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Abstract 
 

Glioblastoma multiforme (GBM) is the most malignant type of brain cancer in adults, with 

highly aggressive behaviour and low patient survival. The glial cells that are responsible for 

forming GBM show abnormalities in gene expression that can be caused by genetic or 

epigenetic causes. In particular, the positioning of nucleosomes along the genome determines 

the accessibility of DNA to regulatory proteins and therefore modulates gene expression. In 

this project I investigate nucleosome positioning in relation to other features, such as 

transcription factor (TF) binding, ALU repeats and histone modification changes. I show that 

the relationship between TF binding and nucleosome positioning in brain tissues, as well as 

cell-free DNA (cfDNA) from peripheral blood, is a highly promising system to investigate the 

deregulation of chromatin in cancer cells and diagnose GBM patients. The computational 

analysis performed here is based on experimental MNase-seq data in paired normal and tumour 

brain tissues from GBM patients as well as cfDNA from GBM patients and healthy individuals. 

I have determined GBM-specific changes in nucleosome occupancy profiles around binding 

sites of 20 glioblastoma-related TFs. Major changes of nucleosome positioning were found 

around binding sites of CTCF, RBPJ, MYC, KLF9 and JMJD6, which I propose for the role of 

new liquid biopsy markers.  Moreover, I studied differences in nucleosome occupancy at 

different classes of genomic features such as ALU repeats, which showed unexpected 

resemblance to transcription start sites. Finally, I compiled a dataset of genomic regions that 

underwent GBM-specific nucleosome repositioning and showed that Principal Component 

Analysis (PCA) based on nucleosome occupancy values in these regions could be used for 

patient diagnosis. The results of my work have implications for future development of liquid 

biopsy assays for patient stratification based on nucleosomal DNA.   
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1. Literature review 
 

1.1. Organisation of the eukaryotic genome in chromatin 

 

The eukaryotic genome is compacted in the form of chromatin inside the cell nucleus. The 

fundamental structural unit of chromatin is the nucleosome which is composed of 147 base 

pairs of negatively charged DNA coiled around a positively charged histone octamer. The 

histone octamer contains two histone tetramers that both include two copies of histones H2A, 

H2B, H3 and H4 (Kornberg and Lorch, 1999; Fenley et al., 2018). Nucleosomes are further 

locked through the histone H1 that is bound to the nucleosome entry/exit, and the linker DNA 

connects nucleosome particles to each other. This creates the so-called “beads-on-a-string” 

pattern  (Baldi, 2020). The constant dissociation and binding of nucleosomes and other proteins 

to DNA give rise to a very dynamic structure of chromatin (Kharerin et al., 2016). 

Although initially nucleosomes were believed to provide a universal, nonspecific coating of 

genomic DNA, it has long been known that nucleosomes occupy favoured positions throughout 

the genome (Li et al., 2016). Nucleosomes can act as transcription repressors by occupying 

space and blocking the transcriptional machinery from binding to promoters. High-resolution, 

genome-wide analyses have revealed a common pattern: nucleosomes are depleted at many 

active enhancer, promoter, and terminator regions, and they typically occupy preferred 

positions in gene and non-gene regions. Nucleosome depletion has been detected upstream to 

transcription start sites (TSS), making it accessible to transcription factors and other proteins 

relating to gene expression activation (Li et al., 2016; Struhl and Segal, 2013). Nucleosomes 

have a few purposes in the genome. Firstly, through the high compacting and bending of DNA 

they hold ¬¬about 2 metres of DNA in the nucleus providing efficient storage and protection 

from hazards (Rudnizky et al., 2017). Secondly, the presence of nucleosomes can stop the 

interaction of DNA with other regulatory proteins. The DNA included in the nucleosome has 
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limited accessibility, and therefore nucleosomes can determine binding of DNA-binding 

proteins to regulatory regions. Moreover, nucleosomes often contain epigenetic marks, such as 

post-translational modified histones (example: methylation or acetylation), methylated DNA 

and/or histones variants (example: H2A.Z instead of the common H2A). These marks can 

indicate transcriptional status  (Chereji and Clark, 2018). The above effects can indicate the 

importance of nucleosome positioning and will be thoroughly described in the context of 

positioning determinants below. 

Regulatory proteins determine the way the genome is expressed and translated. Therefore, 

access to the DNA in desired regions is needed for the manipulation of gene regulation  (Fenley 

et al., 2018). Distances from nucleosome to nucleosome can be different and their positioning 

along the DNA can change but is not at all random, since some location can be pre-determined 

(Teif and Clarkson, 2019). Different packaging of DNA can occur in different cell states and 

we can distinguish two functionally different territories, heterochromatin and euchromatin. 

Heterochromatin is characterised as extremely condensed and genes located there are 

transcriptionally silenced, while euchromatin is less condensed and contains genes that are 

transcriptionally more active. Different nucleosome modifications can differentiate between 

the chromatin states; for example, heterochromatin is associated with histone H3K9 

methylation (H3K9me, H3K9me2, H3K9me3) while euchromatin shows enrichment of 

histones H3, H4 and H3K4 methylation (H3K4me) (Tamaru, 2010). 

 

1.2. Nucleosome positioning 
 

The term “nucleosome positioning” describes the locations of nucleosomes in the genome. 

Nucleosome positioning is involved in epigenetic regulation of gene expression. As mentioned 

above, the genome-wide patterns of nucleosome positioning are not random and can be 

determined by several factors. That can be a combination of DNA sequence, ATP- dependent 
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nucleosome remodelling enzymes, competition of nucleosome and transcription factors, and 

histone modifications. All these determinants combined can influence nucleosome positioning 

and thus gene expression and most DNA-related processes (Struhl and Segal, 2013).  

 

1.2.1. DNA sequence affected nucleosome positioning.  Some positions of nucleosomes are 

naturally encoded in the DNA. The histone octamer’s ability to bind DNA to form nucleosomes 

depends on the specific DNA sequence.  It has been proven that positions of nucleosomes are 

affected during the cell cycle, which shows that the DNA sequence highly affects the 

organisation of nucleosomes. Current studies show that DNA sequence acquires effect over 

~9% of constant nucleosome arrangement without the influence of other factors that may 

contribute to positioning (Segal et al., 2006; Teif and Clarkson, 2019). 

Preferences in DNA sequence have been observed and certain motifs occurring in the 

nucleosome are proven to be essential for the formation and packaging of chromatin  (Cui and 

Zhurkin, 2010). Certain sequences are nucleosome favourable or unfavourable by default. For 

instance, positioning of nucleosomes at genomic regions is an example of DNA-sequence 

favoured nucleosome positioning (Teif and Clarkson, 2019). A study by Tompitak et al (2017) 

proves the existence of nucleosome-favouring sequences in promoters showing the DNA-

sequence favouring by default. Moreover, DNA sequence determinants of nucleosome 

formation depend on two main factors. First, the repetitions of specific dinucleotides along the 

nucleosomal DNA sequence give it the ability to bend around histones. This bending of DNA 

occurs at DNA helical repeats, at about every 10bp, that results in the optimal formation of 

nucleosomes (Segal et al., 2006; Struhl and Segal, 2013). 

The second factor that can affect nucleosome positioning are longer stretches of specific 

sequences and in particular poly(dA:dT) and poly(dG:dC) tracts (Struhl and Segal, 2013). 

These tracts are intrinsically stiff and poly(dA:dT) is characterised as a nucleosome 
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disfavouring sequence compared to poly(dG:dC) (Raveh-Sadka et al., 2012; Zhang and Cui, 

2014). Poly(dA:dT) tracts are abundant in eukaryotes and are associated with nucleosome-

depletion. These sequences are frequent over promoter regions and often exhibit increased 

accessibility for transcription factor binding. Raveh-Sadka et al (2012) demonstrated the 

importance of the poly(dA:dT) sequences in nucleosome positioning. They showed that 

affected nucleosome positioning has significant effect on transcription by altering transcription 

factor binding. 

 

1.2.2. ATP-dependent remodelling enzyme-affected nucleosome positioning. Although DNA 

sequence influences nucleosome positioning, ATP-dependent chromatin remodelers have a 

critical role in regulating nucleosome positioning and chromatin organisation. Nucleosome 

positioning is an active process that requires ATP-dependent enzymes. These enzymes use 

energy derived by ATP and can break and create bonds between histones and DNA (Piatti et 

al., 2011). Remodelers are responsible for chromatin reconstruction by movement of 

nucleosomes and transcriptional control, thus their knockdown can cause drastic changes on 

gene expression (Moshkin et al., 2007). In their research, Moshkin et al (2007) showed that 

knockdown of several remodelers such as SWI/SNF had important effects in gene regulation. 

Chromatin remodelers act through ATP-mediated nucleosome “sliding” and removal that drive 

nucleosome positioning. According to research conducted by Padinhateeri and Marko (2011), 

changes in remodelling activity alter nucleosome dynamics and influence promoter regions. 

After testing the remodeler-dependent nucleosome positioning mechanism, Rippe et al (2007) 

concluded that remodelers with binding preferences for specific nucleosome regions determine 

chromatin structures directly depended on the specific DNA sequence and specify accessibility 

of protein to DNA.  
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1.2.3. Nucleosome and transcription factor competition and nucleosome positioning. One of 

the major determinants of nucleosome positioning is the competition with Transcription 

Factors (TFs). TFs are DNA-binding proteins that regulate transcription by activation or 

inactivation of RNA polymerase function. Nucleosome stability in regions is set to be 

influenced by RNA polymerase expression (Schones et al., 2008). Therefore, these DNA-

binding proteins have the ability to displace nucleosomes at regions that control expression and 

affect stability of nucleosomes (Zhu et al., 2018). Both nucleosomal histones as well as TFs 

are involved in gene regulation, and competition to bind on the DNA strand is observed when 

genes are switched on (Joseph et al., 2017). 

A common example of nucleosome repositioning induced by TFs is PHO5 gene expression. 

The role of TF-mediated disassembly was demonstrated for PHO5 gene expression in yeast by 

Kharerin et al (2016). In most cases, nucleosomes form at high occupancy at the PHO5 

promoter. However, presence of the TF Pho4p exhibits disruption of the nucleosome array and 

as a result, gene expression occurs. In the study, they proved that Pho4p does not just bind, but 

it establishes Pho4p-mediated “local remodeling activity” on promoter nucleosomes. This 

activity gives rise to active promoter states. In addition, research by Zhu et al (2018), found 

that most TFs have a dissociation effect on nucleosomes upon binding, yet, they identified TFs 

such as TBX2, that have stabilizing effects on nucleosomes. Overall, effects of TFs on the 

stability of nucleosomes can have major impact on nucleosome positioning. Thus, the dynamic 

binding of TFs has a crucial effect on gene expression since increasing or reducing access to 

TF binding sites can impact expression of genes and function of regulatory elements (Schones 

et al., 2008; Lövkvist et al., 2017). 

1.2.4. Histone and DNA modification-affected nucleosome positioning. Histone modifications 

along with DNA methylation and nucleosome positioning are critical for the packaging of 

nucleosomes and regulation of gene expression (Portela and Esteller, 2010). DNA methylation 
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is a common determinant and contributor of nucleosome positioning in eukaryotes. Periodic 

DNA methylation patterns are common in the linkers of gene bodies and are a factor in the 

positioning of nucleosome. Moreover, modifications such as 5-methylcytosine and 5-

formylcytocine affect flexibility and stability of nucleosomes (Chereji and Clark, 2018). 

Entry to nucleosomal DNA is extremely hard while chromatin is condensed and that influences 

TFs. Access is only possible through histone modifications (Lövkvist et al., 2017). Histones 

can have modified conformation and function through biochemical modifications that occur on 

the proteins called post-transcriptional modifications (PTMs) (Onufriev and Schiessel, 2019). 

Amino acids of histone tails can be affected by PTMs, like methylation, acetylation, and 

phosphorylation. As an example, it was mentioned above that heterochromatin regions show 

low acetylation level. An explanation for this phenomenon is the typical histone modification 

H3K9me3 that recruits more modifying factor and spreads H3K9me3 modification (Wang et 

al., 2014b).  

DNA methylation and histone PTMs control the formation of transcriptional protein 

complexes. They can cause alterations in structures and biological responses in chromatin 

which can lead to differential gene expression (Fenley et al., 2018; Berger, 2007). Moreover, 

histone modifications are crucial in chromatin organisation and repair. The position of DNA 

damage can be identified by histone modification to recruit remodelers to open chromatin and 

start the repairing process (Chereji and Clark, 2018; Williamson et al., 2012). Through 

modification of PTMs depending on the chromatin state (heterochromatin or euchromatin) we 

can predict transcription factor binding and interactions on nucleosomal DNA and histones, 

and therefore, nucleosome positioning. 

 

1.2.5. Nucleosome occupancy vs nucleosome positioning. Nucleosome positioning is related to 

nucleosome occupancy, but they are both distinct. Nucleosome occupancy for an individual 
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cell is the probability for a given DNA base pair to be inside a nucleosome; for a bulk 

experiment, nucleosome occupancy is defined as the relative number of DNA sequence reads 

covering a given base pair in comparison with genome-average. Some regions like promoters 

and enhancers show depletion of nucleosomes or in other words low nucleosome occupancy 

(Struhl and Segal, 2013). Decrease in occupancy at nucleosome depleted regions (NDRs), such 

as promoters, is usually associated with the increase of gene expression. Increase or decrease 

of nucleosome occupancy in NDRs can indicate gene silencing or gene activation accordingly 

(Vasseur et al., 2016). Thus, nucleosome occupancy is as critical to biological functions such 

as nucleosome positioning (Struhl and Segal, 2013). For example, Lam et al. (2008) 

manipulated promoter sites to prove that the interplay between chromatin structure and 

binding-site affinity can allow promoters to respond to signals in a unique way and tailor gene 

expression. 

1.2.6. Nucleosome stability and fuzziness. In addition to nucleosome occupancy, nucleosome 

positioning can be characterised by the stability of nucleosomes. Stability of nucleosomes is 

identified by the comparison nucleosome occupancy levels at a specific genomic region that is 

calculated at different phases of chromatin digestion. Highly similar levels of nucleosome 

occupancy around these regions indicate high nucleosome stability (Teif and Clarkson, 2019). 

Moreover, the term nucleosome fuzziness is used to describe the standard error of calculating 

nucleosome occupancy at a specific region-based averaging of replicate experiments (Teif and 

Clarkson, 2019; Vainshtein et al., 2017). 

1.2.7. Nucleosome positioning and protein interaction measurement. Defining the positions 

that nucleosomes overtake and their interactions with proteins in the genome is very important 

in order to study and understand the regulation of transcription by chromatin. 
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1) Nucleosome positioning measurement: In this project we used two types of data to 

complete experimental analysis: MNase-seq and MNase-seq assisted H3.  

• MNase-seq: Micrococcal nuclease digestion followed by high-throughput 

sequencing (MNase-seq) is the most popular technology used to profile 

nucleosome organisation in the genome. For this technique, Micrococcal 

nuclease (MNase), an endo/exonuclease that can cut DNA and digest RNA, is 

used to make incisions between nucleosomes creating small fragments 

(Hoeijmakers and Bártfai, 2018). MNase-seq makes use of Next-Generation 

Sequencing methods to obtain reads from the nucleosomal DNA fragments in 

order to define genome-wide nucleosome positioning and occupancy. It is 

extremely important to take into account the biases that are included when using 

MNase, such as the preference of the enzyme to AT-rich regions. As a result, 

this bias may wrongly interpret the effect of AT-rich sequences for nucleosome 

formation, therefore quality must be checked when using the MNase-seq 

technique (Hoeijmakers and Bártfai, 2018). According to Gutierrez et al. 

(2017), correcting this bias has been and still is a challenge, with no trustworthy 

method for sequence-bias corrections (Gutiérrez et al., 2017). 

• MNase-assisted histone H3 ChIP-seq. During MNase-seq protocols protein-

DNA interactions are “fixed” to avoid nucleosome movement. This procedure 

is not specific to nucleosomal protein and therefore, non-histone proteins maybe 

be picked up during MNase-seq digestion. To avoid this limitation, MNA-seq-

assisted histone H3 ChIP-seq is used to specifically select nuclesomal DNA. In 

this case, during MNase-seq, chromatin is immunoprecipitated with antibodies 

against histone H3 and only DNA fragments connected to histone H3 are 

selected (Hoeijmakers and Bártfai, 2018). 
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2) Protein-DNA interactions measurement using ChIP-seq analysis: Chromatin 

immunoprecipitation Sequencing (ChIP-seq) is currently the method used to measure 

genome-wide protein location. ChIP-seq offers high resolution, genome-wide analysis 

of DNA-protein interactions. During the ChIP approach, cross-linked proteins and 

DNA elements create complexes that are enriched with antibody. The DNA fragments 

of interest are then sequenced and mapped to a genome (Park, 2009). 

1.2.7. Alu repeats and nucleosome positioning. Alu repeats are one the most abundant short 

interspersed repeated sequences found in the human genome. These sequences were considered 

to be junk DNA since their function could not be related to any cell process but findings 

revealed their importance in the regulation of genes, developmental processes and overall 

genome integrity (Di Ruocco et al., 2018; Cordaux et al., 2010). Their wide spreading over the 

genome has been related to cancer. Mutations of the tumour suppressor gene p53 together with 

DNA methylation relates to increase Alu element transcription in colorectal, ovarian and breast 

cancer (Di Ruocco et al., 2018). In nucleosome organisation, Alu repeat elements have been 

reported to be related to nucleosome repositioning effects. Strong nucleosomes with preference 

for young Alu repeats show increased mutation rates and the combination of strong nucleosome 

positioning and hypermutation of Alu is facilitating the expansion of Alu across the genome in 

cancer (Li and Luscombe, 2020). 

