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Summary The problem of detecting change points in the mean of high dimensional
panel data with potentially strong cross–sectional dependence is considered. Under the
assumption that the cross–sectional dependence is captured by an unknown number of
common factors, a new CUSUM type statistic is proposed. We derive its asymptotic
properties under three scenarios depending on to what extent the common factors are
asymptotically dominant. With panel data consisting of N cross sectional time series of
length T , the asymptotic results hold under the mild assumption that min{N,T} → ∞,
with an otherwise arbitrary relationship between N and T , allowing the results to apply
to most panel data examples. Bootstrap procedures are proposed to approximate the
sampling distribution of the test statistics. A Monte Carlo simulation study showed that
our test outperforms several other existing tests in finite samples in a number of cases,
particularly when N is much larger than T . The practical application of the proposed
results are demonstrated with real data applications to detecting and estimating change
points in the high dimensional FRED-MD macroeconomic data set.

Keywords: High dimensional panel, Change points in mean, Asymptotic limit, Monte
Carlo simulation, FRED-MD macroeconomic data.

1. INTRODUCTION

Suppose we observe yi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T , which are real valued observations of
N financial or economic variables over T time units. Given the fast proliferation and
accessibility of economic and financial data available today, usually at least one of N
and T is large. This has spurred numerous efforts to develop inferential procedures for
such data, and the primary features that distinguish these procedures concern the level
of cross–sectional dependence assumed, and the relationship between N and T . The
case when N >> T or T is relatively small is commonly referred to as “panel data” in
the econometrics literature. Other regimes describing the relationship between N and T
generally fall within the scope of high-dimensional multivariate time series analysis.

The methods for the analysis of such data are impacted by how cross–sectional de-
pendence is modeled. A relatively common practice is to assume that the cross–sectional
time series are independent/uncorrleated, mainly to reduce some theoretical challenges,
although this evidently limits the applicability of the corresponding methods. The most
common way to model dependence between the panels is to use common factors. High–
dimensional factor models have experienced a rapid development over the last few decades,
providing a theoretically tractable and relatively realistic model for cross–sectional de-
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pendence. We refer to Bai and Ng (2008) and Chudik and Pesaran (2015) for excellent
surveys on the subject.

Often high–dimensional time series exhibit clear shocks or structural breaks that can
be thought of as change points in the data generating mechanism. These are commonly
attributable to policy changes, market crashes, or other events that affect all cross–
sections simultaneously. Some of the first papers on change point tests in a panel data
setting trace back to Joseph and Wolfson (1992, 1993). Bai (2010) followed their work in
developing a least–squares type change point test for high dimensional panel data, and
he assumed largely that the cross–sectional time series are independent. The absence of
cross–sectional dependence is often unrealistic in empirical studies. Kim (2014) conducted
several simulation studies that demonstrate that high dimensional change point statistics
can provide misleading results if cross–sectional dependence is not adequately accounted
for. Horváth and Husková (2012) proposed CUSUM–type tests to detect breaks in the
means of high dimensional factor models, although it was shown in their theoretical and
empirical analysis that their proposed CUSUM procedures break down if the dependence
between the panels is too strong. Other than testing changes in the means, Kim (2011,
2014) and Baltagi et al. (2017) extended the least squares statistics of Bai (2010) to
detect breaks in the parameters of linear panels with both serial and cross–sectional
dependence.

The theoretical analysis of these procedures is usually carried out under specific condi-
tions on the divergence rates of N and T , and a wide range of such conditions have been
considered in the literature. For example, Westerlund (2018) and Antoch et al. (2019)
proposed tests and estimators for common breaks in cross–correlated panel data with
large N but small T . In finance and macroeconomic studies, the dimension of data can
be massively large, e.g. the data examples in Stock and Watson (2012) and McCracken
and Ng (2016). Horváth and Husková (2012), under the assumption of weakly correlated
panels, allowed both T and N to be large but the condition

√
N/T → 0 is assumed,

which is a necessary condition to establish the asymptotic validity of their test. Related
conditions and asymptotic results for the estimator of time of change can be found in
Horváth et al. (2017). Furthermore, to test the stability of factor loadings across panels
with large N and T , Chen et al. (2014) and Han and Inoue (2015) allow the condition
that

√
T/N → 0, and Baltagi et al. (2017) assume the condition log T/N → 0.

