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Abstract—In this paper we present an approach based on
shallow recurrent long short-term memory neural networks for
the prediction of hand kinematics for hand-prosthesis control
from data acquired via high-density surface electromyography
(HD-sEMG). We used 134-channel HD-sEMG recordings from
seven participants while performing multiple repetitions of 13
hand movements. A CyberGlove II was used to simultaneously
record 18 degrees of freedom (joint angles) used as ground
truth for predicting the hand movements. Traditional features
were calculated over 100 ms windows and fed to the network.
Specifically we used: Mean Absolute Value (MAV), variance, and
number of zero-crossings. Our results indicate that: (a) a small
number of channels is sufficient to make accurate predictions,
(b) many features are redundant, and MAV is sufficient for the
job, (c) the simple neural network architecture we propose is
effective in this task. These findings have important implications
in terms of computational efficiency and memory storage, which
are important considerations in relation to implementability in
the typically very low-power and low-resources computers on-
board of hand prostheses.

I. INTRODUCTION

Pattern recognition (PR) has been used intensively during
the last decades to improve the control of prostheses [1],
[21]. In a typical PR setting, the raw EMG is segmented in
time-windows and, from these, a set of features is extracted
and classified using standard classification algorithms [15],
[16], [20]. In spite of this significant research effort, PR-
based control approaches have had limited application in
commercial prostheses. One main reason is that they do not
allow simultaneous and proportional control (SPC) of two or
more degrees of freedom (DoFs) [8], [2], [17].

Particularly, ANNs have shown to be very useful for time
series prediction, including the possibility of using them for
SPC of multiple degrees of freedom [4], [13].

Some publications have shown promising results using the
muscle EMG activity for decoding hand movement intention
combining the computation of many features with early
prediction systems [18], [9], [10]. Our approach uses long
short-term memory recurrent neural networks (LSTM-RNN)
as a regression method to predict the kinematics of the
hand from the muscle activations captured through surface
EMG. In the following we test whether sufficient accuracy
can be attained using only one time-domain feature from
a reduced set of electrodes in an attempt to reduce the
computational cost of the model. This approach might help
reduce the response time and the battery consumption when
implemented on an embedded system, like those typically

found within a prosthetic-hand, such as the one developed
within the Horizon 2020 “DeTOP” project.

II. METHODOLOGY

In this study, we use EMG data and joint angles from
the first 7 participants in the SEEDS database [12]. Eight
monopolar electrodes are used to record the signals of the
extensor muscles of the forearm, while a set of 126 electrodes
arranged in an high-density EMG (HD-sEMG) array of 9
rows by 14 columns is used for recording the signals from the
flexor muscles. Therefore, we have access to 134 channels.
Hand kinematics were simultaneously recorded through a
CyberGlove II with 18 sensors placed in the locations shown
in Fig. 1. Due to space constraints, and considering the lack
of substantial differences across the 7 participants, for brevity
in the following sections we present figures from the first one
only.

Fig. 1. (Left) DoF location for recording hand movements. (Right) Corre-
spondence between the full name of the CyberGlove sensors and our coded
names [12].

A. Channel Reduction

We started by reducing the number of available electrodes
in a first attempt to reduce the computational load to train
our neural network. The set of electrodes used in this work
was comprised of:

- The 8 monopolar electrodes placed on the extensor
muscles;



- The 9 electrodes in the seventh (i.e., central) column of
the HD-sEMG array, in order to have a transverse scan
of the anterior part of the forearm, to gather information
from the flexor muscles.

This reduced the number of electrodes from 134 to 17.

B. Decoding and Feature Selection

For decoding myoelectric information we used adjacent
windowing. We used non-overlapping windows of 100 ms,
since previous studies have shown this to be a good trade-off
between responsiveness and accuracy [5].