1.3.  Nucleosome positioning and cancer 
 

The epigenetic dysregulation of cancer is a topic that has gained momentum among cancer 

researchers. Epigenetic mechanisms focused on transcriptional regulation remain 

uninvestigated thus, understanding of the importance of chromatin organisation and 

specifically nucleosome positioning in cancer is growing steadily (Chereji and Clark, 2018). 

Epigenetic features such as histone modifications, DNA methylation and nucleosome 
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positioning are found to be modified in all human cancers. Such modifications can alter gene 

expression during cancer initiation and progression (Li et al., 2016). For example, Shanmugam 

et al (2018) state reduction of histone H3K4me3 and H3K9ac mark levels are observed in 

promoters of target genes in melanoma cell lines. Similarly, they report H4K4me3 expression 

associated with tumour progression in MCF7 breast cancer cells. 

Even though nucleosome positioning in the same cell type can be different from person to 

person, cancer cells can have different chromatin structure distinguishable from that in healthy 

people.  Positioning of nucleosomes can be used as a cancer indicator in both a genetic and 

epigenetics level as it exhibits differences in chromatin and DNA methylation. A cancerous 

genome shows alternated nucleosome occupancy and positioning and epigenetic modification 

such as post-transcriptional modifications, chromatin-remodelers and TFs can be the reason for 

the development of cancer. According to Lay et al (2015), DNA methylation and histone 

modifications highly affected patterns of nucleosome positioning were identified in HCT111 

colon cancer cells. Moreover, the importance of nucleosome positioning was demonstrated in 

bladder cancer where an aberrant function of remodelers and histone modifiers was observed 

(Gui et al., 2011). Specifically, in GBM modification of histones and chromatin remodelers are 

involved in the maintenance of stem cells and are major contributors to GBM treatment failure 

Romani et al (2018). These results can demonstrate the importance of nucleosome positioning 

during cancer developments and its role in different cancers will be discussed further in the 

report. 

 

1.4.  Nucleosome positioning and cell-free DNA for cancer diagnostics 
 

Nucleosome positioning and genome-wide abundance of the size of cell-free DNA fragments 

have recently discovered to be correlated. Sequencing of plasma cfDNA can provide genome-
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wide nucleosome occupancy that highly correlates with gene structure and expression observed 

in cells (Snyder et al., 2016). 

This relationship is mostly contributed by the structure of cfDNA. cfDNA is found in the 

bloodstream and it consists of small double-stranded DNA fragments, less that 200bp long. It 

has been proposed to be secreted mostly by apoptotic cells with low normal cell tissue 

contribution. cfDNA shows a short life span in the blood indicating its ongoing secretion by 

cells and immediate degradation. cfDNA fragment sizes are close to the size of nucleosomes 

and chromatosomes (linker histone and nucleosome), at about 147bp and 167bp accordingly 

(Snyder et al., 2016). Moreover, it can be produced by normal as well as tumour cells during 

cell death and the tumour-rich fragments can contain important information of the properties 

of cancer. Through whole-genome sequencing of cfDNA, tumour-specific mutations, 

methylation and nucleosome positioning can be identified allowing scientists to identify a 

tumour’s location and monitor its progression (An et al., 2019). For example, in lung cancer 

patients blood plasma can be used to detect mutation in the epidermal growth factor since 

tumour tissue is limited (Nakamura et al., 2012). 

The ability to use blood plasma in order to diagnose and monitor diseases has been a great 

advantage in modern medicine. Traditional methods for cancer diagnostics such us tissue 

biopsies or X-rays can be avoided through the use of non-invasive liquid biopsies (Snyder et 

al., 2016). Liquid biopsy or fluid biopsy can be defined as the sampling and analysis of cfDNA 

found in biological fluids such as plasma, saliva, urine and the cerebrospinal fluid. Monitoring 

of cancers through cfDNA is a new alternative biopsy that is possible through the identification 

of mutations or aberrant chromosome numbers and it can be used to tackle limitations of tissue-

base genetics (Snyder et al., 2016; McEwen et al., 2020).    
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The amount of cfDNA in plasma of cancer patients depends on many factors such as tumour 

stage, location and response to therapy. Quantification of overall cfDNA levels in cancer 

patients is not useful for diagnosis and monitoring since the concentrations of total cfDNA can 

be similar to heathy individuals (García-Olmo et al., 2013). This indicates that the usage of 

mutant DNA can be a better method for patient monitoring, a method that was demonstrated 

successfully by Diehl et al (2008) in metastatic colorectal cancer.  

In cancer patients, cfDNA found in the circulation also contains cfDNA originating from 

tumour cells, known as circulating tumour DNA (ctDNA) (Murtaza and Caldas, 2016). ctDNA 

is shed into the bloodstream by cancer cells after apoptosis and small nucleosome fragments 

are secreted into the blood stream (Elazezy and Joosse, 2018). Analysis of these small 

fragments can occur through the mapping of the fragments to a genome through ChIP-seq for 

patient profiling and detecting of tumour specific changing in the DNA. 

In their research, Snyder et al. (2016) presented genome-wide mapping of sequenced cfDNA 

fragments that promoted the understanding of the relationship between nucleosome positioning 

and cfDNA fragments. Similar nucleosome positioning landmarks were observed in cfDNA as 

well as direct footprint of TF occupancy. According to their research, this is a unique 

application to tumour classification by using epigenetic markers found in cfDNA fragment 

patterns. 

Shorter fragment sized cfDNA has been associated with several types of cancers (Spindler et 

al., 2014; Singh et al., 2015) For example, Lapin et al (2018), demonstrated shorter cfDNA 

fragment sizes in pancreatic cancer and suggested increased levels of tumour DNA in patients 

with cancer but it cannot be used independently as a prognostic marker in contrast to cfDNA 

levels. Prognostic impact was calculated through Cox regression analysis and discovered that 

cfDNA level is a prognostic factor but this after testing cfDNA fragments sizes without the 
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presence of cfDNA levels and concluded that cfDNA cannot be used independently. The 

authors are pointing out that they did not test tumour-derived cfDNA as one of the limitations, 

and therefore analysis on tumour cfDNA is essential for the discovery of cfDNA fragment size 

and cancer prognosis.  Moreover, increased quantity of fragments is not always cancer-specific, 

but it can be associated with conditions such and autoimmune diseases and exposure to 

surrounding environment. Adding to that, a small percentage of cfDNA in the plasma in 

derived from cancer cells, therefore the quantification of cfDNA cannot be specific (Underhill 

et al., 2016). 

 

1.4.1. Plasma cfDNA vs cerebrospinal fluid cfDNA 

In certain cancers such as nervous system tumours, cfDNA percentage in plasma can be low to 

absent due to obstacles such as mucin or the blood brain barrier (McEwen et al., 2020). In a 

640-patient study, ctDNA was detected in more than 75% of patients with different cancer 

types but in less than 50% for primary brain tumours (Bettegowda et al., 2014). In such cases, 

cfDNA found in the cerebrospinal fluid (CSF) can be used instead of plasma cfDNA and has 

been proven to be more accurate when studying such tumours (McEwen et al., 2020; Miller et 

al., 2019). When comparing CSF and plasma cfDNA, CSF shows drastically lower levels of 

non-tumour cfDNA due to its pluricellular nature. It must be considered that generally, nervous 

system tumours show higher percentage of tumour-specific cfDNA, but this may be due to the 

physical obstacles that prevent the circulation of ctDNA. Moreover, tumour profiling for 

classification and therapy in brain cancers includes tissue extraction through brain surgery 

therefore sequencing of cfDNA from the cerebrospinal fluid can be an accurate and lower cost 

way of providing glioma genotypes (Miller et al., 2019).  

 

 



 15 
 

1.5.  Glioblastoma Multiforme 
 

Glioblastoma Multiforme (GBM) is one of the most aggressive and lethal types of brain 

tumour. It derives from glial cells and represents the most common nervous system cancer in 

adults (Raucher, 2019). GBM is associated with one of the worst 5-year survival rates in all 

cancer and has an average survival of about 1 year after diagnosis (Philips et al, 2018). Brodbelt 

et al (2015) reports analysis of treatment and survival for more than 10 thousand cases in the 

England with a median survival of 6.1 months and rising to 14.9 with maximum treatment over 

the period 2007-2011. Global incidence of GBM is less than 10 per 100,000 persons and it is 

highly represented in patients aged more than 65 years (Silantyev et al, 2019). Gliomas are 

divided into 4 grades, I to IV, according to their clinical characteristics by the World Health 

Organisation (WHO) and they include tumour subtypes such as astrocytomas, oligodendromas 

and ependymomas. Grade I gliomas are usually benign and curable while grade II and III are 

more invasive and harder to treat. The most invasive grade of GBM is grade IV in which 

glioblastoma is included. High grade gliomas show mutations in most target genes, for example 

TP53, PTEN, CDKN2A and EGFR. (Yan et al., 2009). Patients are affected from grade IV 

(primary) GBM at a much higher occurrence at almost 90% of the GBM cases worldwide, 

while progression of the less aggressive grade I and grade II (secondary GBMs) affect 5-10% 

of patients (Szopa et al., 2017; Sasmita et al., 2018).  

 

1.5.1. Treatment and prediction of GBM 

Unlike other solid tumours, GBM can cover surrounding brain tissues but rarely metastasizes 

to other organs. Currently, the most common and successful therapy is surgical removal of 

tumour followed by radiation or chemotherapy (Raucher, 2019). Due to its highly invasive 

traits, it is challenging to remove all tumour tissue and as a result GBM reoccur in most cases. 

The median survival after reoccurrence is an overall of 6.2 months (Müller Bark et al., 2020). 
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The current treatments have low specificity and various side effects with no cure, but can 

provide patients additional survival time on the already low rate of 12-15 months (Raucher, 

2019). Initial diagnosis happens by neuroimaging and biopsy of the tissue to define grade and 

characterise the tumour. There are several issues surrounding the resection or biopsy of brain 

tumour tissue, from the high risk of complications to lower quality of heterogeneity prediction 

of the whole tumour mass that can lead to inaccurate representation (Müller Bark et al., 2020). 

Using a treatment based on cfDNA is less invasive and could be proven beneficial in future 

therapies and diagnosis. 

To avoid such risk, liquid biopsies can be used for GBM detection. As described in the “Plasma 

cfDNA vs cerebrospinal fluid DNA” section to used liquid biopsies in GBM, it has to be 

assumed that tumour-specific material crosses the blood-brain barrier. Disruption of the barrier 

has been reported in GBM and progression of the disease aggravates disruption and 

compromises the brain-blood barrier integrity. At present, liquid biopsies for GBM prediction 

can be a helpful tool to compliment current prediction and prognosis by providing a more intact 

view of the tumour characteristics (Müller Bark et al., 2020). That being said, there are no 

clinically validated cfDNA biomarkers for independent cfDNA GBM prediction due to similar 

limitations that were discussed in the “Nucleosome positioning and cell-free DNA for cancer 

diagnostics” section. 

 

1.5.2. GBM subtypes 

GBM is highly characterised in a genomic level and its separated into groups relating to 

transcription profiles (proneural, neural, classical, and mesenchymal), genetics, such as IDH 

mutations, as well as epigenetics, for example CpG island methylator phenotype.  Each of the 

profiles reflect altered pathways and genetic changes that affect progression and prognosis 

(Müller Bark et al., 2020). For example, patients that show higher survival are likely to be 
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patients carrying mutations of isocitrate dehydrogenase 1 (IDH1). Unfortunately, this genetic 

characterisation of the tumour has still not improved therapies (Lathia et al., 2015).  

Glioblastoma is separated in 4 subtypes that correlate to the following genetic defects. First, 

IDH (proneural) subtype, that correlated to mutation of the IDH 1 gene, and focal copy number 

amplifications of the PDGFRA (RTKI subtype) or EGFR (RTKII subtype also called 

“classical”) genes that both code receptor tyrosine kinases (RTKs).  Finally, the MES 

(mesenchymal) subtype shows lower cases of typical copy number amplifications in GBM 

(Hopp et al., 2015). In general, these subtypes moreover show differences in DNA methylation. 

Hopp et al (2015) calculated average methylation levels and variance for each subtype and they 

noticed that IDH, RTKII and to a lower extent MES were generally hypermethylated while 

RTKI were hypomethylated when compared to controls. In addition, methylation levels of the 

subtypes differ between glioma grades with Grade II and III astrocytoma having different 

methylation of RTKII and IDH genes when compared to GBM (Grade IV).  

 

1.5.3. GBM biomarkers  

Developments on next-generation sequencing methods have created a breakthrough on the 

identification of GBM-specific molecular characteristics that allow a more accurate and deep 

understanding of the molecular behaviour of the cancer.  Therefore, there are a few types of 

biomarkers that have a key role in diagnosis, prognosis, and prediction of GBM (Szopa et al., 

2017). 

1) Diagnostic biomarkers: These biomarkers can provide more accurate classification of 

the cancer when diagnosis happens. 

2) Prognostic biomarkers: prognostic biomarkers provide insight to a likely cancer 

outcome. For example, reoccurrence of GBM after treatment, can help occurrence of 

psedoprognosis and avoidance of false treatment and calculated accurate survival time. 
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3) Predictive biomarkers: biomarker that can provide more accurate treatments for 

patient-specific strategies.  

Some of the most common biomarkers known for GBM that are used as part of patient 

interrogation and diagnosis include: combined loss of nucleosome arms 1p and 19q, isocitrate 

dehydrogenase (IDH) mutations, mutations on or uncontrolled expression of p53, and 

epigenetic alterations for example, O6-methylguanine DNA methyltrasferase (MGMT) 

hypermethylation (Müller Bark et al., 2020). More biomarkers for GBM also include: tumour 

suppressor protein TP53,  Epidermal growth factor (EGFR), phosphatase and tensin homolog 

(PTEN) and others such as cancer stem cells and the p16INK4a gene (Szopa et al., 2017). 

At this point, it is highly important to mention these molecular biomarkers have distinct 

presence at different grades of GBM and more specifically of primary and secondary GBM. 

Szopa et al. (2017) summarized the results for three studies (Ohgaki et al., 2004; Nakamura et 

al., 2001; Yan et al., 2009) and compared the molecular signatures of primary and secondary 

GBM. In their paper, they included frequency of the cases experiencing biomarker 

amplifications such as EGFR gene (36-60 % of primary and only 8% of secondary) and the 

PTEN mutation (25% of primary and 4% of secondary). Other common biomarkers that 

showed higher percentage of amplifications for primary GBM were the CDKN2A-p16INK4a 

deletion (31-78% of primary and 8% of secondary). In addition, they marked the mutations that 

are seen for secondary GBM that include TP53 mutation at 65% versus the 28% seen for 

primary as well as MGMT promoter methylation (75% of secondary and 26% of primary) and 

IDH1 mutation at 75% of secondary GBM that are not that common in primary at 5% (Szopa 

et al., 2017). 

Besides heterogenicity between glioma grades there is differentiation in tumour progression 

and behaviour even between GBM subtypes and cell types. Cell types such as cancer cells with 
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stem-like properties can be found in GBM and they promote self-renewal and classification 

into different phenotypes (Garnier et al., 2019). GBM stem cells (GSCs) use surface markers 

and control specific signalling pathways, such as NOTCH, to promote GBM. Moreover, these 

stem cells can alternate between subtypes when being exposed to treatment, for example 

radiation, to provide a better environment for cell growth (Szopa et al., 2017). 

 

1.5.4. RTK signalling through the RAS/MAPK in GBM.  

Genetic aberrations of receptor tyrosine kinases (RTKs), including growth receptors EGFR and 

PDGFRA, have a present role in GBM (Ohgaki and Kleihues, 2009). RTKs are cell surface 

receptors that when activated drive two main pathways, the RAS/RAF/MAPK pathway that 

promotes proliferation migration and other stem -like properties and the P13K/AKT/mTOP 

that promotes proliferation and cell survival through the cell cycle (Pearson and Regad, 2017). 

Moreover, P13K is closely related to PTEN, which regulates the pathway and provides 

resistance to EGFR-based therapies (Szopa et al., 2017). This resistance makes these two 

pathways a promising GBM treatment (Pearson and Regad, 2017). 

 

1.5.5. RB tumour suppressor in GBM.  

The pRB pathway interacts with transcription factor E2F for the suppression of cell cycle 

progression. This leads to under-expression of genes related to the cell cycle, making 

reactivation of pRB a passable therapy of GBM. The pathway was found altered in 78-79% of 

GBM cases while the RB gene was deleted or mutated in 7.6-11% (Pearson and Regad, 2017). 

 

1.5.6. IDH1 and IDH2 mutations in GBM  

IDH1 mutations were discovered by Parsons et al. (2008). Advances in cancer genetics 

established the role of specific IDH mutations in human cancers such as malignant gliomas, 
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acute myeloid leukaemia and other carcinomas (Waitkus et al., 2018). Mutations of the 

IDH1gene were found in 12% of glioblastomas and suggested that these mutations can occur 

after low-grade glioma formation and drive the progression to glioblastoma. The results of the 

study indicated that GBM patients carrying IDH2 or IDH2 mutation had increased overall 

survival at an average of 31 months compared to the 15-month survival of patients with wild-

type IDH1 (Yan et al., 2009). 

