con. 2 92.92 64.09 1.43 1.66 55.28 − 33.64 5.28 1.05
Strategy Con. 3 47.29 39.78 1.16 2.32 19.86 − 15.46 3.88 − 1.82

Bayes GLM Strategy 1 38.63 43.00 0.87 1.70 21.99 − 22.79 3.57 − 2.46
Strategy 2 93.77 67.74 1.37 2.15 43.07 − 44.67 4.91 2.30
Strategy 3 45.26 44.18 1.00 2.18 20.21 − 26.77 3.52 − 1.08
Strategy Con. 2 61.68 58.41 1.03 1.27 47.51 − 41.77 3.26 2.49
Strategy Con. 3 28.98 36.59 0.76 1.51 18.33 − 20.00 2.22 − 0.25

Bagging Strategy 1 14.53 41.76 0.32 0.40 33.31 − 38.71 2.03 − 2.71
Strategy 2 33.26 70.04 0.46 0.61 52.80 − 69.23 1.82 1.81
Strategy 3 18.99 42.88 0.41 0.60 29.57 − 39.07 1.99 − 1.61
Strategy Con. 2 37.76 65.66 0.56 0.70 52.28 − 62.70 2.22 1.48
Strategy Con. 3 18.72 40.31 0.43 0.60 29.09 − 44.00 1.93 − 1.48

Random Forest Strategy 1 12.92 38.24 0.30 0.35 32.96 − 38.06 1.82 − 2.44
Strategy 2 29.58 70.14 0.40 0.52 54.53 − 62.21 1.41 2.35
Strategy 3 17.69 39.45 0.42 0.58 28.45 − 34.93 1.81 − 1.35
Strategy Con. 2 39.08 64.32 0.59 0.70 53.90 − 52.70 2.26 1.61
Strategy Con. 3 21.18 37.29 0.53 0.72 27.56 − 29.73 2.07 − 1.40

Ada. Boosting Strategy 1 35.10 39.73 0.85 1.10 30.88 − 19.34 3.47 − 2.81
Strategy 2 84.26 68.17 1.22 1.50 55.49 − 38.40 4.69 1.62
Strategy 3 43.25 40.68 1.03 1.64 25.55 − 18.42 3.59 − 1.66
Strategy Con. 2 85.00 63.48 1.32 1.45 57.61 − 32.12 4.78 1.47
Strategy Con. 3 42.93 36.92 1.13 2.01 20.76 − 13.98 3.53 − 1.53

Grad. Boosting Strategy 1 19.62 39.62 0.46 0.57 31.94 − 27.74 2.47 − 2.92
Strategy 2 45.19 69.69 0.63 0.81 54.27 − 50.81 2.70 1.39
Strategy 3 25.69 40.55 0.60 0.88 27.75 − 24.61 2.57 − 1.97
Strategy Con. 2 48.98 60.83 0.78 0.88 54.01 − 39.82 2.96 1.26
Strategy Con. 3 22.83 34.73 0.62 0.90 24.08 − 18.76 2.18 − 1.37

model based forecasts rank as the top performing, as they pro-
duce the highest annualized returns (104.03% and 103.91%),
the highest Sharpe ratio (1.53) and estimated alphas (5.65 and
5.34), as well as high Sortino values (1.92 and 2.33, respec-
tively). Additional modeling approaches that rank among the
most successful are the Linear Discriminant analysis (LDA)
and the mean combination scheme of forecasts based on all

possible Logit regression models with k = 2 predictors. The
latter achieve relatively high annualized returns of 100.09%
and 97.45%, Sharpe ratio of 1.47 and 1.42, estimated alphas
of 5.20 and 4.98, and Sortino values of 2.26 and 2.22,
respectively. These results indicate that the machine learn-
ing techniques clearly outperform the univariate and multiple
stepwise Logit regression models.
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Table 8. Machine Learning Techniques: Economic Performance Evaluation—Preselection with Elastic Net (α = 0.75)

Method Strategy Annual. Annual. Sharpe Sortino Downside Average Alpha Beta
Return Risk Ratio Ratio Risk Drawdown (Equity & Cash) (Equity & Cash)

VIX Long − 1.76 70.54 − 0.04 − 0.08 38.61 − 71.33 2.24 − 7.23
Ridge AUC Strategy 1 11.95 22.53 0.47 0.46 23.26 − 12.30 1.13 − 0.56

Strategy 2 27.39 70.19 0.37 0.48 54.94 − 75.04 0.02 6.10
Strategy 3 17.57 25.77 0.63 1.02 16.06 − 23.55 0.96 1.21
Strategy Con. 2 19.89 44.07 0.42 0.34 55.29 − 45.74 0.49 3.13
Strategy Con. 3 5.88 14.91 0.31 0.29 15.71 − 12.52 0.17 0.92

