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1 Introduction and main results

The purpose of this article and its companion [2] is to study some perturbation problems for second order
divergence form real-valued elliptic operators with bounded measurable coefficients in domains with rough
boundaries. Let Q ¢ R™1, n > 2, be an open set and let Lu = — div(AVu) be a second order divergence form
real-valued elliptic operator defined in Q. Here the coefficient matrix A = (a; (- ));’jjl is real-valued (not
necessarily symmetric) and uniformly elliptic, with a; ; € L°(Q), that is, there exists a constant A > 1 such
that

ANER < AXE-E JAX)E-n| < AlEInl

for all &, n € R™*! and for almost every X € Q. Associated with L, one can construct a family of positive Borel
measures {wf}Xeg, defined on 0Q with wX(0Q) < 1 forevery X € Q, so thatforeach f € C.(0Q) one can define
its associated weak-solution

ulX) = J f(z)dwf(z), whenever X € Q, (1.1)

20

which satisfies Lu = 0 in Q in the weak sense. These solutions are sometimes called Perron solutions (see,
for example, the classical books [11, 16, 17]). In principle, unless we assume some further condition (e.g.,
existence of a barrier function or Wiener regularity), u need not be continuous all the way to the boundary,
but still we think of u as the solution to the continuous Dirichlet problem with boundary data f. We call w the
elliptic measure of Q associated with the operator L with pole at X € Q. For convenience, we will sometimes
write wy and call it simply the elliptic measure, dropping the dependence on the pole.

Given two such operators Lou = — div(AoVu) and Lu = — div(AVu), one may wonder whether one can find
conditions on the matrices A and A so that some “good estimates” for the Dirichlet problem or for the elliptic
measure for Lo might be transferred to the operator L. Similarly, one may try to see whether A being “close”
to Ao in some sense gives some relationship between w;, and wy,. In this direction, a celebrated result of
Littman, Stampacchia, and Weinberger in [29] states that the continuous Dirichlet problem for the Laplace
operator Lo = A, (i.e., Ao is the identity) is solvable if and only if it is solvable for any real-valued elliptic
operator L. By solvability here we mean that the elliptic measure solutions as in (1.1) are indeed continuous
in Q. It is well known that solvability in this sense is in fact equivalent to the fact that all boundary points
are regular in the sense of Wiener (or, equivalently, existence of barrier functions), a condition which entails
some capacitary thickness of the complement of Q. Note that, for this result, one does not need to know that L
is “close” to the Laplacian in any sense (other than the fact that both operators are uniformly elliptic).

On the other hand, if Q = R? is the upper-half plane and Lo = A, then the harmonic measure associated
with A is mutually absolutely continuous with respect to the surface measure on the boundary, and its Radon—
Nikodym derivative is the classical Poisson kernel. However, Caffarelli, Fabes, and Kenig in [3] constructed
a uniformly real-valued elliptic operator L in the plane (the pullback of the Laplacian via a quasiconformal
mapping of the upper half plane to itself) for which the associated elliptic measure w; is not even abso-
lutely continuous with respect to the surface measure (see also [31] for another example). This means that,
although the continuous Dirichlet problem is solvable for L, one can not solve in general the associated prob-
lem for integrable data with respect to surface measure. Hence, in principle the “good behavior” of harmonic
measure does not always transfer to any elliptic measure even in a nice domain such as the upper-half plane.
Consequently, it is natural to see if those good properties can be transferred by assuming some conditions
reflecting the fact that L is “close” to L or, in other words, by imposing some conditions on the disagreement
of A and Ay.

The goal of this article and its companion [2] is to solve some perturbation problems that go beyond
[5, 6, 9, 12, 13, 30]. Our setting is that of 1-sided NTA domains satisfying the so-called capacity density
condition (CDC for short); see Section 2 for the precise definitions. The latter is a quantitative version of the
well-known Wiener criterion and it is weaker than the Ahlfors regularity of the boundary or the existence
of exterior Corkscrews (see Definition 2.1); see the discussion after Definition 2.7. This setting guarantees
among other things that any elliptic measure is doubling in some appropriate sense, and hence one can see
that a suitable portion of the boundary of the domain endowed with the Euclidean distance and with a given
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elliptic measure wy, is a space of homogeneous type. In particular, classes like A, (wr,) or RHp(wy,) have
the same good features of the corresponding ones in the Euclidean setting. However, our assumptions do not
guarantee that the surface measure has any good behavior, and it could even be locally infinite. In one of
our main results, we consider the case in which a certain disagreement condition, originating in [13], holds
either with small or large constant. The small constant case can be seen as an extension of [13, 30] to a setting
in which surface measure is not a good object. The large constant case is new even in nice domains such as
balls, upper-half spaces, Lipschitz domains or chord-arc domains. To the best of our knowledge, our work
is the first to establish perturbation results on sets with bad surface measures, and our large perturbation
results are the first of their type. Finally, we do not require the operators to be symmetric. The precise results,
along with its context in the historical developments, will be stated in the sequel to the present paper [2].

In the present article, we develop some of the needed tools, and present some other results which are
of independent interest. Key to our argument is the construction of certain sawtooth domains adapted to
a dyadic grid on the boundary and to the Whitney decomposition of the domain. These domains are shown
to inherit the main geometrical/topological features of the original domain (see Proposition 2.12). With this
in hand, we obtain a discrete sawtooth lemma for projections improving [10, Main Lemmal; see Lemma 3.2
and Lemma 3.3. These ingredients are crucial for the main results of this paper, which we state next. First, we
establish that bounded weak-solutions satisfy Carleson measure estimates adapted to the elliptic measure.

Theorem 1.1. Let Q ¢ R™1, n > 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the capacity density
condition (cf. Definition 2.7). Let Lu = — div(AVu) be a real-valued (not necessarily symmetric) elliptic operator
and write wy and G, to denote, respectively, the associated elliptic measure and the Green function. There
exists C depending only on the dimension n, the 1-sided NTA constants, the CDC constant, and the ellipticity
constant of L, such that for every u € Wl’Z(Q) N L*®(Q) with Lu = 0 in the weak-sense in Q, there holds

loc

sup sup
B B wa(A’)

[ wucor 61000 30 dX < Clul o, (1.2)
B'nQ

where A = BN 0Q, A' = B' n0Q, X, is a corkscrew point relative to A (cf. Definition 2.1), and the suprema are
taken respectively over all balls B = B(x, r) with x € 0Q and 0 < r < diam(0Q), and B' = B(x', r') with x' € 2A
and 0 < ' < rco/4, and cg is the Corkscrew constant (cf. Definition 2.1).

This result is in turn the main ingredient to obtain that the conical square function can be locally controlled
by the non-tangential maximal function in norm with respect to the elliptic measure, allowing us to extend
some estimates from [10] to our general setting.

Theorem 1.2. Let Q c R™!, n > 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the capacity density
condition (cf. Definition 2.7). Let Lu = — div(AVu) be a real-valued (non-necessarily symmetric) elliptic opera-
tor and write w; to denote the associated elliptic measure and the Green function. For every O < q < oo, there
exists C4 depending only on the dimension n, the 1-sided NTA constants, the CDC constant, the ellipticity con-
stant of L, and q, such that for every u € Wllo’CZ(Q) with Lu = 0 in the weak-sense in Q, for every Qo € D(0Q) (cf.
Lemma 2.8), there holds

(1.3)

18 g ull Yo, < CqlNo,ul

X,
L4(Qo,w L(Qo,w, )’

where 8¢, and N, are the localized dyadic conical square function and non-tangential maximal function,
respectively (cf. (2.12) and (2.11)), and X, is a corkscrew point relative to Qo (see Section 2.4).

We note that the estimate (1.3) is written for the localized dyadic conical square function and non-tangential
maximal function. It is not difficult to see that, as a consequence, one can obtain a similar estimate for the
regular localized (or truncated) conical square function and non-tangential maximal function with arbitrary
apertures (see [4, Lemma 4.8]), precise statements are left to the interested reader.

The plan of this paper is as follows. Section 2 presents some of the preliminaries, definitions, and tools
which will be used throughout this paper. Section 3 contains a dyadic version of the main lemma of [10]. In
Section 4, we prove our main results, Theorem 1.1 and Theorem 1.2.
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We would like to mention that after an initial version of this work was posted on arXiv [1], Feneuil and
Poggi in [14] obtained results related to ours; compare, for instance, Theorem 1.1 with [14, Theorem 1.27].
Also, the recent work [4] complements this paper and its companion [2]; see, for instance, [4, Corollary 1.4].

2 Preliminaries

2.1 Notation and conventions

«  Weusetheletters c, C to denote harmless positive constants, not necessarily the same at each occurrence,
which depend only on the dimension and the constants appearing in the hypotheses of the theorems
(which we refer to as the “allowable parameters”). We shall also sometimes write a < b and a = b to
mean, respectively, that a < Ch and 0 < ¢ < % < C, where the constants ¢ and C are as above, unless
explicitly noted to the contrary. Unless otherwise specified, upper case constants are greater than 1 and
lower case constants are smaller than 1. In some occasions, it is important to keep track of the depen-
dence on a given parameter y; in that case, we write a <, b or a =, b to emphasize that the implicit
constants in the inequalities depend on y.

«  Our ambient space is R™*1, n > 2.

« Given E c R™!, we write diam(E) = SUpy,yeglx -yl to denote its diameter.

«  Given adomain Q ¢ R™1, we shall use lower case letters x, y, z etc., to denote points on 0Q, and capital
letters X, Y, Z etc., to denote generic points in R™*! (especially those in R™*! \ 0Q).

e Theopen (n + 1)-dimensional Euclidean ball of radius r will be denoted by B(x, r) when the center x lies
on 0Q, or by B(X, r) when the center X lies in R™1\ 0Q. A surface ballis denoted by A(x, r) := B(x, r) N 0Q,
and unless otherwise specified it is implicitly assumed that x € 0Q.

o If 0Q is bounded, it is always understood (unless otherwise specified) that all surface balls have radii
controlled by the diameter of 0Q, that is, if A = A(x, r), then r < diam(9Q). Note that in this way A = 0Q
if diam(0Q) < r < diam(oQ).

o For X e R™!, we set §(X) := dist(X, 0Q).

e We let H" denote the n-dimensional Hausdorff measure.

o ForaBorelset A c R™1, we let 14 denote the usual indicator function of 4, i.e., 14(X) = 1if X € A, and
1,X) =0if X ¢ A.

o We shall use the letter I (and sometimes J) to denote a closed (n + 1)-dimensional Euclidean cube with
sides parallel to the coordinate axes, and we let £(I) denote the side length of I. We use Q to denote dyadic
“cubes” on E or 0Q. The latter exist as a consequence of Lemma 2.8 below.

2.2 Some definitions

Definition 2.1 (Corkscrew condition). Following [27], we say thatan open set Q ¢ R™*! satisfies the Corkscrew
condition if for some uniform constant 0 < c¢g < 1 and for every x € 0Q and 0 < r < diam(0Q), if we write
A := A(x, 1), there is a ball B(Xj, cor) € B(x, r) N Q. The point X, ¢ Q is called a Corkscrew point relative
to A (or relative to B) and the constant cq is called the Corkscrew constant. We note that we may allow
r < Cdiam(0Q) for any fixed C, simply by adjusting the constant co. We say that Q satisfies the exterior
Corkscrew condition if Qey := R™1 \ Q satisfies the Corkscrew condition.

Definition 2.2 (Harnack chain condition). Again following [27], we say that Q satisfies the Harnack chain con-
dition if there are uniform constants C1, C> > 1 such that for every pair of points X, X' € Q there is a chain of
balls By, B, ..., By ¢ Qwith N < C1(2 + max{log, II, 0}), where

X=X
 min{8(X), 5(X)}
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such that X € By, X' € By, Bx N Bys1 # 0 and forevery 1 < k < N,
C,! diam(By) < dist(Bk, 0Q) < C, diam(By). (2.1)
The chain of balls is called a Harnack chain.

We note that in the context of the previous definition, if II < 1, we can trivially form the Harnack chain
By = B(X,36(X)/5) and B, = B(X',36(X")/5), where (2.1) holds with C, = 3. Hence, the Harnack chain con-
dition is non-trivial only when IT > 1.

Definition 2.3 (1-sided NTA and NTA). We say that a domain Q is a 1-sided non-tangentially accessible domain
(1-sided NTA) if it satisfies both the Corkscrew and Harnack chain conditions. Furthermore, we say that Q
is a non-tangentially accessible domain (NTA domain) if it is a 1-sided NTA domain and if, in addition,
Qext 1= R™1\ Q also satisfies the Corkscrew condition.