The purpose of this paper is to develop change point detection and estimation proce-
dures under general dependence conditions between the cross-sections and the relative
size of N and T . We propose a new CUSUM–type change point test statistic to detect
common change points in the cross–sectional means. Since the behavior of the proposed
statistics applied to high-dimensional panel data depend both on the relative divergence
rates of N and T as well as the unknown strength of the cross–sectional dependence, we
introduce new centering and normalizing methods for this CUSUM process that circum-
vent the need to know or estimate the underlying dependence structure. By assuming
that the cross–sectional dependence can be modeled by a factor model, we derive the
asymptotic distribution of the statistic under three scenarios depending on the strength
of cross–sectional dependence represented by the common factors requiring only that
min{N,T} → ∞. A bootstrap procedure is introduced and used to get critical values
for the proposed tests. The finite sample performance of our test, as well as a compari-
son to a number of existing tests, is evaluated through a Monte Carlo simulation study,
which shows that the proposed test achieves better size control when compared to other
available methods under a wide range of dependence scenarios and relative sizes of N
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and T . In many cases the proposed test dramatically improves the power as well. Finally,
to provide a practical demonstration of our test, we perform a change point analyses of
the FRED-MD macroeconomic data set and detect multiple changes over the last two
decades in the US.

The rest of paper is structured as the following. In Section 2 we introduce the new
test statistic and state our main theoretical results. Extensions of these results to serially
correlated errors are discussed in Section 3. In Section 5, we present the results of our
Monte Carlo simulation study. Section 6 provides empirical applications and Section 7
concludes. The proofs of all technical results are given in Online supplement.

2. TEST STATISTICS AND MAIN RESULTS

We are interested in detecting changes in the means of high dimensional multivariate
(panel) data with observations yi,t, which follows the basic model

yi,t = µi,` + λ>i f t + ei,t, k`−1 < t ≤ k`, 1 ≤ ` ≤ R+ 1, (2.1)

where 1 ≤ i ≤ N , where 1 ≤ k1 < k2 < . . . < kR ≤ T denote change points, and
µi,1, µi,2, . . . , µi,R, are the means of the observations in the ith cross–section. The error
terms {ei,t, 1 ≤ t ≤ T} can be thought of as linear or non–linear time series in t for
each 1 ≤ i ≤ N , in order to accommodate wider financial applications. The cross–
sectional dependence is modeled by the common factors f t, 1 ≤ t ≤ T , f t ∈ Rp, and
the corresponding loadings λi ∈ Rp. Under the null hypothesis, there is no change in the
means:

H0 : µi,1 = · · · = µi,R, 1 ≤ i ≤ N.
Under the alternative,

HA : µi,j 6= µi,j+1, j ∈ {1, ..., R}, for some i ∈ {1, ..., N}.

We discuss in Theorem 2.4 conditions on the sizes of the changes δi,` = µi,`+1−µi,`, 1 ≤
` ≤ R that can be detected. Let bxc denote the integer part of x. To detect changes in
the mean in any particular unit of the cross-section, it is natural to consider that unit’s
CUSUM process

Si(u) =

buTc∑
t=1

(yi,t − ȳi,T ), where ȳi,T =
1

T

T∑
t=1

yi,t.

Intuitively, Si(u) will be large in absolute value under HA for a cross–section that un-
dergoes a mean change when u is close to k`/T for some 1 ≤ ` ≤ R. In order to test H0

against HA, a natural idea is to aggregate the CUSUM processes across the N cross–
sectional units. Horváth and Husková (2012) consider the L2 aggregated process

HN,T (u) =
1

TN1/2

N∑
i=1

(
1

σ̂2
i,T

S2
i (u)− bTuc(T − bTuc)

T 2

)
, (2.2)

where σ̂2
i,T is a consistent estimator of the (long–run) variance of each cross–section.

By assuming the common factor loadings are zero or are sufficiently quickly decreasing
functions of N and N2/T → 0, Horváth and Husková (2012) prove that HN,T (u) con-
verges weakly to a Gaussian process, which facilitates asymptotically consistent tests
of H0. In the present paper, we wish to establish results of this type under much less
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restrictive conditions on the relative divergence rate of N and T and the strength of the
cross–sectional dependence represented by the common factor loadings.

A clear challenge that arises here is that neither the normalizing term TN1/2 nor the
centering process bTuc(T − bTuc)/T 2 are adequate to define an aggregated CUSUM pro-
cess with a tractable asymptotic distribution in general under (2.1) when only min{N,T} →
∞ is assumed. In fact, the appropriate centering sequences in general might depend on
the properties of the unknown, and in many cases inestimable, common factor loadings
and the variance matrix of the common factors.