 

1.5.7. Tumour suppressor P53 mutation in GBM 

 The p53 pathway is critically involved in the progression of genes that are related to cell cycle 

response and TP53 is one of the most commonly altered genes in many cancers (Zhang et al., 

2018). The p53-ARF-MDM2 pathway is aberrant is 84% of GBM patients and deregulation is 

highly connected to GBM proliferation, evasion of apoptosis and cancer cell stemness (Zhang 

et al., 2018). Events such as, stress signals and DNA damage trigger p53 response that inhibits 

protein complexes Cdk4/Cyclin F and Cdk2/Cyclin E to prevent cell cycle progression. In 

GBM, p53 signalling shows aberrant functions in 87% of the cases, with deletion or mutation 

of p53 at 28-35%.  Many GBM treatments include the restoration of p53 for activation of its 

tumour suppressor properties (Ohgaki and Kleihues, 2009; Zhang et al., 2018). 

 

1.6.  Nucleosome positioning in GBM 

 

Due to the aggressive nature of GBM, it is a priority to understand the underlining mechanisms 

of it in order to produce efficient therapies. Highly important facts can be uncovered through 

the identification of nucleosome positioning. In their study, Malley et al (2011) predicted 

nucleosome positioning for sequences upstream and downstream on MGMT and several TFs. 

Through analysis of nucleosomes, they discovered association of positioning and methylation 

patterns and as well as nucleosome depletion around TF binding sites and Transcription Start 
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Sites (TSS). An interesting result was surfaced when nucleosome accessibility analysis 

revealed open chromatin structure was lost for MCMT methylated cells and as a result the TSS 

lost accessibility. The authors suggested blockage of the TSS may lead to transcriptional 

silencing while TFs, such as STAT3, were predicted to bind to regions are linked to 

gliomagenesis.  

 

Chromatin accessibility has been analysed in GBM using the assay for transposase accessible 

chromatic with sequencing (ATAC-seq). ATAC-seq enables the study of open chromatin and 

can identify accessible regions of transcription (Tome-Garcia et al., 2018). In a recent study, 

Tome-Garcia et al. (2018), used ATAC-seq to capture distinct TF drivers of tumour progression 

in GSCs and identified TEAD1 to show overexpression. Other ATAC-seq studies, such as 

Bulstrode et al. (2017) identified high SOX2 and FOXG1 levels as a key factor on proliferation 

in GBM and moreover, analysed their interaction through the use of their ChIP-seq data. In 

addition, Guilhamon et al. (2018), identified GSC subtypes based on chromatin accessibility, 

DNA methylation and RNA-seq which offered new possibilities of discovering therapeutic 

compounds and improving therapeutic effectiveness. Through this research, it is clear that the 

identification of the positions that nucleosomes take is extremely important in order to 

characterise and discover new therapies for GBM. Finally, a particularly understudied area of 

analysis is the detection of genome-wide nucleosome positioning, as well as calculation of 

nucleosome occupancies at different genomic regions.  

 

1.7.  Aims 

 

The purpose of this study is to shed new light on the genome-wide nucleosome positioning in 

GBM through the identification of nucleosome positioning patterns in normal and tumour 

tissue from GBM patients. First, we aim to highlight any abnormalities in positioning found in 
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cancer compared to normal tissue around specific regions on the genome. We hope that by 

analysing nucleosome positioning we can provide GBM-specific targets for future therapies.  

Moreover, by analysis nucleosome positioning of cfDNA from healthy people and GBM 

patients we would like to provide insight on the diagnosis and monitoring of GBM without the 

use of traditional methods such us biopsy and X-rays. Using cfDNA fragments we hope to 

profile the patient’s genome for the use of personalized medicine as well as monitor their 

progression. Finally, the results of the report will determine the possibility of nucleosome 

positioning as cancer biomarker.  
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2. Methods 
 

2.1. MNase-seq and cfDNA datasets 

 

We used eight samples from four different glioblastoma patient to which we referred to as 

G276, G125, G289 and G370. Patient information is described in Table 1. Samples were   

provided by Dr Paul Brennan (University of Edinburgh). For all four patients we used paired 

healthy and GBM tissue that was collected from tumour brain tissue and the healthy tissue at 

its periphery, extracted during the surgery. MNase-seq experiments were performed in these 

samples in the Teif lab as discussed previously (Shafiei, 2018). Sequencing data was checked 

by the “fastqc” program prior to nucleosome occupancy analysis. The project was conducted 

in the laboratory of Dr Vladimir Teif in collaboration with Dr Paul Brennan from the 

University of Edinburgh within the ethical approval by the East of Scotland Research Ethics 

Service (EoSRES) dated 14 July 2015, Ref: AG/15/ES/0094. Moreover, cell-free DNA 

(cfDNA) was extracted from blood plasma of one of these patients (patient G370).  

 

Table 1. Summary of all information on the 5 patients used in the project.  

File/sample names 
(internal) 

New 
ID 

Old 
ID 

Patient information # fragments 
146-148 bp 

# unique 
regions  
146-148 bp 

G N MNase-seq G215 G Female 60, GBM 31,568,029 23753429 

G T MNase-seq G215 G Female 60, GBM 43,588,690 31069028 

G T H3 Rep2 G215 G Female 60, GBM 27,698,780 19879609 

G370 cfDNA G370 G370 Male 60, GBM 983,200 7282839 

G370 N MNase-seq G370 G370 Male 60, GBM 16,900,477 14146963 

G370 T MNase-seq G370 G370 Male 60, GBM 18,896,957 14395131 

GG N MNase-seq G276 GG Female 40, Diffuse 
astrocytoma WHO grade II 
converted to GBM 

6,439,815 5337656 

GG T MNase-seq G276 GG Female 40, Diffuse 
astrocytoma WHO grade II 
converted to GBM 

6,709,874 5485448 

JJ N MNase-seq G237 JJ Female 40, Anaplastic 
astrocytoma WHO grade II 
converted to GBM 

11,288,991 9001558 
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JJ T MNase-seq G237 JJ Female 40, Anaplastic 
astrocytoma WHO grade II 
converted to GBM 

4,203,114 3655699 

QQ T MNase-seq G289 QQ Male 40, GBM (samples 
taken after first 
surgery/chemo/radiotherapy) 

13,098,188 11891749 

QQ T H3 ChIP-seq G289 QQ Male 40, GBM (samples 
taken after first 
surgery/chemo/radiotherapy) 

11,382,689 6546446 

 

   

2.2. External experimental datasets 
 

For the analysis of nucleosome occupancy in GBM we have used TF dataset, cfDNA patient 

datasets as well as histone modifications. The TF datasets were obtained  from the three 

databases pre-processed experimental ChIP-seq genomic data: ReMap (Griffon et al., 2015), 

ChIP-Atlas (Oki et al., 2018) and Gene Expression Omnibus (GEO) (Barrett et al., 2013). A 

total of 20 TFs shown in Table 2, where it demonstrates all details as well as accession numbers 

for the TFs. Next, investigation of cfDNA was based on data reported in Song et al. (2017). 

cfDNA bed files were downloaded through the GEO database using the same commands as 

described above. Finally, histone modifications in isocitrate dehydrogenase (IDH), 

mesenchymal (MES), receptor tyrosine kinase I (RTKI) and receptor tyrosine kinase II (RTKII) 

GBM subtypes found in GEO under GSE121723. Accession numbers for histone modifications 

are as following for (a) IDH subtype: H3K27ac (GSM3444433), H3K27me3 (GSM3444434), 

H3K4me1 (GSM3444435) and H3K3me3 (GSM3444436), (b) MES subtype:  H3K27ac 

(GSM3444438), H3K27me3 (GSM3444439), H3K4me1 (GSM3444441) and H3K3me3 

(GSM3444441), (c) RTKI: H3K27ac (GSM3444480), H3K27me3 (GSM3444481), H3K4me1 

(GSM3444483) and H3K3me3 (GSM3444484), and (d) RTKII: H3K27ac (GSM3444450), 

H3K27me3 (GSM3444451), H3K4me1 (GSM3444453) and H3K3me3 (GSM3444454).  
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Table 2. Datasets of TF binding sites in GBM-related cell lines used in the analysis. 

TF name Cell type Reference 

ARNT2 Glioblastoma Stem Cell (GSC) 
GSE98330 

(Bogeas et al., 2018) 

ASCL1 
G523NS 

cells treated with 
doxycycline 

GSM2335531, GSM2335532, 
GSM2335533 

(Park et al., 2017)  
BMAL1 Glioma stem cells GSM1306364 

BRD4 
U87MG (Uppsala 87 
Malignant Glioma) 

Remap 
GSM1038284 

(Lovén et al., 2013) 

CHD4 
0308 cell line, glioblastoma 

tumour initiating cells 

ChIP-seq Atlas 
GSM1265802 

(Chudnovsky et al., 2014) 

CREBBP 
T98G human glioblastoma 

cells 
ChIP-seq Atlas GSM525265 

(Ramos et al., 2010) 

CTCF 
H54 (D54) glioblastoma cell 

line 
GSM822303 

ENCODE project 

CTCF 
Neuro-blastoma cells in 

continuous culture 
GSM803333 

(Gertz et al., 2013) 

EP300 
T98G human glioblastoma 

cells 
ChIP-seq Atlas GSM525266 

(Ramos et al., 2010)  

JMJD6 3565 cells 
GSM2360990 

(Miller et al., 2017) 

JMJD6 528 cells 
GSM1922076 

(Miller et al., 2017) 

KLF4 U87 
GSE97632 

(Wan et al., 2017) 

KLF9 Human GBM stem-like cells 
remap2018 

GSM1522563 
(Ying et al., 2014) 

MAX 
U87MG (Uppsala 87 
Malignant Glioma) 

remap2018 
GSM894077 

(Lin et al., 2012) 

MED1 
U87MG (Uppsala 87 
Malignant Glioma) 

remap2018 
GSM894082 

(Lin et al., 2012) 

MYC U87MG 
remap2018 
GSM894061 

(Lin et al., 2012) 

Olig2 MGG8 
GSM1306365 

(Suvà et al., 2014) 

Olig2 MGG8 
GSM1306367 

(Suvà et al., 2014) 

RBPJ brain tumour initiating cells 
GSM2101764 

(Xie et al., 2016) 

RBPJ glioblastoma initiating cells 
GSM2101765 

(Xie et al., 2016) 
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SALL2 MGG8 Glioblastoma cell line 
GSM1306364 

(Suvà et al., 2014) 
 

SOX2 LN229 glioma cancer cells 
GSM586971 

(Fang et al., 2011) 

SOX2 
NOD-SCID mouse harbouring 
HOT1 tumour derived from 

human glioblastoma 

GSE58345 
(Singh et al., 2017) 

SOX2 MGG8 
GSM1306360 
GSM1306362 

(Suvà et al., 2014) 

POU3F2 
MGG8 human glioblastoma 

stem cell line 
GSM1306358 

(Suvà et al., 2014)  
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2.3. Computational analysis setup 

 

The data was analysed computationally using the University of Essex high-throughput cluster. 

All computational analysis needed for this study was performed in the Linux environment 

through the terminal emulator PuTTY (https://www.putty.org/). Bash scripts were run using 

the command line and the containing command were created using WinSCP 

(https://winscp.net/eng/download.php), an open-source client that offers basic file managing. 

Finally, graphic display and data analysis was done via the program OriginPro 2020 

(https://www.originlab.com/origin).  

 

2.4. DNA fragment size analysis 

 

In order to investigate the distribution of nucleosomal DNA fragments in tissue and cfDNA we 

used an R script that calculates the frequency of nucleosome fragments in bed files pre-

processed with NucTools (Vainshtein et al., 2017)(see Appendix, Script 1). After the 

investigation of nucleosomal fragment length in all patients we decided to only select two 

different ranges of nucleosome fragment sizes for two different analysis to increase probability 

of the fragments having nucleosomal DNA ancestry. To extract specific fragment lengths of 

120-180 bp and 146-148bp we used the perl script “extract_nuc_sizes.pl” (see Appendix, Script 

2).  

2.5. Calculation of average nucleosome occupancy profiles 

 

To determine nucleosome occupancy profiles around genomic regions, we used the HOMER 

package and the command “annotatePeaks.pl” that uses a bed file of regions and the HOMER 

tag directories files and outputs average nucleosome occupancy around the regions. Separate 

HOMER tag directories were created for each MNase-seq and cfDNA samples using DNA 

fragments with sizes 120-180 bp for genome assembly hg19. 

https://www.putty.org/
https://winscp.net/eng/download.php
https://www.originlab.com/origin
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2.6. Calculation of A/T/C/G nucleotide frequency 
 

Nucleotide profiles were calculated along the nucleosome fragments of sizes 146-148 bp using 

HOMER package, command “annotatePeaks.pl” with parameters -CpG -size 200 -hist 1. 

 

2.7. Lost, gained, more fuzzy and less fuzzy nucleosomes 
 

The regions that lost and gained nucleosomes and showed more and less fuzzy nucleosome in 

cancer were determined using NucTools. First, for lost and gained nucleosomes we calculated 

average occupancy separately for healthy and tumour for each of the four patients using script 

“bed2occupancy_average.pl” for a window of 100bp and 1000bp. Next, using the average 

occupancy files generated at the previous step we identified stable nucleosomes using the script 

““table_nucs_replicates.pl” with parameter -StableThreshold 0.5. Then, we compared the two 

conditions, healthy and tumour, using the “compare_two_conditions.pl” script with 

“threshold1” 1.4 and “threshold2” 1.4 for 100-bp window and “threshold1” 0.35 and 

“threshold2” 0.35 for 1000-bp window. 

Regions of fuzzy nucleosome were identified for 100-bp windows using 

“stable_nucs_replicates.pl” with a -FuzzyThreshold” of 1 followed by the script 

“compare_two_conditions.pl” with “threshold1” 1.4 and “threshold2” 1.4. 

2.8. Enrichment of lost/gained, more and less fuzzy nucleosomes 
 

The enrichment of lost, gained, more and less fuzzy nucleosomes at different genomic features 

was calculated using BedTools (Quinlan and Hall, 2010). Using the 1000bp regions that have 

been already calculated, we applied the command “bedTools shuffle” to create files of lost, 

gained, fuzzy and stable nucleosomes that are randomly shuffled in the human genome. Next, 

we used both shuffled regions and non-shuffled regions and intersect them with genomic 
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regions using the “intersectBed” command. The number of sites within the intersected output 

files were then counted using the command “wc” and both values of non-shuffled and shuffled 

regions were divided, to get fold enrichment.  

 

2.9. Alu repeats analysis 

 

We analysed nucleosome occupancy in all ALU repeats binding sites using the method 

explained in the Methods section 2.5. We further split the ALU repeats in 2 size groups 50-

200bp indicating the monomeric ALU repeats and 250-400bp for Dimeric ALU repeats. To 

extract the specific base pair lengths of 50-200 bp and 250-400bp we used the perl script 

“extract_nuc_sizes.pl” (see Appendix, Script 2) and adjusted the -min and -max parameters. 

Moreover, further calculations were made by aligning the signal around the left end (start) of 

ALU repeats and the splitting into sizes. We then calculated nucleosome occupancy as 

described above.  