Remark 2.4. In the literature, 1-sided NTA domains are also called uniform domains. We remark that the
1-sided NTA condition is a quantitative form of path connectedness.

Definition 2.5 (Ahlfors regular). We say that a closed set E ¢ R™*! is n-dimensional Ahlfors regular (AR for
short) if there is some uniform constant C; > 1 such that

Citr" < H"(ENB(x, 1) < Cir", x€E, 0<r<diam(E).

Definition 2.6 (1-sided CAD and CAD). A 1-sided chord-arc domain (1-sided CAD) is a 1-sided NTA domain
with AR boundary. A chord-arc domain (CAD) is an NTA domain with AR boundary.

We next recall the definition of the capacity of a set. Given an open set D ¢ R™*! (where we recall that we

always assume that n > 2) and a compact set K ¢ D, we define the capacity of K relative to D by

Cap, (K, D) = inf{ ”le(X)lde :v e CP(D), v(x) = 1in K}.
D

Definition 2.7 (Capacity density condition). An open set Q is said to satisfy the capacity density condition
(CDC for short) if there exists a uniform constant c¢; > 0 such that
Cap,(B(x, N\ Q, B(x, 2r)) _

Cap,(B(x, r), B(x, 2r))

forall x € 0Q and 0 < r < diam(0Q).

The CDC is also known as the uniform 2-fatness as studied by Lewis in [28]. Using [16, Example 2.12], one
has that
Cap,(B(x, 1), B(x,2r)) ~ ! forallx e R*!andr > 0, (2.2)

and hence the CDC is a quantitative version of the Wiener regularity; in particular, it implies that every x € 0Q
is Wiener regular. It is easy to see that the exterior Corkscrew condition implies CDC. Also, it was proved in
[32, Section 3] and [18, Lemma 3.27] that a set with Ahlfors regular boundary satisfies the capacity density
condition with constant c¢; depending only on n and the Ahlfors regular constant.

2.3 Existence of a dyadic grid

In this section, we introduce a dyadic grid along the lines of that obtained in [7]. More precisely, we will use
the dyadic structure from [25, 26], with a modification from [24, Proof of Proposition 2.12].

Lemma 2.8 (Existence and properties of the “dyadic grid”). Let E ¢ R™! be a closed set. Then there exists
a constant C > 1 depending just on n such that for each k € Z there is a collection of Borel sets (called “dyadic
cubes” or “cubes” for simplicity)

Dy := {Q,I-(CEIJ'ESk},
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where Ji denotes some countable (possibly finite) index set depending on k satisfying the following conditions:
(i) E= U]e 3 Q foreachk € 2.

(i) If m <k, then either Qk cQ"orQ"n Qk

(iii) Foreach k € Z, j € J, and m <k, there is a unique i € Jp, such that Qk c Q.

(iv) Foreach k € Z and j € Jx, there is x € E such that

B(x c'2MnEc Qk c B(x C2nE.

Proof. We first note that E is geometric doubling. That is, there exists N depending just on n such that for every
x € Eandr > 0 one can cover the surface ball B(x, r) n E with at most N surface balls of the form B(x;, r/2) N E
with x; € E; observe that geometric doubling for E is inherited from the corresponding property on R™! and
that is why N depends only on n and it is independent of E. Besides, letting = 1—16, for every k € Z it is easy
to find a countable collection {x]’.‘ }jeg, € E suchthat, forall x € E,

k_ Lk ko ssl o~ s : k
G = xplznts JJ €3 j#),  minke-xgl<n
Jk

Invoking then [25, 26] on E with the Euclidean distance and ¢g = Co = 1, one can construct a family of dyadic
cubes associated with these families of points, say Dy for k € Z. These satisfy (i)—(iv) in the statement with
the only difference that we have to replace 27 by n* in (iv).

At this point, we follow the argument in [24, Proof of Proposition 2.12] with = 1—16. Forany k € Z, we set
D; = Dy forevery 4k < j < 4(k + 1). Itis straightforward to show that properties (i)-(iii) for the families Dy fol-
low at once from those for the families ©. Regarding (iv), let Q! € Djandletk € Zsuchthat4k <j < 4(k+ 1),
so that Q! € Dj = Dy. Writing x' € E for the corresponding point associated with Q' € Dy and invoking (iv)
for ©y, we conclude

B(x',C'127)nE c B(x', C'n*)nE c Q' ¢ B(x!, Cn*) nE ¢ B(x}, 16C27) nE,

and hence (iv) holds. O

A few remarks are in order concerning this lemma. Note that by construction, within the same generation
(that is, within each IDy), the cubes are pairwise disjoint (hence, there are no repetitions). On the other hand,
repetitions are allowed in the different generations, that is, one could have that Q € Dy and Q' € ID_; agree.
Then, although Q and Q' are the same set, as cubes we understand that they are different. In short, it is
then understood that ID(E) := {Q]’f :j € Jk, k € 7} is an indexed collection of sets where repetitions of sets
are allowed in the different generations but not within the same generation. With this in mind, we can give
a proper definition of the “length” of a cube (this concept has no geometric meaning for the moment). For
every Q € Dy, we set £(Q) = 2k which is called the “length” of Q. Note that the “length” is well defined
when considered on D, but it is not well-defined on the family of sets induced by ID. It is important to observe
that the “length” refers to the way the cubes are organized in the dyadic grid and in general may not have
a geometrical meaning. It is clear from (iv) that diam(Q) < £(Q) (we will see below that in our setting the
converse holds, see Remark 2.17). We warn the reader that we are abusing the notation as we use the symbol
£(-) to denote two different things: £(I) denotes the side length of I, a closed (n + 1)-dimensional Euclidean
cube with sides parallel to the coordinate axes; and £(Q) denotes the “length” of Q, a dyadic cube on E. This
conflict of notation will cause no trouble as the meaning will always be clear from the context. Similarly, we
write k(Q) := kif Q € Dy, and if Q = Q]’.‘ € Dy withj € Ji, k € Z, we set xq := x]’.‘ and rq := (2C)~127k, with C
being the constant in Lemma 2.8, which depends only on the dimension n. We shall refer to the point xq as
the “center” of Q. Observe that these are well- deﬁned quantities when interpreted as functions on ID. Note
however that having Qk Q" does not mean that X; Kand x agree; the same occurs with er and err or with
€(Q¥) and €(Q%).

Let us observe that the generations run for all k € Z. However, as we are about to see, sometimes it is
natural to truncate the generations. If E is bounded and k € Z is such that diam(E) < C"127%, then there
cannot be two distinct cubes in Dy, and thus Dy = {E}. Therefore, we are going to ignore those k € Z such that
27k > diam(E). Hence, we shall denote by ID(E) the collection of all relevant Q]’.‘, i.e., D(E) := | J; Dk, where,
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if diam(E) is finite, the union runs over those k € Z such that 2% < diam(E). The precise implicit constant,
which is assumed to be large enough, is not relevant and may depend on the other relevant constants (n, CDC,
Corkscrew, Harnack chain etc.), and it may slightly change in the different arguments of this paper.

In what follows, given B = B(x, r) with x € E, we will set A = A(x, r) = BN E. We write £ = 2C2, with C
being the constant in Lemma 2.8, which depends only on the dimension n. For each Q € ID, we take its center
xq € Eandlet rg = (2C)"1£(Q), and hence 271£(Q) < rg < £(Q). Lemma 2.8 (iv) yields

A(xq, 2rq) € Q ¢ A(xq, Erq). (2.3)
We shall denote these balls and surface balls by

BQ = B(XQ, I‘Q), AQ = A(XQ, I’Q), (2.4)

Bq := B(xq, Erq), Aq:=A(xq, Erg). (2.5)

Much as before, these sets are well-defined quantities when interpreted as functions on ID. Observe that

having two cubes which agree as sets does not imply that the associated balls or surface balls are the same.

Let Q € Dy and consider the family of its dyadic children {Q' € D1 : Q' ¢ Q}. Note that for any two

distinct children Q', Q"”, one has |xq — xqr| = rgr = rgr = ro/2; otherwise, xgr € Q" NnAg < Q" n Q’, con-

tradicting the fact that Q' and Q" are disjoint. Also xq/, xgr € Q < A(xq, rg), and hence, by the geometric

doubling property, we have a purely dimensional bound for the number of such xq'. Therefore, the number
of dyadic children of a given dyadic cube is uniformly bounded.

Lemma 2.9. Let E c R™?! be a closed set and let ID(E) be the dyadic grid as in Lemma 2.8. Assume that there
is a Borel measure p which is doubling, that is, there exists C, > 1 such that u(A(x, 2r)) < Cuu(A(x, 1)) < 00
forevery x € Eand r > 0. Then u(0Q) = 0 for every Q € D(E). Moreover, there exist 0 < 79 < 1, C1, and n > 0
depending only on the dimension and Cy, such that for every T € (0, 7o) and Q € ID(E),

u({x e Q: dist(x, E\ Q) < 72(Q)}) < C17u(Q). (2.6)

Proof. The argumentis arefinement of thatin [19, Proposition 6.3] (see also [15, p. 403], where the Euclidean
case was treated). Fix an integer k, a cube Q € Dy, and a positive integer m to be chosen. Fix 7 > 0 small
enough to be chosen and write

T = {x € Q:dist(x, E\ Q) < T2(Q)}.

For fixed Q € ID(E), let
Dg:=1{Q e D(E): Q' cQ} and {Ql.l} := D! := Dg N Dy,

and make the disjoint decomposition Q = [JQ}. We then split D! = D uD'2, where Q} € D! if Q_l1
meets 2., and Q] € D2 otherwise. We then write Q = RV U RY2, where

Rl,l = U 639 Rl,z = U Qll’

DL D12

and for each cube Q} € D! we construct Q} as follows. We enumerate the elements in D*-! as
Q!.ql.....ql,
and then set (Q})* = Q} U (0Q} n9Q) and
QL :=(Q)", QL =)\ (@), Q=) \ Q) u(@})),...

so that R™! covers £, and the modified cubes Ql are pairwise disjoint.
We also note from (2.3) that if we fix m so that 27 < £72/4, then

=-1
dist(Ag, E\ Q) > rq > 271¢(Q), diam(Q;) < 2Ergr < 2E6(Q}) < “TE(Q).
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Then R™! misses Aq provided 7 < £71/2. Otherwise, we can find x ¢ Q_l1 NAq with Q} € D1, The latter
implies that thereis y € Qi1 N Z;. All these yield a contradiction:

g71e(Q) < dist(Ag, E\ Q) < |x — y| + dist(y, E\ Q) < diam(Q_il) +76(Q) < E71e(Q).
Consequently, by the doubling property,

u(Q) < u(2Ro) < Cuu(bq) < CuU(R™?).
Since R™! and R"2 are disjoint, the latter estimate yields
PR < (1- —) (@ =: 6u(Q),
)1

where we note that 0 < 6 < 1.

Let us now repeat this procedure, decomposing Q! for each Q} € D'. Weset D?(Q}) = Dg: N Dyey2m and
splititinto D21(Q}) and D*2(Q;), where Q' € D* 1(Q ) if Q" meets %,. Associated to any Q' € D% 1(Q}), we
set

(@)*=(Q'nQ})u(dQ n(QN Q).
Then we make these sets disjoint as before and we have that Rz’l(Qil) is defined as the disjoint union of the
corresponding Q’. Note that
Q; =R>MQ})uR**(Q))
and this is a disjoint union. As before, R?"1(Q}) misses Aq: provided 7 < 27ME71/2, so that by the doubling

property,
n(@QD < p@2hgy) < Cudgy) < CuR**(Q)),

and thus
HR>1(Q}) < 6u(Q}).
Next, we set R*! and R*? as the union of the corresponding R*"*(Q}) and R*?(Q;) with Q; € D*!. Then

HR*Y) —u( U r* @i )) > HR¥M(@Q)) =6 Y u@))=6pRM) < 02u(Q.

QD! QjeDU! QjeDU!
Iterating this procedure, we obtain that for every k = 0, 1, ..., if T < 27¥m=-1/2, then
M(Rk+1'1) < 9k+1”(5)'
Let us see that this leads to the desired estimates. Fix T < £71/2 and find k > 0 such that
27k mz=15 < ¢ < 27kmz=1/3,

By construction £, ¢ R¥11 and thus

logy 6~1  logy 671

U(Ze) < p(RMEY) < 041 (Q) < (28) u(Q),

which easily gives (2.6) with

-1
Cy = and = M_
m
On the other hand, note that
0Qc () Zy,
ji2mi<E-1/2

and also 2,-G+1 C Z,-j. Thus cleatly,
0 < pu(0Q) < lim u(Z,5) < lim C127Mu(Q) = 0
j—oo j—oo

yielding that u(0Q) = 0. O
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Remark 2.10. Note that the previous argument is local in the sense that if we just want to obtain the desired
estimates for a fixed Qo, we would only need to assume that y is doubling in ZEQO. Indeed, we would just need
to know that p(A(x, 2r)) < Cu(A(x, r)) < oo for every x € Qp and 0 < r < £€(Qyp), and the involved constants
in the resulting estimates will depend only on the dimension and C,,. Further details are left to the interested
reader.

