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Abstract—Deep learning has achieved excellent performance
in a wide range of domains, especially in speech recognition and
computer vision. Relatively less work has been done for EEG,
but there is still significant progress attained in the last decade.
Due to the lack of a comprehensive and topic widely covered
survey for deep learning in EEG, we attempt to summarize recent
progress to provide an overview, as well as perspectives for future
developments. We first briefly mention the artifacts removal for
EEG signal and then introduce deep learning models that have
been utilized in EEG processing and classification. Subsequently,
the applications of deep learning in EEG are reviewed by
categorizing them into groups such as brain-computer interface,
disease detection, and emotion recognition. They are followed by
the discussion, in which the pros and cons of deep learning are
presented and future directions and challenges for deep learning
in EEG are proposed. We hope that this paper could serve as
a summary of past work for deep learning in EEG and the
beginning of further developments and achievements of EEG
studies based on deep learning.

Index Terms—Deep Learning, Electroencephalogram (EEG),
Classification, Brain-Computer Interface, Disease, Emotion,
Sleep, Mental State

I. INTRODUCTION

MACHINE learning technology has benefited to diverse
domains in our modern society [1], [2]. Deep learn-

ing, a subcategory of machine learning technology, has been
showing excellent performance in pattern recognition [3], dra-
matically improving classification accuracy. It is worth noting
that new world records were created by using deep learning
in many competitions such as ImageNet Competition [4]. The
research outcomes of deep learning in speech recognition [5]
and computer vision [6] have been successfully utilized to
develop practical application systems, which are remarkably
influencing our life and even changing our lifestyle.

Deep learning is an enhanced variant of traditional neural
network, which is thought to be established based on the
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inspiration of hierarchical structure existing in visual cortex
of the human brain. The adjective ’deep’ in the term of
deep learning describes the attribute of multiple processing
layers forming a long-cascaded architecture. The extracted
information becomes more and more abstract from the lowest
layer to the highest layer. This is one of the advantages for
the deep learning as information expression could be more
meaningful when passing onto a higher layer. Meanwhile,
deep learning suffers from the issues of slow convergence
and high computation demand. These disadvantages have been
released by introducing training strategies such as dropout
[7] and batch normalization [8], and the availability of high-
performance computers. The high performance is not only
due to the capacity improvement of central processing units,
but also new computing units such as graphic processing unit
and tensor processing unit. These new computing units are
designed to suit matrix manipulation, which greatly reduce
computational time in deep learning. Moreover, the availability
of large scale of data and increased capacity of data storage
also promote the use of deep learning.

Electroencephalogram (EEG) signal was first recorded by
Hans Berger in the year of 1924 [9], which manifests under-
lying brain activity. Multiple electrodes can be set to record
EEG signal by placing them on different locations of the scalp
and temporal fluctuations in voltage can be captured in a high
resolution (e.g., in milliseconds) by using a high sampling
rate. With the advantages of multi-channel recording and
high temporal resolution, EEG has been applied to numerous
domains from brain-computer interface [10], [11], [12], [13],
to emotion [14], [15], to cognition [16], to brain diseases [17].
EEG processing methodology is evolved from simple meth-
ods such as mean and amplitude comparison to complicated
methods such as connectivity topology and deep learning. In
particular, deep learning exhibits better performance in EEG
classification (a.k.a., recognition or identification) compared
to conventional methods (e.g., support vector machine). By
using deep learning, discriminative features could be extracted
without handcraft, which requires specific knowledge and
expertise. It could avoid the low performance derived from
unsuitable handcrafted features. However, deep learning is
not a destination because model architecture and parameters
have to be set manually. A good classification performance is
usually not obtained by just feeding data into a deep learning
model. This is because the target signal is much weaker than
the background signal and noise, resulting in a low signal-to-
noise ratio. Therefore, artifacts removal is commonly adopted
to remove artifacts so that the signal-to-noise ratio can be
improved before feeding into a deep learning model. This

This paper was accepted for publication in the IEEE Transactions on Cognitive and 
Developmental Systems, 2021, DOI: 10.1109/TCDS.2021.3079712

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://ieeexplore.ieee.org/document/9430619


2

0

10

20

30

40

50

2015 2016 2017 2018 2019 2020

Brain-Computer Interface

Disease Detection

Sleep Stage Classification

Emotion Recognition

Operator Functional States

Others

Average

Year

N
u

m
b

e
r 

o
f 

P
u

b
lis

h
e

d
 P

a
p

e
rs

80

90

Fig. 1. Numbers of the published papers in each year. Note that numbers before 2015 are omitted because of rare papers.

is quite different compared to image or video processing,
where image or video is directly fed into a deep learning
model. To date, different kinds of deep learning models have
been employed to process and classify EEG signal. Cecotti
et al. used convolutional neural network (CNN) to extract
features from steady-state visual evoked potential in 2008
[18]. Li et al. employed denoising autoencoder to classify
two classes of motor imagery using EEG recorded from 14
electrodes on the sensorimotor cortex [19]. Tsiouris et al.
applied recurrent neural network (RNN) to capture sequential
relationships for seizure detection [20]. A survey covering six
EEG-based applications was done in 2019, where studies were
reviewed separately for task type, model type and so on [21].
A more specialized survey on motor imagery classification
can be found in [22]. A distribution summary showing which
disease is dominantly targeted in the studies of deep learning-
based disease diagnosis can be found in [23]. If you want to
read a survey on brain-computer interface (more beyond motor
imagery), it can be found in Section 5 of [24]. If a wide range
of topics of deep learning in EEG is sought, this survey can
be an option.

Although EEG domain is far behind compared to the
domains such as computer vision [25] and speech recognition
[26] in terms of adopting deep learning, significant progress
has been achieved in the last decade. It is time to summarize
the achievements of deep learning in EEG for the past 10
years and discuss current existing issues and future directions.

The searching criterion [”Deep Learning” AND ”EEG” AND
”Classification” OR ”Recognition” OR ”Identification”] was
used for literature retrieval in the Web of Science in March
2020. After manual selection, 193 papers were included in
this survey. During the revision in February 2021, we applied
the same searching criterion to find newly-published literature
after the previous searching and selected 20 papers to be
included in this survey. After the acceptance, seven more
papers were further included, but they were not used to update
the figures and tables due to the constrained time.

As shown in Fig. 1, the majority of these papers were
published after 2017 while there was a rapid increase from the
year of 2019. In 2019, the number of papers in the topic of
brain-computer interface and disease detection are significantly
more than the other topics. In 2020, the numbers of the
published papers in more topics are rapidly increased, although
disease detection is still a leading topic. The rapid increase of
the published papers about deep learning in EEG is continued
in 2021. The remainder of the survey is organized as follows.
In Section II, artifacts removal is briefly introduced. This is
followed by the detailed descriptions of all deep learning
models which have been applied to EEG in Section III. In
this section, we also mention the advantages and limitations
of each deep learning model. Subsequently, the applications of
deep learning in EEG are detailed along with publicly available
EEG datasets used in these applications in Section IV. Finally,
discussions are given and future directions are drawn at the
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end of the survey. All abbreviations used in this survey are
listed in Table I.

II. ARTIFACTS REMOVAL

In general, artifacts are larger than that we intend to extract
from EEG signal in terms of scale, leading to a low signal-
to-noise ratio (SNR). In order to improve SNR, EEG signal
is preprocessed to remove or mitigate the effect of artifacts
on the signal before the signal is further processed. For
example, a notch filter [16] is effective for eliminating the
interference of power line. Independent component analysis
[27] is usually utilized to remove eye movements-related
and muscular activity-related artifacts. Classical methods of
artifacts removal and their targeted artifacts are summarized
in Table II.

When deep learning emerges, the step of artifacts removal is
kept. EEG signal is preprocessed as usual to remove artifacts
before inputting into a deep learning model. This is an effec-
tive way as all artifacts removal methods can be applied with
deep learning models to be of both benefits inherited from the
artifacts removal methods and deep learning models. This is
also a natural and straightforward way that researchers are able
to easily implement. However, an independent step of artifacts
removal is not always necessary. The first several layers in a
deep learning model could be functioned as artifacts removal,
where noise is removed through the layers. To this end, a few
attempts were done. For example, Supratak et al. inputted raw
EEG data into a CNN for the classification of sleep stages.
Their study showed that an acceptable performance can be
achieved without an independent step of artifacts removal [28].
In addition, Bahador et al. mapped the correlation of EEG
channels into a 2D space and used a CNN model to learn
representations related to particular artifacts. With respect
to artifact detection, this method outperformed spectrogram-
based CNNs [29]. Moreover, no auxiliary reference signal was
required in their method.

III. DEEP LEARNING MODELS

In this section, we describe each fundamental deep learning
model. Their variants and combinations are not included as
they share the similar rationale with fundamental models. A
deep learning model is a hierarchical structure, comprising
layers through which data are mapped into more and more
abstract. Whatever a deep learning model is, there are an input
layer, an output layer, and one or more hidden units (see Fig.
2(A)). The hidden unit might be one of the layer structures
illustrated in Fig. 2(B) or their combinations. In the follow-
ing subsections, we introduce classical deep learning models
where typical units illustrated in Fig. 2(B) are embedded.

A. Restricted Boltzmann Machine and Deep Belief Networks

A restricted Boltzmann machine (RBM) [30] is an undi-
rected graph model (see Fig. 2(B): RBM Unit), which has
a visible layer v = (v1, v2, . . . , vn) and a hidden layer
h = (h1, h2, . . . , hn). Connections exist only between visible
layer v and hidden layer h and there are no connections

between nodes within the visible layer or hidden layer. The
energy function for an RBM is defined as:

E(v,h) = −vTWh− aTv − bTh (1)

where W is the weight matrix, a and b are bias vectors. The
joint probability of v and h is constructed in terms of E:

P (v,h) =
1

Z
e−E(v,h) (2)

where Z is a normalizing constant defined as:

Z =
∑
v,h

e−E(v,h) (3)

The marginal distribution over the visible variables is obtained
as:

P (v) =
1

Z

∑
h

e−E(v,h) (4)

The conditional probabilities can be described as:

P (hj = 1|v) = σ (Wjv + bj) (5)

P (vi = 1|h) = σ (Wih+ ai) (6)

where σ is logistic function defined as:

σ(x) =
(
1 + e−x

)−1
(7)

A deep belief network (DBN) is constructed by stacking
multiple RBMs [31]. Each RBM in the DBN is trained using
an unsupervised manner at first. Then, the output of previous
RBM is inputted into the next RBM. All RBMs are fine-tuned
together by supervised optimization.

B. Convolutional Neural Network

Convolutional neural network (CNN) [32] is good at captur-
ing spatial information of data (see Fig. 2(B): Convolutional
Unit). Most CNNs consist of two types of layers: convolutional
layer and pooling layer.

In specific, a convolutional layer has filters klij , the size of
which is usually much smaller than the dimension of input data
and forms a locally connected structure. Filter at layer l can
produce feature maps Xl

j by convolving with the input Xl−1
i

plus biases blj . These features are subjected to a non-linear
transformation f(·) and can be mathematically expressed as:

Xl
j = f

M l−1∑
i=1

Xl−1
i ∗ klij + blj

 (8)

Where M l−1 represents the number of feature maps in layer
l − 1, and ∗ denotes convolution operation.

A pooling layer is responsible for feature selection and
information filtering. Two kinds of pooling operations are
widely used: max pooling and average pooling. In max pool-
ing, maximum value is mapped from a sub-region by pooling
operator. In average pooling, the average value of a sub-region
is selected as the result. A fully-connected layer is usually
located at the last part of a CNN. It transforms a 1D vector and
sends the output to its following layer through an activation
function.
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Fig. 2. (A) Generic framework of a deep learning model. (B) Classical units that are employed in a deep learning model.

Weight sharing and sparse connections are two basic strate-
gies in CNN models, which lead to dramatic reduction in the
number of parameters. These strategies are helpful to reduce
training time and enhance training effectiveness. Moreover,
they also mitigate the overfitting problem while retaining a
good capability of complex feature extraction.