 

2.10. Gene ontology analysis 

 

In order to proceed with the Gene Ontology analysis, we decided to intersect the 100bp long 

lost and gained nucleosome regions with several genomic regions that contain the genes 

included in the regions. We once again used the “intersectBed” command, using the genomic 

region files a parameter -a and the lost and gained nucleosome regions as parameter -b and 

used parameter -u to only choose unique regions. The output files include genes names 

unique for lost and gained nucleosomes. We then used the output genes in DAVID and 

proceeded with analysing the Biological Process terms.  
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2.11. Principal Component analysis (PCA) 

 

To start the analysis, we used the chr1 occupancy “.occ” files for healthy and tumour for each 

individual patient and the lost and gained nucleosome regions with a window of 1000bp that 

were calculated already (see section 2.7). First, using the individual healthy and tumour 

occupancy files for each patient, we converted the files from “.occ” to “.bed” format, by 

formatting the files using the command “awk” with parameters “-v = OFS='\t' ''” to choose 

specific columns and “perl -p -e 's/^/chr1\t/'{ print $1, $1, $2}'”. A total of 8 files were formatted 

(4 healthy and 4 GBM) and was then individually intersected with the 1000bp-long lost and 

gained nucleosome regions using “intersectBed”. Next, we compiled all occupancies into a 

single file using the command “paste” and making use we use the parameter “column -s $'\t' -

t” to make use the columns are separated. Finally, performed PCA of the two output files in 

the R environment using Script 3, Appendix.  
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3. Results 
 

3.1. Distribution of DNA fragment lengths 

 

To begin our investigation of nucleosome positioning, we started with the analysis of DNA 

fragments length for all samples used in this study (Figure 1). Overall, Figure 1 shows that 

there is a wide distribution of fragment lengths for all patients. From Figure 1A and B, it is 

clear that all tissue samples show peak of fragment lengths at around 146 base pairs (bp) (which 

corresponds to a slightly over-digested mononucleosome) whereas for patient G370 the peak 

was at 153 bp (which corresponds to a slightly under-digested mononucleosome). The 

distribution of DNA fragment lengths based on cfDNA from patient G370 has a peak at 165 

bp, which corresponds to the chromatosome particle (the nucleosome plus linker DNA). On 

the other hand, this distribution is similar to that for the previously published cfDNA from 

blood plasma from GBM patients and healthy individual datasets (Song et al., 2017) (Figure 

1C and D). It is interesting to note that cfDNA from the latter study is more enriched with small 

pieces of sub-nucleosomal sizes in GBM in comparison with healthy people. To highlight the 

difference on fragments lengths in cfDNA, we plotted MNase-seq and cfDNA samples for 

patient G370 separately in chromosome Y (Figure 1E).  As expected, after looking at Figure 

1A-D, in Figure 1E cfDNA shows a peak at 167bp while MNase-seq has a clearly lower 

fragment length at 155bp for both GBM and healthy. In the following calculations we have 

narrowed down the distribution of DNA fragments to unify these size distributions. For 

example, Figure S1 (Appendix) shows how average nucleosome occupancy profiles around 

CTCF calculated based on all DNA fragments obtained from MNase-seq differ from the 

profiles calculated based on the fraction of DNA fragments with sizes within 120-180bp. When 

comparing the two, the main difference is that the overall nucleosome occupancy is higher for 

all patients but patient G237 shows higher occupancy in GBM than healthy as well as showing 
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a nucleosome peak at the centre of CTCF. This difference only appeared after filtering 

nucleosomal DNA fragment sizes and indicates that size-filtering can reveal more detailed 

nucleosome occupancy patterns. 
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Figure 1. Distribution of DNA fragment lengths for all samples used in this study. (A) Length 

distribution of nucleosomal DNA fragments across GBM and healthy MNase-seq samples 

100 120 140 160 180 200 220 240
0

10000

20000

30000

40000

 G370 cfDNA

 G370 N MNase

 G370 T MNase

N
u
m

b
e
r 

o
f 
c
o
u
n
ts

 (
C

h
r 

Y
)

cfDNA fragment length (bp)

155
167

E



 33 
 

from four GBM patients G125, G237, G276 and G370 and one cfDNA sample (blue points) 

from patient G370 from our study. (B) The same as (A) in logarithmic scale. (C) Distribution of 

cfDNA fragment lengths across all samples from 4 GBM patients and 4 healthy individuals 

from Song et al (2017). Healthy individuals are shown in black and GBM patients in red. (D) 

The same as (C) in logarithmic scale. (E) Distributions of DNA fragment sizes on chromosome 

Y for the three matched samples for patient G370: MNase-seq in healthy brain sample is 

shown in black, MNase-seq in tumour brain sample in red and cfDNA extracted from blood of 

the same patient in blue. 

 

3.2. Nucleosome occupancy profiles in GBM patients around TFs bound in 

GBM-related cell lines. 

 

We acquired TF binding datasets in GBM-related cell lines as detailed in Methods. After 

quality check using the “fastqc” program, we determined average nucleosome occupancy 

around several TFs from GBM-related cell lines (Table 2) in MNase-seq and H3 assisted 

MNase-seq samples and cfDNA samples for both healthy and GBM-affected individuals. In 

order to study changes in nucleosome occupancy profiles around TF binding sites, we made 

separate calculations for healthy and GBM tissue from 4 patients G125, G237, G276 and G370, 

and calculations for cfDNA from blood plasma for patient G370 and datasets reported in Song 

et al (2017). TFs were selected due to their direct relation and contribution to GBM progression 

which will be explained thoroughly for each TF in the “Discussion” section.  

 

3.2.1. Average chromatin profiles differences in healthy and GBM samples based on MNase-

seq data.  

 

Figure 2 shows average nucleosome occupancy profiles around TF binding sites in GBM-

related cell lines (Figure 2). In each case occupancy profiles were averaged over the 4 GBM 

patients separately for non-malignant and tumour brain tissues. Overall, occupancy of 

nucleosomes around binding sites of TFs is lower in tumour than normal samples but there is 

large variation between patients. For example, on average patient G237 shows higher 

occupancy of nucleosomes around TFs. Nucleosome occupancy profiles around CTCF (Figure 
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2A) show lower variation between healthy samples in comparison with tumour. Nucleosome 

occupancy profiles in patients G276 (Figure S3A, Appendix), G237 (Figure S3B, Appendix) 

and G125 (Figure S3C, Appendix) form peaks at CTCF sites but, unlike other profiles, for 

patient G237 nucleosome occupancy in GBM is higher than in healthy tissue. It is important to 

mention that average nucleosome profile around CTCF in GBM tissues is very fuzzy (Figure 

1A), the profiles of individual patients show distinct shape changes between normal and GBM 

tissues (Figure S3). Similar patterns are seen around RBPJ (Figure 2C). Interestingly, G237 

does not have higher occupancy for GBM tissue around POU3F2 (Figure S7, Appendix), SOX2 

(Figure S8, Appendix) and OLIG2 (Figure S10, Appendix), three of the four TFs involved in 

the POU3F2, SOX2, SALL2 and OLIG2 complex. Nucleosomes around both SOX2 and 

POU3F2 profiles are depleted at the centre of the binding sites for three out of four patients. 

On the other hand, nucleosome profiles around OLIG2 (Figure S10, Appendix) show similar 

behaviour in all patients, with nucleosome peaks at the centre of the TF binding sites. In 

addition, nucleosome occupancy profiles at JMJD6 (Figure 2J) and KLF9 (Figure 2N) showed 

interesting changes. On average, both TFs show lower and highly variant nucleosome 

occupancy in GBM. For JMJD6, nucleosomes at the centre of show less defined depletion for 

patients G276 and G215 in GBM while for other patients’ profiles are similar between the two 

groups. Finally, KLF9 (Figure S17, Appendix) shows nucleosomes at the centre of the binding 

sites form peaks for patient G276 (Figure S17A, Appendix) and G237 (Figure S17B, 

Appendix) in both healthy and GBM tissue. Finally, patient G125 (Figure S17C, Appendix) 

profiles changed from depletion to augmentation of nucleosomes at the centre.  

3.2.2. Average chromatin profiles differences in healthy and GBM samples based on cfDNA.  

 

We also calculated nucleosome occupancy profiles around TF binding sites reconstructed 

based on cfDNA taken from the plasma of 4 healthy individuals and 4 GBM patients (Song et 

al. 2017) (Figure S24, Appendix). These nucleosome occupancy profiles do not show great 
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differences from healthy to GBM. When compared to MNase-seq sample profiles, average 

nucleosome occupancy is always higher in GBM, while in MNase-seq samples occupancy in 

GBM is always lower. Other than that, patterns of the cfDNA are highly similar to the ones 

observed in MNase-seq of brain tissues. Cases that show different cfDNA profiles at the centre 

of TF binding sites include ASCL1 (Figure S24H, Appendix) and MAX (Figure S24L, 

Appendix).  
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Figure 2. (A-N) Average profiles of MNase-seq nucleosome occupancy around binding sites 

of 14 transcription factors averaged over 4 GBM patients for samples taken from the tumour 

periphery marked as “healthy” (black lines) and samples from the bulk of the tumour marked 

as GBM (red lines).  Lighter areas correspond to the standard errors of averaging. The number 

of regions (N) for each TF file is indicated on the graph. O) Nucleosome occupancy profiles 

around binding sites of CTCf for paired tumour and non-tumour brain tissues from an individual 

patient G125. 
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3.3. Nucleosome repositioning at genomic DNA repeats  
 

We further investigated nucleosome occupancy around ALU repeats and TSS for healthy and 

cancer tissue and cfDNA from healthy people and GBM patients and we expanded our analysis 

of ALU sequence repeats by calculating nucleosome occupancy for two different size groups 

50-200bp and 250-400bp (Figure 3). Moreover, we decided to compare nucleosome occupancy 

patterns at ALU repeats and TSS for healthy and GBM tissue as well as cfDNA from one of 

our patients (Figure S25A, Appendix). 

3.3.1. Average nucleosome occupancy around ALU repeats 

 

First, we measured occupancy of nucleosomes around ALU repeats. Figure 3 shows occupancy 

around ALU in healthy and GBM tissue and cfDNA accordingly. In the MNase-seq tissue 

samples, occupancy of nucleosomes seems to be fuzzier in cancer, but the pattern and peak 

positioning are very similar to healthy (Figure 3A and B). On the other hand, patterns of the 

cfDNA samples have significant differences between healthy and GBM (Figure 3C and D). 

When comparing the two figures we can see that MNase-seq ALU profiles are unexpectedly 

very different from the cfDNA profiles, with MNase-seq revealing two depletions of 

nucleosome occupancy, while in cfDNA we can only observe only one at the centre of the ALU 

binding sites. 

3.3.2 Average nucleosome occupancy profiles at size separated ALU repeats 

 

After studying nucleosome occupancy of ALU repeats we realised that ALU have a great 

number of binding sites, so we decided to split ALU regions based on the size of the ALU. 

Figures 3A and 3B shows nucleosome occupancy for two different ALU size regions, 50-200bp 

and 250-400bp averaged over all MNase-seq samples accordingly. Overall, while patterns are 

similar for both size groups, it is clear that sizes 50-200 have clearer patters than sizes 250-

400. Furthermore, we calculated nucleosome occupancy around the two ALU repeat size 
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groups for the cfDNA from Song et al (2017). We observe that occupancy around ALU repeats 

has more defined peaks for 50-200bp (Figure 3C) than 250-500bp (Figure 3D) but less 

fuzziness in patterns overall. Additionally, when comparing MNase-seq and cfDNA 

nucleosome occupancy patterns we can still observe difference in the nucleosome profiles at 

the centre even after the size separation. 

We further analysed nucleosome occupancy calculations by aligning the signal around the left 

end (start) of ALU repeat binding sites shown in Appendix S25. Overall, the patterns are similar 

to those in Figure 3, with the difference that occupancy seems to be slightly fuzzier at the start 

sites in MNase-seq samples. Moreover, patterns that were calculated around the left end of 

ALU are shifted on the right.  
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Figure 3. Average nucleosome occupancy around ALU repeat elements. (A-B) Nucleosome 
occupancy around ALU repeats averaged over the 4 GBM patients’ healthy tissue MNase 
(black) and GBM tissue MNase (red). (A) 50-200bp and (B) 250-400bp. Nucleosome 
occupancy around ALU repeats averaged over the 4 samples of cfDNA from healthy people 
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(black) and 4 samples of cfDNA from GBM patients (red) from Song et al (2017) for ALU sizes 
50-200bp (C) and 250-400bp (D). All calculations were made by aligning the signal around 
centres of ALU repeats. Grey areas correspond to the standard errors of averaging. 

 

3.3.3 Average nucleosome occupancy patterns around ALU repeats resemble those around 

TSS.  

 

Next, we calculated nucleosome occupancy around TSS regions in healthy and GBM MNase-

seq tissue (Figure 4B) and cfDNA (Figure 4D). Nucleosome occupancy patterns are very 

similar between MNase-seq and cfDNA and the profiles shapes look as expected, showing a 

depletion of nucleosomes followed by a peak of occupancy downstream the TSS that annotates 

the “+1” nucleosome. Moreover, nucleosome occupancy is fuzzier in cancer for the MNase-

seq samples.  

Furthermore, we decided to compare ALU repeat and TSS nucleosome profiles from Figure 4. 

The nucleosome occupancy profiles around both ALU repeats (Figure 4A), as well as TSS 

(Figure 4C) show lower occupancy in GBM tissue, while patient variation is higher in GBM. 

A very interesting but unexpected similarity between nucleosome occupancy profiles of ALU 

repeats and TSS is their profile shapes. It seems that nucleosome profiles show similar 

depletions and augmentations of nucleosomes around the centre of both regions, but the 

profiles are inverted.  

Next, we plotted nucleosome occupancy profiles around ALU repeats and TSS for healthy and 

GBM tissue as well as cfDNA only from patient G370, for which we have data both for the 

paired tumour/normal brain MNase-seq and cfDNA from peripheral blood. The corresponding 

profiles are demonstrated in Figure 4E and F. Both graphs highlight differences between brain 

tissue and cfDNA at ALU repeats and TSS. In Figure 4E, high occupancy of nucleosomes is 

seen for cfDNA and well as healthy tissue, while GBM tissue shows significantly lower 

occupancy at ALU repeats. For the cfDNA samples, nucleosomes at the centre of ALU show 
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higher augmentation when compared to brain tissue. Finally, in Figure 4F profile shapes are 

similar across all samples, but cfDNA shows the highest occupancy around TSS.  
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Figure 4. Comparison of average nucleosome occupancy around ALU repeats and 
transcription start sites (TSS) based on MNase-seq and cfDNA. (A) Nucleosome occupancy 
around TSS averaged over 4 GBM patients, separately for healthy (black) and GBM tissue 
(red). (B) cfDNA density profiles around TSS averaged over 4 samples from healthy people 
(black) and 4 samples from GBM patients (red) from Song et al (2017). (C-D) The same as 
(A-B) but profiled around TSSs. Grey areas correspond to the standard errors of averaging. 
(E-F). Nucleosome occupancy profiles for an individual GBM patient based on cfDNA (blue) 
and MNase-seq from healthy (black) and tumour (red) areas of the brain.  
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3.4. Interplay of nucleosome repositioning and histone modifications in GBM 

 

For our next analysis, we calculated nucleosome occupancy around regions enriched with 4 

histone modifications (H3K27ac, H3K27me3, H3K4me1 and H3K4me3) found in normal and 

tumour brain samples (Figure 5). These profiles were calculated for histone marks found in 

each of the 4 subtypes of GBM: IDH, MES, RTKI and RTKII.  Moreover, we investigated 

nucleosome occupancy around CTCF binding sites for subclasses of CTCF sites that are 

enriched with 4 histone marks (Figure 6). Nucleosome profiles in Figure 6 are intersected with 

histone modifications H3K27ac, H3K27me3, H3K4me1 and H3K4me3 only for IDH GBM 

subtype.   

3.4.1. Nucleosome occupancy around domains with different histone modifications in 

glioblastoma 

 

Nucleosome occupancy profiles were calculated around 4 histone modifications: H3K27ac 

(Figure 5A), H3K27me3 (Figure 5B), H3K4me1 (Figure 5C) and H3K4me3 (Figure 5D) 

specific for the MES GBM subtype. Higher nucleosome occupancy is observed around all 

histone marks for non-malignant samples in comparison to tumour brain tissues. Slight 

differences can be seen within the MES subtype for nucleosome occupancy around H3K27ac, 

where nucleosome occupancy variation is high and nucleosome occupancy level is clearly 

lower for GBM (Figure 5A). For H3K27me3, nucleosomes at the centre share a similar 

nucleosomal peak for both healthy and GBM tissue (Figure 5B). Moreover, the same profiles 

were calculated for the other 3 GBM subtypes, IDH (Figure S27, Appendix), RTKI (Figure 

S28, Appendix) and RTKII (Figure S29, Appendix). Nucleosome occupancy profiles across all 

subtypes have similar profiles. Figure S28B and Figure S29B shows similar nucleosome 

occupancy around H3K27me3 for RTKI and RTKII subtype accordingly. The two figures show 
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smooth nucleosome peaks and higher variance of nucleosome occupancy between GBM 

patient compared to healthy individuals. Profiles around H3K27me3 for IDH subtype show 

nucleosomes at the centre create a sharper peak.  

When comparing H3K27me3 profiles in all subtypes, RTKI and RTKII show the most 

resemblance while IDH and MES have sharper nucleosome peaks. It is important to mention 

that the number of sites noted on each figure is very different between subtypes and can affect 

quality of peaks. Finally, after looking at nucleosome occupancy profiles for all individual 

patients (Figure S30-S45, Appendix), it is worth noting that patient G237 was the only patient 

that always showed higher nucleosome occupancy in GBM versus non-malignant brain tissues 

for all GBM subtypes.  
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Figure 5. Average nucleosome occupancy profiles around regions enriched with different 

histone modifications. (A) H3K27ac (GSM3444438), (B), H3K27me3 (GSM3444439), (C) 

H3K4me1 (GSM3444441) and (D) H3K4me3 (GSM3444441) binding sites found in 

mesenchymal (MES) GBM subtype averaged over the 4 GBM patients from the experiments 

performed in the University of Essex. Grey areas correspond to the standard errors of 

averaging. 

 

3.4.2. Chromatin differences between glioblastoma and neuroblastoma 

 
Next, nucleosome occupancy profiles around CTCF after enrichment of patient nucleosomes 

with 4 histone marks found in IDH GBM subtype were calculated for all patients and are 

illustrated in Figure 6. Nucleosome occupancy profiles calculated around CTCF derived from 

a neuroblastoma cell line form a peak at the centre and nucleosome occupancy is slightly higher 

at the same region. It is important to highlight the results in Figures 6A and 6B. Figure 6A 

shows nucleosome occupancy around CTCF and H3K27ac binding sites. Occupancy is low at 

the centre of the binding sites that indicates present of CTCF at H3K27ac binding sites. 
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Moreover, Figure 6B show high nucleosome occupancy levels around common binding sites 

of CTCF and H3K27me3. Both figures highlight the role of CTCF in active (H3K27ac) and 

inactive (H3K27me3) chromatin in GBM.  