We next introduce the “discretized Carleson region” relative to Qas Dg = {Q' ¢ D : Q' ¢ Q}. LetF = {Q;} ¢ D
be a family of pairwise disjoint cubes. The “global discretized sawtooth” relative to & is the collection of cubes
Q € D that are not contained in any Q; € J, that is,

Ds:=D)\ U Dy,
QieF
For a given Q € DD, the “local discretized sawtooth” relative to F is the collection of cubes in D that are not
contained in any Q; € JF or, equivalently,

Dg,q :=Dg\ U Do, =Dy NnDg.
QieT

We also allow J to be the null set, in which case Dy = D and Dy, = Dg.

With a slight abuse of notation, let Q° be either E, and in that case Do := D, or a fixed cube in D, and
hence Do is the family of dyadic subcubes of Q°. Let y be a non-negative Borel measure on Q° and assume
that 0 < u(Q) < oo for every Q € IDgo. For the rest of this section, we will be working with u that is dyadi-
cally doubling in Q°. This means that there exists C, such that u(Q) < C,u(Q’) for every Q, Q' € Do with
€(Q) = 2¢(Q".

Definition 2.11 (A%°%). Given Q° and a non-negative dyadically doubling measure y in Q°, a non-negative
Borel measure v defined on QC is said to belong to Aggadlc(QO, ) if there exist constants O < &, § < 1 such that
for every Q € Dqo and for every Borel set F ¢ Q, we have that
u(F) o
—~= >a implies
) P
Itis well known (see [8, 15]) that, since u is a dyadically doubling measurein Q°, v ¢ ASZadic (Q°, ) ifand only
if v <« pin Q° (here <« means absolutely continuous, that is, if u(F) = 0, then v(F) = 0 whenever F is a Borel
subset of Q°) and there exists 1 < p < cosuch thatv € Rdead“:(Q0 W), that is, there is a constant C > 1 such
that

(Q) > B

v(Q)

(JQ:k(x)p dy(x))l% < CJQ: k(x) du(x) = Cm

for every Q € Do, and where k = dv/dp is the Radon—-Nikodym derivative.
For each family F = {Q;} ¢ Dgo of pairwise disjoint dyadic cubes, and each f ¢ Lloc (u), we define the
projection operator

Phf00 = FOOLE U 000+ Y (100 duy) 10,0
Qe Qi

If v is a non-negative Borel measure on Q°, we may naturally define the measure TP’;V by

PLV(F) = j PLAF dv,
E

that is,

P uE) =v(F\ | ] @ KENQ) o) @.7)
() = v( ng )+ Qé HQ)

for each Borel set F c Q°.
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2.4 Sawtooth domains

In the sequel, Q ¢ R™1, n > 2, will be a 1-sided NTA domain satisfying the CDC. Write ID = ID(0Q) for the
dyadic grid obtained from Lemma 2.8 with E = 0Q. In Remark 2.17 below, we shall show that under the
present assumptions one has that diam(A) = rp for every surface ball A. In particular, diam(Q) = £(Q) for
every Q € D in view of (2.3). Given Q € D, we pick (and fix) X,,, a Corkscrew point relative to Ag, and define
Xq := Xp,, called the “Corkscrew point relative to Q”. We note that there might be many choices for Xq, but
we just choose one which is fixed from now on. In any case, one has

8(Xo) = dist(Xg, Q) ~ diam(Q).

As done above, given Q € ID and J a possibly empty family of pairwise disjoint dyadic cubes, we can define
the following: D, the “discretized Carleson region”; D+, the “global discretized sawtooth” relative to F; and
Dy g, the “local discretized sawtooth” relative to F. Note that if F is the null set, then Dy = ID and Dy, = Dy.
We would like to introduce the “geometric” Carleson regions and sawtooths.

Let W = W(Q) denote a fixed collection of (closed) dyadic Whitney cubes of Q ¢ R™*1, so that the cubes
in W form a covering of Q with non-overlapping interiors and satisfy

4 diam(I) < dist(41, 0Q) < dist(I, 0Q) < 40diam(I) forallI e W, (2.8)

and
diam(Iy) = diam(I,), whenever I; and I, touch.

Let X(I) denote the center of I, let £(I) denote the side length of I, and write k = k; if £(I) = 27X,

Given 0 < A < 1 and I € W, we write I* = (1 + A)I for the “fattening” of I. By taking A small enough, we
can arrange matters, so that, first, dist(I*, J*) = dist(l, J) for every I, ] € W. Secondly, I* meets J* if and only
if oI meets 9] (the fattening thus ensures overlap of I* and J* for any pair I, J] € W whose boundaries touch,
so that the Harnack chain property then holds locally in I* u J*, with constants depending on A). By picking A
sufficiently small, say O < A < Ao, we may also suppose that thereis T € (% , 1) such that for distinct I, ] € Wwe
have that 7] n I* = 0. In what follows, we will need to work with dilations I** = (1 + 2A)I or I*** = (1 + 4A)I,
and in order to ensure that the same properties discussed above for I* hold for I** and I'***, we further assume
that 0 < A < Ag/4. We note that I** # (I*)*.

For every Q € D, we can construct and fix a family WZ‘) c W(Q) and define

Ug:= | I",
IeW;,

satisfying the following properties: Xy € Ug and there are uniform constants k* and Ky such that

k(Q) - k* <kr<k(Q)+k* foralll e Wy,
X(I) -y, Xq forall I € Wy, (2.9)
dist(I, Q) < Ko2 7@ forall T € W,

Here, X(I) —y, Xq means that the interior of Uq contains all balls in a Harnack chain (in Q) connecting X(I)
to X, and moreover, for any point Z contained in any ball in the Harnack chain, we have

dist(Z, 0Q) = dist(Z, Q \ Ug)

with uniform control of the implicit constants. The constants k*, Ko, and the implicit constants in the con-
dition X(I) -y, Xq depend on the allowable parameters and on A. Moreover, given I € W(Q), we have that
Ie W(*)I, where Q; € D satisfies £(Q;) = £(I), and contains any fixed y € 0Q such that dist(I, 0Q) = dist(I, ¥).
The reader is referred to [19, Section 3] and [23] for full details.

For a given Q € DD, the “Carleson box” relative to Q is defined by

T := int( U UQ,).

Q,EIDQ
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For a given family F = {Q;} ¢ D of pairwise disjoint cubes and a given Q € ID, we define the “local sawtooth

region” relative to F by
Q5.0 = int( U UQ,> - int( U 1*), (2.10)
Q’€]D1]'.Q IEWQ"Q

where

Wso:= () W
Q'eDy q

Note that in the previous definition we may allow J to be empty, in which case clearly Qg g = T. Similarly,
the “global sawtooth region” relative to F is defined by

1nt( U UQ’)Iint< U I*),

Q' eDy IeW 5

where

U wa

Q'eDy
If F is the empty set, clearly Qg = Q. For a given Q € D and x € 0Q, let us introduce the “truncated dyadic
cone”

Tow):= |J Ue,

x€Q'eDq

where it is understood that I'g(x) = 0 if x ¢ Q. Analogously, we can slightly fatten the Whitney boxes and
use I** to define new fattened Whitney regions and sawtooth domains. More precisely, for every Q € D,

pimint( U Up) Q5q=ime( U Up) Tow= U U

Q'eDq Q'eDy g XEQ’E]DQO

where

Uy=J .

IeWy;,

Similarly, we can define T** Q}*Q, FE* (x), and Ua* by using I*** in place of I**.
Given Q we next deﬁne the “localized dyadic non-tangential maximal function”

Nou(x) := sup |u(Y)|, xeoQ, (2.11)
YeT)(x)

for every u € C( Ta), where it is understood that Nqu(x) = 0 for every x € 0Q \ Q (since Fa(x) =0 in such
a case). Finally, let us introduce the “localized dyadic conical square function”

Sou(x) = ( H Vu(V)28(v)" dyf, X €00, (2.12)

To(x)

foreveryu € wk Z(TQO). Note that again Squ(x) = 0 for every x € 0Q \ Q.

loc
To define the “Carleson box” T, associated with a surface ball A = A(x, r), let k(A) denote the unique

k € Z such that 2751 < 200r < 27, and set
:={Q € Dyp) : QN2A +0}.

We then define

1nt< U TQ)

QeD?

We can also consider fattened versions of Ty given by

ri=int( U Tg), Tie=ine( | TE).

QeDA QeDA
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Following [19, Section 3] or [23], one can easily see that there exist constants O < k1 < 1 and ko > 162
(with Z being the constant in (2.3)), depending only on the allowable parameters, so that

* %% Tk Y 1 * 2y
K1BqnQcTocTycTy" cTy" CkoBonQ=: EBQ na, (2.13)
__ _ 1 _
%BA NQcTacTycTy" cTy* cxoBanQ=: EBZ naQ, (2.14)

and also 1 1
Q c koBaN0Q = EBZ noQ =: EA* forall Q € D,

where Bg is defined as in (2.4), A = A(x, r) with x € 0Q, 0 < r < diam(0Q), and B = B(x, r) is so that
A = Bp n 0Q. From our choice of the parameters, one also has that Ba C Ba, whenever Q c Q'.

In the remainder of this section, we show that if Q is a 1-sided NTA domain satisfying the CDC, then
Carleson boxes and local and global sawtooth domains are also 1-sided NTA domains satisfying the CDC. We
next present some of the properties of the capacity which will be used in our proofs. From the definition of
capacity, one can easily see that, given a ball B and compact sets F; ¢ F, ¢ B, then

Cap,(F1, 2B) < Cap,(F,, 2B). (2.15)
Also, given two balls B ¢ B, and a compact set F ¢ By, then
Cap,(F, 2B,) < Cap,(F, 2B1). (2.16)

On the other hand, [16, Lemma 2.16] gives that if F is a compact set with F ¢ B, then there is a dimensional
constant C, such that
C,! Cap,(F, 2B) < Cap,(F, 4B) < Cap,(F, 2B). (2.17)

Proposition 2.12. Let Q ¢ R™, n > 2, be a 1-sided NTA domain satisfying the CDC. Then all of its Carleson
boxes Tq and Ty, and sawtooth regions Qg and Qg g are 1-sided NTA domains and satisfy the CDC with uniform
implicit constants depending only on the dimension and on the corresponding constants for Q.

Proof. A careful examination of the proofs in [19, Appendices A.1 and A.2] reveals that if Q is a 1-sided NTA
domain, then all Carleson boxes T and Tx, and local and global sawtooth domains Qg and Q4 inherit the
interior Corkscrew and Harnack chain conditions, and hence they are also 1-sided NTA domains. Therefore,
we only need to prove the CDC. We are going to consider only the case Qs o (which in particular gives the
desired property for T by allowing F to be the null set). The other proofs require minimal changes, which are
left to the interested reader. To this end, fix Q € D and F ¢ IDq a (possibly empty) family of pairwise disjoint
dyadic cubes. Let x € 0Q5,9 and 0 < r < diam(Q,q) = €(Q).

Case 1: 6(x) = 0. In that case, we have that x € 0Q and we can use that Q satisfies the CDC with constant c1,
inequality (2.15) and the fact that Qg ¢ ¢ Q (see Figure 1) to obtain the desired estimate

Clrn71 S Capz(B(X, r) \ Q, B(X’ 27’)) < CapZ(B(X’ r) \ Q?,Qy B(Xy 21’)).

Case 2: 0 < d(x) < r/M with M large enough to be chosen. In this case, x € Q N 0Q5, g, and hence there exist
Q' € Dy,qand I € Wy, such that x € 0I*. Note that, by (2.9),

Ix - xg| < diam(I*) + dist(I, Q") + diam(Q’) < £(Q") = &(I) = 6(x) < %

Let Q" € Dq be such that . .
" r m _ I
xor € Q7 and ZMSE(Q )<M<€(Q).