C. Recurrent Neural Networks

Recurrent neural network (RNN) [33] was developed to deal
with sequential data because of its unique recurrent structure
(see Fig. 2(B): Recurrent Unit), which allows previous outputs
to be used as inputs while having hidden states. It is widely
used in applications that need to extract sequential information,
such as natural language processing, speech recognition, and
EEG classification.

1) GRU: Gated Recurrent Unit (GRU) [34] has two gates,
reset rt and update zt. Let xt be the input at time step t to a
GRU layer and ht be the output vector. The output activation is
a linear interpolation between the activation from the previous
time step and a candidate activation ĥt.

ht = zt � ht−1 + (1− zt)� h̃t (9)

where zt decides the interpolation weight, which is computed
by:

zt = f (Wzxt +Uzht−1 + bz) (10)

where W and U are weight matrices for the update gate, b
is a bias vector, and f(·) is a non-linear function (usually
sigmoid function). The candidate activation is also controlled
by an additional reset gate and computed as follows:

h̃t = g (Whxt +Uh (rt � ht−1) + bh) (11)

where � represents an element-wise multiplication and g(·) is
often a non-linear tanh function. The reset gate is computed

in a similar manner as the update gate:

rt = f (Wrxt +Urht−1 + br) (12)

2) LSTM: Different from GRU, Long Short-Term Memory
(LSTM) [35] has three gates, input it, output ot, and forget
gates ft. Each LSTM cell has an additional memory compo-
nent ct. The gates are calculated in a similar manner as the
GRU but LSTM has additional memory components.

it = f (Wixt +Uiht−1 + bi) (13)

ot = f (Woxt +Uoht−1 + bo) (14)

ft = f (Wfxt +Ufht−1 + bf ) (15)

A memory component is updated by forgetting the existing
content and adding a new memory component as:

ct = ft � ct−1 + it � ĉt (16)

where ĉt can be computed by:

ĉt = g (Wcxt +Ucht−1 + bc) (17)

The updated equation for the memory component is controlled
by the forget and input gates. Then, the output of the LSTM
unit is computed from the memory modulated by the output
gate according to the following equation:

ht = ot � g (ct) (18)

D. Autoencoder and Stacked Autoencoder

Autoencoder (AE) is a symmetrical structure with two
layers [36] (see Fig. 2(B): Autoencoder Unit).
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An encoder learns latent representation from the input data
while a decoder restores the latent representation as close to
the input data as possible. The goal of an autoencoder is to
minimize the reconstruction error between the input and the
output.

Given the inputs x ∈ R, the encoding process first maps
it into a latent representation h ∈ R through a weight matrix
Wv , bias bv , and an activation function f(·):

h = f (Wvx+ bv) (19)

Then the decoding process transforms the latent representation
h into the reconstruction y through a weight matrix Wh, bias
bh, and an activation function g(·):

y = g (Whh+ bh) (20)

To simplify the network architecture, the tied weights strategy
Wv = Wh = W are usually employed. The parameters to be
determined are {W,bv,bh}. The training of an autoencoder
is to minimize the loss:

arg min
W,bv,bh

J (W,bv,bh) (21)

Given the training samples Dn, the loss function is defined
as:

J (W,bv,bh) =
1

NDn

∑
x∈Dn

L(x,y) (22)

where L is the error of the reconstruction and NDn
is the

number of the training samples.
Stacked autoencoder (SAE) is a neural network, where

autoencoders are connected one another to form a cascade.

E. Others

In addition to the aforementioned models, there are other
models aiming to solve particular shortcomings existing in
the above models. For example, capsule network (CapsNet)
was proposed to overcome the shortcoming that CNN does
not well capture the relationships between the parts of an
image [37]. When it applied to fMRI [38] and EEG [15],
it is expected to capture comprehensive relationships among
brain regions, channels, or frequencies, and so on. To shorten
training time, extreme learning machine (ELM) was proposed,
where the weights of hidden layers are randomly assigned
and fixed during the training [39]. Weight randomization is
also implemented in echo state network (ESN) [40]. ESN
is a recurrent neural network where the weights of hidden
layers are randomly and sparsely assigned and fixed while the
weights of output layer can be tuned. Spiking neural network
(SNN) is a biologically inspired model and has been used
to explore brain activity patterns in [41]. Deep polynomial
network (DPN) uses a quadratic function to process its inputs
and is able to learn features between different samples or
dimensions. It was implemented in [42] to utilize features from
multiple views for motor imagery classification, including
common spatial pattern, power spectral density, and wavelet
packet transform. In addition, some variants of deep learning
models were proposed by using different training strategies,
such as generative adversarial network.
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Fig. 3. Percentages of application topics and deep learning models. The outer
ring represents paper percentages for each topic. The models within each topic
are distinguished from the darkest to lightest colors, which stand for CNN,
RNN, SAE, DBN, and other models in order.

IV. APPLICATIONS

We summarized applications, in which deep learning was
utilized for EEG processing and classification, in this section.
For your convenience, we group diverse applications into six
topics, which are brain-computer interface (see Table III for
the details of studies), disease detection (see Table IV), emo-
tion recognition (see Table V), operator functional states (see
Table VI), sleep stage classification (see Table VII), as well
as the applications other than above topics (see Table VIII).
According to statistics, the majority of selected papers belong
to the topics of brain-computer interface (account for 26%)
and disease detection (account for 25%). The percentages of
each topic and the percentages of each model used in each
topic are illustrated in Fig. 3. In addition, we collected the
information of the publicly available datasets which had been
used in the studies and listed them in Table IX.

A. Brain-Computer Interface

A brain-computer interface (BCI) can be defined as a system
that decodes brain activity and translate user’s intentions into
messages or commands for the purposes of communication or
the control of external devices, and more. In this topic, deep
learning was mainly applied to establish motor imagery (MI)-
and P300-based BCIs (see Fig. 4).

Transfer learning is utilized to mitigate the cost of re-
training or solve the problem of data lack in the target domain.
A deep learning model trained on the data collected from a
session or a subject can be transferred to classify/recognise the
data of another session or another subject with a fine-tuning.
In some cases, the fine-tuning is omitted. In general, the fine-
tuning positively contributes to the performance. The extent
of fine-tuning was investigated in a recent study[43]. It shows
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Fig. 4. (A) Paradigms of brain-computer interface. (B) Percentages of the selected papers for each paradigm by the year of 2020

that the best performance of motor imagery classification was
achieved when all layers were tuned except the first hidden
layer under the condition of a low learning rate. Another
study comparing cross-session transferring and cross-subject
transferring demonstrated that the cross-session transferring
was feasible and the cross-subject transferring was inefficient
[44]. With the combination of transfer learning and CNN,
Hang et al. proposed a deep domain adaption network [45].
They used maximum mean discrepancy to minimize the dis-
tribution discrepancy between target and source subjects and
used the center-based discriminative feature learning method
to make deep features closer to corresponding class centers.
The evaluation on BCI Competition datasets (i.e., Dataset
IVa of Competition III and Dataset IIa of Competition IV)
demonstrated a good classification performance. In the study
of cross-subject transferring [46], network weights were trans-
ferred. Dose et al. used a pool of data to obtain a universal
model of CNN [47]. This model was then adapted based on
a small amount of data from a subject before applying to this
subject. Their results showed that an average improvement of
6∼9% was achieved for motor imagery classification in terms
of classification accuracy.

Transferring can also be conducted between domains. A
CNN-based model (VGG-16) trained on image data (the data
from ImageNet) was transferred to recognize EEG data by
freezing the parameters in the first several layers and fine-

tuning the parameters in the last several layers using an EEG
dataset [48]. The performance was better than that of support
vector machine. Similar to the domain of image recognition,
the amount of EEG data can also be increased by augmentation
procedure. Li et al. produced new samples by adding noise into
EEG data [49]. They claimed that adding noise into amplitudes
of power spectra was superior to that adding noise into EEG
time series in terms of classification accuracy. Zhang et al.
used intrinsic mode functions derived from empirical mode
decomposition to generate new EEG samples so that the total
number of samples was increased [50].

Classical models such as CNN and RNN were originally
developed for image or speech recognition, so they did not
well match the characteristics of EEG signal. They should
be adapted before applying to EEG recognition. Li et al.
designed a CNN-based network consisted of three blocks to
capture spatial and temporal dependencies [49]. Multi-channel
raw EEG signals were fed into temporal convolutional layer
and spatial convolutional layer successively in the first block.
In the second block, a standard convolutional layer and a
dilated convolutional layer were utilized to extract temporal
information at different scales while reducing the number of
parameters. The extracted features were finally used for motor
imagery classification in the third block. In another CNN-
based network [51], a layer was fed by all outputs from previ-
ous layers and its output was inputted to all following layers.
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By using such dense inter-layer connections, information loss
could be reduced. In [50], EEG signals were transformed into
tensors and fed into a CNN-like network where convolution
were replaced with complex Morlet wavelets, resulting in
parameter reduction. Wavelet kernel was also used to learn
time-frequency features [46]. Their results demonstrated that
wavelet kernels can provide faster convergence rate and higher
classification accuracy compared to plain CNN. Alazrai et al.
used CNN to extract features from time-frequency images,
which were transformed using a quadratic time-frequency
distribution [52]. The methods were compared to a support
vector machine, and it suggested that CNN can achieve good
performance in MI tasks of the same hand.

In order to accelerate the training course and alleviate the
overfitting problem, Liu et al. adjusted the number and position
of batch normalization layers in a CNN-based network for
P300 detection [8]. Kshirsagar et al. employed leaky rectified
linear unit activation function at each convolutional layer
[53]. To evaluate whether the number of convolutional layers
needs to be adjusted for different BCI tasks and find out an
optimal structure, Lawhern et al. compared networks with
different numbers of convolutional layers [54]. Their results
showed that deep CNN (i.e., five convolutional layers) tended
to perform better on the oscillatory BCI dataset than on
the event-related potential BCI dataset, while shallow CNN
(i.e., two convolutional layers) achieved better performance
on the event-related potential BCI dataset. Apart from CNN,
Lu et al. used a DBN (i.e., three RBMs and an output
layer) to extract features of motor imagery [44]. Some studies
aimed to compare performances of different deep learning
models. For example, Pei et al. compared SAE and CNN in
the classification of reaching movements [55]. They found
that SAE was better than CNN and suggested that poorer
performance in CNN might be due to the lack of training
data. One year later, another study comparing between these
two models showed that SAE had satisfactory performance in
some trials, but inefficient to those trials of the subjects who
were less attentive in P300 detection, while CNN performed
well in terms of accuracy and information transfer rate [53].

The combination of deep learning model and traditional
model or the mixture of two or more types of deep learning
models is applied to EEG classification. For example, SAE
was combined with support vector machine to classify EEG
signal [56]. SAE was also combined with CNN to develop
a new model [57], where CNN layers were used to extract
features from 2D time-frequency images (obtained by Fourier
transform over EEG signals) and SAE was further used to
extract features. In [58], the features extracted by CNN were
fed into an autoencoder for cross-subject MI classification.
This combination achieved a better accuracy for the cross-
subject classification, but worse for the subject-specific classi-
fication, compared to the combination of CNN and multilayer
perceptron (MLP). Zhang et al. presented a hybrid network
comprised of CNN and LSTM, in which EEG signals were
sequentially processed through common spatial pattern, CNN,
and LSTM [59]. The idea of using CNN and LSTM to
extract spatial and temporal features was also conceived by
Yang et al. [60]. However, they inserted a discrete wavelet
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Fig. 5. Percentages of the selected papers across diseases.

transformation (DWT) between CNN and LSTM, which led
to better performance in the MI classification compared to that
of pure combination of CNN and LSTM.