To overcome these issues, we use random centering and study test statistics based on
functionals of

VN,T (u) =

N∑
i=1

(
S2
i (u)− buT c (T − buT c)

bτT c (T − bτT c)
S2
i (τ)

)
1{uT ≥ 1}, (2.3)

where τ is a constant satisfying

Assumption 2.1. 0 < τ < 1.

This process is similar to HN,T (u) in (2.2), but in this case the centering process is
replaced by functionals of the cross–sectional CUSUM processes themselves. The aim of
doing this is to adapt the centering to the unknown cross–sectional dependence structure.
This idea is similar in spirit to techniques in “self-normalized” or “ratio-type” statistics;
see, Halungaa and Osborn (2012) and Shao (2015). The parameter τ acts as a tuning
parameter that is used to properly center the process. We study the choice of this param-
eter in the simulation studies with T ≥ 100 below, and in summary recommend choosing
τ = 0.1 or τ = 0.9, in order to improve the power of the test. For T < 100, we suggest
to choose τ = 0.3 or τ = 0.7. We comment on the asymptotic behavior of VN,T (u) as a
function of u and τ in Remark 2.1.

2.1. Main theoretical asymptotic results

In order to derive the asymptotic properties of the process VN,T , we make use of the fol-
lowing basic assumptions. First, we assume that the cross-sectional dependence between
the panels is fully explained by the common factors, so that the idiosyncratic errors
satisfy:

Assumption 2.2. {ei,t,−∞ < t <∞} are independent sequences, 1 ≤ i ≤ N .

Assumption 2.3. For each panel i, {ei,t,−∞ < t < ∞} is a stationary sequence with
Eei,t = 0, Eei,tei,s = 0 for t 6= s, 1 ≤ i ≤ N , and there are ν0 and κ > 4 such that

E|
∑`
t=1 ei,t|κ ≤ ν0`κ/2.

The Prokhorov-Lévy distance between measures and the corresponding processes is de-
noted by ρPL. Let

si(u) =

bTuc∑
t=1

ei,t, (2.4)

and W be the Wiener process (standard Brownian motion). For the definition of the
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Prokhorov–Lévy measure we refer to Billingsley (1968, p. 238). The next assumption
supposes that the partial sums of the errors in each panel satisfy a functional central
limit theorem:

Assumption 2.4. limmin(N,T )→∞max1≤i≤N ρPL(T−1/2si(·), σiW (·)) = 0, where σ2
i =

Ee2i,t and lim infi→∞ σ2
i > 0.

The fact that ρPL(T−1/2si(·), σiW (·))→ 0 holds for many stationary time series pro-
cesses, including ARCH, and symmetric and non–symmetric GARCH processes, see Ex-
ample 8-9 in Wu (2011). Assumption 2.4 supposes that this convergence is uniform over all
cross-sections. For additional discussion on related assumptions, we refer to Carrasco and
Chen (2002), Nzé and Doukhan (2004), Doukhan and Wintenberger (2007) and Hörmann
(2008). The results in the above papers show that the convergence of the partial sum
process of variables following many parametric models is uniform if the parameters are
in naturally defined compact set.

Next we define

σ̄4 = lim
N→∞

1

N

N∑
i=1

σ4
i , (2.5)

which we assume exists, and

g(u, v) = u2(1− v)2, 0 ≤ u ≤ v ≤ 1. (2.6)

Note that Assumption 2.3 implies that σ̄4 <∞, while Assumption 2.4 yields that σ̄4 > 0.
We also require the mild assumption that the factor loadings are essentially bounded as
N →∞. Given that ‖ · ‖ denotes the Euclidean norm,

Assumption 2.5. λi = λi,N , 1 ≤ i ≤ N and lim supN→∞max1≤i≤N ‖λi‖ <∞.

Let

Q = lim
N→∞

(
N∑
i=1

‖λi‖2
)−1 N∑

i=1

λiλ
>
i (2.7)

and

c∗ = lim
N→∞

1

N1/2

N∑
i=1

‖λi‖2, for c∗ ∈ [0,∞]. (2.8)

We note that Q is a finite, symmetric and non–negative definite matrix. The common
factors can be arbitrary, perhaps serially correlated, stationary vector valued processes,
but we assume that they too satisfy the functional central limit theorem. Let Ip denote
the p× p identity matrix.