If Z € By, then
r r

Z-x|<|Z-xgr|+|xgn —xo| + Ixogr = x| < QM+ =< — <,
| [<| o'l +1xq QIIQI(Q)MM
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Q Q

Figure 1: Case 1 and case 2 for Tq.

provided M is taken large enough, and consequently Bg» ¢ B(x, r) (see Figure 1). Finally, if Z € B(x, 2r), we
can obtain, by taking M larger if needed,

r
|Z —xqn| <|Z—x|+|x—xqg|+|xq —xqr| < 2r+ CM + Ergr < 6MErqn,

so that B(x, 2r) ¢ 6MEBqr. Once M has been fixed so that the previous estimates hold, we use them in con-
junction with the fact that Q satisfies the CDC with constant ¢, inequalities (2.15)-(2.17), and the fact that
Qg,0 ¢ Q to obtain

(ZMC#YH_I <cirg)
< Cap,(Bgr \ Q, 2Bq)
< Cap,(Bg» \ Q, 6MEBqn)
< Cap,(Bg \ Q, B(x, 21))

< CapZ(B(Xy r) \ Q?,Q’ B(X, 2r)),

which gives us the desired lower bound in the present case.

Case 3: 3(x) > r/M. In this case, x € QN 0Qy, g, and hence there exist Q' €e Dy g and I € Wg, such that
x € oI* and int(I*) c Qs q. Also there exists J € W, with J > x such that J ¢ W%, for any Q" € Dy q, which
implies that 7/ ¢ Q \ Qg o for some 7 € (%, 1) (see Section 2.4). Note that £(I) = £(J) = 6(x) = r, and more
precisely r/M < §(x) < 41 diam(J) by (2.8).

Let B’ = B(x', s) with s = r/(300M) and x’ being the point in the segment joining x and the center
of J at distance 2s from x (see Figure 2). It is easy to see that B’ ¢ B(x, r) c B(x, 2r) c 1000MB’ and also
B’ c int(J) \ Q,o. We can then use (2.2) and (2.15)—(2.17) to obtain the desired estimate:

1
(300M)1"

n-1 _ sn—l

~ Cap,(B', 2B')

< Cap,(B', 1000MB')

< Cap,(B', B(x, 21))

< Cap,(B(x, 1)\ Q7,q, B(x, 21)).

Collecting the three cases and using (2.2), we have been able to show that

CapZ(B(X’ r) \ Q?,Q’ B(X’ 2T))
Cap,(B(x, ), B(x, 2r))

>1 forallx € 0Qg g, 0 < r <diam(Qg,q),

which eventually gives that Q4 ¢ satisfies the CDC. This completes the proof. O

Our next auxiliary result adapts [22, Lemma 4.44] to our current setting and constructs cut-off functions
adapted to the sawtooth domains. These will be used later in the proof of Theorem 1.1.
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00 \«

Figure 2: Case 3 for Ty.

Lemma 2.13. Let Q c R™! be a 1-sided NTA domain satisfying the CDC. Given Qo € ID and N > 4, consider
the family of pairwise disjoint cubes

Fn ={Q e Dg, : £(Q) = 27V¢(Qo)}

and let Qy := Qgy,q, and Qy = Q7 , . There exist ¥y € CX(R™1) and a constant C > 1 depending only on
the dimension n, the 1-sided NTA constants, the CDC constant, and independent of N and Qo such that the
following assertions hold:

(1) C_llgN <VW¥y< 1q;.

(i) SupxenlVEN(X)ISX) < C.

(iii) Setting
Wy:= () Wi WY i={IeWy:thereexists ] ¢ W\ Wy with oI n 9] # 0},
QeDyy,q
one has
VWy=0 in |J I,
TeWy\ W5
and there exists a family {Qy} 1ews, ¢ Dso that
Cle(l) < Q) < Ce(D, dist, Q) < Ce(), Y 1g, <C. (2.18)

IeWy,

Proof. We proceed as in [22, Lemma 4.44]. Recall that, given any closed dyadic cube I in R™1, we set
I* = (1 + M)Iand I** = (1 + 2A)1. Let us introduce I* = (1 + 3A)I so that

I* ¢int(I*) ¢ I* cint(I**). (2.19)
Given Io := [-3, 3™ ¢ R™1, fix ¢po € C°(R™?) such that 173 < ¢po < 15z and Vol < 1 (the implicit con-
stant depends on the parameter A). For every I € W = W(Q), we set
_ - = X()
¢i1(+) = ¢0( 0 ),

so that
¢r e CO°R™Y), 1 <¢pr<im, Vol sed)?,

with implicit constant depending only on n and A.

For every X € Q, we let ®(X) := Y o\ ¢1(X). It then follows that @ € C},.(Q), since for every compact
subset of Q the previous sum has finitely many non-vanishing terms. Also, 1 < ®(X) < C, for every X € Q
since the family {I*}1ew has bounded overlap by our choice of A. Hence, we can set ®; = ¢p;/® and one can

easily see that ®; € CX(R™?), C;'1;- < @; < 15 and |V®;| < £(I)~L. With this in hand, set

X
\PN(X) = z (D[(X) — Z[EWN ¢I( )

) XeQ.
IeEWy ZIEW ¢I(X)
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We first note that the number of terms in the sum defining Wy is bounded depending on N. Indeed, if
Q € Dy, q,, then Q € Dg, and 27V¢(Qo) < £(Q) < £(Qo), which implies that Dy, o, has finite cardinality
with bounds depending only on the dimension and N (here we recall that the number of dyadic children
of a given cube is uniformly controlled). Also, by construction, Wy, has cardinality depending only on the
allowable parameters. Hence, #Wy < Cy < oco. This and the fact that each @y is in C‘go(]R”*l) yield that
Wy € CX(R™1). Note also that (2.19) and the definition of Wy give

supp ¥; ¢ U I = U U Fcint( U U I**)zint( U UE)zQ;,.
TeWy QeDyy,q, IEW], QeDyy,q, IEW), QeDyy q,
This, the fact that Wy ¢ 'W, and the definition of ¥ immediately give that ¥y < 1g;. On the other hand,
if X € Qn = Qgy,q,, there exists I ¢ Wy such that X € I*, in which case ¥y (X) > ®(X) > Cf. All these
imply (i). Note that (ii) follows by observing that for every X € Q,

VX < Y IVOIX) < Y e M 1EX) < 6(X)7,
IeWy IeW

where we have used that if X € T*, then 6(X) =~ £(I), and also that the family {I*}1ew has bounded overlap.
To see (iii), fix I € Wy \ WIEV and X € I**, and set Wy := {J] e W : ¢;(X) # 0} so that I € Wx. We first note

that Wx ¢ Wy. Indeed, if ¢;(X) # O, then X € J*. Hence X € I** nJ**, and our choice of A gives that oI
meets 0], which in turn implies that ] € Wy since I € Wy \ Wf\,. All these yield

Yrewy P1(X) _ Yrewnnwy $1(X) _ Yrewnnwy $1(X) _
2rew $1(X) Yrewy $1(X) Yrewynwy P7(X)

Hence, Wy|;+-=1 for every I € Wy \ Wf,. This and the fact that Wy € C°(R"*!) immediately give that
V¥y =0in UIGWN\WfV I=.

We are left with showing the last part of (iv) and for that we borrow some ideas from [20, Appendix A.2].
FixI € WIZV and let J besothat] € W\ Wy with oI n 0] # 0; in particular, £(I) = £(J).Sincel € W2, there exists
Q1 € Dy, g, (thatis, Qr ¢ Qo with 27N¢(Qo) < £(Qy) < £(Qo) so thatI € Wal). Pick Q; € D so that £(Qj) = €(J)
and it contains any fixed y € 0Q such that dist(J, 0Q) = dist(J, y). Then, as observed in Section 2.4, one has
J e ng. But, since ] € W\ Wy, we necessarily have

Yn(X) = 1.

Q] ¢ Dgy,q, = Dgy, N Dg,.

Hence,
WE = Wrluwy?uwy?,

where
L= {IeWy:Qocql,

2= {I e Wy : @y < Qo, £(Q)) < 27V2(Qo)},
Wy = {Te W : Q;n Qo = 0}

For later use, it is convenient to observe that
dist(Qy, I) < dist(Qy, J) + diam(J) + diam(I) = &(J) + €(I) = €(I). (2.20)
Let us first consider WIZ\,’l. Ifle lev’l, we clearly have
€(Qo) < €(Qy) = €(J) = &(I) = £(Qr) < €(Qo)

and, since Qr € Dg,,
dist(I, xq,) < dist(I, Qr) + diam(Qy) = £(I).
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In particular, #lev’l < 1. Thus if we set Q; := Q 7, it follows from (2.20) that the first two conditions in (2.18)
hold, and also
2,1
Y 1, <#Wy <1
Ie\/\?lz\,‘1

Consider next lev,z. Forany [ € Wf‘\,’z we also set Q; := Qy, so that from (2.20) we clearly see that the first
two conditions in (2.18) hold. It then remains to estimate the overlap. With this goal in mind, we first note
thatif I € WIZV’Z, the fact that Q; € Dy, q, vields

27Ne(Qo) < £(Qp) = (D) =~ £(J) = £(Qy) < 27N e(Qo),

and hence £(I) =~ 27¥¢(Qo). Suppose next that Q; n Q} =QinQr#0for,I' e WIZ\,’Z. Then, since I touches J
and I’ touches J',

dist(I, I') < diam(J) + dist(J, Q) + diam(Qy) + diam(Q)) + diam(J") = €(J) + £(J') = 27N2(Qy).

Hence, fixed I € WIZV’Z, there is a uniformly bounded number of I' € W]Z\,’2 with Q; n Qp # 0, and, in particular,

Y 15 <1
Tewy?

We finally take into consideration the most delicate collection Wf,ﬁ . In this case, for every I € WIZV’3 we
pick Q; € D so that Qs > xq, and £(Q)) = 27M'p(Qy) with M’ > 3 large enough so that 2M' > 252 (cf. (2.3)).
Note that, since M’ > 3, we have that Q; ¢ Q 7, which, together with (2.20), implies

dist(I, Q) < dist(I, Q;) + diam(Q)) < €(I).

Hence, the first two conditions in (2.18) hold in the current situation.
On the other hand, the choice of M’ and (2.3) guarantee that

diam(Qy) < 28rg, < 226(Qp) = 27M 1 E0(Q)) < E71e(Q)). (2.21)

Also, since 2Aq; ¢ Qy, it follows that Qo N 2Aq, = 0, and therefore 2E71e(Q)) < dist(xq,, Qo). Besides, since
QI C QO’

dist(xgq;, Qo) < diam(Qy) + dist(Qy, J) + diam(J) + diam(I) + dist(/, Q) + diam(Qy) = £(J) = £(I).

Thus,
2E71¢(Q)) < dist(xq,, Qo) < Ce(J).

Suppose next that I, I' € WIZ\,’3 are so that Q; n Qp # 0 and assume without loss of generality that Qp ¢ Qy,
and hence £(J') < £(J). Then, since xq, € Q; and Xq, € Qp c Qy, from (2.21) we get

227'6(Q)) < dist(xq;, Qo) < |xq, - xq, | +dist(xq,, Qo) < diam(Qp) + Ce(J’) < E7e(Qy) + Ce(J")

Therefore, E‘le(Q]) < Ce(J), which in turn gives £(I) =~ €(J) = €(J') = £(I'). Note also that, since I touches J, I'
touches J', and Q; n Qp # 0, we obtain

dist(I, I') < diam(J) + dist(J, Q;) + diam(Qy) + diam(Qy) + dist(Qy, J') + diam(J") = €(J) + €(J') = €(I).

Consequently, fixed I € Wi,’a , there is a uniformly bounded number of I' € Wi,j with Q; n Q 1 # 0. As aresult,

Z 161 <L
Iews?

This clearly completes the proof of (iii), and hence that of Lemma 2.13. O
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2.5 Uniformly elliptic operators, elliptic measure and the Green function

Next, we recall several facts concerning elliptic measure and the Green functions. To set the stage, let
Q c R™1! be an open set. Throughout, we consider elliptic operators L of the form Lu = —div(AVu) with
AX) = (a;j(X ))Q}fl being a real-valued (non-necessarily symmetric) matrix such that a; j € L°°(Q) and there
exists A > 1 such that the following uniform ellipticity condition holds:

AP <AX)E-& JADE -1l < AlEIn] (2.22)

forall &, n e R™ 1 and for almost every X € Q. We write L™ to denote the transpose of L, or, in other words,
L"u = —div(A"Vu) with AT being the transpose matrix of A.
We say that u is a weak solution to Lu = 0 in Q provided that u € Wllo’c2 (Q) satisfies

” AX)Vu(X) - Vep(X)dX =0, whenever ¢ € Cz°(Q).