Ridge Class Strategy 1 27.47 37.28 0.70 1.28 20.54 − 23.43 2.67 − 1.89
Strategy 2 64.49 69.00 0.92 1.41 44.94 − 61.48 3.09 3.45
Strategy 3 34.37 38.91 0.85 1.88 17.59 − 29.92 2.60 − 0.33
Strategy Con. 2 37.83 48.54 0.75 0.83 44.25 − 35.50 1.70 3.05
Strategy Con. 3 5.52 20.21 0.21 0.25 17.31 − 20.08 0.23 0.67

Ridge Dev. Strategy 1 42.97 42.35 0.98 1.90 21.99 − 21.39 3.82 − 2.42
Strategy 2 105.71 67.18 1.55 2.36 44.25 − 43.72 5.41 2.38
Strategy 3 49.81 43.51 1.12 2.47 19.66 − 25.55 3.77 − 1.05
Strategy Con. 2 50.91 55.59 0.89 0.99 50.10 − 43.39 2.43 3.22
Strategy Con. 3 18.73 27.85 0.63 1.02 17.09 − 20.82 1.35 0.28

LASSO AUC Strategy 1 36.42 43.65 0.81 1.34 26.27 − 26.73 3.43 − 2.44
Strategy 2 87.80 68.01 1.27 1.97 43.87 − 49.34 4.62 2.35
Strategy 3 41.90 44.89 0.91 1.78 22.80 − 32.35 3.31 − 1.05
Strategy Con. 2 68.32 60.18 1.11 1.35 49.50 − 44.33 3.50 2.83
Strategy Con. 3 29.76 36.11 0.79 1.66 17.18 − 21.02 2.25 − 0.17

LASSO Class Strategy 1 27.80 39.31 0.67 0.97 27.38 − 19.73 2.73 − 2.01
Strategy 2 65.32 68.96 0.93 1.31 49.01 − 53.57 3.22 3.20
Strategy 3 33.14 40.82 0.78 1.39 22.94 − 25.65 2.60 − 0.55
Strategy Con. 2 59.28 58.56 0.99 1.16 50.05 − 39.07 2.93 3.11
Strategy Con. 3 21.95 32.90 0.63 1.20 17.24 − 18.04 1.63 0.11

LASSO Dev. Strategy 1 37.69 43.76 0.83 1.39 26.27 − 26.73 3.53 − 2.51
Strategy 2 91.22 67.86 1.33 2.04 44.19 − 49.57 4.82 2.21
Strategy 3 43.77 44.93 0.95 1.85 22.97 − 30.37 3.45 − 1.15
Strategy Con. 2 67.35 60.21 1.10 1.34 49.14 − 44.59 3.45 2.82
Strategy Con. 3 29.73 36.18 0.79 1.67 17.02 − 21.26 2.25 − 0.18

Elastic Net AUC Strategy 1 37.69 43.76 0.83 1.39 26.27 − 26.73 3.53 − 2.51
Strategy 2 91.22 67.86 1.33 2.04 44.19 − 49.57 4.82 2.21
Strategy 3 43.77 44.93 0.95 1.85 22.97 − 30.37 3.45 − 1.15
Strategy Con. 2 71.96 59.41 1.19 1.46 48.46 − 44.07 3.72 2.74
Strategy Con. 3 30.08 36.15 0.80 1.68 17.13 − 20.88 2.28 − 0.19

Elastic Net Class Strategy 1 29.86 40.19 0.71 1.04 27.38 − 22.24 2.87 − 2.03
Strategy 2 70.58 68.75 1.01 1.44 48.17 − 53.96 3.51 3.16
Strategy 3 35.10 41.65 0.81 1.47 22.95 − 27.81 2.73 − 0.57
Strategy Con. 2 55.09 53.61 1.00 1.10 48.93 − 29.66 2.75 2.96
Strategy Con. 3 16.29 24.87 0.60 0.93 16.15 − 13.33 1.17 0.28

Elastic Net Dev. Strategy 1 37.69 43.76 0.83 1.39 26.27 − 26.73 3.53 − 2.51
Strategy 2 91.22 67.86 1.33 2.04 44.19 − 49.57 4.82 2.21
Strategy 3 43.77 44.93 0.95 1.85 22.97 − 30.37 3.45 − 1.15
Strategy Con. 2 62.96 59.59 1.04 1.26 49.14 − 43.59 3.20 2.88
Strategy Con. 3 26.47 34.97 0.72 1.48 17.02 − 21.29 2.02 − 0.12

