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Abstract System design deals with various challenges of

targets and resources, such as reliability, availability,

maintainability, cost, weight, volume, and configuration.

This paper deals with the multi-objective system avail-

ability and cost optimization of parallel–series systems by

resorting to the multi-objective strawberry algorithm also

known as the Plant Propagation Algorithm or PPA and a

fuzzy method. It is the first implementation of this opti-

mization algorithm in the literature for this kind of problem

to generate the Pareto Front. The fuzzy method allows

helping the decision maker to select the best compromise

solution. A numerical case study involving 10 subsystems

highlights the applicability of the proposed approach.

Keywords Multi-objective system design � Availability �
Cost � Parallel–series system � Plant Propagation
Algorithm � Fuzzy method

1 Introduction

Resource allocation is one of the most commonly used

methods in system design and exploitation. It allows

optimally using available resources and respecting product

specifications. Industrial plants consist of many compo-

nents and their system dependability (RAMS ? C: relia-

bility, availability, maintainability, safety, and cost) should

be optimized [1–5]. In the last few decades, efforts have

been devoted to the question of optimal allocation in sys-

tem dependability. These efforts may be divided into two

categories depending on the nature of the formulated

problems: single objective and multi-objective optimiza-

tion problems. Most solution approaches are based on bio-

inspired optimization techniques, also called soft comput-

ing methods or artificial intelligence methods, as these

methods proved their effectiveness in practice.

In [6], the reliability of parallel–series systems has been

optimized by the redundancy allocation with component

choices under the constraints of cost and weight. Several

authors proposed solution approaches for the optimal sys-

tem reliability–redundancy allocation subject to cost, vol-

ume, and weight [7–13]. Chen [7] and Hsieh and You [8]

developed immune algorithms. Garg et al. [9] and Garg

[10] used the artificial bee colony and cuckoo search,

respectively. Mellal and Zio implemented a penalty guided

stochastic fractal search for 10 case studies in [11], whereas

a pharmaceutical plant consisting of 10 subsystems con-

nected in series has been investigated in [12] using the

above algorithm, the cuckoo optimization algorithm with

penalty function, and the genetic algorithm. A large-scale

reliability–redundancy allocation problem has been solved

in [13] using the cuckoo optimization algorithm, particle

swarm optimization, and the genetic algorithm. The opti-

mization problem of the reliability–redundancy allocation

has been simplified in [14] by resorting to the theory of

survival signature. On the other hand, Juybari et al. [15]

and Mellal and Zio [16] considered the cold-standby

strategy for the redundant components. Chebouba et al.

[17] considered the reliability and cost as objectives under
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data uncertainties. In [18–20], the goal was to allocate the

optimal number of redundant components, failure rates and

repair rates in each subsystem for maximizing the system

availability under the cost limit and design constraints. The

author of [18, 19] used the Tabu-genetic algorithm,

whereas in [20] the authors used five optimization tech-

niques: cuckoo optimization algorithm, genetic algorithms,

flower pollination algorithm, differential evolution, and

particle swarm optimization. The study showed that the

cuckoo optimization algorithm provided better results. In

[21, 22], the authors considered both the system avail-

ability and the cost function described in [18–20] as

objective functions using the weighted sum methods and

the non-dominated sorting genetic algorithm II (NSGA-II),

respectively. The bi-criteria problem has been tackled by

converting it into a single objective optimization one using

two weighted sum methods. The system cost under avail-

ability constraint with failure dependencies has been opti-

mized in [4, 23] using an adaptive cuckoo optimization

algorithm and the genetic algorithm, respectively. The

optimum number of redundant components and repair

teams have been allocated in each subsystem for this

purpose.

The aim of the present work is to consider the con-

flicting and nonlinear objectives of availability and cost of

parallel–series systems when redundancy, failure rate, and

repair rate allocations are considered as design variables.

An implementation of a multi-objective optimization

algorithm, called multi-objective strawberry algorithm, is

presented in order to generate the Pareto front. A fuzzy

method is applied to select the best compromise solution

for the decision maker. The remainder of the paper is

organized as follows: Sect. 2 describes the multi-objective

optimization problem. Section 3 presents the principles of

the multi-objective strawberry algorithm. Section 4 high-

lights the method applied for selecting the best compromise

solution. A numerical case study with results and discus-

sion are illustrated in Sects. 5 and 6, respectively. Finally,

the last section concludes the paper.