Associated with L, one can construct an elliptic measure {wf}xm and a Green function G; (see [23] for full
details). Sometimes, in order to emphasize the dependence on Q, we will write wy o and Gr q. If Q satisfies
the CDC, then it follows that all boundary points are Wiener regular, and hence for a given f € C.(0Q) we can
define
u(X) = j f(z)dwf(z), wheneverX € Q,
o0

sothatu € Wllo’c2 (Q) n C(Q) satisfies u = fonoQand Lu = 0in the weak sense in Q. Moreover, if Q is bounded
and f € Lip(0Q), then u € W2(Q). In the same context, the Green function satisfies the following properties

which will be used throughout the paper:

0<GL(X, V)< CIX-YI'™ forallX,YeQ, X#Y, (2.23)
Gi(-, V) € WeZ(@\{YD N C@\{Y}) and Gi(-,Vlon=0 forallYeQ,

GL(X,Y) =G~ (V, X) forallX,YeQ, X#Y, (2.24)
”A(X)VXGL(X, Y) - Vo(X)dX = ¢(Y) forall ¢ € C°(Q). (2.25)
Q

We first define the reverse Holder class and the A, classes with respect to a fixed elliptic measure in Q.
We recall Definition 2.11 where ASX““C is introduced for either a fixed dyadic cube or the whole underlying
space. Here we work with surface balls and with two elliptic measures whose poles are adapted to the surface
ball in question. In turn, this allows us to introduce a global A, condition. One reason we take A, classes
with respect to a fixed elliptic measure is that we do not know whether H"|yq is well-defined since we do not
assume any Ahlfors regularity. Hence, we have to develop these notions in terms of elliptic measures. To this
end, let Q satisfy the CDC and let L and L be two real-valued (non-necessarily symmetric) elliptic operators
associated with Lou = — div(AoVu) and Lu = — div(AVu), where A and Ay satisfy (2.22). Let wfo and w{ be
the elliptic measures of Q associated with the operators Ly and L, respectively, with pole at X € Q. Note that
if we further assume that Q is connected, then w} < w{ on 9Q forevery X, Y € Q. Hence if wfo <« (u{g on 0Q
for some Xg, Yo € Q, then wf < (u{o on 0Q forevery X, Y € Q, and thus we can simply write w; < wr, on 0Q.

In the latter case, we will use the notation

to denote the Radon—Nikodym derivative of wf with respect to wi‘o, which is a well-defined function
wy -almost everywhere on 0Q.
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Definition 2.14 (Reverse Holder and A, classes). Fix Ag = Bo N 0Q, where By = B(xg, ro) with xg € 0Q and
0 < rp < diam(0Q). Given p, 1 < p < oo, we say that w; € RHp(Ao, wr,), provided that w; « wy, on Ag, and
there exists C > 1 such that

1 Xno
x X Wy ()

(0L 20,3040} )" < Cf Oy L. Lo X w2 ) = €
A A wp,’(B)

forevery A = Bn 0Q, where B ¢ B(xg, 1), B = B(x, r) withx € 0Q,and 0 < r < diam(9Q). The infimum of the
constants C as above is denoted by [w]]rn, (Bo,w1y)-

Similarly, we say that w; € RH,(0Q, wr,) provided that for every Ao = A(xo, o) wWith xo € 0Q and
0 < ro < diam(0Q) one has w; € RHyp(Ag, wy,) uniformly on Ao, that is,

(WL ]RH, (00,wL,) = SUP[WLIRH, (80,w1,) < 0O
Ao

Finally,
Aco(Bo, wr,) = | JRHp(Ao, wr,) and  Aw(0Q, wi,) = | J RH,(0Q, wy,).
p>1 p>1
The following result lists a number of properties which will be used throughout this paper; the proofs may be
found in [23].

Lemma 2.15. Suppose that Q ¢ R™1, n > 2, is a 1-sided NTA domain satisfying the CDC. Let Lo = — div(AoV)
and L = -div(AV) be two real-valued (non-necessarily symmetric) elliptic operators. There exist C; > 1,
p € (0, 1) (depending only on the dimension, the 1-sided NTA constants, the CDC constant, and the ellip-
ticity of L), and C, > 1 (depending on the same parameters and on the ellipticity of Lo) such that for every
Bo = B(xg, ro) with xg € 0Q, 0 < rg < diam(0Q), and Ay = By N 0Q, we have the following properties:

() w] (Do) > C* forevery Y € C;'Bon Qand wi (Ag) > C;*.

(ii) If B = B(x, r)withx € 0Q and A = Bn 0Q is such that 2B ¢ By, then for all X € Q \ By we have that

Clrof(b) < 16X, Xa) < C1wX ().

(iii) If X € Q \ 4By, then w}(20¢) < C1w} (Ao).
(iv) For every X € Q \ 2koBo with kg as in (2.14), we have that

XAO
L 49,

< for w¥-a.e.y € Ao.
Lwf (Do)~ dwf w¥ (Ao) t

ol

(v) ForeveryX € BonQandforanyj> 1,

X .
(y) < Cl(.—ro)p for wf-a.e. y € 0Q\ 2A.

Remark 2.16. We note that from (iv) in the previous result, Harnack’s inequality, and (2.3) one can easily see
that

deQ/
Xon
io" V=5 forw;* -a.e.y € Q', whenever Q' c Q" € D. (2.26)
dw w; " (Q")
I L

Observe that, since wa” < wa’ , an analogous inequality for the reciprocal of the Radon-Nikodym derivative

follows immediately.

Remark 2.17. Given a 1-sided NTA domain Q satisfying the CDC, we claim that if A = A(x, r) with x € 0Q
and O < r < diam(0Q), then diam(A) = r. To see this, we first observe that diam(A) < 2r. If diam(A) > cor/4,
where cg is the Corkscrew constant, then clearly diam(A) ~ r. Hence, we may assume that diam(A) < cor/4.
Let s = 2 diam(A) so that diam(A) < s < r and note that one can easily see that A = A’ := A(x, s). Associated
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with A and A’, we can consider the corresponding Corkscrew points X, and X,/. These are different, despite
the fact that A = A(x, r). Indeed,

C
cor < 8(Xa) < 1Xa — Xarl + 1Xar = x| < |Xa - Xnr| + 8 < | Xa — Xar| + 7°r,

which yields that |Xy — Xar| > Cz—"r. Note that X ¢ 2B’ := B(x, 2s), since otherwise we would get a contra-
diction: cor < 6(Xa) < |Xa — x| < 25 < cor. Hence, we can invoke Lemma 2.15 (i) and (ii) and (2.23) to see
that

-1
1~ 0} (8) = w}* () = "1 G(Xa, Xu) < 8" Xa - Xar ™ < ()

This and the fact that n > 2 easily yield that r < s, as desired.

We close this section by establishing an estimate for the non-tangential maximal function for elliptic-measure
solutions.

Proposition 2.18. Let Q ¢ R"™! be a 1-sided NTA domain satisfying the CDC. Given Qo € D and f € C.(0Q)
with supp f c 2Aq,, let
u(X) = Jf(y) dwi(y), XeoQ.
20
Then for every x € Qo,

Ngou(x) £ sup ][If(y)l dwfg" ), (2.27)

Asx
0<1’A<4ETQ0 A

and, as a consequence, for every 1 < q < oo,

[N, ull xa0) S I (2.28)
L

_ XQq .+
L9(Qo,w L9(2Bgq,w; )

Moreover, the implicit constants depend just on the dimension n, the 1-sided NTA constants, the CDC constant,
and the ellipticity constant of L and on q in (2.28).

Proof. By decomposing f into its positive and negative parts, we may assume that f is non-negative with
suppf ¢ 2Aq,, and construct the associated u as in the statement, which is non-negative. Fix x € Qo and
letX € 1"50 (x). Then, by definition, there are Q € Do, and I ¢ Wa such that x € Q and X € I**. Hence, using
Harnack’s inequality and the notation introduced in (2.3)—(2.5), we obtain

u = [ fndofo)~ [ fndo o)< | fmdef'm+y [ fmdejm =Y,
, P2

20 20 4%, J=3 3 B\ 1 Bq

Let ko > 0 be such that £(Q) = 27%0¢(Qo). Observe that for every j > ko + 3 one has that 2Aq, \ 2"1Aq = 0.
Otherwise, thereis z € ZEQO \ 27‘150, and hence we get a contradiction:

48rq, < V71 kogry = 271Erg < |z - xql < |z - xq,| + [Xq — Xq,| < 3Erq,.

With this in hand, and since supp f ¢ 2Aq,, we clearly see that Jj=0forj>ko +3.
In order to estimate the J;’s, we need some preparations. Note that for every 2 < j < ko + 2 one has
2/Bq ¢ 5Bq,. We claim that
X
dw;

< -
dwfa" wfo" (2Ag)

2JRq

for wao-a.e. ye2hg, 2<j<ko+2. (2.29)

Indeed, this estimate follows from Harnack’s inequality and Lemma 2.15 (i) when j = k¢ since 2/2(Q) = €(Qo),
and from Lemma 2.15 (iv) whenever j < ko. We also observe that Lemma 2.15 (i) and Harnack’s inequality
readily give that

Xjx .
wLMQ (277q) =1 forevery2 <j<ko+2. (2.30)
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Finally, by Lemma 2.15 (v) and Harnack’s inequality, it follows that
dw’®
X—l(y)<2”J foer ae.yedQ\2 1A, j>3. (2.31)
213,
wr

Let us start estimating J,. Use Harnack’s inequality and (2.29) and (2.30) with j = 2 to conclude that

X5 X
Jp = ][ fy) dw;  (y) = ][ fy) dw; (y).
45() 450
On the other hand, for 3 <j < ko + 2, we employ (2.31), Harnack’s inequality, (2.29) and (2.30) to obtain
) X, )
e [ e M m <2 | fmdo  m =2 | ) dof o).
2 EQ\2771 Ag 2 EQ 2 EQ

If we now collect all obtained estimates, we conclude (2.27) as desired:
ko+2
u(X)<s Y J;
j=2

k0+2 X
<Y 27 | fnde )
j=2 A

< swp fl)de o) 3 20
AEXH ] 2
0<rp<88rqg, A

< sup ][If(y)l dw)® (y).
A

Asx
0<rp<4Erq,

To complete the proof we just need to obtain (2.28), but this follows at once upon using (2.27) and ob:};{erv—
ing that Xthe local Hardy-Littlewood maximal function on its right-hand side is bounded on L4(20 A, , w; %y,
since w;* is a doubling measure in 20 Ao, by Lemma 2.15 (i) and (iii). O

3 Dyadic sawtooth lemma for projections

In this section, we shall prove two dyadic versions of the main lemma in [10]. To set the stage we sate a result
which was partially proved in [19, Proposition 6.7] under the further assumption that 0Q is Ahlfors regular.

Proposition 3.1. Let Q c R™, n> 2, be a 1-sided NTA domain satisfying the CDC. Fix Qo € ID and let
= {Qi}k c Dq, be a family of pairwise disjoint dyadic cubes. There exists

Yo, € QN Qg,q,N Q;,Qo

so that
dist(Yq,, 0Q) = dist(Yq,, 0Q7,q,) = dist(Yq,, aQi‘f ,) = €(Qo),

where the implicit constants depend only on the dimension, the 1-sided NTA constants, the CDC constant, and
is independent of Qo and J. Additionally, for each Q; € J, there is an n-dimensional cube P; c 0Q5 q,, which
is contained in a face of I* for some I € ‘W, and which satisfies

£(Pj) = dist(P;, Q;) ~ dist(P}, 0Q) ~ £(I) ~ £(Q;) (3.1)

and

Y 1p <1, (3.2)
j

where the implicit constants depend on allowable parameters.
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Proof. Note first that Qg ¢, is a 1-sided NTA domain satisfying the CDC (see Proposition 2.12). Pick an arbi-
trary xo € 0Q5,q, and let Yy be a Corkscrew point relative to the surface ball

B(xo, diam(aﬂg,QO)/Z) n anf’Qo
for the bounded domain Qg g, (recall that one has diam(0Qy,q,) = €(Qo) < co by (2.13)). Note that
Y() € Q?,Qo C Q,

which is comprised of fattened Whitney boxes. Then Yy € I** for some I € W with int(I**) c Qg q,. Let
Yq, = X(I) be the center of I so that §(Yo) = €(I) = §(Yq,). Then

£(Qo) = diam(0Qy,q,)
~ dist(Yo, 0Q,q,)
< dist(Yo, 0Qs,q;)
< 6(Yo)
~ 6(Yq,)
= ()
< diam(Qs,q,)
= diam(0Qg,q,)
= £(Qo).