Furthermore, we calculated the same nucleosome occupancy profiles for CTCF derived from 

a GBM cell line (Figure S48, Appendix). Nucleosome occupancy patterns appear similar but 

distinctively less smooth. When comparing GBM and neuroblastoma, nucleosomal profiles for 

H3K27ac, H3K4me1 and H3K4me3 show similarity, but H3K27me3 profiles are completely 

different. In GBM, occupancy patterns are less clear while neuroblastoma shows a nucleosome 

peak at the centre. Even with a smaller number of sites, neuroblastoma demonstrates clearer 

profiles around CTCF.  
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Figure 6. Nucleosome occupancy profiles around CTCF in regions enriched with different 

histone modifications from proneural IDH GBM subtype around CTCF bound in 

neuroblastoma (Gertz et al., 2013) in tumour for healthy (black) and tumour brain tissue (red) 

from the 4 GBM patients. (A) H3K27ac, (B) H3K27me3, (C) H3K4me1, (D) H3K4me3. Lighter 

areas correspond to the standard error of averaging. 

 

3.5. Targeted loss and gain of nucleosomes from genomic regions 

 

3.5.1. GBM-specific nucleosome loss, gain and fuzziness  

 

After determining 100bp and 1000bp regions that gained and lost nucleosomes in cancer using 

NucTools, average nucleosome occupancy profiles around these regions were calculated 

(Figure 7). Figure 7A shows nucleosome profiles of genomic regions that gained nucleosomes 

in GBM. Higher occupancy of nucleosomes is shown for GBM tissue at the centre of the 

regions with the nucleosome depletion decreasing. Individual patient profiles are provided in 

Appendix (Figure S49). Interestingly, occupancy levels are higher for patients G276 and G237 
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but lower for G125 and G370. Moreover, for patient G237 occupancy at the centre of 

nucleosome gained regions change from depletion to augmentation in GBM.  

Profiles of genomic regions that lost nucleosomes in GBM (Figure 7B) show lower occupancy 

of nucleosomes in GBM compared to normal and high depletion at the centre. Healthy tissue 

shows high nucleosome occupancy overall and small depletion on nucleosomes at the centre. 

In GBM, nucleosome occupancy is lower and depletion is more defined. The individual graphs 

(Figure 8) for lost nucleosome regions show similarities between patients. Patients G125 and 

G370 have very similar occupancies with GBM lower than healthy and similar depletion of 

nucleosomes at the centre. Moreover, patient G276 shows similar occupancy overall, but 

extremely low occupancy at the centre from GBM tissue. On the other hand, nucleosome 

occupancy for patient G237 was very different at the centre since it changes from ‘peak’ to 

major depletion. This is a very interesting change that is related to only this one patient.  

Overall, when comparing regions of lost and gained nucleosomes in healthy and GBM, 16,815 

and 29,436 sites were identified for each accordingly.  

Next, we decided to calculate occupancy for 1000bp-long gained and lost regions (Figure 7C 

and D). In Figure 7C, the effect on nucleosome occupancy between healthy and GBM 

nucleosome a lot clearer when compared to the 100bp regions. For genomic regions that gained 

nucleosomes in GBM (Figure 7C), placement of nucleosomes is indicated in the centre of the 

gained nucleosome binding sites in GBM that endorses the gained nucleosome region 

calculations. Similar consistency can be seen for genomic regions that lost nucleosomes in 

GBM, where nucleosomes seem to be released around lost nucleosome binding site regions, a 

result that agrees with our NucTools calculations.  

Next, we calculated nucleosome occupancy around sites that were calculated to be less or more 

fuzzy in GBM for 100bp regions in Figures 7E and 7F accordingly. In Figure 7C, we can see 
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occupancy of nucleosomes that exhibit more fuzzy behaviour. In GBM, occupancy levels are 

lowers compared to normal and occupancy at the centre of the binding sites is lower indicating 

a higher number of nucleosomes at the centre. For Figure 7D, occupancy is similar between 

healthy and normal tissue around less fuzzy nucleosomes. At the centre of the bunding sites 

healthy tissue shows more nucleosomes that GBM.  
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Figure 7. Average nucleosome occupancy profiles around regions that lost or gained 

nucleosomes or where nucleosome occupancy became more and less fuzzy in tumour versus 

healthy brain tissues from 4 GBM patients. Averaged profiles are shown separately for healthy 

(black) and tumour brain tissues (red). Lighter areas correspond to the standard errors of 

averaging. The number of regions (N) for each analysis is indicated on the graph. (A) 100-bp 

regions that gained nucleosomes in GBM versus healthy brain tissues, (B) 100-bp regions that 

lost nucleosomes in GBM versus healthy brain tissues, (C) 100-bp regions where nucleosome 

occupancy became less fuzzy in GBM versus healthy brain tissues, (D) 100-bp regions where 

nucleosome occupancy became more fuzzy in GBM versus healthy brain tissues (E-F) The 

same as (A-B) but for 1000-bp genomic regions. 
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Figure 8. Average nucleosome occupancy profiles around genomic regions that lost 

nucleosomes in tumour versus healthy brain tissues, plotted individually for 4 GBM patients. 

(A) Patient G276 (B) Patient G237 (C) Patient G215 (D) Patient G370. Non-malignant brain 

tissue samples are shown in black and GBM profiles in red. 
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3.5.2. Enrichment of lost and gained nucleosome regions at TFs. 

 

To further investigate nucleosome positioning in GBM, enrichment of the calculated lost and 

gained nucleosome regions was measured for all TFs and presented in Figure 9. Figure 9 

demonstrates fold enrichment analysis of gained and lost nucleosome regions at TF binding 

sites. Overall, enrichment charges according to the TF and no specific pattern can be observed. 

For example, all CTCF binding sites seem to be enriched with gained nucleosome regions, a 

result that indicates the loss of CTCF binding sites in cancer. We further investigated CTCF 

by using different quantiles of binding strength in Figure 9B. It is clear that CTCF quantile 3 

has the highest enrichment of gained nucleosome regions at more than 3.5. Interestingly, less 

strong quantiles 1 and 2 seem to have enrichment of lost nucleosome regions at their binding 

sites. Finally, in Figure 9B we calculated enrichment at the top 10% of CTCF sites. It seems 

that regions gaining nucleosomes tent to be more enriched at higher quality CTCF regions.  

In addition to CTCF, enrichment of lost nucleosome regions can be seen for TFs like ARNT2, 

BMAL1, POU3F2, RBPJ, CHD4, MYC, MAX and JMJD6 in Figure 9A. Enrichment of 

regions losing nucleosomes at binding sites indicates “nucleosome-free” regions where 

production of the TF can increase. For TFs such as JMJD6, MYC, KLF4 and BMAL1 it is seen 

that there is enrichment for both lost and gained nucleosome regions but higher for lost is 

observed.  

3.5.3. Enrichment of lost and gained nucleosome regions at different genomic regions 

 

We decided to go beyond TF binding sites and look at enrichment at different genomic regions 

(Figure 9B). First, we can see that overall, there is a gain in nucleosomes at all regions except 

CpG islands where higher lost nucleosome region enrichment can be seen. Main genomic 

regions such as promoters, enhancers and ALU repeats show small enrichment of gained 
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nucleosomes regions indicating the loss of binding sites for each region. CpG island show gain 

and loss of nucleosomes at regions.  
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Figure 9. Fold enrichment of binding sites of TFs and other genomic regions that gained/lost 

nucleosome regions in GBM versus healthy brain tissues. (A) Enrichment of 100bp regions of 

lost and gained nucleosomes in GBM at binding sites of 19 TFs. (B) Enrichment of 100bp 

regions of lost and gained nucleosomes in GBM at genomic regions and CTCF binding sites 

including different binding strength quantiles, 1 being the weakest and 3 the strongest. Black 

bars indicate enrichment in genomic regions that lost nucleosomes and red bars indicate 

enrichment in regions that gained nucleosomes in GBM. 
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3.5.4 Gene ontology analysis of promoters that gained and lost nucleosomes in GBM 

 

Next, we performed Gene Ontology (GO) analysis of promoters that lost and gained 

nucleosomes in GBM. For this analysis we decided to use 1000bp-long regions of the gained 

and lost nucleosome region datasets. First, in Figure 10A we can see processes related 

biological processes of genes that are expressed in promoters that gained nucleosomes. First, 

we can see GO such as “blood coagulation” and “cell-cell signalling” having lower p-values 

and therefore indicating significance for gained nucleosome regions. Other GO terms that show 

significance are “B cell differentiation”,” Type I interferon-mediated signalling”, “humoral 

immune response”, “B cell proliferation” and “natural killer cell” and well as “T cell activation 

involved in immune response”.  It is clear that promoters with gained nucleosome regions that 

are expressed in GBM are highly involved in the expression of immune responses. This is a 

result that highlights the immune-system-corrected nature of GBM and will be discussed in 

section 4 of the thesis. Lastly, we can see terms such as “response to exogenous dsRNA” and 

“peptidyl-serine phosphorylation of STAT protein” showing significant p-value. Connection 

of these pathways with GBM deregulation will be discussed in the “Discussion” section. 

For lost nucleosome regions, very different GO terms are enriched based on p-value (Figure 

10B). The top terms that we found are analysis were “viral transcription”, “intercellular signal 

transduction” and “regulation of protein ADP-ribosylation”. Moreover, other terms such as 

“stress activated MARP cascade”, “GDP metabolic process”, “rRNA processing”, “RNA 

splicing”, “G2/M transition of mitotic cell cycle”, “cell cycle” and “negative regulation of 

protein ubiquitination”. Generally, GO terms involved in gene regulation and the cell cycle 

seem to be link to the gene expressed at promoters that are losing nucleosomes. The calculated 

gene ontology for both gaining and losing nucleosome regions can be linked to glioblastoma 

initiation and development will be further analysed in the “Discussion” section. 
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Figure 10. Gene ontology analysis of promoters that lost and gained nucleosomes in GBM. 

(A) Biological processes of genes expressed in promoters after intersection with 1000bp-long 

regions of nucleosomes that are gained and (B) lost nucleosomes in GBM using online 

functional annotation tool DAVID. 

 

3.5.5. Classification of samples using Principal Component Analysis based on nucleosome 

occupancy at GBM-sensitive genomic regions 

 

In order to provide a proof that it is possible to classify samples into tumour and non-malignant 

based on nucleosome occupancy, we continued with Principal Component Analysis (PCA) for 

four pairs of malignant/non-malignant brain tissue samples. We used for this analysis the set 

of “GBM-sensitive” regions that gained or lost nucleosomes in GBM. Using this set of regions, 

we performed PCA of nucleosome occupancy at regions gaining nucleosomes (A) and losing 

nucleosomes (B). First, it is clear that nucleosome positioning is different between healthy and 

tumour and can be easily grouped. For regions that gained nucleosomes, the healthy patients 

form a distinct cluster and are characterized by high values. GBM patients show lower values 

and are more clustered than normal. On the other hand, regions that lost nucleosomes, both 

clusters are less tightly grouped. Moreover, two healthy patients G370 and G125 show 

similarity, while when comparing G125 healthy and tumour nucleosome occupancy they are 

fairly similar. To conclude, after performing a PCA on lost and gained regions in GBM there 

is a clear separation between healthy and tumour along a principal component that is related to 
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nucleosome occupancy. This provides as with the proof of principal that it is possible to use 

nucleosome occupancy at a set of GBM-sensitive regions to distinguish malignant/non-

malignant samples.  

 

  
 
 
Figure 11. Principal Component analysis (PCA) allows classifying healthy versus tumour 

samples based on nucleosome occupancy. Four healthy (black) and four GBM (red) MNase-

seq tissue samples were used for the analysis. A) PCA based on the average values of 

nucleosome occupancy in the set of 9,914 regions of length 1000-bp that were characterised 

by increased nucleosome occupancy in GBM. B) PCA based on the average values of 

nucleosome occupancy in the set of 11,023 regions of length 1000-bp that were characterised 

by the decrease of nucleosome occupancy in GBM. At both types of regions gaining and losing 

nucleosomes, PC1 and PC2 explain 51.3% of the variance.  

 

3.6. Average nucleotide frequency profiles along nucleosomes from brain tissues 

 

Next, we examined the average DNA nucleotide frequency along the nucleosome based on 

MNase-seq in malignant and non-malignant brain tissues from GBM patients. Often, 

nucleotide frequencies within the nucleosome dyad in cancer can highly influence the mutation 

rate (Yazdi et al., (2015). For this analysis we filtered DNA fragments to only contain 

fragments sizes 146-148bp. Figure 12 shows the frequency of nucleotides ‘A’, ‘T’, ‘C’ and ‘G’ 

as a function of the distance from the nucleosome centre (dyad) in healthy and GBM tissue. 
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Frequency of A nucleotide shows similar frequency patterns between healthy and GBM for 

each patient, apart from patient G276 which show major differences at positions -60 to -50 and 

10 to 20 between GBM and healthy. Moreover, similar differences can be observed in ‘T’ 

frequency -20 to -10 and 50 to 60, as it is expected. In addition, both ‘A’ and ‘T’ show lower 

frequency for healthy near the nucleosome dyad at 3 and -3 accordingly. Frequency of ‘C’ 

shows similar results. Most patients have closely parallel patterns in healthy and GBM. Patient 

G276 shows the most differential patterns from healthy to GBM. At 25bp, tumour frequency 

pattern is different from healthy tissue. In addition, frequency of ‘G’ nucleotide shows 

differences around -55bp, -3bp and 57bp with patient G276 showcasing the biggest frequency 

difference between the 4 individuals.  

Furthermore, we looked at “A” nucleotide frequency around the nucleosome dyad for four 

different healthy and four cfDNA GBM samples from Song et al. (2017) in Appendix, Figure 

S51. Overall, in cfDNA we found that average patterns did not have major changes, beside the 

change expressed at 60bp in GBM patients.  

Next, we looked at average nucleotide patterns in healthy and GBM MNase-seq calculated by 

aligning the signal at the start of the nucleosome dyad to check for differences specifically at 

the start sites of the nucleosome dyad (Figure S57). While there are no major changes overall, 

nucleotides “A” (Figure S57A) and “C” (Figure S57C) show some differences in GBM. “A” 

shows higher frequency at 20bp, 40bp and 80bp and “T” frequency is higher at 85bp. The 

fuzziest frequency is expressed by “C” and can be seen throughout the nucleotide pattern in 

GBM, while levels of “G” showed not differences between healthy and GBM. 

Moreover, the major differences nucleotide patterns presented in cancer can be shown in Figure 

S56 in Appendix. We can see that in the top panel nucleotide patterns between the two patients 

in healthy tissue are very similar to each other with very small insignificant differences. On the 
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contrary, in GBM MNase-seq shows different nucleotide patterns in GBM indicating high 

variance of A/T/C/G nucleotide placement in cancer. Overall, through these results we prove 

that nucleotides patterns can be affected in GBM, as well as pinpoint specific places along the 

nucleosome where we can see pattern differentiation. However, at least for the limited patient 

cohort considered in this project, the changes of nucleosomal nucleotide frequencies in tumour 

were not as pronounced as other changes discussed in the previous chapters. 
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Figure 12. Nucleotide frequencies around nucleosomes (146-148bp) based on MNase-seq in 

paired brain samples from GBM patients (blue – normal; red – tumour). A – adenine, B – 

thymine, C – cytosine, D – guanine.  
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4. Discussion 
 

Glioblastoma is defined on a genetic as well as an epigenetic level, with the latter becoming 

increasingly important as it offers vital information about cancer pathogenesis and insight that 

can help with cancer treatments. The analysis of nucleosome positioning is a new direction that 

we show here to be a promising way of deciphering the molecular details of gene regulation 

and mis-regulation in cancer. In this project, we studied for the first time, nucleosome 

occupancy changes in brain tissues from glioblastoma patients in order to identify changes in 

epigenetic regulation. Moreover, we have reconstructed nucleosome positioning based on 

cfDNA from GBM patients and healthy people with the goal to make current diagnostic 

methods more efficient. We identified a set of cancer-sensitive nucleosome positioning 

changes that can serve as new GBM markers that can be used for prognosis and therapy and 

will help in making cfDNA-based liquid biopsy more effective.  

4.1. Interplay of TFs and nucleosome positioning in GBM 

 

During our analysis, we identified several TFs involved in GBM formation, whose binding 

sites were characterised by differential nucleosome positioning in GBM. We found that on 

average, nucleosome occupancy around TFs is less well-defined in GBM than in healthy tissue. 

Moreover, we calculated nucleosome occupancy profiles around TFs in cfDNA. Average 

nucleosome occupancy patterns allowed us to define which binding sites can be used as GBM 

markers. A summary of all analysed TF datasets is shown in Table 3.  

One of TFs whose binding sites were deregulated in terms of chromatin rearrangement in GBM 

was the chromatin insulator CCCTC-binding factor (CTCF) (Figure 2A and 2O, Supplemental 

Figures S1 and S3). Note that while the average nucleosome profile around CTCF in GBM 

tissues is very fuzzy (Figure 1A), the profiles of individual patients show distinct shape changes 

between normal and GBM tissues (Figure 2O, Figure S3). 