2 Problem Description

The design of the parallel–series system shown in Fig. 1

when considering the redundancy, failure rate and repair

rate allocations as design variables is given as follows

[18–21]:

System cost

Csðn; k; lÞ ¼
Xm

i¼1

ai kið Þ�biþlimci
� �

ni þ expðni=4Þð Þ
h i

ð1Þ

Asymptotic system availability

Asðn; k; lÞ ¼
Ym

i¼1

1� 1� li
ki þ li

� �ni
� �

ð2Þ

System design configuration

Xm

i¼1

piðniÞ2 �D1 ð3Þ

Xm

i¼1

wini expðni=4Þ�D2 ð4Þ

ni � 1 ðni 2 ZþÞ
ki 2 ½kLi ; k

U
i � � <þ; li 2 ½lLi ; lUi � � <þ

As �A�
s

Cs �C�
s

ð5Þ

where Cs(•) is the total system cost, ni is the number of

identical redundant components to be used in the ith sub-

system, ki is the failure rate of the components in the ith

subsystem, li is the repair rate of the components in the ith

subsystem, m is the total number of subsystems in the

system. bi and ai are parameters representing the physical

features of each component in each subsystem i. pi is the

product of weight and volume per component in each

subsystem i, and wi is the weight of one component in each

subsystem i. D1, D2, ðA�
s and C�

s are the design limits. ki
L,

li
L, ki

U and li
U are the lower and upper bounds for the

failure and repair rates, respectively. It should be noted that

the weight constraint given in Eq. (4) is increased by the

interconnecting links modeled by exp(ni/4).
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Fig. 1 Parallel–series system

International Journal of Fuzzy Systems

123



In [18–20], the authors solved the problem by consid-

ering the system availability as a single objective problem,

whereas in [21] the objectives of system availability and

cost have been converted into a single objective by

resorting to two weighted sum methods. In the present

work, both objectives are considered in a Pareto front.

Therefore, the above problem is formulated as follows:

Minimize Csðn; k; lÞ ð6Þ
Maximize Asðn; k; lÞ ð7Þ

subject to

Equations (3)-(5)

3 Multi-objective Strawberry Algorithm

First introduced by Salhi and Fraga [24], the strawberry

algorithm also known as the Plant Propagation Algorithm

or PPA is a Nature-Inspired heuristic that emulates the way

plants and in particular the strawberry plant propagation.

The strawberry plant can propagate through seeds, but as a

hybrid, it relies more on runners. A runner is a long branch

that grows over ground. When it touches the ground, it

produces roots which then give rise to another strawberry

plant. Strawberry plants use runners to explore the land-

scape where they happen to be to find good places to grow

and propagate. Typically, a good place is one which is

sunny, has enough nutrients and humidity. Note that we are

not explicitly concerned with these growth factors. To

improve its chances of survival in nature, a strawberry

plant implements a very basic strategy which is:

1. In a good spot, send many short runners (exploitation);

2. In a poor spot, send few long runners (exploration).

This strategy which is not unique to the strawberry plant

can be implemented for any type of optimization/search

problem including those involving two or more objective

functions. For min f(x), where f(x) is a vector function, PPA

can be described as shown in Algorithm 1 [25].

Algorithm 1 Pseudo-code of the implemented MOPPA

[25].

Only N, the population size has to be set arbitrarily and

possibly the number of generations for the stopping crite-

rion. So, PPA only requires two arbitrary parameters.

Compare this with the seven parameters that the genetic

algorithm implementation requires and the five parameters

that the simulated annealing implementation requires [26].

PPA has been shown to be competitive in continuous

global optimization [27]. It has also been shown to work

well on discrete optimization problems such as the TSP

[26]. A variant of PPA which emulates propagation by
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seeds has been implemented and shown to work also very

well on continuous problems [28]. Another variant that

combines propagation via runners and seeds has also been

introduced in [29, 30].