To continue, we note that the existence of the family {P;}; so that (3.1) holds has been proved in
[19, Proposition 6.7] under the further assumption that 0Q is Ahlfors regular. However, a careful examina-
tion of the proof shows that the same argument applies in our scenario. We are left with showing (3.2). To see
this, observe that, as in [19, Remark 6.9], if P; N Py # @, then £(Q;) = £(Qx). Indeed, from the previous result,
Pj c I).* and Py c I;; for some Ij, Iy € W. Thus I }.* meets I}, and by construction I; and Iy meet. Using (3.1) and
the nature of the Whitney cubes, we see that £(Q;) = £(I;) = €(Ix) = €£(Qx). Using this and (3.1), one can also
see that dist(Qj, Q) < £(Q;) = £(Qx). Hence, fixing P;, and x € Pj,, we have some constant ko > 1 (depending
on the allowable parameters) such that

Y 1p,(x) < #{Pj : P;n P}, # 0}
j

_ £(Q;) .
<#{Q: 27 < K(T,;) < 2%, dist(Q;, Q;,) < 2%€(Qj,) |

ko
= Y #{Q: eQ) = 2e(Qy,), dist(Q), Q;,) < 2*°€(Q;,)}
k=—k0

ko
=: z Ng.
ke—ko

We next estimate each Ny. Fixed k, note that the Q;’s belong to the same generation, and hence they are
pairwise disjoint and the same occurs for their corresponding Ag,’s, each of which has radius (2 )t 2’<€(Q,~0 )-
In particular, |xq, - Xq/| 2 2ke(Qj,) = 27%0¢(Q;,) for any such cubes Q; and Q; with j # j'. Moreover,

xq, - xq, | < diam(Q)) + dist(Q;, Qj,) + diam(Q;,) < 2%°€(Q;,).

Thus, it is easy to see (since R™*! is geometric doubling) that Ny < 22ko(n+1) ' A]] these together gives us (3.2);
we note in passing that the argument in [19, Remark 6.9] used the fact that there 0Q is AR to estimate each Ny,
while here we are invoking the geometric doubling property of the ambient space R™*1, O

We are now ready to state the first main result of this section, which is a version of [19, Lemma 6.15] (see
also [10]) valid in our setting.
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Lemma 3.2 (Discrete sawtooth lemma for projections). Suppose that Q ¢ R™1, n > 2, is a bounded 1-sided
NTA domain satisfying the CDC. Let Qo € D, let F = {Q;} ¢ Dq, be a family of pairwise disjoint dyadic cubes,
and let u be a dyadically doubling measure in Qq. Given two real-valued (non-necessarily symmetric) elliptic Lo
and L, we write

W = wfff’o and w,® = wfoa
for the elliptic measures associated with Ly and L for the domain Q with fixed pole at Yq, € Qg g, N Q

(cf. Lemma 3.1). Let y y
Q Q
W) = “’L,Sg,go

be the ellipfic measure associated with L for the domain Qs q, with fixed pole at Yo, € Q5 ,q, N Q. Consider the
measure v, ® defined by

Yo,
v, (F) = Y’“(F VU @ G N9 1o py e o (3.3)

Qe Qle:f" @, (Q)

where P; lS the cube produced in Proposition 3.1. Then TSFVLQ" (see (2.7)) depends only on w(};QO and wff)f, but
noton w; 1% More precisely,

P =02 (Fy | o)+ Y BRI apy, Feo, (3.4)
QieT QieT (Q)

Moreover, there exists 6 > 0 such that for all Q € Dg, and all F c Q, we have

(3.5)

( ?};0)1};00 (F) )3 Il Vf@o (F) ny wzao (F) .
PLo @’ Phv]Q) fP’; 1%(Q)

Proof. Our argument follows the ideas from [19, Lemma 6.15] and we use several auxiliary technical results
from [19, Section 6] which were proved under the additional assumption that 0Q is AR. However, as we will
indicate along the proof, most of them can be adapted to our setting. Those arguments that require new ideas
will be explained in detail.

We first observe that (3.4) readily follows from the definitions of T’; and vfo" . We first establish the second
estimate in (3.5). With this goal in mind, let us fix Q € Dy, and F ¢ Qo.

Case 1: There exists Q; € F such that Q ¢ Q;. By (3.4), we have

. Y,
ﬂ"}vf“"(F) ;ﬁgo))wf"(P) uF E ol w, Q) P, (F)

P YQO(Q) Eff?fi YQO(PI) uQ H((%OQ) YQO(Q) P YQO(Q)

Case 2: Q ¢ Q; for any Q; € 7, that is, Q € Dg,q,. In particular, if Q n Q; # 0 with Q; € J, then necessarily
Qi ¢ Q. Let x{ denote the center of P; and pick r; = £(Q;) = €(P;) so that

P; c A*(X;, ri) = B(X;, 1) N 0Q7,q,-
Note that, by Proposition 2.12, Harnack’s inequality and Lemma 2.15 (i) and (iii), we have that
Y
wL,Qf (Pi) = QO (DX}, ).

On the other hand, as in [19, Proposition 6.12], one can see that
A2 := B(x, tq) N 9Qs,q, € (Q\ U Qi) u( U A, rf)) (3.6)
QieF Q;€F:Q;$Q

with tg = £(Q), xa € 0Q7,q, and dist(Q, Ag) < £(Q) with implicit constants depending on the allowable
parameters. We note that the last expression is slightly different to that in [19, Proposition 6.2]; nonetheless,
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the one stated here follows from the proof in account of [19, (6.14) and Proposition 6.1] as 0Q; is contained
in Tq,. Besides, Proposition 3.1 easily yields

(Q \ QQ? Qi) U (QiegL:-!J)ngPi> c (Q \ QEEJ? Qi) U (QiegL-;!)ngA*(X;, ri)) c CAY,

and hence

sir((@ U @)o( U adm))swa.

QieT Qi€J:Q;cQ
Writing (see [19, Proposition 6.1])

Eo=Qo\ |J QicoQnaQs,

QieT
we have
YQ() AQ YQO E YQ() A * .
w (M) <w;PQNE)+ Y WP (A, 1)
Q;eJ:Q;%Q
Y Y
<w,PQnE)+ Y 2P
Q;eJF:Q;¢Q
Y
=Phv,*(Q) (3.7)
and, by (3.2),

P Q = w®@QnEy+ Y MDD Yo,
Qi€eF:Q;¢Q (Q)

—w0}®QNE)+ Y @ (P

QieF:QicQ
< a)L ((Q NEg) U ( Qieg,»gopi»
< wLQO(AQ) (3.8)

Since Q € Dy,q,, we can invoke [19, Proposition 6.4] (which also holds in the current setting) to find
Yo € Qg,q,, which serves as a Corkscrew point simultaneously for Qs o, with respect to the surface ball
AL (yq, sq) for some yq € Qg ¢ and some s = £(Q), and for Q with respect to each surface ball A(x, sq), for
every x € Q. Applying (2.26) and Harnack’s inequality to join Y with X and Y, with Y, we have

Y
dw;* 1
}f ~— , wfao-a.e. in Q. (3.9)
deQO a)LQO (Q)
On the other hand, one can see that
Bgu ( U B(x}, rl-)> ¢ B(yg, 3q) (3.10)

Qi€F:Qi¢Q
for some S = sq. Invoking then Proposition 2.12, and Lemma 2.15 (iii) and (iv) in the domain Qs q,, we can
analogously see

Yq
dw;’, 1 1
YQO = = YQO Q > (l)L
dwy | a)L . (A(ye,8Q)  wp [ (AY)

Next, we invoke (3.7), (3.9), and (3.10) to obtain

-a.e.in A(yq, Sq)-

*

P YQ°(F) YQ"(FnEo) uFNQ) Wffi?(Pi)
3’“ YQ"(Q) wLYQf(Ag) aeroso Q) wYQ"(Ag)

uFN Qi) YQ
~w}° (FNEo) + ' (P;
LR B WO

). (3.11)
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We claim that the following estimates hold:
wL °(FNEop) < wLQ(FﬂEo), wL 2 (P < wL 2(Qy).

The first estimate follows easily from the maximum principle since Qy, QO cQand FnEp c 0QN0oQg,q,. For
the second one, by the maximum principle, we just need to see that wf X(Q;) = 1 for X € P;, but this follows
from Lemma 2.15 (i), (2.3), Harnack’s inequality, and (3.1).

With the previous estimates at our disposal, we can the continue with our estimate (3.11):

w wYQ(FnEO)+ z uFN Q) YQ(Q)
P @ eea HQ)
OAGLENR M0 Q) @, (Q)
wQ  aefase QA o)
i Y“"(Q)
ﬂ”;w;’"(o)

where we have used (3.10) and the fact that
w"
PLw,®(Q) = w,*(Q).

This proves the second estimate in (3.5) in the current case.

Once we have shown the second estimate in (3.5), we can invoke [19, Lemma B.7] (which is a purely
dyadic result, and hence applies in our setting) along with Lemma 3.4 below to eventually obtain the first
estimate in (3.5). O

As a consequence of the previous result, we can easily obtain a dyadic analog of the main lemma in [10].

Lemma 3.3 (Discrete sawtooth lemma). Suppose that Q ¢ R™, n > 2, is a bounded 1-sided NTA domain sat-
isfying the CDC. Let Qo € D and let F = {Q;} c Dq, be a family of pairwise disjoint dyadic cubes. Given two
real-valued (non-necessarily symmetric) elliptic Lo and L, we write

Y Y Y Y
w,* =w, " and w;* =w
for the elliptic measures associated with Ly and L for the domain Q with fixed pole at Yq, € Qg g, N Q

(cf. Lemma 3.1). Let Vo Vo

Wi e =YWL 0g 0,
be the elllpnc measure associated with L for the domain Qs q, with fixed pole at Yo, € Q5 ,q, N Q. Consider the
measure vLQ0 defined by (3.3). Then there exists 6 > 0 such that for all Q € D, and all F c Q, we have

( w, " (F) )9 AR

< , (3.12)
0 %Q7  v*Q w0,
In particular, if F c Q \ UQI,G,Jt Qi, we have
Yo, .

07 00 W@

where AS .= B(xg, tg) N 0Qg q, with tg = £(Q), xa € 0Q47,q,, and dist(Q, A?) < €(Q) with implicit constants
depending on the allowable parameters (cf. [19, Proposition 6.12]).
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Proof. Letting u = w! L ?, which is dyadically doubling in Q, one easily has

Y

Y Y
“© and Phv;*=v,®

H YQo_
Prw; " = w;

Thus, (3.5) in Lemma 3.2 readily yields (3.12). Next, to obtain (3.13) we may assume that F is non-empty.
Observe thatif F ¢ Q \ g, Qi, then y iy
VLQO (F) = QO L ().

On the other hand, if F c Q\ UQI_E,I Q;, we must be in case 2 of the proof of Lemma 3.2, and hence (3.7)
and (3.8) hold. With all these, we readily obtain (3.13). O

Our last result in this section establishes that both vaO and ﬂ”;vfo" are dyadically doubling on Q.
Lemma 3.4. Under the assumptions of Lemma 3.2, vao and ?‘;vfo" are dyadically doubling on Q.

Proof. We follow the ideas in [19, Lemma B.2]. We shall first see that v{oo is dyadically doubling. To this end,
let Q € Dq, be fixed and let Q' be one of its dyadic children. We consider three cases.

Case 1: There exists Q; € F such that Q ¢ Q;. In this case, we have

Qo QO
D oy ¢ 9Dty T ),

w; () ;" (Q)

v,*(Q) =

where we have used Harnack’s inequality and Lemma 2.15 (i) and (iii).

Case 2: Q' ¢ F. For simplicity say Q' = Q; € F, and in this case
VLQO (Q )= wLQO(Pl)

Note that then Q € Dy,q, and we let F; be the family of cubes Q; € ¥ with Q; N Q # @ and observe that if
Q; € 1, then Q; ¢ Q. Then, by (3.2),

Yo,
ve@=w(oy |J @) Y U009,

Qe ol W, (Q)
—o(Q\J @)+ Y e
QieF QieF;
<w%((Q\ U a)u( U P))- (3.14)
Q€T

Recall that in case 2 in the proof of Lemma 3.2 we mentioned that P; c A, (x7, r1) with x] being the center
of Py and r; = &(P1) = £(Q1) = £(Q) since Q is the dyadic parent of Q;. Note that, since Q; € F1, by (3.1),

€(Py) = dist(P;, Q) ~ £(Qi) < €(Q) = 2£(Q1) = £(P1) = dist(Q1, P1) = 1.