Table 3. Summary of results for all analysed TF datasets.  
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CTCF plays an important role in gene regulation through the recruitment of other proteins to 

promoters of target genes as well as contributing to the creation of three-dimensional chromatin 

structure (Oh et al., 2017).  We found that nucleosome occupancy profiles around CTCF in 

healthy vs. tumour tissue showed a consistent change at the centre of CTCF binding sites, 

indicating the average loss of CTCF. A recent study by Damaschke et al (2020) determined 

that the decrease of CTCF expression was associated with hypermethylation of CTCF binding 

sites in prostate cancer. In IDH mutant gliomas, CTCF binding sites exhibit hypermethylation, 

compromising the binding of CTCF protein. This reduction of CTCF binding has been 

associated with loss of insulation between topological domains and aberrant gene activation 

(Flavahan et al., 2016). In the latter study, Flavahan et al demonstrated that loss of CTCF 

permits the continued interaction of a constitutive enhancer and the known glioma oncogene 

PDGFRA. They revealed strong expression of the PDGFRA oncogene in IDH gliomas and 

associated this with poorer outcome in gliomas. They directly proved the implication of CTCF 

in gliomas by allowing CTCF to bind and restore PDGFRA insulation by treating glioma cell 

lines with DNA methyltransferase inhibitor 5-azacytidine. This treatment reduced the 

hypermethylation of CTCF motifs by ~2.5-fold, increased occupancy by ~1.7 fold and down-

regulation PDGFRA expression by ~5-fold. The results clearly implicated the consequences of 

loss of CTCF binding.  In our study, clear loss of CTCF binding has been identified after 

discussing our nucleosome occupancy profiles. The epigenetic disruption of CTCF can show 

multiple oncogenic effects on a transcriptional level and can provide an advantage to GBM and 

other cancers (Fang et al., 2020).  

Our analysis also showed that CTCF binding sites are characterised by high enrichment of 

gained nucleosomes in GBM (Figure 9), indicating average loss of CTCF at these locations. 

Moreover, we found that CTCF binding sites that have the strongest motifs are among the most 

disrupted in GBM in terms of their nucleosome occlusion (Figure 9B). It is known that DNA 
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methylation can affect CTCF binding by regulating the affinity of CTCF to DNA (Hashimoto 

et al., 2017). Therefore, it is possible that in cancer, strong CTCF binding sites could have lost 

CTCF due to aberrant DNA methylation. Consequently, further research can be done on the 

interplay of nucleosome positioning and DNA methylation around CTCF.  

We next focused on cfDNA nucleosome fragment positioning around CTCF binding sites. 

Other studies have found that cfDNA fragments can footprint CTCF and other TF binding sites 

(Snyder et al., 2016). We found that cfDNA occupancy around CTCF was increased in tumour. 

Increased presence of cfDNA in cancer has been observed before and is detected due to higher 

cellular turnover and cell death due to treatment (McAnena et al., 2017; Kuroi et al., 1999). 

However, current approaches don’t allow to accurately determine the accessibility or changes 

of TF binding sites in tissues based on cfDNA (Ulz et al., 2019).  Our results show that the 

CTCF binding site nucleosome profiles reconstructed based on MNase-seq and cfDNA are 

closely similar to each other, which may offer a good start for GBM detection without the use 

of traditional methods of biopsy.  

In addition to CTCF, our analysis detected loss of or lower accessibility to binding sites of 

several other TFs, with most prominent cases for RBPJ, BRD4, JMJD6 and KLF9. These TFs 

showed differential patterns of nucleosomes at the centre of the binding sites that indicated loss 

of the TFs in GBM tissue.  

For the case of RBPJ, nucleosome patterns around it binding sites varied in patients, with half 

of the patients showing a significant increase of nucleosome occupancy at RBPJ binding sites 

(with the shape of the occupancy profile changing from a local minimum to a peak, Figure S5). 

This variation can be contributed to different GBM subtypes. RBPJ is the main regulator of the 

NOTCH pathway activity, a pathway that has been linked to cancer due to its self-renewal and 

proliferation characteristics. NOTCH has been targeted in GBM therapies but was proven to 
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have limited effects in clinical trials. In a previous study, Xie et al (2016) reported NOTCH 

inhibitors to be ineffective when RBPJ is present. In the absence of NOTCH, RBPJ regulated 

genes critical to tumour initiating cell stemness and cell cycle progression. Moreover, it was 

preferentially expressed by brain tumour initiating cells and critical for their self-renewal and 

growth. The latter paper suggested that RBPJ would be an effective target against tumour 

growth. A recent study by Zhang et al. (2020a) demonstrated that RBPJ levels can fluctuate 

depending on GBM subtype such as proneural-like glioblastoma stem cells (GSG) GSCs and 

mesenchymal-like GSCs. Suppression of RBPJ was shown to upregulate proneural markers 

and downregulate mesenchymal markers. After knockdown of RBPJ, transition of proneural to 

mesenchymal subtype GSCs was halted and mesenchymal phenotypes were transitions back to 

proneural leading to slower progression of GBM (Zhang et al., 2020a). Since the mesenchymal 

subtype shows the most aggressive behaviour, knockdown of RBPJ accompanied with other 

therapies can be a promising target for GBM regulation. While RBPJ could be used as a GBM 

therapy option, it can be proven to be a good GBM marker considering cfDNA liquid biopsy. 

However, cfDNA patterns around RBPJ have not been investigated before. Here we performed 

this for the first time and concluded that cfDNA profiles in GBM patients are similar to MNase-

seq profiles in brain tissues. To support our findings, the enrichment analysis for RBPJ showed 

up to 3-fold enrichment at genomic regions that lost nucleosomes in GBM. Finally, even 

though cfDNA profiles are distinctly less detailed, it is clear that further analysis of RBPJ can 

uncover a very useful new marker for diagnosis using cfDNA.  

In the case of KLF9, nucleosome occupancy profiles around binding sites of this TF also 

showed a drastic change from a local minimum to a peak for half of the patients (Figure S17). 

KLF9 controls GSC differentiation by repressing the NOTCH pathway and CD151, a protein 

that has been associated with GBM malignancies (Tilghman et al., 2016).  KLF9 has previously 

been shown to be downregulated in other cancers (Zhong et al., 2018; Li et al., 2019). In their 
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study, Tung et al. (2018) demonstrated how upregulated KLF9 expression along with 

epigenetic modulators can promote cancer cell death and proved KLF9 to benefit GBM 

therapies.  Moreover, Ying et al. (2014) demonstrated that after KLF9 induction in GBM, 

several GBM markers, such as OLIG2, SOX2, Nestin and BMI1 were decreased. Therefore, 

our nucleosome positioning profiles are consistent with the downregulation of KLF9 in GBM 

and could be used as GBM marker in the future.  

In the case of BRD4, the tumour-associated change of the shape nucleosome occupancy 

profiles around its binding sites was not as drastic as for CTCF, RBPJ and KLF9, but still 

detectable. Dysfunction of BRD4 is known to lead to incorrect transcriptional activation of 

oncogenes, such as c-Myc and BCL2 in many cancers, including neuroblastoma, breast cancer 

and glioblastoma (Shi et al., 2020). Previously, Cheng et al. (2013) suggested that epigenetic 

mechanisms controlled by BET proteins, including BRD4, are commonly used by GBM. 

Moreover, Pastori et al. (2014) demonstrated the importance of BRD4 in glioblastoma by 

disrupting expression in GBM cells. Their results not only indicated overexpression of BRD4, 

but also showed that after BRD4 knockdown, GBM cells reduced cell cycle progression and 

proliferation. Considering the ability of BRD4 to inhibit c-Myc expression it makes it an 

attractive target of GBM therapy. Taking into account the previous studies, it is clear the 

overexpression of BRD4 is a common symptom of GBM and our results relate to its function. 

Indeed, our analysis showed enrichment of lost nucleosomes at BRD4, suggesting higher 

expression of this protein. Finally, our analysis showed that cfDNA nucleosome profiles have 

highly similar patterns to those based on MNase-seq in brain tissues (Figure S24B, Appendix). 

These findings are consistent with the literature mentioned above, showing that BRD4 could 

be used as a marker in cfDNA biopsies.  

There is a known connection between BRD4 and JMJD6 in cancer. BRD4 is used by JMJD6 

by forming a protein complex to activator of enhancer-mediated-pause-release of RNA 
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polymerase II, leading to aberrant gene expression in GBM (Wong et al., 2019; Miller et al., 

2017). JMJD6 is known to regulate multiple cancer-related signalling, such as downregulation 

of p53 activity, MAPK signalling and suppression of Myc-induced apoptosis, making it a major 

target against cancer (Yang et al., 2020). Overexpression of JMJD6 is often seen in several 

cancers, including GBM, a behaviour that correlates with our current nucleosome positioning 

results (Wang et al., 2014a). Our analysis of nucleosome occupancy patterns shows reduced 

positioning of nucleosomes at the centre on JMJD6 binding sites in GBM tumours as opposed 

to paired non-tumour brain samples (Figures S15 and S16). These nucleosome patterns, along 

with our analysis that indicated enrichment of lost nucleosomes are JMJD6 sites (Figure 9), 

suggest overexpression of JMJD6, in line with previous literature. Our reconstruction of 

nucleosome occupancy based on the corresponding cfDNA shows similarities with the profiles 

reconstructed based on MNase-seq. Additional cancer-specific cfDNA analysis could give us 

more information for the use of JMJD6 as a new marker in liquid biopsies.   

Finally, it is important to mention the cluster of neurodevelopmental TFs (POU3F2, SOX2, 

SALL2, OLIG2) that are directly involved it GBM propagation across the genome (Suvà et al., 

2014). Suvà et al. (2014) discoved for the first time that induction of this set of TFs is sufficient 

to reprogram cell differentiation and used it to identify GBM-reproductive cells and distinguish 

key regulatory targets of the four TFs. Individually, the set of TFs are still connected to GBM 

and general brain activity. In their research Zhang et al (2020b) established a novel marker 

TRIM25 that is solely expressed through activation of SOX2 in GSCs. They reported that 

activation of SOX2 promoted the stemness and high invasiveness in GBM and inactivation of 

the TF showed reduced expression of GSCs. In the same context, upregulated SOX2 levels 

have been seen by Wang et al. (2019), where high SOX2 expression reinforced NOTCH1 

expression in GSCs. Moreover, OLIG2 and POU3F2 promote neural differentiation, playing a 

key role in the rapid reproduction of GBM. Finally, SALL2 is expressed in brain tissue as a 
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promoter of neural development (Fiscon et al., 2018). Due to the nature of this complex in 

GBM, it is expected of them to have higher expression in cancer patients. While our 

nucleosome positioning graphs did not show specific changes in nucleosome occupancy 

patterns for the available TFS, SOX2, POU3F2 and OLIG2, the enrichment analysis provides 

us with some interesting results. Both SOX2 and POU3F2 showed high enrichment of lost 

nucleosomes that indicates higher expression of both TFs. For OLIG2, we did not have any 

significant enrichment and therefore, further analysis can be beneficial. Overall, “fuzzier” 

nucleosome positioning is presented for all these three TFs.  

4.2. Nucleosome occupancy changes around ALU repeats. 

During this project we also analysed nucleosome occupancy around ALU repeat elements and 

discovered that their nucleosome occupancy is influenced in GBM (Figures 3 and 4). ALU 

repeats are widely hypomethylated in cancer cells (Jordà et al., 2017).We separated ALU repeat 

into two groups: roughly dimeric and monomeric based on their length. Overall, we saw that 

nucleosome occupancy levels around ALU repeats were lower in GBM. ALU repeats are 

characterised by CG dinucleotide periodicities which affect the distribution of nucleosomes 

that they harbour (Bettecken et al., 2011). ALUs have been reported to be associated with well-

phased nucleosomes that are enriched with enhancer-like active modifications (Su et al., 2014).  

The nucleosome occupancy profiles that we calculated round ALUs contain two peaks at the 

centre, which may correspond to phased nucleosomes. The hypomethylation of ALUs in GBM 

may suggest that higher expression of ALU repeats would be expected, in line with our 

observation of lower nucleosome occupancy in GBM around ALUs.  

Recently, Chen et al. (2016) showed concentration of ALU repeats in cerebrospinal fluid can 

be used as a biomarker for glioma diagnosis based on levels of methylation. Unexpectedly, 

nucleosome occupancy patterns around ALU repeats that we have reconstructed based on 
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cfDNA are very different from those based on MNase-seq, losing that “two-peak” structure 

that we saw before. This can indicate that while ALUs contain two well-phased nucleosomes 

in brain tissues, these may be lost in cfDNA.  

Since nucleosome positioning of ALU elements resembles the inactivation of promoters, 

abnormal positioning due to cancer can highly affect gene expression (Tanaka et al., 2010). For 

example, the effect of ALU on TFs has been studied by Rozenberg et al. (2018). In their 

research, they identified motifs related to RBPJ binding were sequences within ALU repeats, 

giving RBPJ a chance to interact with more than just regions containing canonical RBPJ 

binding sites. Our results show differential positioning of nucleosomes in GBM and while there 

is lack of literature regarding the effect of nucleosomes in ALU elements in cancer these results 

can be important for future research.    

Unexpectedly, we found a striking resemblance of nucleosome profiles around ALU repeats 

and TSS. The ALU nucleosome patterns seem to mirror that of TSS. Promoters of active genes 

are known to contain a nucleosome-free region (NFR) upstream of TSS, followed by the +1 

nucleosome, which displays histone variants and histone tail modification important for 

nucleosome eviction (Jiang and Pugh, 2009). This positioning is clear in our nucleosome 

occupancy patterns around TSS, with the NFR at the centre and the appearance of +1 

nucleosome downstream the TSS. The presence of the two nucleosomes in both cases can be 

the cause of the similarity observed in the ALU nucleosome profiles. 

One can speculate that the close relationship ALUs exhibit with TSS could be related to their 

common structure. Alu elements located immediately upstream of TSS are most likely to be 

functional (Su et al., 2014). Moreover, Bouttier et al. (2016) found four motifs the were present 

in AluJ and AluS element that were similarly distributed in TSS. Furthermore, CpG 
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methylation of ALUs and their interaction with TFs have been reported to act similarly to 

promoters (Chen and Yang, 2017). 

 

4.3. Nucleosome occupancy changes in relation to histone modifications. 

 

Histone modifications such as methylation and acetylation play a vital role in GBM. Histone 

acetylation of H2A, H2B, H3 and H4 are highly involved in gene transcription, and methylation 

can activate (H3K4, K3K36 and H3K79) or repress (H3K9, H3K27 and H4K20) gene 

transcription (Dong and Cui, 2019). In a previous analysis, Dong and Cui (2019) showed the 

interplay of GBM-related TFs and histone modifications through the enzyme LSD1, which 

decreases trimethylation of H3K4 and elevates MYC expression. In turn, elevated MYC levels 

regulate OLIG2, SOX2 and POU3F2 levels, therefore showing elevated expression of GBM 

stemness. 

In our analysis, we looked at nucleosome positioning differences around regions enriched with 

different histone modifications (Figures 5 and 6). It is clear that nucleosome occupancy around 

H3K27ac is lower in GBM, which indicates the activity of H3K27ac. These results are in line 

with other literature data. For example, Mack et al. (2019) investigated H3K27ac levels around 

TFs binding sites. In SOX2 expression, they found presence of H3K27ac at promoters and 

enhancers. Moreover, they revealed that high activity of enhancer H3K27ac could be seen at 

GSCs and GBM samples, that made them differentiate from other brain tumours and normal 

brain samples. In another publication, Rheinbay et al. (2013) showed that expression of 

H3K4me1 can be connected with ASCL1 binding. In GSCs, ASCL1 was binding to enhancers 

marked by H3K4me1, expressing several genes involved in Wnt regulation. Our results show 

changes in nucleosome occupancy levels in GBM but no specific nucleosome changes for 

H3K4me1.  
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In another study Lin et al. (2015), showed that H3K27me3 gene activity was twice larger than 

H3K4me3 in GSCs when compared to astrocytes, a result that is expected since stem cells are 

thought to have more actively expressed genes. We have also shown higher levels of 

H3K27me3 in GBM. While there were no H3K4me3-specific changes, lower nucleosome 

occupancy can be seen around the binding sites, while peaks are clearly less defined in GBM.  

We have investigated nucleosome occupancy patterns around clusters of histone modifications 

in different GBM subtypes. For MES, H3K27ac and H3K27me3 show the most interesting 

results, showing decrease and increase of nucleosome occupancy in GBM vs normal brain 

tissues, accordingly. Other GBM subtypes did not show as interesting results because 

enhancers in MES subtypes drive gene expression in a more aggressive manner than other 

subtypes in GBM (Hall et al., 2018). 

Next, we examined several histone modification changes that are directly related to TF activity. 

After looking at nucleosome occupancy around CTCF we concluded that this TF shows lower 

activity around histone modification on average. We concluded above that CTCF shows 

depletion in expression and other studies have shown that CTCF depletion shows gained in 

repressive marks. This is happening due to the absence of  CTCF insulation allowing repressive 

histone to spread upon active chromatin domain (Weth et al., 2014). Moreover, Weth et al. 

(2014) explained that loss of CTCF dramatically increased H3K27me3. We have reported here 

higher increase of nucleosomes related to H3K27me3 at the centre of CTCF, which highlight 

the absence of CTCF at regions enriched with H3K27me3 leading to gene expression 

inhibition. Additionally, our results suggest that CTCF is present in all other histone 

modification we studied, but nucleosome occupancy patterns are different between patients in 

GBM. In their research Ren et al (2017), observed a positive correlation between CTCF binding 

and activity of H3K27ac. Their results indicated that CTCF significantly influences H3K27ac 

activity and can directly impact its activity across gene regions leading to aberrant expression. 



 66 
 

Our H3K27ac patterns show presence of CTCF at H3K27ac binding sites which correlates with 

the above research. Moreover, the H3K4me1 is found within the CTCF loops and knockdown 

of CTCF shows decreased levels of the histone mark (Oti et al., 2016). Furthermore, 

nucleosomes associated with CTCF binding have been reported to be marked by H3K4me3 

(Herold et al., 2012). Therefore, our results are consistent with the literature. These results 

could reveal GBM’s epigenetic and transcriptional profile as well as details chromatin state in 

GBM, which can provide valuable information about future therapeutic targets. 