From its inception, PPA [24] has been considered for

multi-objective optimization. Indeed, in [25], a bi-criterion

optimization problem arising in chemical engineering has

been considered. The two objectives were combined in an

additive fashion using a couple of parameters k1 and k2
such that k1 ? k2 = 1. Here, we are concerned with the

design of the parallel–series system problem (see Fig. 1).

As described in Sect. 2, it involves two objectives namely

the cost and the availability. The issue is to optimize with

respect to these two conflicting objectives with the aim of

providing the system designer with an optimum or near

optimum decision. This decision is found in a Pareto Front

which is a set of potential solutions. An approach to

choosing the best solution from the PF is described below.

4 Best Compromise Solution

Solving multi-objective optimization problems is con-

fronting its main disadvantage which is the Pareto Front

(PF). PF is a set of optimal solutions and selecting a single

solution is challenging for the decision maker. Several

works have been devoted to the development of methods

allowing the selection of the best compromise (called also

preferred) solutions. An overview of these methods is listed

in [31–36].

In this paper, the fuzzy set method is used to determine

the best compromise solution from the obtained PF. When

the multi-objective strawberry algorithm has generated the

PF, the following algorithm is implemented [35–38]:

– Perform fuzzy-based mechanisms: For system cost (minimizing function),

lj ¼

1; Fj �Fmin
j

Fmax
j � Fj

Fmax
j � Fmin

j

; Fmin
j \Fj\Fmax

j

0; Fj �Fmax
j

8
>>>><

>>>>:

ð8Þ

For system availability (maximizing function),

lj ¼

0; Fj �Fmin
j

Fj � Fmin
j

Fmax
j � Fmin

j

; Fmin
j \Fj\Fmax

j

1; Fj �Fmax
j

8
>>>><

>>>>:

ð9Þ

where lj is the membership function, Fj is the jth

objective function, and ðFmin
j ;Fmax

j Þ are its minimum

and maximum values, respectively.

– Calculate the normalized membership value:

Table 1 Data of the system

Subsystem i ai (10
-5) bi mci pi wi

1 1.25 1.5 500 2 6

2 2.70 1.5 500 4 9

3 8.10 1.5 500 3 7

4 4.50 1.5 500 2 6

5 1.90 1.5 500 4 8

6 3.55 1.5 500 2 5

7 2.45 1.5 500 4 3

8 6.30 1.5 500 3 9

9 1.80 1.5 500 2 7

10 5.25 1.5 500 2 5

Table 2 Number of non-dominated solutions (Conditions 1)

No. Number of non-dominated solutions

1 36

2 49

3 51

4 51

5 72

6 56

7 82

8 62

9 58

10 53

Table 3 Number of non-dominated solutions (Conditions 2)

No. Number of non-dominated solutions

1 49

2 91

3 84

4 39

5 47

6 49

7 83

8 40

9 37

10 50

Bold indicates the Highest number of non-dominated solutions
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lk ¼

P2

j¼1

lkj

PM

l¼1

P2

j¼1

llj

ð10Þ

where M is the number of solutions in PF. The solution

having the maximum value of lk represents the best

compromise solution.

5 Case Study

The parallel–series system (see Fig. 1) studied here con-

tains 10 subsystems. Table 1 reports its data. The limits of

the system design are: C�
s ¼ 250; D1 ¼ 200; D2 ¼ 300; in

arbitrary units, and As = 0.9 [20, 21]. The lower and upper

bounds for the design variables are: ni � 1 ðni 2 ZþÞ; ki 2
½10�7; 10�3� � Rþ; and li2 ½32	 10�7; 32	 10�3� � Rþ:

6 Results and Discussion

The multi-objective strawberry algorithm and fuzzy set

method have been encoded using MATLAB 2017 and run

on a PC (Intel Core I5-7300U vPro 7th Gen, 2.7 GHz,

8 GB of RAM). The optimization algorithm has been run

under two values of the number of runners (3 and 4) with

the same population size (100) and maximum number of

iterations (200). These values are called Conditions 1 and

Conditions 2, respectively. The above parameters have

been fixed by trial-and-error and based on experience. Ten

independent runs have been performed with each value of

number of runners in order to select the run with the

highest number of non-dominated solutions. From Tables 2

and 3, it can be observed that the maximum number of non-

dominated solutions is 91 and has been obtained with four

runners. The consumed CPU time was 6.9165 s. Figure 2

shows this Pareto front, whereas the values of the system

cost and availability of the 91 solutions are reported in

Table 4. The points are relatively extensive on front.