Within the literature, a wide range of features have been
proposed in the time domain, in the frequency domain or
in mixed domains (frequency-time and scale-time) [14]. In
particular, the methods for extracting features in the time
domain can be divided into four groups: 1) energy and
complexity methods, 2) frequency information methods, 3)
prediction-model methods, and 4) time-dependence methods.
According to [15], the features that belong to the first and
second groups give better results. As a consequence, we
initially chose three computed from the time domain, which
fall into the first two groups:

- Mean Absolute Value (MAV) that essentially captures
the energy and complexity of the signal:

MAV =
1

N

N∑
i=1

|xi| (1)

- Variance (VAR) that is related to the power of the force
developed by the muscle [21]

VAR =
1

N − 1

N∑
i=1

x2i (2)

- The number of Zero-Crossings (ZC) in the window,
which is a time-domain measurement that captures fre-
quency information.

ZC =

N∑
i=1

neg(xixi+1), (3)

where

neg(a) =

{
1, if a < 0,
0, otherwise,

and xi is the i-th sample of the EMG signal band-pass
filtered between 10 and 500 Hz.

C. Recurrent Neural Network

We use a form of recurrent neural networks (RNNs) to
predict a hand movement based on the EMG records taken
from the forearm. Due to the nature of the movement, the
order in which the temporal sequence of data is given is
extremely important. RNNs are particularly well suited to
deal with this situation, and different studies have shown
good results using RNNs [19], [6], [10].

A problem affecting traditional RNNs is the so-called
vanishing-gradient problem (the weight updates rapidly be-
coming so small that the network can hardly learn) which
make them difficult to train with gradient-based learning
methods and backpropagation [7]. One solution to this prob-
lem is offered by Long Short-Term Memory (LSTM) RNNs,
where the gradient hardly vanishes [11], [3]. In this study
we designed and compared the performance of two LSTM-
RNNs:

- One with 17 inputs (which correspond to the VAR
feature computed for each of the 17 electrodes used),
an LSTM hidden layer with 9 neurons, and 18 outputs
(one for each DoF);

- One with 51 inputs (where we extracted MAV, VAR and
ZC from each of the 17 electrodes), an LSTM hidden
layer with 9 neurons, and 18 outputs (as above).

We trained individual models for each of the first 7 partic-
ipants in the SEEDS dataset [12], using the first two sessions
for training (80%) and validation (20%), and the third one
for testing. Each of the sessions includes 6 repetitions at
different speeds of 13 different movements, performed in
random order.

For each model, we computed a time-series prediction for
the six repetitions from each movement from the test set. To
assess the error between target and prediction we used two
metrics: mean absolute error (MAE) which can be calculated
as:

MAE =
1

n

n∑
i=1

(yi − xi)2 (4)

and the coefficient of determination (R2) defined as the
relative improvement over a baseline constant predictor:

R2 =
(MSE0 −MSE)

MSE0
(5)

with

MSE0 =
1

n

n∑
i=1

(z − xi)2 (6)

MSE =
1

n

n∑
i=1

(yi − xi)2 (7)

where z is the mean target on traning set, yi is the prediction,
xi the target for time-window i and n is the total number of
time windows.

Obviously, not all DoFs are involved in meaningful ways
in all movements. To make our performance evaluation more
meaningful we used knowledge of the anatomy and function
of the hand to identify the subset of the DoFs that contribute
to each individual movement. These will be used when we
report results in the next section.

We used R2 obtained on the test set to compare the
performance of our two LSTM-RNNs by considering the
null hypothesis H0 that the LSTM-RNN with 17 inputs is as



accurate as the one with 51 inputs. Due to the non-Gaussian
distribution of the R2 values computed, we used a Wilcoxon-
test with a confidence level of α = 0.05.

III. RESULTS

A. LSTM-RNN with 51 inputs

Let us start with the case of the LSTM-RNN with 51
inputs, i.e., where we rely on three EMG features: MAV,
V AR and ZC. As an example of the typical test-set per-
formance achieved, in Fig. 2 we show 6 repetitions (3 fast
and 3 slow) of the fist movement as measured on the Index-
Inner CyberGlove sensor (II 5 in Fig. 1). As one can visually
appreciate (and verify through the low MAE and a R2 value
close to one, reported at the top of the figure), this LSTM-
RNN predicts with a good degree of accuracy.