LDA Strategy 1 38.57 43.64 0.85 1.40 26.66 − 26.65 3.58 − 2.50
Strategy 2 93.58 67.75 1.36 2.07 44.49 − 49.43 4.92 2.22
Strategy 3 44.80 44.81 0.97 1.89 23.08 − 30.29 3.51 − 1.14
Strategy Con. 2 68.55 60.26 1.12 1.38 48.88 − 42.35 3.52 2.81
Strategy Con. 3 30.16 36.26 0.80 1.71 16.88 − 19.62 2.28 − 0.19

RDA Strategy 1 42.77 46.10 0.90 1.55 26.83 − 19.52 4.05 − 3.15
Strategy 2 105.15 67.21 1.55 2.41 43.04 − 31.23 5.87 0.92
Strategy 3 50.45 46.78 1.05 2.08 23.60 − 16.45 4.17 − 2.13
Strategy Con. 2 93.46 61.55 1.50 1.97 46.88 − 27.83 5.17 1.45
Strategy Con. 3 47.46 39.94 1.16 3.00 15.39 − 10.77 3.75 − 1.38

Naïve Bayes Strategy 1 41.91 40.99 0.99 1.60 25.45 − 23.38 3.92 − 2.91
Strategy 2 102.76 67.33 1.51 1.88 53.95 − 31.52 5.60 1.41
Strategy 3 49.33 41.79 1.15 2.15 22.36 − 17.90 4.02 − 1.87
Strategy Con. 2 93.43 62.99 1.46 1.68 54.77 − 35.62 5.27 1.15
Strategy Con. 3 45.40 39.35 1.12 2.12 20.84 − 15.78 3.72 − 1.66

(Continued).
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Table 8. Continued.

Method Strategy Annual. Annual. Sharpe Sortino Downside Average Alpha Beta
Return Risk Ratio Ratio Risk Drawdown (Equity & Cash) (Equity & Cash)

Bayes GLM Strategy 1 37.69 43.76 0.83 1.39 26.27 − 26.73 3.53 − 2.51
Strategy 2 91.22 67.86 1.33 2.04 44.19 − 49.57 4.82 2.21
Strategy 3 43.77 44.93 0.95 1.85 22.97 − 30.37 3.45 − 1.15
Strategy Con. 2 69.07 60.25 1.13 1.39 48.88 − 42.26 3.54 2.81
Strategy Con. 3 30.35 36.26 0.80 1.72 16.88 − 19.62 2.30 − 0.19

Bagging Strategy 1 13.52 40.28 0.30 0.40 30.69 − 37.44 1.91 − 2.57
Strategy 2 30.94 70.10 0.42 0.57 52.47 − 68.42 1.58 2.08
Strategy 3 18.81 41.48 0.42 0.63 27.91 − 36.11 1.91 − 1.42
Strategy Con. 2 34.30 65.50 0.50 0.64 51.67 − 57.69 1.88 1.84
Strategy Con. 3 16.97 38.02 0.41 0.60 26.30 − 38.98 1.72 − 1.24

Random Forest Strategy 1 15.64 38.85 0.37 0.47 30.63 − 33.16 2.01 − 2.41
Strategy 2 35.84 69.97 0.49 0.65 53.18 − 59.06 1.79 2.41
Strategy 3 20.75 40.07 0.49 0.72 26.94 − 30.43 2.00 − 1.27
Strategy Con. 2 36.54 66.37 0.53 0.63 56.12 − 58.25 1.92 2.14
Strategy Con. 3 20.37 37.50 0.51 0.70 27.42 − 31.39 1.95 − 1.19

Ada. Boosting Strategy 1 36.32 39.20 0.89 1.55 22.61 − 20.59 3.54 − 2.79
Strategy 2 87.52 68.03 1.27 1.64 52.66 − 35.50 4.83 1.65
Strategy 3 44.43 40.17 1.07 2.12 20.32 − 19.06 3.65 − 1.63
Strategy Con. 2 86.97 63.54 1.35 1.51 56.65 − 36.77 4.76 1.78
Strategy Con. 3 39.52 37.04 1.03 1.84 20.80 − 15.70 3.29 − 1.43