Assumption 2.6. Eft = 0, Eftf
>
t = Ip and

T−1/2
bTuc∑
t=1

ft
D[0,1]−→ WΣ(u),

where WΣ(u) ∈ Rp is a Gaussian process with EWΣ(u) = 0 and EWΣ(u)W>
Σ(v) =

Σ min(u, v) and Σ is a non–negative definite matrix.
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We note that Assumption 2.6 can be written as the Prokhorov–Lévy distance between
the measures generated by the partial sum process when the Gaussian process goes to 0.
The matrix Σ is the long run covariance matrix of the partial sum of the ft’s.

The following three theorems show that the asymptotic behavior of the process VN,T
depends crucially on the constant c∗ in (2.8). Three different behaviors are observed
depending on if c∗ = 0, c∗ ∈ (0,∞), or c∗ =∞.

Theorem 2.1. If H0, and Assumptions 2.1–2.6 hold, and c∗ = 0, then we have that as
min{N,T} → ∞,

1

TN1/2
VN,T (u)

D[0,1]−→ Γ(u),

where Γ(u) is a Gaussian process with EΓ(u) = 0 and

EΓ(u)Γ(v) = σ̄4

(
g(u, v)− u(1− u)

τ(1− τ)
g(τ, v)− v(1− v)

τ(1− τ)
g(τ, u) +

u(1− u)

τ(1− τ)

v(1− v)

τ(1− τ)
g(τ, τ)

)
.

To state the next theorem we define

BΣ(u) = WΣ(u)− uWΣ(1), 0 ≤ u ≤ 1, (2.9)

to be the generalized p-dimensional Brownian bridge.

Theorem 2.2. If H0, and Assumptions 2.1–2.6 hold, and c∗ =∞, then we have that as
min{N,T} → ∞,

1

T

(
N∑
i=1

‖λi‖2
)−1

VN,T (u)
D[0,1]−→ trace

(
Q

(
BΣ(u)B>Σ(u)− u(1− u)

τ(1− τ)
BΣ(τ)B>Σ(τ)

))
.

(2.10)

where trace(·) denotes the trace of square matrices.

The difference between Theorems 2.1 and 2.2 arises because of the different “strengths”
of the common factors. In Theorem 2.1, the effect of the common factor is asymptotically
negligible, and hence the limiting process is Gaussian, while in Theorem 2.2 the common
factor dominates and the limit is a quadratic form of an Rp valued Gaussian process.
Using the vec operator (cf. Abadir and Magnus (2005, p. 283)), we get that

trace

(
Q

(
BΣ(u)B>Σ(u)− u(1− u)

τ(1− τ)
BΣ(τ)B>Σ(τ)

))
= (vec(Q))>

(
vec(BΣ(u))− u(1− u)

τ(1− τ)
vec(BΣ(τ))

)
.

We also note if p = 1, then Q = 1, so in this case{
trace

(
Q

(
BΣ(u)B>Σ(u)− u(1− u)

τ(1− τ)
BΣ(τ)B>Σ(τ)

))
, 0 ≤ u ≤ 1

}
D
=

{
σ2
1,f

(
B2(u)− u(1− u)

τ(1− τ)
B2(τ)

)
, 0 ≤ u ≤ 1

}
,

where σ2
1,f is the long run variance of the one dimensional common factors, and B is a

Brownian bridge.
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Thirdly, we consider the case when the errors and the common factors are of the same
order. Since in this case both the error and common factor processes affect the limit, we
have to specify their joint behavior:

Assumption 2.7. {ei,t, 1 ≤ i ≤ N,−∞ < t < ∞} and {ft,−∞ < t < ∞} are indepen-
dent.

Theorem 2.3. If H0, and Assumptions 2.1–2.7 hold, and 0 < c∗ < ∞, then we have
that as min{N,T} → ∞,

1

TN1/2
VN,T (u)

D[0,1]−→ Γ(u) + c∗trace

(
Q

(
BΣ(u)B>Σ(u)− u(1− u)

τ(1− τ)
BΣ(τ)B>Σ(τ)

))
,

where {Γ(u), 0 ≤ u ≤ 1} and {BΣ(u), 0 ≤ u ≤ 1} are independent Gaussian processes
defined in Theorem 2.1 and (2.9), respectively.

Based on these results, the behavior of VN,T and its functionals depend on the magni-
tude of the unknown common factors measured by c∗.

Remark 2.1. The simulation study in Section 5 shows that a fixed τ often provides
good power under the alternative. One may also consider VN,T (u) as a two parameter
process VN,T (u, τ) of (t, τ) ∈ [0, 1] × [δ, 1 − δ], 0 < δ < 1/2. With some modifications
of our proofs one can show that under H0 the suitably normalized VN,T (u, τ) converges
weakly in D([0, 1]× [δ, 1− δ]), 0 < δ < 1/2, to a two parameter Gaussian process under
the assumptions of Theorems 2.1–2.3.