In addition to P300- and MI-based BCIs, deep learning
models also applies to the other BCIs, including motion-
onset visual evoked potentials [61] and self-paced reaching
movements [55]. Nguyen et al. developed a steady state
visually evoked potential (SSVEP)-based BCI speller system,
in which only one channel was used [62]. They used fast
Fourier transform to extract features from this channel and
then fed the features into a CNN model. According to their
results, frequency resolution and time window length influence
classification performance. The frequency resolution of 0.0625
Hz and time window of 2s were optimal for the five-class
classification [62]. Waytowich et al. proposed a compact CNN
to deal with asynchronous problem in SSVEP classification
[63]. It outperformed canonical correlation analysis (CCA) and
combined-CCA.

B. Disease Detection

Machine learning could benefit disease diagnosis by provid-
ing assistant information and preliminary diagnostic results. In
this topic, deep learning models were also widely employed to
detect a variety of diseases (see the distribution of the selected
papers over diseases in Fig. 5). In this subsection, commonly
used models and model designing strategies were introduced
at first, including the examples of single or hybrid models, as
well as the detailed architecture (e.g., layer settings). After-
wards, we described other techniques that have an influence
on the performance of deep learning.

CNN is a deep learning model, which has been widely
adopted for the detection of brain diseases (e.g., seizure
detection [64] and schizophrenia identification [65]). Cao
et al. stacked multiple CNNs to classify epileptic signals.
In this study, the proposed model was compared to a few
classification algorithms (i.e., Support Vector Machine (SVM),
k-Nearest Neighbours (kNN), ELM) under different condi-
tions (i.e., 1. Two-class, seizure/non-seizure; 2. Three-class,
interictal/preictal/ictal; 3. Five-class, interictal/three preictal
states/ictal) [66]. To enhance the performance of epilepsy clas-
sification, original binary labels, namely interictal epileptiform
discharge (IED) and non-IED, were converted into multiple
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labels used for model training [67]. Specifically, samples
were further divided into five subclasses according to spatial
distribution and morphology of EEG waveforms and were then
fed into a CNN model for the training. A new sample was
first classified to one of these subclasses and then the final
classification result (IED versus non-IED) was obtained by
applying a threshold at the last layer. Compared to the CNN
model training with binary labels, the training with further
finer tags could enhance the discriminative power of the model
and led to better performance in the most subjects.

When CNN is combined with other models, classification
performance can be improved. In [68], CNN and autoencoder
(AE) were combined to learn robust features in an unsuper-
vised way. The integrated network had an encoder consisting
of convolution and down-sampling and a decoder consisting
of deconvolution and up-sampling. Their results demonstrated
that CNN+AE is superior to principal component analysis
(PCA) and sparse random projection (SRP) in epilepsy related
feature extraction. In [69], a hybrid model combining CNN,
AE, and LSTM achieved remarkable prediction of seizure.
Combined deep learning model was used for pre-training
and latent representation learning. By this, the accuracy of
focal and non-focal classification was improved [70]. However,
model combination is not always positive to the performance
improvement. Some studies showed that performance may
decline in some cases. For instance, Mumtaz et al. combined
CNN and LSTM to detect unipolar depression. Their results
showed that the hybrid model did not outperform single model
of CNN [71].

Beyond the selection of deep learning models, model set-
tings also vary across studies. Tsiouris et al. found that
overfitting problem can be mitigated by shuffling input EEG
segments, which could replace the dropout role partially [20].
Qiu et al. applied data corruption in the stacked autoen-
coder for seizure detection [72]. Specifically, they designed
a denoising sparse autoencoder, in which some of the input
data were set to zero. This improved model robustness and
reduced overfitting problem. In addition, performance is also
influenced by the condition of data recording. Mumtaz et al.
found that unipolar depression can be more accurately detected
using the EEG recorded under the condition of eyes open
compared to that of eyes closed [71]. In the study of attention
deficit hyperactivity disorder (ADHD) detection using a CNN
model, EEG signals at different channels were rearranged to
make adjacent channels together in the connectivity matrix
to improve accuracy [73]. Moreover, Tsiouris et al. shuffled
interictal and preictal segments of EEG to avoid the overfitting
in seizure detection [20]. Yuan et al. used a channel-aware
module to enhance the capability of feature learning and
concentrate on important and relevant EEG channels [74].
Daoud et al. computed the statistical variance and entropy
of the channels, and selected those with the highest variance
entropy product for seizure prediction [69].

The performance of deep learning for disease detection is
affected by EEG data arrangement. For example, EEG data
are reshaped into 2D format before inputting into a deep
learning model. In [75], EEG data were transformed into
2D images of spectral powers. Then, these images were fed

Valence

Arousal

H
ig
h

L
o
w

Negative Positive

Fig. 6. Four illustrative emotions classified based on the scores of arousal
and valence.

into a CNN network for distinguishing Alzheimer’s disease
and mild cognitive impairment from healthy controls. To
differentiate patients with schizophrenia [76], Pearson cor-
relation coefficients were calculated between channels and
assembled as a correlation matrix. Correlation matrices of
each subject were fed into a CNN network. Moreover, fast
Fourier transform [77] and continuous wavelet transform [78]
were used to transform EEG data into 2D images for motor
impairment neural disorders and epilepsy classification, re-
spectively. Wei et al. further converted 2D images into 3D
stacked images according to the mutual correlation intensity
between channels [79]. To utilize comprehensive information
from different data forms, Tian et al. used three CNNs to
respectively obtain features existing in the time, frequency,
and time-frequency domain, and then ultilized these features
for seizure detection [80]. By comparing with the methods
that ultilizing features from only one domain, the proposed
method exhibited better performance. According to the study
comparing among raw EEG signal, Fourier transform, wavelet
transform, and empirical mode decomposition, raw signals and
empirical mode decomposition were better than the others in
distinguishing focal EEG from non-focal EEG, while Fourier
transform was best in ictal and non-ictal classification [81]. To
handle the problem of inadequate data, sliding time window
was used to split continuous EEG signal into segments with
partial overlapping to increase the data amount in [82]. Cao
et al. developed an interactive system to help experts label
the new data, and the data can be added to fine-tune the
deep learning model to gradually improve the interictal-ictal
continuum classification accuracy [17].

C. Emotion Recognition

Emotion conveys lots of underlying information during
conversations and is part of communication between people.
People can understand emotion by reading facial expression,
voice tone, and gestures. From the perspective of artificial
intelligence, emotion can be recognized based on the data
of facial expression [83], eye movement measures [84], EEG
[85], or galvanic skin response signal [86]. According to the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

arousal and valence, emotion can be categorized into different
classes (see Fig. 6). Based on the statistics of the included
papers in this survey, the studies mainly aimed to classify three
classes (i.e., positive, neutral, and negative) or more classes
(partitioned based on the scores of arousal and valence).
Within these papers, the datasets named ’SEED’ [87] and
’DEAP’ [88] were frequently used to evaluate deep learning
models for emotion recognition.

SEED dataset was published by the BCMI laboratory at
the Shanghai Jiao Tong University [87]. For this dataset, 62
channels were used to collect EEG data from 15 subjects when
they were watching positive, negative, and neutral video clips.
The data were collected from the subjects three times with an
interval of one week or longer. Thus, it enables cross-session
investigations. Zheng et al. demonstrated the stable patterns of
EEG signals over time for emotion recognition [89]. Besides,
they found that differential entropy could provide better perfor-
mance than other features such as differential asymmetry and
rational asymmetry. Using this dataset, Yang et al. proposed
a hierarchical network which consists of subnetwork node,
and this method boosted 5%-10% accuracy [90]. Li et al.
trained a CNN and accomplished around 88% of recognition
accuracy based on features of the gamma band [91]. Zhang
et al. proposed a two-layer RNN model to extract spatial and
temporal features, respectively. The first layer of their model
is an RNN layer that takes EEG signals from electrodes as
inputs. The outputs of the first layer were concatenated along
the time dimension and fed into the second RNN layer. The
performance evaluated on the SEED dataset was 89.5% [83].
In [92], Zeng et al. used an architecture that adapted from Sinc-
Net (a CNN-based network proposed for speaker recognition
[93]) to classify emotion. Their results demonstrated that the
adapted SincNet (i.e., three convolutional layers and three fully
connected layers) was promising for emotion classification,
reaching an accuracy of around 95% as evaluated on the SEED
dataset.

Another dataset named ’DEAP’ [88], was collected from 32
subjects when they watched 40 one-minute-long music videos.
Perceptual emotion was assessed in terms of arousal, valence,
liking, and dominance. Studies using this dataset have showed
that deep learning was successful and effective to classify
emotion categories based on EEG. [85], [94]. Even using raw
EEG as the input, LSTM achieved an acceptable accuracy of
around 85% in the emotion classification [95]. In [96], various
handcrafted EEG features (e.g. sample entropy, mean, and
power spectral density) were fed into three stacked autoen-
coders in a parallel way for voting. Chao et al. also designed
a parallel architecture to process EEG signal. However, they
used DBN as the basic unit [97]. To improve the classification
performance and utilize strengths of different models. Li et
al. combined CNN and LSTM to extract representations from
multi-channel EEG, in which CNN was used to learn inter-
channel and inter-frequency correlation while LSTM was used
to extract contextual information [98]. The model combination
was also used in [99], where feature extraction was done
by graph convolutional networks, temporal information was
memorized by LSTM, and classification was done by a SVM.
The same idea of model combination was also used in [100],

where CNN was used for feature extraction.
Besides the two commonly used datasets (i.e., SEED and

DEAP), Serap Aydın used affective video clips to induce nine
emotional states (fear, anger, happiness, sadness, amusement,
surprise, excitement, calmness, and disgust) and investigated
gender effect on emotion recognition [101]. This paper re-
vealed that emotion is more affected by individual experience
than gender. Zhu et al. designed an experiment to explored
the emotion in the scenario of two-person interaction. In their
experiment, two person need to rate their emotions induced by
the same piciture one by one. They extracted the intra-brain
and inter-brain phase synchronization features from emotional
EEG signals and applied a CNN model to evaluate [102].
As we know, deep learning needs parameter tuning and it is
time-consuming. To mitigate this problem, various strategies
were proposed. Hemantha et al. modified the back-propagation
neural network by arranging layers in a circular manner that
the output can access the parameters of the input and hidden
layers [103]. This modification reduced convergence time by
around 20%. Jirayucharoensak et al. used principal component
analysis for dimension reduction to lower computation cost
[104]. Gao et al. utilized gradient priority particle swarm
optimization to optimize parameters of a CNN model [105].

D. Operator Functional States

The operator functional states (OFS) describe the mental
states of operators in specific working conditions [106]. Two
of them are mental workload and mental fatigue. In specific,
mental workload is a measure of cognitive resources consumed
in the human working memory while mental fatigue is identi-
fied by an accumulated process of a disinclination of effort and
drowsiness. To date, deep learning was used to identify mental
states based on EEG signal. For example, drivers’ [107] [108]
[109] [110] and pilots’ [111] fatigue was monitored for the
purposes of preventing fatigued operation.

Generalization is one of the important metrics to evaluate
a model. In the classification of operator functional states,
large variance across subjects is challenging. Many studies
employed subject-specific classifiers. For example, Tao et al.
fused multiple ELMs and Naive Bayesian model to build
a subject-specific classifier. This ensemble model with fine-
tuned hyper-parameters was of the higher subject-specific
accuracy in mental workload assessment [112]. In the study of
[113], Zhang et al. selected the most relevant EEG channels
for each subject and used these subject-specific channels for
calculating weights between the input layer and the first
hidden layer in the DBN. In contrast to the subject-specific
models, the cross-subject model aims to have a general model
for tolerating variance of subjects. For example, Heron et
al. used multi-path convolutional layers and bi-directional
LSTM layers to learn frequency and temporal features over
subjects. This model achieved low variance in performance
across subjects and showed better generalization compared
to subject-specific models [114]. Another cross-subject model
was proposed using an adaptive DBN with the weights of
the first hidden layer iteratively updated to track the EEG
changes in a new subject [115]. When different tasks were
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used to induce mental workload, the induced workload might
be variable across tasks. The cross-task workload classification
was made by using a CNN+RNN model [116]. Another study
used transfer learning strategy to improve model generalization
for the classification of mental workload [117].