4.4. Nucleotide patterns along nucleosomes in MNase-seq and cfDNA 

 

After calculating the frequency of A/T/C/G nucleotides alongthe nucleosome dyad in GBM, 

we found that G and C nucleotide frequency was higher in GBM and A and T nucleotide lower 

(Figure S56, Appendix). Rubin and Green (2009) have observed high transition of A to G and 

T to C linked to gene expression. Moreover, recurrent mutations of T to C nucleotide at active 

promoters are observed at specific nucleotide context “CTTCCG” inducing the ETS-family TF 

expression and extending mutation production in melanomas (Gonzalez-Perez et al., 2019). 

Our results show higher frequency of C and G and lower frequency of A and T nucleotides and 

they correlate with previous literature in other cancers. Yazdi et al. (2015) confirmed increases 

in nucleosome occupancies were associated with changes consistent with those favourable for 

nucleotides selected within nucleosomes. They demonstrated that nucleotide frequencies 

within the nucleosome dyad in cancer can highly influence the mutation rate as a function of 

nucleosome occupancy. Therefore, our analysis of changes of nucleotide frequencies within 

the nucleosome core can highlight the positions in which those mutations are triggered and the 

reason for which they occur. 
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4.5. GBM-specific nucleosome gain and loss. 

To complement the hypothesis-driven analyses described above, we have also compiled an 

systematic dataset composed of genomic regions that lost or gained nucleosomes, as well as 

the regions where nucleosome occupancy became less or more fuzzy in GBM vs paired non-

tumour brain tissues. This dataset of GBM-sensitive regions can be used for an unbiased 

diagnostics based on nucleosome positioning reconstructed from MNase-seq or cfDNA. It’s 

important to note that we detected significant heterogeneity between GBM patients. Occupancy 

of nucleosomes at the centre of lost nucleosome regions showed that patient G237 had 

significantly higher loss of nucleosomes from such sites. This nucleosome loss can leads to 

transcriptional up-regulation and genomic instability (Hu et al., 2014). If we take into account 

the abnormalities the patient G237 has shown in nucleosome occupancy compared to other 

patients, we can easily connect this to the higher loss of nucleosomes genome wide. Similarly, 

gained nucleosome regions for patient G237 were significantly more nucleosome free in 

healthy tissue and showed very different results in GBM, while other patients did not show 

such sharp difference between healthy and GBM. Nucleosome gain around regions relevant to 

access of DNA repair machinery and DNA transcription can prevent DNA repair and increase 

aberrant transcription leading to increase mutation rate (Yazdi et al., 2015). Therefore, these 

results could indicate that patients G237 has very different behaviours due to the increased loss 

and gain of nucleosome at specific regions compared to other patients. Further research on 

nucleosome occupancy around lost and gained nucleosome regions at specific locations can 

provide us with important information of how nucleosome occupation can affect overall 

progression of GBM.  

Enrichment of lost and gained regions at TFs was discussed in section 4.1 “Interplay of TFs 

and nucleosome positioning in GBM”. In addition, we calculated enrichment of lost/gained 

nucleosomes at other genomic features such as promoters, enhancers and CpG islands (Figure 
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9B). Enrichment of regions that lost nucleosomes at CpG islands is quite important since the 

change in methylation level of CpG islands in gene promoters usually is associated with 

repression of transcription (Fenouil et al., 2012).  

Our Gene Ontology (GO) analysis performed for promoters with gained nucleosome regions 

revealed enrichment of biological processes related to immune responses (Figure 10). In 

addition, these promoters were associated with GO term “blood coagulation” (GO:0007596), 

that is considered to be an important aspect of brain tumour evolution. GBM is associated with 

hypercoagulability, where it releases substances that induce abnormal activation of blood 

coagulation and forms thrombi inside blood vessels and reduces patient survival (Navone et 

al., 2019). In addition, significant enrichment of “cell-cell signalling” (GO:0007267) was 

observed. Signalling between tumour cells are important for tumour progression and 

communication of GBM cells and neurons is relevant the development of cell proliferation 

(Portela et al., 2020). Portela et al. (2020) reported that in GBM, tumour epithelial cell and 

mesenchymal cell signalling it important for the activation of NOTCH signalling that is critical 

for tumour progression. We also found the enrichment of terms “natural killer cell mediated 

immunity” (GO:0002228), “T cell activation involved in immune response” (GO:0002286), 

“negative regulation of type I interferon-mediated signalling pathway” (GO:0060339), as well 

as other immune responses, highlighting possible targets for GBM immunotherapies. 

Glioblastoma expresses immunosuppressive cytokines that are secreted by tumour cells, 

microglia and tumour-associated macrophages. Activation of T cells and natural killer cells is 

supressed by immunosuppressive pathways such as STAT3. Moreover, glioblastoma cells can 

escape immune recognition by downregulation expression of the major histocompatibility 

complex molecules (Brown et al., 2018).  

Malfunctions of the type I interferon-mediated signalling pathway in GBM can be responsible 

for lack of immune response and resistance to cancer treatments. Mediation of the non-
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canonical type I interferon-mediated signalling pathway by STAT proteins is involved, and its 

negative regulation by STAT activation is highly correlated with cancer survival (Budhwani et 

al., 2018). In their research, Piperi et el. (2019) highlighted the role of  STAT3 as an oncogenic 

TF and its role in anti-tumour immunity. After inhibition of STAT3, they revealed block of 

self-renewal and cell growth in GBM. Interestingly, enrichment of the term “peptidyl-serine 

phosphorylation of STAT protein” (GO:0033139) was significant in our GO analysis. 

Phosphorylation of STAT3 at serine 727 has been proven to contribute to tumorigenesis and is 

related to GBM resistance (Lin et al., 2014).  

These results include different relevant immune responses connected to our patients. This 

allows us to conclude that involvement of TFs in immune responses is an important target for 

GBM immunotherapy. The contribution of STAT proteins and particularly STAT3 can be a 

good prognostic marker and target for future GBM therapies. Moreover, the profiling of 

nucleosome positioning around STAT3 could be an interesting approach for future research.  

Next, GO for genes involved in promoters enriched with lost nucleosome regions showed high 

significance of “viral transcription” (GO:0019083), “intracellular signal transduction” 

(GO:0035556) and “regulation of protein ADP-ribosylation” (GO:0010835). Previous research 

has shown the involvement of viruses in the proliferation of GBM (Wang et al., 2017). In their 

study, Wang et al (2017) identified two viruses, SV40 and WMSV, that can be used as 

prognostic markers in GBM. Next, significant enrichment of intercellular signal transduction 

can be an important process involved in GBM progression. In their research, Mao et al. (2012) 

highlighted importance of the phosphatidylinositol 3-kinase (PI3K) complex, an intercellular 

member of the PI3K-PTEN-Akt-mTOR pathway that regulates normal cellular functions. They 

showed that the P13K pathway was altered in 70% of GBMs due to overexpression of EGFR 

receptor, the receptor that is responsible for the regulation of the complex. Their data suggested 

the targeting of EGFR could be a viable target for future GBM therapies. Interestingly, “stress 
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activated MARP cascade” (GO:0051403), another GO term that showed enrichment in our 

data, has been proven to act as a repression of the EGFR pathway, by altering the GSC cell 

cycle state (Soeda et al., 2017). Additionally, many other GO terms related to cell cycle 

progression were “rRNA processing” (GO:0006364), “RNA splicing” (GO:0008380), “G2/M 

transition of mitotic cell cycle” (GO:0000086) and “cell cycle” (GO:0007049). Cell cycle 

progression in GSCs has shown abnormalities and checkpoint defects and inhibition of G2/M 

regulators has shown positive results in GBM therapies (Tachon et al., 2018; Castro-Gamero 

et al., 2018).  Regarding RNA GO terms, rRNA contains modifications, such as RNA m6A, 

that was enriched in single nucleosome polymorphisms (SNPs) that affect RNA stability, 

processing and splicing (Dong and Cui, 2020). In recent research, Dong and Cui (2020) 

mentioned that m6A plays an essential role in cell fat determination, stem cell maintenance and 

neuronal functions, and proved that such modifications increased GBM malignancy. Overall, 

promoters with lost nucleosome regions in GBM promoted anti-tumour processed as well as 

pathways that can be related to GBM progression. In both GO analyses, our results showed 

that there is involvement of lost and gained nucleosome regions in GBM at promoters at the 

above biological processes and identified new targets for future therapies.  

4.6. Diagnosis of patients based on PCA of nucleosome occupancy 

Last but not least, in order to provide evidence for the use of nucleosome occupancy as a marker 

in GBM, we performed principal component analysis (PCA) using nucleosome occupancy 

values in the dataset of GBM-sensitive regions that lost or gained nucleosomes in GBM (Figure 

11). For both cases, our data was divided into two main clusters, healthy and GBM. This 

analysis confirmed that based on nucleosome occupancy data alone, the datasets could form 

clusters and differentiate between healthy and GBM nucleosome occupancy. To conclude, our 

result show that it is feasible to demonstrate the differences between healthy and GBM tissue 

and reveal the functional significance of nucleosome occupancy in GBM and in cancer overall.  
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Finally, it is important to discuss the limitations of this study. Due to the small samples size of 

patient groups, immediate conclusions on our data cannot be taken to the clinic. This pilot study 

showed nucleosome occupancy as a new potential marker in cancer diagnostics and in 

monitoring GBM progression. However, this analysis needs to be extended in the future in a 

larger cohort to improve overall statistics and further highlight the importance of the results. 

Moreover, in this study, healthy control samples were considered to be the brain tissues from 

patients from the tumour periphery under assumption that that these were not affected by the 

tumour, which may not always be the case. Additionally, GBM tumour sub-types were not 

identified in the patients’ samples for both tissue and cfDNA. Finally, there is no record of 

patient treatment prior to collection of samples taken from cfDNA patients, which may have 

affected the outcome of the analysis. In the future, it would be also interesting to look at DNA 

methylation datasets in GBM in order to make better assertions about the overall nucleosome 

positioning in GBM. Furthermore, future work can include extended analysis of cfDNA from 

a larger patient cohort.  

In conclusion, our investigations on the effect of nucleosome positioning in GBM highlighted 

many pathways that could be used as GBM-related therapy targets. Overall, we have proven 

for the first time that nucleosome occupancy patterns can be distinguished between tumour 

brain tissues and paired non-malignant brain tissues from the same patients, and that these 

patterns can be used as a diagnostic GBM marker. Moreover, the analysis of cfDNA-based 

reconstruction of nucleosome occupancy shows promising results for the use of cfDNA in 

GBM patient diagnosis in liquid biopsies.  
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Figure S1. Nucleosome occupancy profiles changes around CTCF for all nucleosomal DNA 

fragment sizes without filtering versus nucleosome occupancy profiles only for fragment sizes 

120-180.  
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Figure S2. Average nucleosome occupancy profile around 5 transcription factor motifs for 120-

180 base pair nucleosomal DNA fragment sizes averaged over 4 GBM patients from the 

experiments performed in Essex. (A) Neuroblastoma cell line CTCF (GSM803333), (B) SOX2 

(GSE58345), (C) RBPJ (GSM2101765), (D) CHD4, (E) CREBBP and (F) EP300. Averaged 

profiles for healthy (black) and GBM (red). Lighter areas correspond to the standard errors of 

averaging. The number of regions (N) for each TF file is indicated on the graph. 
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Figure S3. Average genome-wide nucleosome occupancy around CTCF (GSM822303) 

binding sites for each of GBM patients from the experiments performed in Essex. Panel A: 

Patient G276; Panel B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 

 

 

 

 



 

 

  

  

 

Figure S4. Average genome-wide nucleosome occupancy around CTCF (GSM803333) 

binding sites for each of GBM patients from the experiments performed in Essex. Panel A: 

Patient G276; Panel B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S5. Average genome-wide nucleosome occupancy around RBPJ binding sites for each 

of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel B: 

Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S6. Average genome-wide nucleosome occupancy around RBPJ (GSM2101765) 

binding sites for each of GBM patients from the experiments performed in Essex. Panel A: 

Patient G276; Panel B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S7. Average genome-wide nucleosome occupancy around POU3F2 binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient GG; Panel 

B: Patient JJ; Panel C: Patient G; Panel D: Patient G370. 

 

 

 

 

-1000 0 1000
0.35

0.40

0.45
N

u
c
le

o
s
o

m
e

 o
c
c
u

p
a

n
c
y

Distance from POU3F2 (bp)

 G276 Healthy

 G276 TumourN=1397

A

-1000 0 1000

0.35

0.40

0.45

N
u

c
le

o
s
o

m
e

 o
c
c
u

p
a

n
c
y

Distance from POU3F2 (bp)

 G237 Healthy

 G237 Tumour
N=1397

B

-1000 0 1000
0.30

0.35

0.40

0.45

0.50

N
u

c
le

o
s
o

m
e

 o
c
c
u

p
a

n
c
y

Distance from POU3F2 (bp)

 G125 Healthy 

 G125 TumourN=1397

C

-1000 0 1000
0.25

0.30

0.35

0.40

0.45

N
u

c
le

o
s
o

m
e

 o
c
c
u

p
a

n
c
y

Distance from POU3F2 (bp)

 G370 Healthy

 G370 Tumour

D
N=1397



 

 

  

  

 

Figure S8. Average genome-wide nucleosome occupancy around SOX2 replicate 1 

(GSM1306360) and replicate 2 (GSM1306362) binding sites for each of GBM patients from 

the experiments performed in Essex. Panel A: Patient G276; Panel B: Patient 237; Panel C: 

Patient G125; Panel D: Patient G370. 
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Figure S9. Average genome-wide nucleosome occupancy around SOX2 (GSE58345) binding 

sites for each of GBM patients from the experiments performed in Essex. Panel A: Patient 

G276; Panel B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S10. Average genome-wide nucleosome occupancy around OLIG2 (GSM1306367) 

binding sites for each of GBM patients from the experiments performed in Essex. Panel A: 

Patient G276; Panel B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S11. Average genome-wide nucleosome occupancy around ARNT2 binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel 

B: Patient 237; Panel C: Patient G125;  Panel D: Patient G370. 
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Figure S12. Average genome-wide nucleosome occupancy around ASCL1 replicate 1 (r1: 

GSM2335531), ASCL1 replicate 2 (r2: GSM2335532) and ASCL1 replicate 3 (r3: 

GSM2335533) binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient 237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S13. Average genome-wide nucleosome occupancy around BMAL1 binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel 

B: Patient 237; Panel C: Patient G125;  Panel D: Patient G370. 
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Figure S14. Average genome-wide nucleosome occupancy around BRD4 binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel 

B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S15. Average genome-wide nucleosome occupancy around JMJD6-528 

(GSM1922076) binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient 237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S16. Average genome-wide nucleosome occupancy around JMJD6-3565 

(GSM2360990) binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient 237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S17. Average genome-wide nucleosome occupancy around KLF9 binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel 

B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S18. Average genome-wide nucleosome occupancy around CHD4 binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel 

B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S19. Average genome-wide nucleosome occupancy around CREBBP binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel 

B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S20. Average genome-wide nucleosome occupancy around EP300 binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel 

B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S21. Average genome-wide nucleosome occupancy around MAX binding sites for each 

of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel B: 

Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S22. Average genome-wide nucleosome occupancy around MED1 binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel 

B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S23. Average genome-wide nucleosome occupancy around MYC binding sites for 

each of GBM patients from the experiments performed in Essex. Panel A: Patient G276; Panel 

B: Patient 237; Panel C: Patient G125; Panel D: Patient G370. 
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Figure S24. Average cfDNA nucleosome occupancy profile around 16 transcription factor 

motifs for 120-180 base pair nucleosomal DNA fragment sizes averaged over four healthy 

people and four GBM patients from Song et al. (https://www.nature.com/articles/cr2017106). 
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Averaged profiles for healthy (black) and GBM (red). Lighter areas correspond to the standard 

errors of averaging. The number of regions (N) for each TF file is indicated on the graph. 
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Figure S25. Average genome-wide nucleosome occupancy around ALU repeat elements. 

Nucleosome occupancy around ALU repeats averaged over the 4 GBM patients healthy tissue 

MNase (black) and GBM tissue MNase (red) from the experiments performed in Essex 

separated for ALU sizes (A) 50-200bp and (B) 250-400bp.  Nucleosome occupancy around 

ALU repeats averaged over the 4 samples of cfDNA from healthy people (black) and 4 

samples of cfDNA from GBM patients (red) from Song et el.  

(https://www.nature.com/articles/cr2017106) for ALU sizes (C) 50-200bp and (D) 250-400bp. 

Calculations for Panels A-D were made by aligning the signal around the left end (start) of 

ALU repeats. Grey areas correspond to the standard errors of averaging. 