Lastly, we provide a discussion of the behavior of supremum functionals of VN,T (u)
under the change point alternative HA. Consistency of tests based on other functionals,
like the square integral, can be discussed similarly. We consider the case when the times
of the changes are proportional to the number of the observations in the panels:

Assumption 2.8. k` = bTθ`c, 1 ≤ ` ≤ R with some 0 < θ1 < θ2 . . . < θR < 1.

The drift function of the ith panel is

v̄i(u) = v2i (u)− u(1− u)

τ(1− τ)
v2i (τ),

where

vi(u) =

`−1∑
m=1

µi,m(θm− θm−1) + (u− θ`−1)µi,`− u
R+1∑
m=1

µi,m(θm− θm−1), 1 ≤ ` ≤ R+ 1.

Also, we let

QN = sup
0≤u≤1

∣∣∣∣∣
N∑
i=1

v̄i(u)

∣∣∣∣∣ .
Theorem 2.4. We assume that Assumptions 2.1–2.8 hold.
(i) If 0 ≤ c∗ <∞ and

TQN
N1/2

→∞,
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then
1

TN1/2
sup

0≤u≤1
|VN,T (u)| P→∞. (2.11)

(ii) If c∗ =∞ and

TQN
N∑
i=1

‖λi‖2
→∞,

then

1

T

(
N∑
i=1

‖λi‖2
)−1

sup
0≤u≤1

|VN,T (u)| P→∞. (2.12)

Simple conditions can be given when R = 1. The next corollary illustrates the role of
the change magnitude and the factor loadings in the consistency. We recall (2.1) that
δi = δi,1 denotes the size of the change in the mean in the ith cross section.

Corollary 2.1. We assume that Assumptions 2.1–2.8, and R = 1 are satisfied.
(i) If 0 ≤ c∗ <∞ and

T

N1/2

N∑
i=1

δ2i →∞,

then (2.11) holds.
(ii) If c∗ =∞ and

T

N∑
i=1

δ2i

N∑
i=1

‖λi‖2
→∞,

then (2.12) holds.

We note that if the change magnitudes δi are bounded away from zero, i.e., lim inf
N→∞

min
1≤i≤N

|δi| > 0, along with the condition min{N,T} → ∞, then Corollary 2.1 implies that the
normalized supremum functional of VN,T diverges to infinity in probability under HA.

2.2. Normalization of the test statistics

Theorems 2.1–2.3 provide a full description of the asymptotic properties of the aggregated
CUSUM process VN,T (u). However, the normalization and the form of the limiting process
depend on the rate of divergence of N and T , as well as the unknown factor loadings
measured by c∗. In this subsection, we describe the appropriate order of the normalizing
sequence that are consistent regardless of the value of c∗. This makes it possible to devise
a bootstrapping scheme for obtaining critical values of functionals of VN,T . Let

zi,t = (yi,t − ȳi,T )2 − 1

T

T∑
s=1

(yi,s − ȳi,T )2,
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and define the corresponding empirical cross covariances as

γ̂i,j(h) =
1

T − h

T−h∑
s=1

zi,szj,s+h.

Our estimator for the normalizing sequence is

wN,T =

N∑
i=1

N∑
j=1

H∑
h=−H

K

(
h

T

)
γ̂i,j(h),

where the kernel function K(·) and the bandwidth parameter H satisfy standard condi-
tions on the kernel/lag window assumed on spectral density estimators in the literature:

Assumption 2.9. (i) K(0) = 1, (ii) there is a constant b > 0 such that K(u) = 0 if
|u| ≥ b, (iii) K is Lipschitz continuous on [−b, b].

Assumption 2.10. H = H(T ), and 1/H +H/T 1/2 → 0 as T →∞.

Then, we define

Rt = vec
(
ftf
>
t − Ip

)
.

Due to Assumption 2.6 we have that ERt = 0. We assume that the auto-correlation
matrix of the Rt’s decays quickly as a function of the lag parameter:

Assumption 2.11. {ft,−∞ < t < ∞} is a stationary sequence, Ef0 = 0, ‖f0‖4 < ∞
and there are ν0 > 0 and α0 > 2 such that∥∥ER0R

>
h

∥∥ ≤ ν0(|h|+ 1)−α0 .