Multiple kinds of features can be fused to improve assess-
ment performance of mental workload. Gao et al. presented a
temporal convolutional block to extract sequential information
of EEG. The block orderly consists of a 1D convolution, a
rectified linear activation, and a batch normalization. Temporal
convolutional blocks and dense layers for spatial feature fusion
were combined to form a novel network. Their results showed
that this architecture can achieve higher accuracy for fatigue
classification, when compared to these networks that replace
convolutional block by 1D convolution [109]. Zhang et al.
proposed a two-stream CNN network to learn spectral and
temporal features [118]. One stream of CNN was fed by power
spectral density topographic maps and the other was fed by
topographic maps of amplitude distributions. At the same year
(2019), they designed another network for the same propose
of learning spectral and temporal features for mental workload
classification. In this network, CNN with 3D kernels were
first applied to EEG cubes, then extracted features from CNN
were flatten to 1D vectors and fed to a bidirectional LSTM
for further processing and classification [116]. Both models
(i.e. two-stream CNN and CNN+LSTM) showed a significant
improvement in mental workload classification.

E. Sleep Stage Classification

Sleep stage classification helps us understand the course
of sleep to assess sleep quality and diagnose sleep-related
disorders. Table X briefly summarized the characteristics of
each sleep stage. With the aid of EEG recording, sleep quality
can be assessed objectively. In the processing of sleep quality,
sleep staging is a precedent step. To date, deep learning has
been applied to sleep staging. For instance, LSTM model was
used for sleep stage classification based on a single channel
EEG [119]. CNN+LSTM model was proposed to classify sleep
stages [120] [28] and detect sleep spindles [121].

Sleep consists of a sequence of stages. Therefore, temporal
information should be useful for sleep stage classification.
Morlet wavelets [122] and time-frequency representations
[119] [123] were applied to retain temporal information in
the extraction of spectral features. These extracted features
were then learned by deep learning models for sleep stage
classification, showing promising performance. Using the
time-frequency representation of EEG, CNN model achieved
good performance [124]. In another study, the CNN was
combined with LSTM to capture both temporal and spatial
information for sleep stage classification [125]. The CNN
was also combined with attention mechanism for sleep stage
classification [126]. In contrast to the supervised learning,
unsupervised learning can perform with unlabeled data, which
is preferable when the data labelling is expensive or very
time-consuming. Zhang et al. presented a CNN model with a
greedy layer-wise training strategy, in which complex-valued
k-means was utilized to train filters used in the convolution

with unlabeled EEG data [127]. In [128], unsupervised sparse
DBN was used to extract features. Subsequent classifiers (e.g.,
kNN or SVM) performed well on sleep stage classification
by using these unsupervised-extracted features. Jaoude et al.
demonstrated that a large training data can help validate
classification performance. They trained a deep learning model
(CNN+RNN) on sleep data from more than six thousand
participants and tested on several publicly available datasets.
The model achieved as good as humam experts in sleep
staging accuracy [129]. Usually, the numbers of samples for
each sleep stage are unbalanced. To date, several methods
have been proposed to release this issue, including the class-
balanced random sampling [122], data augmentation [130],
class-balance training set design [28], and synthetic minority
oversampling technique [131].

F. Others

Those studies that cannot be grouped into the above topics
are presented in this subsection. A summary table with key
information of those studies is prepared (see Table VIII).
On the one hand, EEG with deep learning can be used for
person identification [132], [133], age and gender prediction
[134]. On the other hand, it can also be used to decode brain
activity related to vision, audio [135], and pain [136]. In a
study of image classification [137], LSTM was used to extract
EEG features while CNN was used to extract image features.
This study claimed that features extracted from EEG could
help image classification so that classification performance
was improved. In [138], a CNN+LSTM hybrid network was
used to extracted visual representations from EEG, and a
generative adversarial network was applied to reconstruct
images from the learnt EEG representations. Deep learning
and EEG were also applied to understand brain functions
and structure. These studies aimed to understand functional
brain connectivity [139], speech laterality [140], as well as
memory under specific conditions. For example, Baltatzis et
al. investigated the brain’s activity of different people (ever
experienced school bullying or not) to different stimuli (2D
videos or Virtual Reality) [141]. Doborjeh et al. used EEG
and spiking neural network to decode how the brain react
to various commercial brands (locally familiar or not) [142].
Arora et al. studied the memory loss after seizure surgery
[143].

V. DISCUSSION

In this survey, we reviewed the researches of deep learning
in EEG for the last ten years, which is a critical period for the
development of deep learning used in EEG. An introduction
about deep learning in EEG was first presented in the first
section. Subsequently, we presented classical methods of arti-
facts removal which is an important step in EEG processing.
We detailed prevalent deep learning models, followed by the
comprehensive reviews on different applications that used deep
learning to process and classify EEG signals. These applica-
tions were categorised into several topics for presentation. The
increase in the number of published papers suggested that the
research of deep learning in EEG are expanding over time.
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Although remarkable achievements were obtained, challenges
and limitations still exist, which need to be addressed. We
discuss them below and provide our perspectives.

The performance of deep learning-based classification
should be further improved. Although the published papers
showed the advantages of deep learning in EEG classification
and demonstrated that deep learning is superior to conventional
methods, the performance is much lower compared to the per-
formance achieved by deep learning in image or speech classi-
fication [25], [26]. The reasons for the lower performance are
mainly due to two aspects: EEG signal itself and deep learning
models. On the one hand, EEG signal is non-stationary and
much variable over time, which makes the extraction of robust
features difficult. An effective solution for this problem is to
partition continuous EEG signal into short segments, which
can be seen as a stationary signal. However, this is only
an approximation but not a final solution. When performing
cross-subject classification or cross-session classification, EEG
over subjects or sessions is largely variable, making the above
problem more dominant. On the other hand, most deep models
are originally proposed to process other signals (e.g., images)
rather than EEG. Although certain adaptions of the models
have been done, the performance is still not ideal because
of mismatch between the models and EEG characteristics.
Taking CNN as an example, it is more suitable for image
processing. Raw images can be directly fed into the CNN.
However, this is not the case when applying to EEG signals.
Although we have seen some studies, in which raw EEG
was fed into CNN directly without pre-processing, it is not
mainstream. The mainstream is still to pre-process EEG before
feeding into a deep learning model because the pre-processing
is very effective for removing noises to improve signal-to-
noise ratio. Another advantage of the pre-processing step is
that EEG data can be transformed into other representations
and/or reorganised to facilitate the following processing in the
deep learning model. For instance, spectral power density is
one of the most widely used feature for EEG signal. Without
a separate pre-processing step, this kind of feature cannot be
obtained because temporal EEG signal cannot be transformed
into spectral domain within the deep learning model.

Available data size in EEG studies is significantly smaller
than that available in image or speech studies [25], [26]. As
we know, the deep learning model requires extensive training
and a large data size can benefit model training to a great
extent. Compared to the millions of training data in image
or speech recognition, the scale of training data is much less
in EEG classification, only from tens, hundreds, or at most
thousands of participants. One potential solution for the lack of
EEG data in the model training is the use of transfer learning.
Deep learning model can be trained by the data which are
not collected at the moment and the trained model can be
used for recognition or classification on the new collected EEG
data after fine-tuning or even without fine-tuning [44], [45],
[46]. Unlike image classification, for which there are mature
existing pre-trained models (e.g., ImageNet pre-trained VGG
model), there is no publicly available pre-trained model for
EEG classification. If VGG model is directly applied to EEG,
reorganization of EEG has to be done in order to meet the

input data format of VGG model. This reorganization might
lead to information loss and give detrimental effect on the
EEG classification. In addition, there is no idea how well a
model trained on images can be tuned to classify EEG signal.

Based on the effectiveness comparison of transfer learning,
greater performance improvement was observed in image
classification compared to EEG classification. This might be
due to the lack of effective training framework and strategies
that are suitable for transferring EEG patterns. There was an
attempt to transfer the model trained on images to EEG classi-
fication [48]. This transferring is across distinct modalities. It
is likely to have a better performance when transferring across
relevant modalities. As we know, there are different modalities
(e.g., functional near-infrared spectroscopy (fNIRS) and EEG)
that can be used to measure underlying brain activity. A
deep learning model can be trained on one modality and
then fine-tuned by the other modality to classify signals of
that modality. Or, different modalities can be used together
to train a deep learning model so that the training can be
benefited from the complementary information existing in
the different modalities. It is a fusion of modalities. It has
been seen that classification performance was elevated by
feature fusion in the case of using conventional classifiers
[144]. The fusion could be done at the different stages of the
classification process (e.g., at the beginning of initial feature
fusion or at the later stage of decision fusion [145], [146]).
Wu et al. utilized both EEG and Electrooculogram (EOG) to
classify the level of vigilance by fusing the features extracted
from EEG and EOG [147]. In the future, more extensive
research should be carried out to elevate the development of
fusion in deep learning models. Especially, to address how to
effectively fuse multiple modalities in deep learning models
for neurophysiological signal classification and analysis. Of
course, collecting adequate data is a straightforward solution
for the lack of EEG data. However, this results in new issues,
such as cost increase and time delay. If data collection involves
different institutes, extra communication effort should be paid
to coordinate the data collection. Meanwhile, computation
demand will be increased with the increase of data size, which
requires to upgrade computational hardware or replace with
the new generation hardware (e.g., central processing unit
(CPU) and graphics processing unit (GPU)). As mentioned
in [148], cloud computing service is an effective way to share
hardware resources so that the hardware cost in individual
institutes will be reduced. Using the cloud computing service,
data protection and privacy have to be considered, especially
for clinical data.

When applying a deep learning model to EEG, we need
to adapt the deep learning model in compliance with the
characteristics of EEG. For example, how to arrange the input
data or how to set kernel size should be considered. EEG
signal is usually not directly used and commonly transformed
before feeding into a deep learning model. There are strong
relationships among temporal domain, spectral domain, and
spacial domain. It is important these relationships should be
kept as much as possible when arranging the input data.
When EEG channels are stacked along a dimension, their
spacial layout is distorted. In this case, kernels, such as square
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kernel, that usually-used in image recognition are no longer
effective for EEG classification. A column kernel (covering all
channels) is a better choice, which has been supported by the
study in [149]. Further, Wang et al. extended the column kernel
by considering brain anatomic structure to develop multiple
kernels with the sizes matching brain region sizes, achieving
a better performance in schizophrenia identification compared
to the usually-used kernels, such as square kernel [38].

We believe deep learning models should be changed to
be more flexible. The trained model can be adapted dynam-
ically in real-time as needed. This is not limited to dynamic
parameter tuning. Ideally, model architecture can also be
adjusted when needed. Also, we hope the newly-developed
deep learning model could perform multiple tasks at the same
time in the future. Please see the detailed description in [150].

Apart from the purposes of deep learning-based EEG clas-
sification, deep learning may also be a useful tool to reveal
neural mechanisms of the brain. When a deep learning model
achieves a satisfactory classification performance, it captures
essential differences existing between the classes. Therefore,
we can look at what information the deep learning model
focuses on to roughly infer the underlying associated brain
activity. For example, Goh et al. presented spatial distribution
of brain activations associated with lower limb movements
by probing into the model of spatio-spectral representation
learning [149]. We expect that advanced deep learning models
developed in the future could reversely decompose EEG signal
back into the representation in the brain to reveal underlying
brain mechanisms. It is unrealistic at the current stage, but
paying efforts to make progress towards to this target.

A prominent advance we need to mention is the EEGNet
[54], which is proven effective for different BCI paradigms.
Another promising model is SincNet, which was initially
proposed for speaker recognition and also well for the classi-
fication of EEG signal [92]. New deep learning architectures,
such as capsule network [38], are also required to enhance the
chance of success of EEG applications.