Thus,
(v U @)u( U Pi)cae, cr,
QieF QieT
where we here and below we use the notation A, for the surface balls with respect to 0Q 5 q,. Using this,
(3.14), Lemma 2.15 (i) and (iii) and Harnack’s inequality, we derive

Q°(Q)<wL (A (xl,Crl))<wL (A (xl,r1))<wL °(Py) = v, *(Q).

Case 3: None of the conditions in the previous cases happen, and necessarily Q, Q' € Dg,q,. We take the
same set F7 as in the previous case and again, if Q; € F1, then Q; ¢ Q (otherwise, we are driven to case 1).
Introduce J, as the family of cubes Q; € F with Q; n Q' # 0. Again, if Q; € F,, we have Q; ¢ Q'; otherwise
either Q' = Q;, which is case 2, or Q' ¢ Q;, which implies Q ¢ Q; and we are back to case 1.
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Note that, since Q is the dyadic parent of Q’, using the same notation as in (3.6) applied to Q' € D,q,,
we have that
dist(xp,, Q) < dist(xg,, Q") < £(Q") = £(Q) ~ tgr.

Also by (3.1),
dist(x3,, Pi) < dist(xgy,, Q) + €(Q) + dist(Q, Py) < €(Q) +dist(Q;, Pi) < £(Q) = tg'-

These readily give

(v U @)u( U Pi) <o, ctod.

QieF QieJy
We can then proceed as in the previous case (see (3.14)) to obtain
ve@so((ev U a)u( U P)) s o200, o) < 02 02),
QieF QieF,

where Agl = B(xa, , tgr) N 0Qg g, (see (3.6)) and we have used Lemma 2.15 (i) and (iii) and Harnack’s inequal-
ity. On the other hand, proceeding as in (3.7) with Q' in place of Q since Q' € D+ q,, we obtain

120 <0 QnE)+ Y w2 B0, )
Qxéffz
<a)LQ°(Q NEpy) + z (uLQ"(P)
Qlefz

Qo !
—wLoﬁ(Q N Ep) + Z w YQO(pl
o ©,°(Q)

)

=, (@)
Eventually, we obtain that
v, (Q) < vf""(o’),

completing the proof of theydyadlc doubling property of vL
We next deal with fP’;v 1. - We can simply follow the previous argument replacing W’ L ® by iP,va Y% 15 see
that in cases 2 and 3 we have that

Phy/2(Q) =v[*(@Q and Phv,(Q)=v,*(Q),

and hence the doubling condition follows from the previous calculations and the constant depends on that
of w{‘{g. With regard to case 1, in which Q ¢ Q; for some Q; € F, one can easily see that

Y H(Q) o 1(@Q") v, u YQ
:PH Qo 0 <22 % p, T 0 ,
Q= 20 wy (P < 2(QD) L« Pi)= Q")
which uses that y is dyadically doubling in Q. Eventually, we have seen that the doubling constant depends
on the ones of wf"{g and yu as desired. This completes the proof. O

4 Proof of the main results

4.1 Proof of Theorem 1.1

By renormalization, we may assume without loss of generality that [ullf~(q) = 1. We will first prove a dyadic
version of (1.2). Let D = D(0Q) be the dyadic grid from Lemma 2.8 with E = 0Q. Our goal is to show that

1
Mo:= sup sup —— ”IVu(X)IZGL(XQo,X) ax <1, 4.1)
Q%D  Qo€Dyo wLQ (Qo)

£(Q0)< g o
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with M > 4 large enough. Assuming this momentarily, let us see how to derive (1.2). Fix B and B’ as in the
suprema in (1.2). Let k, k” € Z be so that 2" < r< 2K and 2¥'-1 < ¢ < 2¥' | and define k"’ := min{k’, k — 10k}
where kj > 1 is large enough to be chosen depending on M and the allowable parameters. Set

W ={IeW:InB #0, 60) <2X}u{le W:InB' #0, e(I) > 2K} == W, uW),.
Note that for every I ¢ W with I n B' # ¢ we have

r
2k=2,

£(I) < diam(I) < <

dist(I, 0Q) B r
4 4
As a consequence, if W), # @, then k" = k — 10k, and, picking I € W), # 0, one has

r=2K~y 2K < () < oK-2 Ly <.

This gives r' ~y r and #W), <y 1.
To proceed, let us write

” IVu(X)|2Gr(Xa, X) dX < ” IVu(X)1?Gr (X, X) dX + Z ”qu(X)lzGL(XA,X)dX =J+99,
BnQ Urew: 1 Iew; 7

and we estimate each term in turn.

To estimate JJ, we may assume that W) # @, and hence k" = k - 10ky, r' ~ r and #W), < 1. Then
Lemma 2.15, the fact that w(0Q) < 1, Caccioppoli’s inequality, the normalization |Jul|z~(q) = 1, and Harnack’s
inequality give

UESDY ”qu(X)lzGL(XA,X) ax< ) emt ”wu(xn2 dX < #W) <1~ w}* (2.
IEW’Z I IGW’Z I

Next, we deal with J. Introduce the disjoint family
F ={QeD:eQ =21, Qn3B +0}.
Given I € W’l, let X; € B' n1, and let Q; € D be so that £(Q;) = £(I) and it contains some fixed y; € 0Q such
that dist(I, 0Q) = dist(I, y). Then, as observed in Section 2.4, one has I € Wf*);' Note that

lyr - x'| < dist(yz, I) + diam(I) + |X; — x| < %dist([, 0Q) + X1 -x'| < %lXI -x'| <37,

and hence y; € Q; n 3A’. This and the fact that, as observed before, £(Q;) = &(I) < 2K" imply that Q; c Q for
some Q € ¥'.Hence, I c (1 +A)I ¢ Ug, T_Q for some Q € J'. This eventually shows that

U 1< To
IeW} Qed’

and therefore

I< Y ”qu(X)lzGL(XA,X)dX.
QeJ’ Ty

For any Q € 7, pick the unique (ancestor) Q e D with £(Q) = 2k and Q ¢ Q. Note that
8(Xp) =1, 6(Xz) =e@Q=2""=~r.
Also,
|Xa - Xgl < 1Xa = x|+ [x = x| + X" = xql + Ixq - xg| + x5 — Xg|
< 3r+3r' + diam(Q) + diam(Q) + £(Q)

"
Sr+2" + 2k

<r.
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Hence, by the Harnack chain condition, one obtains that G.(Xa, X) = GL(Xg, X) for every X € Tq (in doing
that, we need to make sure that ky is large enough so that the Harnack chain joining Xa and X3, which is
cr-away from 0Q, does not get near T, which is xo£(Q)-close to 0Q). Note also that

YD _ oy gt <y,
€(Q)

provided kj; is large enough depending on M. All these and (4.1) yield

15 Y [[vucoreuceg, nax
Qed’ Ty

X‘
Mo ) w,°(Q
Qed’
<My Y w*(Q)
QeT’
<moo( U Q)
QeF’
< Mow}* (CA")
< Mow}*(A"),
where we have used Lemma 2.15. This completes the prof of the fact that (4.1) implies (1.2).

We next focus on showing (4.1). With this goal in mind, we fix Q° € ID = ID(0Q) and let Qq ¢ Do with
2(Qo) < £(Q%)/M with M large enough so that Xqo ¢ 4BE‘20 (cf. (2.13)). Write wy = wfa" and 91 = Gr(Xqo, )
and note that our choice of M, (2.24), and (2.25) guarantee that L™ Gy = LT Gv(-, Xgo) = 0 in the weak sense
in 4B(*2.

Fix N > 1, consider the family of pairwise disjoint cubes Fy = {Q € Dq, : €(Q) = 27N¢(Qp)} and let
Qy := Qgy,q, and Qy = Qg q, (cf. (2.10)). Note that, by construction, Qy c Q} c Tq, and Qy is an increas-

ing sequence of sets converging to T,. Additionally, by construction, 8(X) = 27¥¢(Qo) for every X € Q%, and
hence Qf, is a compact subset of Q. Our goal is to show that for every N > 1 there holds

HWu(X)VsL(X) dX < Mowy(Qo), (4.2)
Qn

with My independent of Q°, Qo, and N. Hence, the monotone convergence theorem yields

H V(0P G:(X) dX = lim ”|Vu(X>|29L(X> dX < Mowy(Qo),

Tq, Qn

which is (4.1).
Let us next start estimating (4.2). Using ¥y from Lemma 2.13 and the ellipticity of the matrix A, we have

H|Vu(X)|29L(X) dx

Qy
< ﬂ IVu(X)12 92 (X) ¥y (X) dX
]Rn+l
< J.J AX)Vu(X) - vuX)S: X)¥n(X) dX
]Rn+l
- ﬂ ACOVU(X) - V(S ¥y)(X) dX - % ﬂ AV y)(X) - V91 (X) dX
R+ R+
1 2 1 2
-3 ” ATVEAX) - VEN XG0 dX + 5 H AV N (X) - VSL(X)u(X)? dX
]R"'*l ]Rn+1

= jl+jz+jg +j4.
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We recall that M was taken large enough so that Xpo ¢ 435 (cf. (2.13)); in particular, Xqo is away from
Qy < By, - As a result, uG ¥y and u¥y  belong to W12(Q), since u € WIOC (Q) N L>®(Q), supp ¥y c QF,
5(X) > 2 °N £(Qo) for every X € Qy (hence Q is a compact subset of Q), and by the properties of G;. Using
all these, one can easily see via a 11m1t1ng argument (convolving with a compactly supported smooth approx-
imation to the identity) that the fact that Lu = O in the weak sense in Q implies that J; = 0. Likewise, one
can easily show that J, = 0 by recalling that supp Wy c Qj, c %BQ* N Q (see (2.13)) and that, as mentioned
above, LTG; = 0 in the weak sense in 4B,. Thus, we are left with estimating the terms J; and J4. One can then

show that
1951+ 194l < ﬂ (IVulSy + [VSLD8(-) ! dX
UIEM?]ZV I

< Y an?(( ”wwz dx)%guxa)) +([Jwour dX)%)
P

I\/\?2

<Y anT (( j|u|2dX)§+e<I)”z”)9L(X(1>)

IeW2

< ) e 19L(X(1)),

IeWy

where in the first inequality we have used Lemma 2.13 (ii) and (iii), and the normalization ||u|~(q) = 1. The
second follows from Cauchy-Schwarz’s and Harnack’s inequalities, and the fact that §(X) =~ £(I) for every
X € I ¢ W. The third estimate follows from Caccioppoli’s inequality since LTG; = 0 and Lu = 0 in the weak
sensein I*** c %Ba N Q (see (2.13)), and Harnack’s inequality. And the last one uses again that [[u]l~(q) = 1.
Invoking Lemmas 2.15 and Lemma 2.13, one can see that £(I)""15;(X(I)) < wr(Qy) for every I ¢ WIZV. This
together with Lemma 2.13 allows us to conclude

i+l s Y w@ <o U Q).

IeW% IeW%
Note that, ify € Q; with I € W%, one has
ly - xq,| < diam(Qy) + dist(Qy, I) + diam(l) + dist(I, xq,) < £(I) + £(Qo) < £(Qo),
where we have used (2.13) and (2.18). Thus, Lemma 2.15, (2.3), and (2.4) give
1931 + 194l < wr(CAq,) < wr(Aq,) < wL(Qo).

This allows us to complete the proof of Theorem 1.1. O

4.2 Proof of Theorem 1.2

We borrow some ideas from [21]. Given k € N, introduce the truncated localized conical square function: for
every Q € Dg, and x € Q, let

%
shuto = ( ” Vu(Rsiay)’, whereTh= ) U,
xeQ'eD
Tl £@)32+(0y)

where if £(Q) < 27%¢(Qo) it is understood that F’é(x) =0 and S’éu(x) = 0. Note that by the monotone conver-
gence theorem, Sgu(x) 7 8qu(x) as k — oo for every x € Q.

Fixed kg large enough (eventually, kg — 00), our goal is to show that we can find 9 > 0 (independent
of ko) such that for every B, y, A > 0 we have

wf (Ix€Qo: 8 u(x) > (1+B)A, No,u(x) < yA}) < (;—;) a)LQO({X €Qo: Slg;u(x) > BA}), (4.3)
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where the implicit constant depends on the allowable parameters and it is independent of kq. The passage
from this good-A inequality to (1.3) is included at the end of the proof. To prove (4.3), we fix 8, y,A > 0 and
set
ko
Ey:={x€Qop: 8 gy u(x) > AL

Consider first the case Ey ¢ Qo. Note that if x € E,, by definition, Sg‘; u(x) > A. Let Qx € Dg, be the unique
dyadic cube such that Q, 5> x and £(Qy) = 27%0¢(Qy). Then it is clear from the construction that for every
y € Qyx one has
g = |J Ug=Tg() and A<S8gulx) =38 uw).