Grad. Boosting Strategy 1 31.73 37.27 0.82 1.33 22.84 − 14.44 3.12 − 2.40
Strategy 2 75.41 68.55 1.08 1.40 53.11 − 33.46 3.99 2.43
Strategy 3 39.52 38.47 0.99 1.92 19.92 − 13.39 3.19 − 1.14
Strategy Con. 2 57.49 63.31 0.89 1.00 56.09 − 40.45 3.24 1.88
Strategy Con. 3 31.14 35.72 0.84 1.50 19.92 − 13.40 2.66 − 1.14

knn Strategy 1 22.27 39.14 0.54 0.86 24.29 − 22.63 2.60 − 2.75
Strategy 2 51.58 69.47 0.72 1.01 49.78 − 62.07 2.96 1.72
Strategy 3 29.03 40.17 0.69 1.25 22.13 − 21.21 2.70 − 1.68
Strategy Con. 2 48.42 61.42 0.77 0.93 50.96 − 49.22 2.89 1.39
Strategy Con. 3 20.93 34.90 0.56 0.89 21.99 − 19.84 2.03 − 1.33

rpart Strategy 1 35.69 41.74 0.82 1.49 23.03 − 20.80 3.57 − 3.00
Strategy 2 85.84 68.10 1.24 1.89 44.83 − 34.18 4.90 1.22
Strategy 3 45.48 42.44 1.04 2.21 19.98 − 16.82 3.82 − 1.97
Strategy Con. 2 89.54 66.83 1.32 1.99 44.31 − 27.37 5.10 1.14
Strategy Con. 3 44.31 42.45 1.01 2.15 20.06 − 19.08 3.76 − 1.97

Mean (k = 1) Strategy 1 21.47 29.86 0.68 1.02 19.89 − 20.14 2.07 − 1.32
Strategy 2 49.65 69.54 0.70 0.88 54.84 − 61.90 1.90 4.58
Strategy 3 27.31 31.98 0.81 1.51 17.26 − 22.41 1.95 0.24
Strategy Con. 2 42.51 48.49 0.85 0.85 48.52 − 33.88 1.84 3.49
Strategy Con. 3 6.07 16.60 0.29 0.29 16.61 − 17.56 0.19 0.90

Mean (k = 2) Strategy 1 40.11 41.66 0.93 1.89 20.55 − 22.48 3.61 − 2.31
Strategy 2 97.80 67.56 1.43 2.23 43.28 − 47.82 4.99 2.61
Strategy 3 46.97 42.90 1.07 2.47 18.48 − 26.07 3.56 − 0.89
Strategy Con. 2 43.44 55.60 0.76 0.83 50.84 − 51.76 1.90 3.49
Strategy Con. 3 11.18 25.88 0.38 0.51 19.42 − 31.34 0.74 0.44

Median (k = 1) Strategy 1 21.48 34.55 0.58 1.00 20.31 − 17.46 2.16 − 1.58
Strategy 2 49.66 69.54 0.70 1.01 48.10 − 58.57 2.07 4.06
Strategy 3 27.01 36.46 0.71 1.45 17.70 − 22.53 2.00 0.02
Strategy Con. 2 45.36 51.39 0.86 0.78 56.75 − 53.54 2.01 3.50
Strategy Con. 3 6.65 19.63 0.27 0.27 20.05 − 26.39 0.29 0.74

Median (k = 2) Strategy 1 41.23 41.75 0.96 1.98 20.19 − 21.92 3.69 − 2.33
Strategy 2 100.89 67.41 1.48 2.28 43.76 − 49.07 5.14 2.56
Strategy 3 47.56 42.95 1.08 2.53 18.30 − 27.70 3.61 − 0.97
Strategy Con. 2 43.48 55.02 0.77 0.83 50.78 − 51.32 2.00 3.19
Strategy Con. 3 12.40 25.26 0.44 0.57 19.65 − 27.67 0.90 0.24

BMA Strategy 1 27.73 40.93 0.65 0.92 28.86 − 19.45 2.85 − 2.38
Strategy 2 65.15 68.97 0.93 1.36 47.11 − 38.07 3.45 2.47
Strategy 3 34.41 42.07 0.79 1.39 23.76 − 18.26 2.87 − 1.14
Strategy Con. 2 64.81 60.30 1.05 1.36 46.57 − 29.74 3.63 1.90
Strategy Con. 3 29.92 38.18 0.75 1.33 21.47 − 10.64 2.49 − 0.86
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Table 8 presents the evaluation measures for the machine
learning techniques (a = 0.75 in the Elastic Net variable
selection algorithm) and confirms the superior economic
performance of these techniques. Once again, the Ridge
Deviance, the Regularized Discriminant Analysis (RDA), the
Naive Bayes based forecasts, as well as the median fore-
cast combination scheme with a subset of k = 2 predic-
tors over the competing modeling approaches are the best
performers.

In conclusion, the findings support the implementation of
machine learning techniques in implied volatility prediction,
as there is strong evidence regarding their superior accuracy
for directional VIX forecasts that is also reflected in higher
risk adjusted returns when real-time investment strategies are
implemented.