Lastly, a mix of different deep learning units has been
increasingly seen, which integrates the characteristics of these
units to benefit data learning. Because there is not definite
guidance to set optimal deep learning architecture (e.g., model
depth and model width) currently, model complexity might be
considered to determine the model architecture. The model
should have enough capacity for learning information in ac-
cordance with classification tasks while its complexity should
be kept as low as possible to minimize computational cost.

VI. CONCLUSION

Our survey is a glimpse of what have been done for the
deep learning in EEG over the past ten years. There are
still many researches currently on-going at laboratories and
hospitals, dealing with challenges we mentioned above and
beyond. We hope that our survey can provide the researchers
who are working in this field with a summary and facilitate
their researches.
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TABLE I
THE ABBREVIATIONS IN THIS SURVEY

Abbreviation Full Name

AD Alzheimer’s Disease
ADHD Attention Deficit Hyperactivity Disorder
AE Autoencoder
BCI Brain-Computer Interface
CAM-ICU Confusion Assessment Method for the ICU
CapsNet Capsule Network
CJD Creutzfeldt-Jakob Disease
CNN Convolutional Neural Network
DBCS Deep Blind Compresed Sensing
DBN Deep Belief Network
DMCCA Deep Multiset Canonical Correlation Analysis
DN-AE-NTM Deep Network Autoencoder Neural Turing Machine
DPN Deep Polynomial Network
DTI Diffusion Tensor Imaging
DWT Discrete Wavelet Transformation
EEG Electroencephalogram
ELM Extreme Learning Machine
EOG Electrooculogram
ESN Echo State Network
fMRI functional Magnetic Resonance Imaging
fNIRS functional Near-Infrared Spectroscopy
GPED Generalized Periodic Epileptiform Discharge
GRU Gated Recurrent Unit
HC Healthy Controls
IED Iterictal Epileptiform Discharge
kNN k-Nearest Neighbor
LSTM Long Short-Term Memory
MCI Mild Cognitive Impairment
MI Motor Imagery
MLP Multilayer Perceptron
NREM Non-Rapid Eye Movement
OFS Operator Functional States
PCA Principal Component Analysis
PLED Periodic Lateralized Epileptiform Discharge
RASS Richmond Agitation-Sedation Scale
RBM Restricted Boltzmann Machine
REM Rapid Eye Movement
RNN Recurrent Neural Network
RPD Rapidly Progressive Dementia
RSVP Rapid Serial Visual Presentation
SAE Stacked Autoencoder
SAN Subject Adaption Network
SNN Spiking Neural Network
SNR Signal-to-Noise Ratio
SRP Sparse Random Projection
SSRL Spatio-Spectral Represemtation Learning
SSVEP Steady State Visually Evoked Potentials
SVM Support Vector Machine
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TABLE II: Typical Methods for Artifacts Removal

Methods Target Artifacts Property

Notch Filter Line Noise Signal distortion in specific frequencies

Band-Pass Filter Artifacts concentrated on a particular frequency band Preclude certain frequency signals

Independent Component Analysis Ocular and muscular noise removal Decompose channels into independent components

Reject Contaminated Data Segments Ocular noise, muscular noise etc., which are difficultly mitigated Reject gross eye movement and occasional recording artifacts

Wavelet Transformation Analysis Ocular and muscular noise removal Signals are reconstructed based on the corrected coefficient

Common Average Reference Artifacts equivalently affect all channels Amplitudes can be overall reduced

Z-Score Calculation Noisy channels or time periods Generates zero-mean data with unitary variance

Denoise AutoEncoder General Noises Denoise in an unsupervised manner
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TABLE III: Key Information of Papers about Brain-Computer Interface

Authors Models Paradigms Classes Data (Private/Public: No. of Participants, No. of Channels, Sampling Rate)

Ma et al. 2020 [151] CNN MI Rest, Right Hand, and Right Elbow Private: 25 Participants, 64 Channels, 1000 Hz

Zhang et al. 2019 [50] CNN MI Left, Right Hand BCI Competition II Dataset III

Xu et al. 2019 [48] CNN MI Left, Right Hand BCI Competition IV Dataset 2b

Zhu et al. 2019 [152] CNN MI Left, Right Hand
1. Private: 25 Participants, 15 Channels, 1000 Hz

2. BCI Competition IV Dataset 2b

Lu et al. 2017 [44] DBM MI Left, Right Hand BCI Competition IV Dataset 2b

Chiarelli et al. 2018 [153] DNN MI Left, Right Hand Private: 15 Participants, 128 Channels, 250 Hz

Tayeb et al. 2019 [154] CNN, LSTM, CNN+LSTM MI Left, Right Hand
1. Private: 20 Participants, 32 Channels, 256 Hz

2. BCI Competition IV Dataset 2b

Dai et al. 2019 [155] CNN+AE MI Left, Right Hand BCI Competition IV Dataset 2b

Ha et al. 2019 [156] CapsNet MI Left, Right Hand BCI Competition IV Dataset 2b

Shi et al. 2019 [157] CNN MI Left, Right Hand Private: - Participants, 118 Channels, - Hz

Wang et al. 2018 [158] CNN, LSTM MI Left, Right Hand Private: 14 Participants, 11 Channels, 256 Hz

Tabar et al. 2017 [57] CNN, SAE, CNN+SAE MI Left, Right Hand
1. BCI Competition II Dataset III

2. BCI Competition IV Dataset 2b

Amin et al. 2019 [159] CNN MI Left Hand, Right Hand, Feet, and Tongue
1. High Gamma Dataset [160]

2. BCI Competition IV Dataset 2a

Amin et al. 2019 [58] CNN, MLP, AE MI Left Hand, Right Hand, Feet, and Tongue
1. BCI Competition IV Dataset 2a

2. High Gamma Dataset [160]

Li et al. 2019 [51] CNN MI Left Hand, Right Hand, Feet, and Tongue BCI Competition IV Dataset 2a

Hassanpour et al. 2019 [161] DBN, SAE MI Left Hand, Right Hand, Feet, and Tongue BCI Competition IV Dataset 2a

Zhang et al. 2019 [59] CNN+LSTM MI Left Hand, Right Hand, Feet, and Tongue BCI Competition IV Dataset 2a

She et al. 2018 [162] ELM MI Left Hand, Right Hand, Feet, and Tongue BCI Competition IV Dataset 2a

Uribe et al. 2019 [163] ELM MI Left Hand, Right Hand, Feet, and Tongue BCI Competition IV Dataset 2a

Lei et al. 2019 [42] MMDPN MI Idle, Preparation, Walking Imagery, and Restoration Private: 9 Participants, 32 Channels, 512 Hz

Duan et al. 2017 [164] ELM MI Cortical Positivity and Negativity BCI Competition II Dataset Ia
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Alazrai et al. 2019 [52] CNN MI Rest, Grasp-Related (Small Diameter, Lateral, and Extension-Type), Wrist-Related (Ulnar/Radial

Deviation. Flexion/Extension), Fingers-Related ( Flexion and Extension of The Index, The Middle,

The Ring, The Little, and The Thumb Finger)

Private: 22 Participants (18 Able-Bodied and 4 with Transradial Amputations), 16 Channels, 2048 Hz

Hang et al. 2019 [45] CNN MI
1. Right Hand, Foot

2. Left Hand, Right Hand, Feet, and Tongue

1. BCI Competition III Dataset IVa

2. BCI Competition IV Dataset IIa

Yang et al. 2018 [60] CNN+LSTM MI

1. Left Hand, Right Foot

2. Left, Right Hand

3. Left Hand, Tongue

1. Private: 6 Participants, 64 Channels, 500 Hz

2. BCI Competition III Dataset -

3. BCI Competition IV Dataset -

Zhao et al. 2019 [46] CNN MI

1. Left Hand, Right Hand, Feet, and Tongue

2. Left, Right Hand

3. Elbow Flexion/Extension, Forearm Supination/Pronation, Hand Open/Close

1. BCI Compeition IV Dataset 2a

2. BCI Compeition IV Dataset 2b

3. From Ofner et al., 15 Participants, 61 Channels, 512 Hz

Wu et al. 2019 [165] CNN MI
1. Left Hand, Right Hand, Feet, and Tongue

2. Left, Right Hand

1. BCI Competition IV Dataset 2a

2. BCI Competition IV Dataset 2b

3. High Gamma Dataset [160]

Majidov et al. 2019 [166] CNN MI
1. Left Hand, Right Hand, Feet, and Tongue

2. Left, Right Hand

1. BCI Competition IV Dataset 2a

2. BCI Competition IV Dataset 2b

Li et al. 2019 [49] CNN MI
1. Left Hand, Right Hand, Feet, and Tongue

2. Left Hand, Right Hand, Feet, and Rest

1. BCI Competition IV Dataset 2a

2. High Gamma Dataset [160]

Dose et al. 2018 [47] CNN MI Left/Right Fist or Both Fists/Both Feet EEG Motor Movement/MI Dataset

Tang et al. 2019 [167] DBN MI Left, Right Hand Private: 7 Participants, 14 Channels, 128 Hz

Xu et al. 2018 [168] CNN MI
1. Left, Right Hand

2. Left Hand, Right Hand, Feet, and Tongue

1. BCI Competition II Dataset III

2. BCI Competition IV Dataset 2a

Kwon et al. 2020 [169] CNN MI Left and Right Hnad Private: 54 Participants, 62 Channels, 1000 Hz

Mammone et al. 2020 [170] CNN MI Elbow Flexion/Extension, Forearm Supination/Pronation, Hand Open/Close, Resting BNCI Horizon Dataset

Zhang et al. 2020 [171] CNN+LSTM MI
1. Left/Right Fist Open and Close

2. Left hand, right hand, feet, and tongue

1. PhysioNet Dataset

2. BCI Competition IV Dataset 2a

Chen et al. 2020 [172] CNN MI
1. Left hand, right hand, feet, and tongue

2. Right hand and feet

1. BCI Competition IV Dataset 2a

2. SMR-BCI Dataset

Jeong et al. 2020 [173] CNN+LSTM Reaching Movements

and MI

Left, Right, Forward, Backward, Up, and Down Private: 15 Participants, 64 Channels, 1000 Hz
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Ding et al. 2015 [39] ELM - Cortical Positivity and Negativity BCI Competition II Dataset Ia

Ma et al. 2017 [61] DBN mVEP Target Stimulus Signal and The Standard Stimulus Signal Private: 11 Participants, 10 Channels, 1000 Hz

Gao et al. 2015 [174] ANN P300 P300 and Non-P300 Private: 5 Participants, 32 Channels, 2048 Hz

Kundu et al 2019 [56] SAE P300 P300 and Non-P300

1. BCI Competition II Dataset IIb

2. BCI Competition III Dataset II

3. BNCI Horizon Dataset

Kshiragar et al. 2019 [53] SAE, CNN P300 P300 and Non-P300 Private: 10 Participants, 16 Channels, 500 Hz

Liu et al. 2018 [8] CNN P300 P300 and Non-P300
1. BCI Competition III Dataset II

2. BCI Competition II Dataset IIb

Farahat et al. 2019 [175] CNN P300 P300 and Non-P300 Private: 19 Participants, 29 Channels, 508.63 Hz

Solon et al. 2019 [176] CNN P300 P300 and Non-P300 Private: 67 Participants, 64 Channels, - Hz

Vareka et al. 2017 [177] SAE P300 P300 and Non-P300 Private: 25 Participants, 19 Channels, 1000 Hz

Morabbi et al. 2018 [178] DBN P300 P300 and Non-P300 EPFL BCI Dataset

Ditthapron et al. 2019 [179] CNN+LSTM+AE P300 P300 and Non-P300

1. From Citi et al. [180], 12 Participants, 64 Channels, 2048 Hz

2. BCI Competition III Dataset II

3. From Schreuder et al. [181], 10 Participants, 60 Channels, 240 Hz

4. From Acqualagna et al. [182], 13 Participants, 63 Channels, 250 Hz

5. EEG Database Data Set/UCI EEG Dataset

6. From Treder et al. [183], 11 Participants, 63 Channels, 200 Hz

Lawhern et al. 2018 [54] CNN P300, MI, etc.