 

 

 

 

https://www.nature.com/articles/cr2017106


 

 

-1000 -500 0 500 1000

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
N

u
c
le

o
s
o
m

e
 o

c
c
u
p
a
n
c
y

Distance from Alu (bp)

 Healthy

 Tumour

A

 

-1000 0 1000
0.15

0.20

0.25

0.30

0.35

N
u
c
le

o
s
o
m

e
 o

c
c
u
p
a
n
c
y

Distance from TSS (bp)

 Healthy

 Tumour

B

 

-1000 0 1000

0.15

0.20

0.25

0.30

0.35

0.40

0.45

N
u

c
le

o
s
o

m
e

 o
c
c
u

p
a

n
c
y

Distance from Alu (bp)

 G370 cfDNA

 G370 Healthy

 G370 Tumour

C

 

-1000 0 1000

0.15

0.20

0.25

0.30

0.35

0.40

N
u

c
le

o
s
o

m
e

 o
c
c
u

p
a

n
c
y

Distance from TSS (bp)

 G370 cfDNA

 G370 Healthy

 G370 Tumour

D

 

 

Figure S26. Average genome-wide nucleosome occupancy around Alu elements and 

Transcription Start Sites. (A) Nucleosome occupancy around Alu elements and (B) 

Transcription Starting Sites (TSS) averaged over the 4 GBM patients healthy tissue MNase 

(black) and GBM tissue MNase (red) from the experiments performed in Essex. Grey areas 

correspond to the standard errors of averaging. (C) Nucleosome occupancy around Alu 

elements and (B) Transcription Starting (TSS) for patient G370 cfDNA (blue), healthy tissue 

MNase (black) and GBM tissue MNase (red) from the experiments performed in Essex. Left 

panels: ALU repeats, right panels: TSS.  

 

 

 



 

 

  

  

 

Figure S27. Average genome-wide nucleosome occupancy around (A) H3K26ac, (B), 

H3K27me3, (C) H3K4me1 and (D) H3K4me3 binding sites found in IDH GBM subtype 

averaged over the 4 GBM patients from the experiments performed in Essex. Grey areas 

correspond to the standard errors of averaging. 
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Figure S28. Average genome-wide nucleosome occupancy around (A) H3K26ac, (B), 

H3K27me3, (C) H3K4me1 and (D) H3K4me3 binding sites found in RTKI GBM subtype 

averaged over the 4 GBM patients from the experiments performed in Essex. Grey areas 

correspond to the standard errors of averaging. 
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Figure S29. Average genome-wide nucleosome occupancy around (A) H3K26ac, (B), 

H3K27me3, (C) H3K4me1 and (D) H3K4me3 binding sites found in RTKII GBM subtype 

averaged over the 4 GBM patients from the experiments performed in Essex. Grey areas 

correspond to the standard errors of averaging. 
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Figure S30. Average genome-wide nucleosome occupancy around H3K27ac found in IDH 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S31. Average genome-wide nucleosome occupancy around H3K27ac found in MES 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S32. Average genome-wide nucleosome occupancy around H3K27ac found in RTKI 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S33. Average genome-wide nucleosome occupancy around H3K27ac found in RTKII 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S34. Average genome-wide nucleosome occupancy around H3K27me3 found in IDH 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S35. Average genome-wide nucleosome occupancy around H3K27me3 found in MES 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S36. Average genome-wide nucleosome occupancy around H3K27me3 found in RTKI 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S37. Average genome-wide nucleosome occupancy around H3K27me3 found in RTKII 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S38. Average genome-wide nucleosome occupancy around H3K4me1 found in IDH 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S39. Average genome-wide nucleosome occupancy around H3K4me1 found in MES 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S40. Average genome-wide nucleosome occupancy around H3K4me1 found in RTKI 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S41. Average genome-wide nucleosome occupancy around H3K4me1 found in RTKII 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S42. Average genome-wide nucleosome occupancy around H3K4me3 found in IDH 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S43. Average genome-wide nucleosome occupancy around H3K4me3 found in MES 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S44. Average genome-wide nucleosome occupancy around H3K4me3 found in RTKI 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S45. Average genome-wide nucleosome occupancy around H3K4me3 found in RTKII 

GBM subtype binding sites for each of GBM patients from the experiments performed in 

Essex. Panel A: Patient G276; Panel B: Patient G237; Panel C: Patient G125; Panel D: Patient 

G370. 
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Figure S46. Average genome-wide nucleosome occupancy around DNA methylation regions 

(DMRs) found in IDH, MES, RTKI and RKTII GBM subtypes averaged over the 4 GBM patients 

from the experiments performed in Essex. Grey areas correspond to the standard errors of 

averaging.  
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Figure S47. Average genome-wide nucleosome occupancy around low-methylated regions 

(LMRs) found in IDH, MES, RTKI and RKTII GBM subtypes averaged over the 4 GBM patients 

from the experiments performed in Essex. Grey areas correspond to the standard errors of 

averaging.  
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Figure S48. Histone mark enrichment profiles around CTCF in tumour for healthy and GBM 

tissue from the 4 GBM patients. (A) Histone mark H3K4me1, (B) Histone mark H3K4me3, (C) 

Histone mark H3K27ac, (D) Histone mark H3K27me3. Averaged profiles for healthy (black) 

and GBM (red). Lighter areas correspond to the standard errors of averaging. The number of 

regions (N) for each TF file is indicated on the graph.  
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Figure S49. Average nucleosome occupancy profiles around gained nucleosomes in tumour 

for healthy and GBM tissue from the 4 GBM patients. (A) Patient G276 (B) Patient G237 (C) 

Patient G215 (D) Patient G370. Healthy profiles can be seen in black and GBM profiles in red. 

 

 

 

 

 

 

 

 

 

 

  



  

  

 

Figure S50. Nucleotide patterns of cfDNA fragments from Song et al, 2017. Each panel 

corresponds to one GBM patient. These patients are not related to the GBM patients studied 

using MNase-seq. 
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Figure S51. Average cfDNA nucleotide patterns over four GBM patients from Figure 1, and 

similarly over four healthy people from Song et al, 2017. Grey areas correspond to the 

standard errors of averaging.  

 

0

1

2

3

4

5

E
n

ri
c
h

m
e

n
t 

(o
b

s
e

rv
e

d
/e

x
p

e
c
te

d
)

 Lost nucleosomes

 Gained nucleosomes

A
ll 

C
T

C
F

 s
it
e

s

P
ro

m
o

te
rs C
p

G
 

is
la

n
d

s

T
o

p
 1

0
%

 C
T

C
F

 s
it
e

s

A
L

U
 r

e
p

e
a

ts

C
T

C
F

 Q
u

a
n

ti
le

 1

C
T

C
F

 Q
u

a
n

ti
le

 2

C
T

C
F

 Q
u

a
n

ti
le

 3

 

Figure S52. Enrichment of 100bp regions of lost (black) and gained (red) nucleosomes in 

GBM around genomic regions and CTCF binding sites including different binding strength 

quantiles, 1 being the weakest and 3 the strongest. 

-100 -80 -60 -40 -20 0 20 40 60 80 100
0.28

0.29

0.30

0.31
 cfDNA in healthy people (N = 4)

 cfDNA in GBM patients (N = 4)
"A

" 
fr

e
q
u
e

n
c
y

Distance from nucleosome dyad (bp)



 

 

 

Figure S53. Frequency of “A” nucleotide for each of GBM patients from the experiments 

performed in Essex. Top panel: normal brain tissues; bottom panel: tumour tissues. 
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Figure S54. Frequency of “C” nucleotide for each of GBM patients from the experiments 

performed in Essex. Top panel: normal brain tissues; bottom panel: tumour tissue 
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Figure S55. Average nucleotide profiles for MNase-assisted histone H3 ChIP-seq DNA 

fragments in patients QQ and G. Top panel – A frequency; bottom panel – C frequency. 
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Figure S56. Individual samples GG and JJ with their A/C/G/T profiles 
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Figure S57. Nucleotide frequencies around nucleosomal DNA fragments (146-148bp) based 

on MNase-seq in paired brain samples from GBM patients (blue – normal; red – tumour 

tissues). A – adenine, B – thymine, C – cytosine, D – guanine. All calculations were made by 

aligning the signal around the start binding sites of nucleosome dyad.  

 



Computer scripts used in the project 

 

Script 1. R script that calculates frequency of nucleosome fragments in bed files using the 

NucTools package to measure distribution of nucleosomal DNA fragments. 

args = commandArgs(trailingOnly=TRUE); # allows for one to specify 

input and output file 

file_in=args[1] #input name 

file_out=args[2] #output name 

library(readr) # install this with "install.packages('readr')" 

nucs=read_delim(file_in, delim="\t", col_names=F) #reads the file 

print(head(nucs)) #shows first 6 lines of the file 

colnames(nucs)=c("chr", "start", "end", "frag_length") 

h=hist(nucs$frag_length, breaks=200, plot=F) #change the number of 

bins with the 'breaks' parameter 

dataoi=cbind(h$breaks, c(h$counts, NA), c(h$density, NA)) 

colnames(dataoi)=c("Breaks", "Counts", "Density") 

write.table(dataoi, file_out, sep="\t", row.names=F) #writes the 

histogram data to a text file 

png("histogram.png") 

plot(dataoi[,1],dataoi[,2],type='l',xlab='frag_lengths',ylab='Freque

ncy') 

dev.off() 

 

 

 

Script 2. Perl script that extracts specific base pair lengths from a bed file according to the 

input inserted at -min= x and -max= y.  

#/local/bin/perl 

### 

### extract_rows_occup.pl 

### version: 2.01 

### 

################################# 

 

use strict "vars"; 

my $usage = "$0 -input=<in.bed> -output=<out.bed> -

min=<min_fragment> -max=<max_fragment> --help\n"; 

my $infile; 

my $outfile; 

my $min_fragment; 

my $max_fragment; 

 

if (@ARGV != 0) { 

    foreach my $comand_line_flag (@ARGV) { 

 if ($comand_line_flag =~ /-input=(.*)/i) { $infile = $1; } 

 if ($comand_line_flag =~ /-output=(.*)/i) { $outfile = $1;} 

 if ($comand_line_flag =~ /-min=(\d*)/i) { $min_fragment = 

$1;} 

 if ($comand_line_flag =~ /-max=(\d*)/i) { $max_fragment = 

$1;} 



         

 if ($comand_line_flag =~ /--help/i) { 

     print STDOUT <DATA>; 

     print STDOUT "\nPress <ENTER> button to exit... "; 

     <STDIN>; 

     exit; 

 } 

    } 

} 

else { warn "$usage"; exit;} 

 

open(OUT, ">$outfile") || die "error: can't open $outfile for 

writing!\n"; 

open(IN, $infile) or die "error: $infile cannot be opened: $!\n"; 

 

print  "min_fragment=", $min_fragment, "\n"; 

print  "max_fragment=", $max_fragment, "\n"; 

 

my $buffer = ""; 

my $sz_buffer = 0; 

my $timer2 = time(); 

# counter for the markers we see 

my $marker_count = 0; 

 

my $regex_split_newline='\n'; 

 

my $filesize_in_bytes = -s $infile; #determine file size in bytes 

my $size_counter_step=int($filesize_in_bytes/100); 

my $filesize = int($filesize_in_bytes/1048576); # filesize in 

megabytes 

 

print STDERR "Reading $infile file of $filesize MBs. Please 

wait...\n"; 

my $processed_memory_size = 0; 

my $offset=0; 

my $BUFFER_SIZE = 1024; 

my $old_coordinate=1; 

my $counter=0; 

 

 

while ((my $n = read(IN, $buffer, $BUFFER_SIZE)) !=0) { 

    if (($n >= $BUFFER_SIZE) or (($n == $filesize_in_bytes))) { 

        $buffer .= <IN>; 

    } 

    my @lines = split(/$regex_split_newline/o, $buffer); 

    # process each line in zone file 

    foreach my $line (@lines) { 

        chomp($line); 

        my @newline=split(/\t/, $line); 

 

        #print "newline[3]=", $newline[3], "newline[3]-

min_fragment=", $newline[3]-$min_fragment, "newline[3]-

max_fragment=", $newline[3]-$max_fragment, "\n"; 

 

        if (($newline[3] >= $min_fragment) and ($newline[3] <= 

$max_fragment))  



        #if (($newline[3] >= 0) and ($newline[3] < 1e10)) 

        { 

          print OUT join("\t",@newline), "\n"; 

          $counter++; 

        } 

    } 

    $processed_memory_size += $n; 

    $offset += $n; 

    if(int($processed_memory_size/1048576)>= $filesize/100) { 

        print STDERR int($offset/1048576), " Mbs processed in ", 

time()-$timer2, " seconds.\n"; $processed_memory_size=0; 

        #last; 

        } 

    undef @lines; 

    $buffer = ""; 

} 

close(IN); 

close(OUT); 

 

print  "counter=", $counter, "\n"; 

 

print STDERR "done!\nJob finished in ", time()-$timer2, " 

seconds.\n"; 

exit; 

 

 

__DATA__ 

====================================================================

============================== 

### Calculates nucleosomes occupancy frequency distribution around a 

TSS 

### (c) 2012 Algorithmus, BioQuant Heidelberg. All Rights Reserved. 

###           Authors: Yevhen Vainshtein 

###  

### extract_rows_occup.pl 

### version: 1.0.0.0 

====================================================================

============================== 

 

perl -w extract_rows_occup.pl -input=<in.bed> -output=<out.bed> -

min=<min_fragment> -stop=<max_fragment> --help 

 

-input=<input *.bed file> 

-output=<output *.bed file containing only selected region> 

-strat=<selected min_fragment> 

-max=<selected max_fragment> 

 

 

 

 

 



Script 3. R script used for Principle Component Analysis (PCA).  

library(openxlsx)##dowloading libraries needed for the analysis  

library(reshape2) 

library(plyr) 

library(scales) 

library(ggplot2) 

library(devtools) 

library(grid) 

install_github("vqv/ggbiplot") 

library(ggbiplot) 

getwd() 

data.gained<-read.table("chr1_1000bp_nucs_at_gained.bed",fill=TRUE) 

data.gained<-data.gained[,c(4,8,12,16,20,24,28,32)] 

colnames(data.gained)<-

c("G237_N","G276_N","G370_N","G125_N","G237_T","G276_T","G370_T","G1

25_T") 

data.gained2<-t(data.gained) 

data.gained2<-data.gained2[,-c(749:758)] 

n<-ncol(data.gained2) 

colnames(data.gained2)<-c(1:n) 

data.gained.pca<-prcomp(data.gained2,center=TRUE,scale=TRUE) 

summary(data.gained.pca) 

  

##plot PCA   

data.group<-c(rep("Healthy",4),rep("Tumour",4)) 

  

pdf("PCA_nucs_at_gained_final.pdf",height=10,width=10) #opens a pdf 

file 

ggbiplot(data.gained.pca,var.axes=F,groups=data.group)+ 

stat_ellipse(geom="polygon",level=0.9,alpha=0.4,aes(fill=data.group)

)+ 

scale_fill_manual(values=c("gray62","palevioletred1","lightskyblue")

)+ 

guides(colour=guide_legend("Group"),fill=F)+ 

scale_colour_manual(name="Group",values=c("black","firebrick1","roya

lblue1"))+ 

scale_shape_manual(name="Group",values=c(16,16,16))+ 

geom_point(aes(colour=data.group,shape=data.group),size=5)+ 

geom_text(aes(colour=data.group, 

label=rownames(data.gained2)),hjust=-0.2, vjust=0.1)+ 

ggtitle("PCA of nucleosome occupancy at regions gaining 

nucleosomes")+ 

theme_classic()+ 

theme(plot.title=element_text(hjust=0.7,size=25), 

legend.position="top",legend.title=element_blank(),legend.text=eleme

nt_text(size=25),axis.text.x=element_text(size=20),axis.text.y=eleme

nt_text(size=20),axis.title.x=element_text(size=30),axis.title.y=ele

ment_text(size=30)) 

dev.off()  

  

 
##lost nucleosomes 

data.lost<-read.table("chr1_1000bp_nucs_at_lost.bed",fill=TRUE) 

data.lost<-data.lost[,c(4,8,12,16,20,24,28,32)] 



colnames(data.lost)<-

c("G237_N","G276_N","G370_N","G125_N","G237_T","G276_T","G370_T","G1

25_T") 

data.lost2<-t(data.lost) 

data.lost2<-data.lost2[,-c(749:758)] 

n<-ncol(data.lost2) 

colnames(data.lost2)<-c(1:n) 

data.lost.pca<-prcomp(data.lost2,center=TRUE,scale=TRUE) 

summary(data.lost.pca) 

 

##plot PCA   

data.group<-c(rep("Healthy",4),rep("Tumour",4)) 

 

pdf("PCA_nucs_at_lost_final.pdf",height=10,width=10) #opens a pdf 

file 

ggbiplot(data.lost.pca,var.axes=F,groups=data.group)+ 

stat_ellipse(geom="polygon",level=0.9,alpha=0.4,aes(fill=data.group)

)+ 

scale_fill_manual(values=c("gray62","palevioletred1","lightskyblue")

)+ 

guides(colour=guide_legend("Group"),fill=F)+ 

scale_colour_manual(name="Group",values=c("black","firebrick1","roya

lblue1"))+ 

scale_shape_manual(name="Group",values=c(16,16,16))+ 

geom_point(aes(colour=data.group,shape=data.group),size=5)+ 

geom_text(aes(colour=data.group, label=rownames(data.lost2)),hjust=-

0.2, vjust=0.1)+ 

ggtitle("PCA of nucleosome occupancy at regions losing 

nucleosomes")+ 

theme_classic()+ 

theme(plot.title=element_text(hjust=0.9,size=25), 

legend.position="top",legend.title=element_blank(),legend.text=eleme

nt_text(size=25),axis.text.x=element_text(size=20),axis.text.y=eleme

nt_text(size=20),axis.title.x=element_text(size=30),axis.title.y=ele

ment_text(size=30)) 

dev.off() 

 

 