Fig. 2. LSTM-RNN with 51 inputs: time series for the recorded joint angle
and the network’s prediction for the ’fist’ movement, from the Index-Inner
(II 5) DoF.

Fig. 3 reports the R2 value obtained in the test set
separately for each of the 18 DoF and 13 movements, giving
a total of 234 combinations. We have marked with a black
dot the cells for which the DoF is meaningful for a given
movement (based on knowledge about the hand function).
From a prediction point of view, one can see many cells dark
blue which means the time-series prediction performs better
than a horizontal line predicting the mean on the training set
(R2 = 0).

B. LSTM-RNN with 17 inputs

The LSTM-RNN with 17 inputs relies only on one feature,
namely, the MAV, extracted from each electrode. As an
example of the performance achieved on the test set and
for comparison with the 51-input model, Fig. 4 shows the
prediction on the same movement (“fist”) and DoF as that of
Fig. 2. It can be visually appreciated taht the predictions are
very close to the ground truth time series. Also, comparing
Figs. 2 and 4 we see that both qualitatively and quantitatively
(MAE and R2) results are very similar.

Fig. 3. LSTM-RNN with 51 inputs: R2 value for all possible combinations
between DoF and movements. Dots in a cell represent that the DoF is
meaningful for the movement.

Fig. 4. LSTM-RNN with 17 inputs: Time series with both joint angle and
its prediction for the ’fist’ movement, from the Index-Inner (II 5) DoF.

The test-set R2 obtained for the 234 combinations of 18
DoF and 13 movements by the LSTM-RNN with 17 inputs
is reported in Fig. 5 as a colour map. Once again, for
each movement we have marked which DoFs are meaningful
(i.e., based on knowledge of the hand function, which DoFs
one would expect to detect variation for that movement).
Comparing Fig. 3 and Fig. 5, there are some slight differences
based on R2 due to the network with 51 inputs is trained with
more information than in the case with 17 inputs.

A visual comparison of Figs. 3 and 5 shows that essentially
the two architectures provide comparable level of perfor-
mance. This has also been verified by applying the Wilcoxon-



Fig. 5. LSTM-RNN with 17 inputs: R2 value for all possible combinations
between DoF and movements. Dots in a cell represent that the DoF is
meaningful for the movement

test to the R2 computed across the 234 combinations, which
indicates that the distributions are not statistically different
(i.e., the null hypothesis H0 formulated at the end of sec-
tion II cannot be rejected at the chosen level of significance).

Fig. 6. Time series with both joint angle and its prediction for two different
movements: Index flexion (top) and pinch (bottom), both seen from different
DoF. Results computed for two different cases: (From left to right) using 3
features, using only MAV.

IV. CONCLUSION

In this paper we presented an approach to predicting hand
kinematics for hand-prosthesis control from data acquired via
high-density EMG (HD-EMG), from seven subjects, using

LSTM-RNNs. The original HD-EMG recordings included
134 channels and related to 13 hand movements during
which 18 DoFs were recorded. Because handling such a large
number of channels is expensive with the typical processors
on board available on hand prostheses, we decided to verify
whether the number of channels could be reduced to 17 while
maintaining a comparable performance.

For the same reasons, we proposed and tested two rel-
atively small LSTM-RNN topologies: one relying on three
features (MAV, VAR and ZC) computed every 100 ms for
each channel, and a more efficient one using only one feature,
MAV, per channel. Both topologies had one hidden layer
with only 9 neurons and one output layer with 18 neurons
(as many as sensors recorded).

Our results show that, despite the extreme parsimony of
these architectures, both can predict to a sufficient degree
the trajectories of these joints over 13 key hand-movements.
Furthermore, we found that the two architectures provide
almost indistinguishable results, indicating that one input
feature, namely MAV, is sufficient for the task at hand.

While more research is clearly necessary to see whether
even smaller architectures (e.g., fewer hidden neurons and
fewer input channels) would be sufficient, we believe that
both are implementable in the low-power hardware available
in the hand-prosthesis developed in the DeTOP project.
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