1. P300 and Non-P300

2. Correct and Incorrect

3. The Left Index, Left Middle, Right Index, and Right Middle Finger

4. Left Hand, Right Hand, Feet, and Tongue

1. Private: 15 Participants, 64 Channels, 512 Hz

2. BCI Challenge

3. Private: 13 Participants, 256 Channels, 1024 Hz

4. BCI Competition IV Dataset 2a

Boloukian et al. 2020 [184] DN-AE-NTM P300, MI, etc.

1. P300 and Non-P300

2. Alcoholic and Control

3. Left/Right Fist or Both Fists/Both Feet

1. From Hoffmann et al. [185], 9 Participants (5 with disablement and 4 able-bodied), - Channel, - Hz

2. EEG Database Data Set/UCI EEG Dataset

3. EEG Motor Movement/Imagery Dataset

Pei et al. 2018 [55] SAE Reaching Movements Left, Central and Right Private: 5 Participants, 32 Channels, 256 Hz

Chen et al. 2019 [186] CNN RSVP Target and Non-Target From Touryan et al. [187], 10 Participants, 64 Channels, 512Hz

Manor et al. 2015 [188] CNN RSVP Target and Non-Target Private: 15 Participants, 64 Channels, 256 Hz

Manor et al. 2016 [189] CNN RSVP Target and Non-Target Private: 15 Participants, 64 Channels, 256 Hz
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Nguyen et al. 2019 [62] CNN SSVEP 6.67, 7.5, 8.57, 10, and 12 Hz Private: 8 Participants, 1 Channel, 128 Hz

Liu et al. 2020 [190] DMCCA SSVEP 6, 8, 9, and 10 Hz Private: 10 Participants, 8 Channels, 250 Hz

Waytowich et al. 2018 [63] CNN SSVEP 12 SSVEP Stimuli Flashed at Frequencies Ranging from 9.25 Hz To 14.75 Hz in Steps of 0.5 Hz From Nakanishi et al. [191], - Participants, - Channel, 2048 Hz

’-’ indicates that the information is unavailable
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TABLE IV: Key Information of Papers about Disease Detection

Author Models Categories Classes Data (Private/Public: No. of Participants, No. of Channels, Sampling Rate)

Doborjeh et al. 2016 [41] SNN Addiction Healthy, Addiction Treated, and Addiction Not Treated Subjects Private: 74 Participants, 26 Channels, - Hz

Ieracitano et al. 2019 [75] CNN Alzheimer’s Disease
1. AD vs. HC, AD vs. MCI, MCI vs. HC

2. AD, MCI, and HC

Private: 189 Participants (63 AD, 63 MCI, 63 HC), 19 Channels, 1024 Hz

Bi et al. 2019 [192] DBN Alzheimer’s Disease

1. AD, HC, and MCI

2. Identification: determine EEG spectral image come from which person

3. Verification: wheather two EEG spectral images come from the same person

Private: 12 Participants (4 HC, 4 MCI, and 4 AD), 64 Channels, 500 Hz

Morabito et al. 2016 [193] SAE, MLP Alzheimer’s Disease CJD/RPD, CJD/HC, and CJD/AD Private: 76 Participants, 19 Channels, - Hz

Hayase et al. 2019 [194] MLP Anaesthesia - Private: 30 Participants, - Channels, 128 hZ

Liu et al. 2019 [195] CNN Anaesthesia Anesthetic Ok, Deep, and Light Private: 50 Participants, - Channel, - Hz

Park et al. 2020 [196] CNN Anesthesia - VitalDB

Kim et al. 2018 [197] CNN, LSTM, DNN Brain Disease
1. Normal and Dementia

2. Normal and Alcoholism

EEG Database Data Set/UCI EEG Dataset

Chen et al. 2019 [73] CNN Children with ADHD Adhd and Controls Private: 107 Participants (50 Children with ADHD and 57 Controls), 128 Channels, 1000 Hz

Chen et al. 2019 [198] CNN Children with ADHD Adhd and Controls Private: 107 Participants (50 Children with ADHD and 57 Controls), 62 Channels, 1000 Hz

Boshra et al. 2019 [199] CNN Concussion Normal and Concussion Private: 54 Participants (26 with Concussion and 28 Controls), 64 Channels, 512 Hz

Sun et al. 2019 [200] CNN+LSTM Consciousness and Delirium Tracking
1. Rass: -5, -4, -3, -2, -1, 0

2. Cam-Icu: 0, 1

Private: 295 Participants (174 for RASS and 121 for CAM-ICU), 4 Channels, 250 Hz

Ay et al. 2019 [201] CNN+LSTM Depression Normal and Depression From Acharya et al. [202], 30 Participants (15 Depressed and 15 Normal), 1 Channel (FP1-T3, FP2-T4), 256 Hz

Acharya et al. 2018 [203] CNN Depression Depression and Normal Private: 30 Participants (15 Deoressed and 15 Normal), FP1-T3 and FP2-T4 Channel, 256 Hz

Li et al. 2019 [204] CNN Depression Depression and Normal Private: 28 Participants (14 Deoressed and 14 Normal), 16 Channels, 250 Hz

Mumtaz et al. 2019 [71] CNN, CNN+LSTM Depression Depression and Normal Private: 63 Participants (33 Deoressed and 30 Normal)

Zhu et al. 2019 [205] MDAE Depression Mild Depression and Normal Private: 51 Participants (24 Mild Deoression and 27 Normal), 16 Channels, 250 Hz

Bouallegue et al. 2020 [206] RNN+CNN Autism and Epilepsy
1. Normal and Autistic

2. Normal and Seizure

1. Private: 19 Participants (10 normal and 9 autistic), 16 Channels, 256 Hz

2. CHB-MIT Scalp EEG database

3. From Andrzejak et al.[207], 10 participants (5h healthy and 5 epileptic patients)
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Cao et al. 2020 [66] CNN+ELM Epilepsy

1. Seizure/Non-Seizure

2. Interictal, Preictal, Ictal

3. Interictal, Three Preictal States, Ictal

1. CHB-MIT Scalp EEG database

2. Private: 10 Participants, 18 Channels, 256 Hz

Daoud et al. 2020 [70] CNN+AE+MLP Epilepsy Focal and Non-Focal
1. From Andrzenak et al.[208], 5 epileptic patients

2. From Andrzejak et al.[207], 10 participants (5h healthy and 5 epileptic patients)

Tsiouris et al. 2018 [20] LSTM Epilepsy Preictal and Interictal CHB-MIT Scalp EEG Database

Yuan et al. 2019 [74] AE Epilepsy Ictal and Non-Ictal CHB-MIT Scalp EEG Database

Karim et al. 2019 [209] SAE Epilepsy Healthy and Epileptic Activiy From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

Ullah et al. 2018 [82] CNN Epilepsy
1. Seizure, and Non-Seizure

2. Normal, Interical, and Ictal

From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

San-Segundo et al. 2019 [81] CNN Epilepsy

1. Focal and Non-Focal

2. Healthy/Ictal, Ictal/Non-Ictal, Healthy/

Non-Focal/Ictal, and Healthy/Focal/Ictal

1. The Bern-Barcelona EEG Database

2. Epileptic Seizure Recognition Data Set

Wen et al. 2018 [68] CNN+AE Epilepsy

1. Health With Eyes Open/Closed (A, B),

Interictal (C, D), and Ictal (E)

2. Epileptic Seizure and Non-Epileptic Seizure

1. From Andrzejak et al.[207], 10 Participants (5 Healthy and 5 Epileptic Patients)

2. CHB-MIT Scalp Database

Acharya et al. 2018 [64] CNN Epilepsy Noraml, Preictal, and Seizure From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

Qiu et al. 2018 [72] SAE Epilepsy Normal, Interictal, and Ictal From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

Turk et al. 2019 [78] CNN Epilepsy

1. A and B

2. A, B, and E

3. A, C, D, and E

4. A, B, C, D, and E

From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

Thara et al. 2019 [210] LSTM Epilepsy
1. Seizure and Non-Seizure

2. Preictal, Interictal, and Ictal

From Bonn University, 500 Participants (missing detial)

Sayeed et al. 2019 [211] DNN Epilepsy
1. Normal and Ictal

2. Normal. Interictal, and Ictal

From Andrzejak et al.[207], 10 Participants (5 Healthy and 5 Epileptic Patients)

Hosseini et al. 2017 [27] CNN, SAE Epilepsy Interictal, and Preictal
1. Private: 9 Participants, 70 Channels, 1000 Hz

2. From Upenn and the Mayo Clinic [212] [213], 2 Participants, 15 Channels, 5000 Hz

Hussein et al. 2019 [214] LSTM Epilepsy

1. Normal and Seizure

2. Normal, Inter-Ictal, and Ictal

3. Health With Eyes Open/Closed (A, B), Interictal (C, D), and Ictal (E)

From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)
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Abdelhameed et al. 2019 [215] CNN+AE Epilepsy
1. Normal and Ictal

2. Normal. Interictal, and Ictal

From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

He et al. 2019 [7] CNN Epilepsy Five Classes: Health With Eyes Open/Closed (A, B), Interictal (C, D), and Ictal (E) From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

Cao et al. 2019 [17] CNN+LSTM Epilepsy Iic Patterns and Others From MGH, over 2500 Participants, 20 Channels, - Hz

Akut 2019 [216] CNN Epilepsy
1. Normal and Ictal

2. Normal. Interictal, and Ictal

From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

Emami et al. 2019 [217] CNN Epilepsy Seizure and Non-Seizure
1. Private: 8 Participants, 19 Channels, 1000 Hz

2. Private: 16 Participants, 19 Channels, 500 Hz

Daoud et al. 2019 [69] MLP, CNN, LSTM,

SAE

Epilepsy Interictal and Preictal CHB-MIT Scalp EEG Database

Tian et al. 2019 [80] CNN Epilepsy Seizure and Non-Seizure CHB-MIT Scalp EEG Database

Wei et al. 2018 [79] CNN Epilepsy Interictal, Preictal, and Ictal Private: 13 Participants, 22 Channels, 500 Hz

Antoniades et al. 2017 [67] CNN Epilepsy IED and Non-IED Private: 18 Participants, 20 Channels, 200 Hz

Baloglu et al. 2019 [218] CNN+LSTM Epilepsy Normal/Ictal, Interictal/Ictal, Normal/Epilepsy, Nonictal/Ictal, Normal/Interictal/Ictal From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

Oshea et al. 2019 [219] CNN Epilepsy Seizure and Non-Seizure
1. Private: 18 Participants, 8 Channels, 256 Hz

2. Helsinki Dataset

Vrbancic et al. 2018 [77] CNN Motor Impairment Neural Disorders Normal and Motor Impairments CSU BCI collection

Jansen et al. 2018 [220] ANN Obstructive Sleep Apnea OSA Patients and Controls From Klosch et al. [221], 247 Participants (50 Patients and 197 Controls), 6 Channels, - Hz

Jonas et al. 2019 [222] CNN Outcome Prediction after Cardiac Arrest Favorable and Unfavorable Outcome Private: 267 Participants, 19 Channels, 250 Hz

Hofmejer et al. 2018 [223] CNN Outcome Prediction in Postanoxic Coma Good and Poor Private: 456 Participants, - Channels, - Hz

Amin et al. 2019 [224] CNN Pathology Normal and Pathology TUH Abnormal EEG Dataset

Ruffini et al. 2019 [225] CNN REM Behavior Disorder (RBD)
1. HC and Parkinson’S Disease (PD)