The normalized membership value has been calculated

for each value of Table 4 and is reported in Table 5. From

this table, it can be observed that the maximum value is

Table 4 Best Pareto front

No. Cs As No. Cs As

1 248.0301 0.9675 51 226.6152 0.9508

2 228.6186 0.9541 52 227.0615 0.9534

3 199.0064 0.9167 53 195.7784 0.9098

4 208.2397 0.9307 54 219.7293 0.9459

5 233.2392 0.9601 55 210.9245 0.9344

6 210.8452 0.9322 56 247.0194 0.9672

7 230.3806 0.9568 57 195.1605 0.9077

8 202.3160 0.9195 58 219.5095 0.9452

9 246.4674 0.9671 59 245.1320 0.9653

10 232.6731 0.9571 60 241.7951 0.9645

11 209.8697 0.9317 61 230.3806 0.9568

12 241.4323 0.9640 62 241.2529 0.9638

13 245.1320 0.9653 63 234.0463 0.9603

14 247.3743 0.9673 64 216.5461 0.9412

15 235.7759 0.9617 65 198.9011 0.9148

16 209.8697 0.9317 66 195.1605 0.9077

17 245.5489 0.9669 67 202.7490 0.9215

18 203.8581 0.9263 68 210.8452 0.9322

19 240.9682 0.9637 69 238.5180 0.9628

20 245.5489 0.9669 70 240.7870 0.9634

21 233.0069 0.9581 71 240.9682 0.9637

22 223.7531 0.9483 72 245.3488 0.9658

23 218.2685 0.9413 73 227.0615 0.9534

24 246.4674 0.9671 74 206.9551 0.9291

25 240.8994 0.9636 75 239.6384 0.9631

26 226.6152 0.9508 76 232.6731 0.9571

27 195.7784 0.9098 77 216.5461 0.9412

28 241.7951 0.9645 78 202.7490 0.9215

29 193.2516 0.9043 79 240.8994 0.9636

30 235.7759 0.9617 80 212.9021 0.9349

31 233.0069 0.9581 81 233.0069 0.9581

32 223.7531 0.9483 82 199.0064 0.9167

33 218.2685 0.9413 83 208.2397 0.9307

34 246.4674 0.9671 84 224.3092 0.9495

35 240.8994 0.9636 85 234.0463 0.9603

36 226.6152 0.9508 86 247.0194 0.9672

37 195.7784 0.9098 87 243.9883 0.9651

38 241.7951 0.9645 88 245.3488 0.9658

39 193.2516 0.9043 89 193.2516 0.9043

40 235.7759 0.9617 90 243.9883 0.9651

41 198.9011 0.9148 91 197.1770 0.9147

42 219.7293 0.9459

43 202.3160 0.9195

44 241.2529 0.9638

45 203.8581 0.9263

46 212.9021 0.9349

47 228.6186 0.9541

48 206.9551 0.9291

Table 4 continued

No. Cs As No. Cs As

49 241.4323 0.9640

50 218.2685 0.9413
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those of the solutions 42 and 52 (lk = 0.0117856). The

related solutions represent the best compromise solutions

of the obtained PF. The values of the decision variables of

these solutions are given in Table 6. Therefore, this is the

best compromise solution for the decision maker, where the

system cost and availability are 219.7293 and 0.9459,

respectively.

7 Conclusions

In this work, the multi-objective system availability and

cost have been investigated. The problem has been solved

by using the multi-objective strawberry algorithm which

requires a few parameters. It was the first implementation

of this efficient algorithm to solve this kind of problem. A

fuzzy method has been used to determine the best com-

promise solution from the Pareto front for helping the

decision maker. A numerical case study consisting of a

system with 10 subsystems has been solved in order to

highlight the applicability of the proposed solution

approach.

In the future, this proposed approach will be hybridized

with other methods to provide better performance metrics.

Fig. 2 Best Pareto front
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