5. Conclusion

The primary target of this study was to explore whether
the application of innovative modeling approaches can con-
tribute to the literature on the predictability of implied
volatility indices. To this end, numerous alternative modeling
approaches (Logit, Stepwise Logit, Combination of forecasts,
and machine learning techniques) and model specifications
have been employed to generate directional forecasts of the
CBOE VIX index. The predictive accuracy of the generated
out-of-sample forecasts was assessed both in a statistical and
an economic setting. The economic significance was evalu-
ated using various investment strategies based on the VIX
index and the S&P 500 index.

The main conclusion is that the application of certain
machine learning techniques in implied volatility prediction is
strongly encouraged, as it significantly improves the accuracy
of out-of-sample forecasts, based on numerous statistical eval-
uation measures over more mainstream econometric methods.
Moreover, the use of penalized likelihood methods, such as
the Elastic Net regularization technique, is strongly advised,
as it can be used to narrow down the number and identify the
important predictors.

As anticipated, there is a certain degree of divergence in the
predictive accuracy of the underlying machine learning mod-
els. Model accuracy is not consistent across all models, some
techniques, however, exhibit consistent superior relative per-
formance (Naive Bayes, Ridge Deviance, Adaptive Boosting,
Discriminant Analysis).

The analysis employs an elaborate set of predictive vari-
ables containing 31 macroeconomic and financial market
related indicators, the majority of which have been widely-
followed and used in the existing literature on the predictabil-
ity of asset returns. It also introduces a number of less studied
indicators in the area of implied volatility predictability.
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Appendix

Table A1. Set of Predictors – Overview.

Code Predictive Variable Unit Transformation Source

1 VIX Index Level – End of period (%) – CBOE
2 SMB Factor Monthly Portfolio Returns –

Small Minus Big – Size Factor
(%) – Fama – French

3 HML Factor Monthly Portfolio Returns –
High Minus Low -Value Factor

(%) – Fama – French

4 MKT Factor Portfolio Returns – Equity
Market Factor

(%) – Fama – French

5 MOM Factor Portfolio Returns – Medium
Price Momentum Factor

(%) – Fama – French

6 STR Factor Portfolio Returns – Short Term
Reversal Factor

(%) – Fama – French

7 RVAR Factor Portfolio Returns – Residual
Variance Factor

(%) – Fama – French

8 BAB Factor Portfolio Returns – Betting
Against Beta Factor

(%) – AQR

9 QMJ Factor Portfolio Returns – Quality
Minus Junk Factor

(%) – AQR

10 Term spread – 10-year Treasury yield
-3-month Tbill rate

(%) – FRED Database

11 Credit Spread – Moodys BAA Yield over
10-year Treasury Yield

(%) – FRED Database

12 10-year Treasury Yield (%) – FRED Database
13 3-month T-bill Rate (%) – FRED Database
14 Oil Price Index – WTI Crude Oil (%) month-on-month % change FRED Database
15 Dollar Index (%) month-on-month % change FRED Database
16 TED Spread (%) – FRED Database
17 Skew Index (%) – CBOE
18 Chicago Fed National Financial Conditions

Leverage SubIndex
Z-score Normalized FRED Database

19 TSMOM Factor Portfolio Returns –
Diversified Asset Medium-Term Price
Momentum

(%) – AQR

20 MOM CM Factor Portfolio Returns –
Commodities Medium-Term Price
Momentum

(%) – AQR

21 MOM EQ Factor Portfolio Returns –
Equity Market Medium-Term Price
Momentum

(%) – AQR

22 MOM FI Factor Portfolio Returns – Fixed
Income Market Medium-Term Price
Momentum

(%) – AQR

23 MOM FX Factor Portfolio Returns –
Foreign Exchange Market Medium-Term
Price Momentum

(%) – AQR

24 HMLD Factor Portfolio Returns – High
Minus Low Devil Factor

(%) – AQR

25 Economic Policy Uncertainty Index (ECU) Index Level – Economic Policy Uncertainty
26 Macroeconomic Volatility (MacVol) –

Industrial Production Growth
(%) Annualized 12-month rolling SDEV FRED Database

27 Bullish Sentiment – Average (%) Monthly Average AAII
28 Neutral Sentiment – Average (%) Monthly Average AAII
29 Bearish Sentiment – Average (%) Monthly Average AAII
30 Bull-Bear Spread – Average (%) Monthly Average AAII
31 Bull – Bear Ratio – Average (%) Monthly Average AAII
32 8-week Moving Average Bullish Sentiment (%) – AAII
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