2. HC+ RBD Vs. PD+Dementia with Lewy Bodies(DLB)

Private: 206 Participants (121 with Idiopathic RBD), 14 Channels, 256 Hz

Naira et al. 2019 [76] CNN Schizophrenia Normal and Schizophrenia From Piryatinska et al. [226], 84 Participants (39 Healthy and 45 with Schizophrenia), 16 Channels, 128 Hz

Oh et al. 2019 [65] CNN Schizophrenia Normal and Schizophrenia Private: 28 Participants (14 with Schizophrenia and 14 Normal), 19 Channels, 250 Hz

Phang et al. 2020 [227] CNN Schizophrenia Normal and schizophrenia Lomonosov Moscow State University Dataset
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TABLE V: Key Information of Papers about Emotion Recognition

Authors Models Classes Data (Private/Public: No. of Participants, No. of Channels, Sampling

Rate)

Jirayucharoensak et al. 2014 [104] SAE Happy, Pleased, Relaxed, Excited, Neutral, Calm, Distressed, Miserable, and Depressed DEAP Dataset

Zheng et al. 2014 [14] DBN Positive and Negative Private: 6 Participants, 62 Channels, 1000 Hz

Al-Nafjan et al. 2017 [85] DNN Excitement, Meditation, Boredom, and Frustration DEAP Dataset

Alhagry et al. 2017 [95] LSTM High/Low Arousal, High/Low Valence, High/Low Liking DEAP Dataset

Li et al. 2017 [98] CNN+LSTM High/Low Valence, High/Low Arousal DEAP Dataset

Yin et al. 2017 [228] SAE High/Low Valence, High/Low Arousal DEAP Dataset

Bozhkov et al. 2017 [40] ESN Positive and Negative Private: 26 Participants, 21 Channels, 1000Hz

Zheng et al. 2017 [89] ELM
1. High/Low Valence, High/Low Arousal

2. Positive, Neutral, and Negative

1. DEAP Dataset

2. SEED Dataset

Yang et al. 2018 [90] Hierarchical Network Positive, Neutral, and Negative SEED Dataset

Chen et al. 2018 [229] DBN Happy, Calm, Sad, and Fear Private: 10 Participants, 16 Channels, 128Hz

Hemanth et al. 2018 [103] DNN Happy, Sad, Relaxed, and Angry DEAP Dataset

Choi et al. 2018 [94] LSTM High/Low Valence, High/Low Arousal DEAP Dataset

Kwon et al. 2018 [86] CNN High/Low Valence, High/Low Arousal DEAP Dataset

Bagherzadeh et al. 2018 [96] SAE High/Low Valence, High/Low Arousal DEAP Dataset

Chao et al. 2018 [97] DBN, RBM Pleasant, Unpleasant, Aroused, and Relaxed DEAP Dataset

Li et al. 2018 [91] CNN Positive, Neutral, and Negative SEED Dataset

Kim et al. 2018 [230] DBN Relaxed, Fear, Joy and Sad Private: 25 Participants, 64 Channels, 1000Hz

Teo et al. 2018 [231] DNN
1. Like and Dislike

2. Rest and Excited

Private: 16 Participants, 9 Channels, - Hz

Zheng et al. 2019 [84] RBM, AE Happy, Sad, Fear, and Neutral SEED-IV Dataset

Chao et al. 2019 [15] CapsNet High/Low Arousal, High/Low Valence, High/Low Dominance DEAP Dataset

Chen et al. 2019 [232] GRU High/Low Valence, High/Low Arousal DEAP Dataset

Balan et al. 2019 [233] DNN No, Low, Medium, and High Fear DEAP Dataset

Zhang et al. 2019 [83] RNN Positive, Neutral, and Negtive SEED Dataset
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Zeng et al. 2019 [92] CNN Positive, Neutral, and Negtive SEED Dataset

Gao et al. 2020 [105] CNN Happy, Sad, and Fear Private: 15 Participants, 30 Channels, 1000 Hz

Serap Aydin 2020 [101] LSTM Fear, Anger, Happiness, Sadness, Amusement, Surprise, Excitement, Calmness, Disgust Private: 23 Participants, 16 Channels, 128 Hz

Cimtay et al. 2020 [234] CNN
1. Positive and Negative

2. Positive, Neutral, and Negative

1. SEED Dataset

2. DEAP Dataset

3. LUMED Dataset

Kim et al. 2020 [235] CNN+LSTM, LSTM
1. Low and High

2. Low, Medium, and High

DEAP Dataset

Kim et al. 2020 [236] CNN+LSTM High/Low Valence, High/Low Arousal DEAP Dataset

Zhu et al. 2020 [102] CNN Anger, Disgust, Neutral, and Happy Private: 40 Participants, 62 Channels, 1000 Hz
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TABLE VI: Key Information of Papers about Operator Functional States

Authors Models Categories Classes Data (Private/Public: No. of Participants, No. of Channels, Sampling Rate)

Chai et al. 2017 [110] DBN Fatigue Alert and Fatigue Private: 43 Participants, 32 Channels, 2048 Hz

Zeng et al. 2018 [108] CNN Fatigue Sober and Fatiuge Private: 10 Participants, 16 Channels, 256 Hz

Yin et al. 2018 [106] ELM Fatigue Low and High Mental Workload Levels Private: 14 Participants, 11 Channels, 500 Hz

Ma et al. 2019 [107] PCANet Fatigue Awake and Fatigue Private: 6 Participants, 32 Channels, 500 Hz

Gao et al. 2019 [109] CNN Fatigue Alert and Fatigue Private: 8 Participants, 30 Channels, 1000 Hz

Jeong et al. 2019 [237] CNN+LSTM Mental State and Drowsiness
1. Alert and Drowsy

2. Very Alert, Fairly Alert, neither Alert nor Sleepy, Sleepy but No Effort to Keep Awake, and Very Sleepy

Private: 8 Participants, 30 Channels, 1000 Hz

Zhang et al. 2017 [113] DBN Mental Workload

1. Unloaded/Low/Normal/High Level

2. Unloaded/Very/Low/Low/

Medium/High/Very High/Overloaded Level

Private: 6 Participants, 15 Channels, 500 Hz

Yin et al. 2017 [238] SAE Mental Workload Low and High Private: 7 Participants, 11 Channels, 500 Hz

Hefron et al. 2018 [114] CNN+LSTM Mental Workload Low and High Private: 8 Participants, 128 Channels, 4096 Hz

Jiao et al. 2018 [239] CNN Mental Workload 4 Levels (1, 2, 3, and 4) Private: 13 Participants, 64 Channels, 500 Hz

Yang et al. 2019 [240] SAE Mental Workload Low and High Private: 8 Participants, 11 Channels, 500 Hz

Tao et al. 2019 [112] ELM Mental Workload Low and High Private: 8 Participants, 11 Channels, 500 Hz

Zhang et al. 2019 [116] CNN+LSTM Mental Workload Low and High Private: 20 Participants, 16 Channels, 1000 Hz

Yin et al. 2019 [117] DAE Mental Workload Low and High
1. Private: 14 Participants, 11 Channels, 500 Hz

2. DEAP Dataset

Zhang et al. 2019 [118] CNN Mental Workload Low, Medium, and High Private: 17 Participants, 16 Channels, 1000 Hz

Wu et al. 2019 [111] CAE Mental Workload and Fatigue Normal, Mild Fatigue, and Excessive Fatigue Private: 40 Participants, 1 Channel, - Hz

Yin et al. 2017 [115] DBN Mental Workload and Fatigue
1. Low, Medium and High Mental Workload

2. Low, Medium and High Fatigue

Private: 8 Participants, 11 Channels, 500 Hz

Li et al. 2017 [16] DBN, SAE Mental Workload and Fatigue Engagement Levels Private: 15 Participants, 32 Channels, 200 Hz
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TABLE VII: Key Information of Papers about Sleep Stage Classification

Authors Models Dimension Classes Data (Private/Public: No. of Participants, No. of Channels, Sampling Rate)

Yildirim et al. 2019 [241] CNN EEG, EOG W, N1, N2, N3, N4, REM
1. Sleep-EDF Database

2. Sleep-EDF Database Expanded

Patanaik et al. 2018 [242] CNN EEG, EOG, W, N1, N2, N3, REM Private: Healthy Adolescents and Adults, Sleep Disorders Patients, Parkinson’s Disease Patients

Yuan et al. 2019 [243] CNN+GRU EEG, EOG, EMG W, S1, S2, SWS, REM UCD Database

Zhang et al. 2019 [244] CNN+LSTM EEG, EOG, EMG W, N1, N2, N3, REM SHHS

Chapotot et al. 2010 [245] MLP EEG, EOG, EMG W, N1, N2, N3, Paradoxical Sleep, and Movement Time Private: 13 Participants, 4 Channels, 128 Hz

Malafeev 2018 [246] LSTM, CNN+LSTM EEG, EOG, EMG W, N1, N2, N3, REM
Private: 18 Healthy Participants, 12 Channels, 256 Hz

Private: 28 patients with narcolepsy and hypersomnia, 6 Channels, 200 Hz

Zhang et al. 2016 [128] DBN EEG, EOG, EMG W, S1, S2, SWS, REM UCD Database

Phan et al. 2019 [247] CNN EEG, EOG, EMG W, N1, N2, N3, REM
1. MASS Database

2. Sleep-EDF Database

Chambon et al. 2018 [248] CNN EEG, EOG, EMG W, N1, N2, N3, REM MASS Database

Jaoude et al. 2020 [129] CNN+RNN EEG, EOG, EMG W, N1, N2, N3, REM

1. Private: 6341 Participants, 6 channels, - Hz

2. Private: 93 participants, 6 channels, - Hz

3. From Rosen et al. [249], 243 patients

4. From Bakker et al. [250], 49 patients

Biswal et al. 2018 [251] CNN+RNN EEG, EMG Sleep Staging, Sleep Apnea, and Limb Movements
1. SHHS Database

2. From Massachusetts General Hospital Sleep Lab, 10000 Participants, 6 EEG Channels, 200 Hz

Sors et al. 2018 [252] CNN Single Channel EEG W, N1, N2, N3, REM SHHS

Kulkarni et al. 2019 [121] CNN+LSTM Single Channel EEG Spindles, Non-Spindles in N2 and N3 Stages

1. MASS Database

2. The DREAMS Sleep Spindles Database

3. From Blank et al. [253], 5 Participants, 2 Channels, 200-512 Hz

4. From Redline et al. [254], 5 Participants, 2 Channels, 200-512 Hz

5. Private: 18 Epileptic Patients, 1 Channel, 512 Hz

Tsinalis et al. 2016 [122] SAE Single Channel EEG W, N1, N2, N3, REM Sleep-EDF Database Expanded
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Zhang et al. 2018 [127] CNN Single Channel EEG W, S1, S2, SWS, REM
1.UCD Database

2.MIT-BIH Polysomnographic Database

Mousavi et al. 2019 [130] CNN Single Channel EEG W, N1, N2, N3, N4, REM Sleep-EDF Database

Supratak et al. 2017 [28] CNN+LSTM Single Channel EEG W, N1, N2, N3, REM
1. MASS Databse

2. Sleep-EDF Database

Dong et al. 2018 [119] LSTM Single Channel EEG W, N1, N2, N3, REM Private:62 Participants, 20 Channels, - Hz

Zhang et al. 2020 [124] CNN Single Channel EEG W, S1, S2, SWS, REM
1.UCD Database

2. MIT-BIH Polysomnographic Database

Bresch et al. 2018 [120] CNN+LSTM Single Channel EEG W, N1, N2, N3, REM
1. The SIESTA Normative Database

2. Private: 29 Participants, 1 Channel, 1000 Hz

AlMeer et al. 2019 [255] DNN Single Channel EEG W, N1, N2, N3, REM Sleep-EDF Database

Qu et al. 2020 [256] CNN Single channel EEG W, N1, N2, N3, REM
1. MASS Database

2. Sleep-EDF Database

Hartmann et al. 2019 [123] LSTM Multiple Channels EEG Consecutive Activation Phases and Background Phase CAP Sleep Database