QxcQcQo
Hence, Qx c Ej and we have shown that for every x € E there exists Qx € Dg, such that Qx > x and Qy c Ej.
We then take the ancestors of Qy, and look for the one with maximal side length Q¥#* > Q4 which is contained
in E,. That is,
Q c E; forevery Qy c Q c QM

and
QY* N Qo \Ex#0,

where 62“‘" is the dyadic parent of QT'®* (during this proof we will use Q to denote the dyadic parent of Q, that
is, the only dyadic cube containing it with double side length). Note that the assumption E, ¢ Qo guarantees
that Q7 € Dq, \ {Qo}. Let Fy = {Qj}; be the collection of such maximal cubes as x runs in E,, and we clearly
have that the family is pairwise disjoint and also

E) = U Qj.
QjeFy

Also, by construction £(Q;) > 27k p(Qo), and by the maximality of each Q; we can select x; € aj \ Ex.
On the other hand, for any x € Qj, using that x; € ﬁj \ Ej, we have

k k k k
rho= U Ua=rheou( | Ua)crhmursm),
xeQeDyq, Qj$QcQo
£(Q)=27%0¢(Qo)

and therefore
Sgu(x) < SEuC) + 8 ux;) < SO + A,

As a consequence,
{xeQ:sput) > (1+PA} ¢ fxeQ;:Sguto > pA}

and

X €Qo:Sput) > 1 +PA={xeQo:8gu) > (1+PpAINE,
= | fxeQ:sgut) > 1 +pi}

QjeTo
C U {xeq: Sg‘j,u(x) > BA}.

QjeTFo

This has been done under the assumption that E; ¢ Qo. In the case Ej = Qg, we set Fy = {Qo}. Then in both
cases we obtain

{xeQo:Sgu) >+ c |J {xeQ:Sgu) > AL (4.4)
QjeJy

Thus, to obtain (4.3) it suffices to see that for every Q; € Fo,

9
wy (fx € Q5 : S u(x) > BA, No,u(x) < yA}) < (l_);) W, (Q)). (4.5)
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From this, we just need to sum in Q; € F to see that (4.4) together with the previous facts yields the desired
estimate (4.3):

wp® ({x € Qo : S5 u() > (1 + HIA, No,u(x) < yA})

< Y w*(xeq: Sgu() > BA, No,u(x) < yA})
QjeFo

(%) ¥ oi*@

QjeFo

_ (Zg)gwfoo( U o)

QjeFy

(4 wi .

Let us then obtain (4.5). Fix Q; € Fo and to ease the notation write Py = Q;. Set

Ex={xePo:8gu(x) >pA}, Fx=1{xePo:Nou(x) <yA}. (4.6)

If wfa‘) (Fp) = 0, then (4.5) is trivial, and hence we may assume that wfa" (Fp) > 0sothat PonFy =Fy +0.
We subdivide P, dyadically and stop the first time that Q n F) = 0. If one never stops, we write F *0 = {0};
otherwise, 3";0 = {Pj}j c Dp, \ {Po} is the family of stopping cubes which is maximal (and hence pairwise
disjoint) with respect to the property Fx N Q = 0. In particular,

Fcko\( U P).

]DI}’;O,PO
Next, we claim that
k : * * .
U Tp(x) C U Ug c 1nt< U UQ) = Q?;O’PO =:Q,. (4.7)
x€eF, QE]D:;—;pro QE]D:;;O’PO

£(Q)=27%0£(Qo)

To verify the first inclusion, we fix Y € I‘f,‘(’)(x) with x € F). Then Y € Ug, where x € Q € Dp,. Since x € Fy,
we must have Q € ]D{}‘;O (otherwise Q c P; for some P;j € S";;O, and this would imply that x € Pj n Fy = 0),
and therefore Q € ]Dgr;o’ p,» Which gives the first inclusion. The second inclusion in (4.7) is trivial (since
UQ C 1nt(U5))
To continue, we see that
[u()l<yd forallY e Q.. (4.8)

Fixsucha YsothatY € U (*2 for some Q € IDg;O .p,- 1f QN Fy = @, by maximality of the cubes in & *0, it follows
that Q c P; for some Pj € J ;;0, which contradicts the fact Q € IDg‘;O, p,- Thus, QN F) # ¢ and we can select
x € Q n Fy so that by definition |u(Y)| < No,u(x) < yA, since Y € U, ¢ Fao(x).

Apply Lemma 3.1 to find X, := Yp, € Q. N Q so that

£(Pp) = dist(X., 0Q.) =~ §(X.). (4.9)
Let w; := a)f,*Q* be the elliptic measure associated with L relative to Q. with pole at X, and write
6. =dist(-, 0Q.).

Given Y € Q,, we choose yy € 0Q, such that |Y — yy| = §.(Y). By definition, for x € Fy and Y € I'p,(x), there
isa Q € Dp, such that Y € Ug and x € Q. Thus, by the triangle inequality and the definition of Ug, we have
that for Y € I'p,(x),

X —yyl < Ix = Y[+ 8.(Y) = 6(Y) + 6.(Y) = 6.(Y)
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where in the last step we have used that

8(Y)=6.(Y) forye |] Uqg. (4.10)

QED?;O,PO
On the other hand, as observed above (see [19, Proposition 6.1]),

FacPo\ (|JQ) coanoq..
F
Using this and the fact that Q € IDg‘;O, p, if QN F) # 0, we have

Jsﬁiu(x)z da)Z(x):J ” [Vu(Y)[*8(V)" dY dw (x)

Fa Frr oo

< j > ”qu(Y)|26(Y)1’” dY dwj (x)
) x€Q€eDp,
£(Q)=27%0£(Qo)

< ¥ ([[wumiar)e@twi@nFy

QE]D:T;O,PO Ug

D S

QE]D:r;O.PO QED'J';O,PO
£(Q)=M"e(Po) £(Q)<M~"e(Po)
=: 21 + 22, (4'11)

where M is a large constant to be chosen.
We start by estimating Z;. Note first that

#{Q :e Dp, : £(Q) = M~ 'e(Po)} < Cu,

and thus

s Y @ Y [[ivumeay

Qe]Dg;O,po ISWy 1
2(Q)=M~1e(Py)
< Y« Y e |[umpay
Qe]D,f;O,PO IeW;, I+
£(Q)=M"¢(Py)
X Z S S (o) il SN 40 ) ke

QeDp, IeW;,
£(Q)=M"e(Po)

<m (YA)?,

where we have used (4.8), along with the fact that int(I**) c int(Ua) cQ, forany I € Wa with Q € IDS";O,pO,
and the fact that Wa has uniformly bounded cardinality. To estimate X, picking yg € Q N Fj, we have that

QN F ¢ B(yq, 2diam(Q)) N 0Q. =: Aj,.

Write X 5 for the Corkscrew relative to Aa with respect to Q. so that 6. (X 5) ~ diam(Q) < M~1¢(Py). Note that,
by (4.9), we clearlyhave X, € Q \ B(yq, 4 diam(Q)) provided M is sufficiently large. Hence, by Lemma 2.15 (ii)
applied in Q., which is a 1-sided NTA domain satisfying the CDC by Proposition 2.12, for every Y € Ug we
obtain

£(Q)""wi(QN Fy) < diam(Q)' "w] (Af) < GL« (X, X5) = GL.(X., ), (4.12)

where Gp,. is the Green function for the operator L relative to the domain Q.. Above, the last estimate
uses Harnack’s inequality (we may need to take M slightly larger) and the fact that, by (4.10), one has
8.(Y) = £(Q) =~ diam(Q) ~ §..(Xy,) (see Remark 2.17) and that if I > Y with I € W{,, then

|Y - X, | < diam(]) + dist(I, Q) + diam(Q) + |yq — X*| < diam(Q).
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Write {P}; c Dp, for the collection of dyadic cubes with Mé(Po) < £(P}) < 2Mé(Py), which has uniformly
bounded cardinality depending on M. Note that

{Q e Dy p, : 6(Q) < M e(Po)} C UID?;O,PE.
i

For each i, if
IDS:;O’PEJ * @,

then
Pf) eD Fp,oPo>

and hence Pg N Fy # 0. Pick then y; € PB N Fj and note that for every Q € ]Dg; Pis by (2.13), it follows that
"
Ug c TPB nNQ, c B;i N Q. < B(y;, Ckoe(Pf))) NQ, =:B;iNQ,.
0

Then, using (4.12), we have

e Y [[mumpes.cr.vay

QEIDU‘;OJ’O Ug
£(Q)<M~e(Po)

<Y Y [[vumpen. e, nay
' QEDTFO?E Uq
£(Q)<Me(Po)

<Y || mumre,.x. nay

i B,
< ”u"%oo(g*) z w;:(Bl n aQ*)
i

< (yD?,

where we have invoked Theorem 1.1 applied in Q., which is a 1-sided NTA domain satisfying the CDC by
Proposition 2.12, and we may need to take M slightly larger and use Harnack’s inequality, (4.8), and the fact
that {Pg}i ¢ Dp, has uniformly bounded cardinality.
Using Chebyshev’s inequality, (4.11), and collecting the estimates for £; and Z,, we conclude that
* (T 1 ko . \2 ®
wiErnF) < —— j (89 w? dw; <

(BA)? sk u? dwj < (X)),

) ’

EAHFA Fx
At this point, we invoke Lemma 3.3 in Py with & *0 ; we warn the reader that Py and F *0 = {P;}; play the role
of Qo and {Q;}; and that associated to each P; one finds P; as in Proposition 3.1, which now plays the role
of P in that result. Furthermore, u = wf* (recall that X, = Yp,) and observe that

FACPO\( U Pj)

Dgs
Ty Po

implies on account of (3.13) that for some 9 > O we have

wf*(E\ NnFy) - (wZ(E,\ N Ey) )g - (Z)S
] (Po) w; (AL B
where we have used that w] (Afo) =~ 1 since

AL = B(xp, tp,) N 0Q.  with tp, = £(Po) ~ diam(dQ.),
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and we have used x}o € 0Q., relation (4.9), Harnack’s inequality, and Lemma 2.15 (i). We can then use
Remark 2.16, Harnack’s inequality, and (4.9) to conclude that

X0y /5 Xp, = ~
a)LQO(E)(ﬂF/\) ~ a)LPO(EAﬂFA) B wf*(EAﬂFA) - (X)S
w,™ (Po) w;" (Po) wp'(Po) P

By recalling that Py = Q; € J, and the definitions of Ej and Fy in (4.6), the previous estimates readily lead
to (4.5).

To conclude, we need to see how (4.3) yields (1.3). With this goal in mind, we first observe that for
every x e Qoand Y € F  (x) one has that Y ¢ B* N Q (see (2.13)) and also 8(Y) > 2% ¢(Qy). Hence, since
uewr (Q), one has

loc

sup 8% () = sup ” |Vu(Y)|26(Y)1‘”dY)%

x€Qo x€Qo b
Top (0
1
—k 1-n 2 2
<@ 0o | VU d)
Baon{YeQzé(Y)ZZ’kM(Qo)}
< oo, (4.13)

On the other hand, given 0 < g < 0o, we can use (4.3) to obtain

dA
q/\qwfo"({x €Qo: S]é"ou(x) > (1+ ﬁ)A})T

(1+p)” qIIS uIIq =
“(Q

Xo
0
(Qo,w; ™)

q/\qu (fxeQo: SZOOu(X) > (1+P)A, Noyu(x) < V/\})%

o'_.,g o——3

+ jq/\qw {x € Qo : Ng,u(x) > y/\})%

I/\

XQ
w; %)

0
9 T dA
J gh ({x € Qo : 8 u(x) > ,B}l})— + y‘qllNQOuII
0

Y) —qqeko 114 - q
< (%) Busgul +y 1INgyul :
B B, Lo @) L M g, )

We can then choose y small enough so that we can hide the first term in the right-hand side of the last quantity
(which is finite by (4.13)), and eventually conclude that

IS ul? < [Noull? :

4(Qo,w, %) © a0 ®)
Since the implicit constant does not depend on ko, and S’éou(x) 7 8gou(x) as k — oo for every x € Q, the
monotone convergence theorem yields at once (1.3), and the proof Theorem 1.2 is complete.
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