Charnbon et al. 2019 [257] CNN Multiple Channels EEG Spindles, K-complexes, and Arousals

1. MASS Database

2. Stanford Sleep Cohort Dataset [258], 26 Participants, 1 Channel (C4 or C3), 128 Hz

3. WisConsin Sleep Cohort Dataset [259], 30 Participants, 1 Channel (C4 or C3), 200 Hz

4. MESA

Jeon et al. 2019 [125] CNN+LSTM Multiple Channels EEG W, N1, N2 Private: 218 Pediatric Participants, 32 Channels, 200 Hz

Chriskos et al. 2020 [131] CNN Multiple Channels EEG N1, N2, N3, REM Private: 22 Participants, 19 Channels, - Hz
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TABLE VIII: Key Information about Other Applications

Authors Models Categories Classes Data (Private/Public: No. of Participants, No. of Channels, Sampling Rate)

Kaushik et al. 2019 [134] LSTM Age and Gender Prediction Class from 0 to 5, Varies from Age and Gender From Kaur et al. [260], 60 Participants (35 males and 25 females), 14 Channels, - Hz

Wulsin et al. 2012 [261] DBN Anomaly Detection 5 Classes: Spike and Sharp Wave, GPED and Triphasic, PLED, Eye

Blink, and Background

Private: 11 Participants, 17 Channels, 256 Hz

Anem et al. 2019 [262] CNN+LSTM Artifacts Removal - -

Jacob et al. 2019 [263] - Artificial Muscle Intelligence System Grasp, Release, Rollup, Rolldown, and Rollup Release Private: 20 Participants (10 Healthy and 10 Paralyzed), 16 Channels, - Hz

Huang et al. 2018 [135] CNN Auditory Salience 4923 Classes of Video Classification Private: - Participants, 128 Channels, 2048 Hz

Yang et al. 2018 [264] SAE Automatic Ocular Artifacts Removal - BCI Competition IV Dataset 1

Jiang et al. 2019 [137] CNN+LSTM Brain Imaging Classification 40 Classes of Images ImageNet-EEG Dataset [265]

Baltatzis et al. 2017 [141] CNN Bullying Incidences Identification Bullying 2D/VR, Non-Bullying 2D/VR Private: 18 Participants, 256 Channels, 250 Hz

Toraman et al. 2019 [140] CNN Cerebral Dominance Detection Left and Right-Hemisphere Dominance Private: 67 Participants (35 Right-Hand Dominat and 32 Left-Hand Dominat), 18 Channels, - Hz

Doborjeh et al. 2018 [142] SNN Classification of Familiarity of Marketing Stimuli Familiar and Unfamiliar Brands Private: 20 Participants, 19 Channels, 256 Hz

Croce et al. 2019 [266] CNN Classification of Independent Components Brain ICs and Artifact ICs Private: - Participants, 128 Channels, 500 Hz

Zheng et al. 2020 [138] LSTM+CNN, GAN Decoding Human Brain Activity 40 Classes of Images From Spampinato et al. [265], 6 Participants, 128 Channels, 1000 Hz

Ming et al. 2019 [267] SAN EEG Data Analysis
1. Different Vigilance Stages

2. P300 and Non-P300

1. Private: - Participants, - Channel, 500 Hz

2. From Wu et al., 18 Participants, 64 Channels, 512 Hz

Nagabushanam et al. 2019 [268] LSTM EEG Signal Classification - From Bonn University, - Participants, 20 Channels, - Hz

Hua et al. 2019 [139] SAE Functional Brain Network High and Low Proficiency Operators Private: 20 Participants, 8 Channels, 1000 Hz

Goh et al. 2018 [149] SSRL Gait Pattern Classification Free Walking, Exoskeleton-Assisted Walking at Zero, Low, and High

Assistive Forces

Private: 27 Participants, 20 Channels, 1000 Hz

Fares et al. 2019 [269] LSTM Image Classification 40 Classes of Images From Spampinato et al. [265],6 Participants, 128 Channels, 1000 Hz

Akbari et al. 2019 [270] DNN Intelligible Speech Recognition - Private: 5 Participants, - Channel, 3000 Hz

Antoniades 2018 [271] CNN Mapping Scalp EEG to iEEG - Private: 18 Participants, 32 Channels (12 FO and 20 Scalp), 200 Hz

Bird et al. 2019 [272] MLP, LSTM Optimise the Topology of ANN

1. Relaxed, Concentrative, and Neutral

2. Positive, Neutral, and Negative

3. 0 to 9 Imaginary EEG

1. EEG Brainwave Dataset: Mental State

2. EEG Brainwave Dataset: Feeling Emotions

3. MindBigData Dataset
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Wang et al. 2019 [133] CNN Person Identification -
1. From PhysioNet (missing detail), 109 Participants, 64 Channels, 160 Hz

2. Private: 59 Participants, 46 Channels, 250 Hz

Ozdenizci et al. 2019 [132] CNN Person Identification - Private: 10 Participants, 16 Channels, 256 Hz

Singhal et al. 2018 [273] DBCS Reconstruction and Analysis of Biomedical Signals -
1. From Andrzejak et al. [207], 10 Participants (5h Healthy and 5 Epileptic Patients)

2. BCI Competition II and III

Gogna et al. 2017 [274] SAE Reconstruction and Analysis of Biomedical Signals - From Andrzejak et al. [207], 10 Participants (5 Healthy and 5 Epileptic Patients)

Jang et al. 2019 [275] CNN Seizure Detection of Mice Seizure and Non-Seizure Private: Total 4704h of EEG Recording, 1000 Hz

Arora et al. 2018 [143] LSTM Successful Episodic Memory Encoding Prediction Successful and Unsuccessful Recall From UT Southwesetern Medical Center: 30 Participants (15 Dominat and 15 Non-Dominant Hemisphere), 13

and 17 Channel (8-14 Contacts per Electrode), 1000 Hz

Yu et al. 2020 [136] CNN Tonic Cold Pain Assessment No Pain, Moderate Pain, and Sever Pain Private: 32 Participants, 32 Channels, 500 Hz

Ogawa et al. 2018 [276] LSTM Video Classification Liked Video and Not Liked Video Private: 11 Participants, 1 Channel, 1024 Hz

Said et al. 2018 [277] SAE Vital Signs Compression and Energy Efficient Delivery - DEAP Dataset
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TABLE IX: A Summary of Datasets Mentioned in This Survey

Dataset Name Modality Data Information Category URL

BCI Challenge EEG 26 Participants, 56 Channels, 600 Hz P300 and Non-P300 https://www.kaggle.com/c/inria-bci-challenge

BCI Competition Data EEG Multiple Datasets Multiple Categories http://www.bbci.de/competition

BNCI Horizon EEG Multiple Datasets Multiple Categories http://bnci-horizon-2020.eu/database/data-sets

CAP Sleep Database EEG, EOG, EMG, ECG 16 Participants, 3 EEG Channels W, S1, S2, S3, S4, and REM https://physionet.org/content/capslpdb/1.0.0

CHB-MIT Scalp EEG Database EEG 22 Participants, 23 Channels, 256 Hz Ictal Activity, Siezure Onset, and Ofsset https://physionet.org/content/chbmit/1.0.0

CSU BCI Collection EEG Vary with data sets in the database Normal and Motor Impairments https://www.cs.colostate.edu/eeg

DEAP Dataset EEG and Physiological Signals 32 Participants, 32 Channels, 512 Hz Scores For Arousal, Valence, Iiking, Dominance and

Familiarity

http://www.eecs.qmul.ac.uk/mmv/datasets/deap

EEG Brainwave Dataset: Feeling Emotions EEG 2 Participants, 4 Channels, - Hz Positive, Neutral, and Negative https://www.kaggle.com/birdy654/eeg-brainwave-dataset-feeling-emotions

EEG Brainwave Dataset: Mental State EEG 4 Participants, 4 Channels, - Hz Relaxed, Concentrating, and Neutral https://www.kaggle.com/birdy654/eeg-brainwave-dataset-mental-state

EEG Database Data Set/UCI EEG Dataset EEG 122 Participants, 64 Channels, 256 Hz Alcoholic and Control https://archive.ics.uci.edu/ml/datasets/eeg+database

EEG Motor Movement/Imagery Dataset EEG 109 Participants, 64 Channels, 160 Hz Left/Right Fist or Both Fists/Both Feet https://physionet.org/content/eegmmidb/1.0.0

EPFL BCI Dataset EEG 9 Participants, 34 Channels, 2047 Hz P300 and Non-P300 https://www.epfl.ch/labs/mmspg/research/page-58317-en-html/bci-2/bci datasets/emotion dataset/

Epileptic Seizure Recognition Data Set EEG 500 Participants, - Channels, 173.61 Hz Healthy With Eyes Open/Closed, Patients during

Seizure/Interictal from Hippocampal Location/Interictal

from Epileptogenic Zone

https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition

MASS Database EEG, EOG, EMG, ECG 200 Participants, 4–20 EEG Channels, 256Hz W, N1, N2, N3, and REM http://www.ceams-carsm.ca/en/MASS

MESA EEG, EOG 6814 Participants, Fz-Cz, Cz-Oz, C4, 256Hz Arousal Level https://www.sleepdata.org/datasets/mesa

MindBigData EEG Vary with data sets in the dataset Brain Reaction from Seeing A Digit (0 to 9) http://www.mindbigdata.com/opendb

MIT-BIH Polysomnographic Database EEG, ECG, EOG, EMG, Respiration Signals, and

Physiological Signals

60 subjects, 7 PSG Channels, 250 Hz W, N1, N2, N3, N4, and REM https://www.physionet.org/content/slpdb/1.0.0

SEED Dataset EEG and Eye Movement 15 Participants, 62 Channels, 1000Hz
Positive/Neutral/Negative

and Happy/Sad/Neutral/Fear

https://bcmi.sjtu.edu.cn/home/seed/

SHHS EEG, EOG, EMG 6,441 Participants, C4-A1 and C3-A2, 125 Hz W, N1, N2, N3, N4, and REM https://sleepdata.org/datasets/shhs/

Sleep-EDF Database Expanded EEG, EOG, EMG 61 Participants, Fpz-Cz and Pz-Oz, 100 Hz W, S1, S2, S3, S4, and REM https://physionet.org/content/sleep-edfx/1.0.0

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



37

Sleep-EDF Database EEG, EOG, EMG 20 Participants, Fpz-Cz and Pz-Oz, 100 Hz W, N1, N2, N3, and REM https://physionet.org/content/sleep-edf/1.0.0

The Bern-Barcelona EEG Database EEG 5 Participants, 7500 Pairs of Signals, 512 or 1024 Hz Focal and Non-Focal https://www.upf.edu/web/mdm-dtic/datasets

The SIESTA Normative Database (cross-institute) EEG, EOG, EMG, ECG 292 Participants, 6 EEG Channels, Variable (minimum

100Hz)

W, N1, N2, N3, and REM http://ofai.at/siesta/database.html

UCD Database EEG and Physiological Signals 25 Participants, C3–A2 and C4–A1, 128Hz W, S1, S2, Sws, and REM https://physionet.org/content/ucddb/1.0.0

LUMED Dataset EEG and Physiological Signals 11 Participants, 8 Channels, 500 Hz Negative and Positive Valence https://www.dropbox.com/s/xlh2orv6mgweehq/LUMED EEG.zip?dl=0
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TABLE X
A BRIEF SUMMARY OF SLEEP STAGES

Sleep Stages Main Features of EEG in Each Stage Brief Description

Wake Alpha Waves Before Sleep
Stage N1 NREM Low-Voltage Theta Waves Blood Pressure Falls
Stage N2 NREM Theta Waves with K Complexes and Sleep Spindles Cardiac Activity Decrease
Stage N3 NREM High-Amplitude Delta Waves High Threshold for Arousal
Stage REM Sleep Low-Amplitude Theta Waves Blood Pressure and Pulse Rate Increase
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