We further define

R =

∞∑
h=−∞

ER0R
>
h .

Similarly we need assumptions on the behavior of the second moments of the ei,t’s:

Assumption 2.12. Eei,0 = 0, E|ei,0|4 <∞ and there are ν0 and α0 > 6 such that

|cov(e2i,0, e
2
i,h)| ≤ ν0(|h|+ 1)−α0 , 1 ≤ i ≤ N.

The following results also involve

s2i =

∞∑
h=−∞

cov(e2i,0, e
2
i,h).

Theorem 2.5. We assume that H0 and Assumptions 2.2–2.12 hold.
(i) If c∗ = 0 then we have that

wN,T
NT

P→ a0, where a0 = lim
N→∞

N∑
i=1

s2i .
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(ii) If 0 < c∗ <∞ then we have that

wN,T
NT

P→ a0 + c∗q
>Rq, where q = lim

N→∞

 N∑
j=1

‖λj‖2
−1 N∑

i=1

vec(λiλ
>
i ).

(iii)If c∗ =∞ then we have that

wN,T

T

( N∑
i=1

‖λi‖2
)2

P→ q>Rq.

The next result is an immediate consequence of Theorems 2.1–2.3 and 2.5.

Corollary 2.2. If H0 and Assumptions 2.1–2.5 hold, then we have that

1

(TwN,T )1/2
VN,T (u)

D[0,1]−→ ∆(u),

where

∆(u) =



a
−1/2
0 Γ(u), if c∗ = 0

(a0 + c∗q
>Rq)−1/2

[
Γ(u)

+c∗trace

(
Q

(
BΣ(u)B>Σ(u)− u(1− u)

τ(1− τ)
BΣ(τ)B>Σ(τ)

))]
, if 0 < c∗ <∞

(q>Rq)−1/2trace

(
Q

(
BΣ(u)B>Σ(u)− u(1− u)

τ(1− τ)
BΣ(τ)B>Σ(τ)

))
, if c∗ =∞,

and the processes Γ and BΣ(u) are defined in Theorem 2.1 and (2.9), respectively.

The normalizing sequence in Corollary 2.2 works well under H0 but without modifi-
cation tends to overestimate under HA, thereby reducing the power of the tests. This is
due to fact that centering each series by ȳi,T tends to overestimate the variances of the
idiosyncratic errors under HA; we refer to Vogelsang (1999) for a discussion on this issue.
In order to mitigate this problem, when computing wN,T we center each cross section
by taking into account a potential change point in the mean. To do this, in each cross
section we estimate a potential change point using a standard CUSUM estimator (Csörgő
and Horváth, 1997). We then calculate the normalization term w̄N,T after recentering
each cross section taking into account this potential change point. A similar procedure
is employed in this setting in Cho (2016).

Under the conditions of Corollary 2.2 we have

1

(Tw̄N,T )1/2
VN,T (u)

D[0,1]−→ ∆(u) (2.13)

under H0 and
1

(Tw̄N,T )1/2
sup

0≤u≤1
|VN,T (u)| P→ ∞ (2.14)

under HA, if the assumptions of Corollary 2.1 are satisfied. We then consider the detector
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statistic

vN,T =
1

(Tw̄N,T )1/2
sup

0≤u≤1
|VN,T (u)|. (2.15)

Based on this process we can estimate the change point with

k̂∗V = bT θ̂N,T c, (2.16)

where θ̂N,T = min
{
u : |VN,T (u)| = sup0≤v≤1 |VN,T (v)|

}
. If multiple changes are thought

to be present in the data, we apply standard binary segmentation to estimate all change
points (see, Csörgő and Horváth, 1997). The distribution of the estimator of the time of
change in high-dimensional panel data is discussed in Horváth et al. (2017).

Remark 2.2. Our tests are tailored to find changes in the means of panels during the
observation period. If the loadings change within the sample but the means remain the
same, it may be shown that the null hypothesis will not be rejected with probability
tending to one as long as

lim sup
T→∞

max
1≤i≤N

max
1≤t≤T

‖λi,t‖ <∞,

where λi,t is the loading in the ith cross-section at time t. We refer to Breitung and
Eickmeier (2017) for tests on detecting changes in the number of common factors and
loadings. Similarly, if the variances of ei,t change, H0 will not be rejected with probability
tending to one if there are no changes in the means. In this sense this procedure is robust
to potential heterogeneity of the error variance or factor loadings.

3. EXTENSION TO CORRELATED ERRORS

In Section 2.1, we investigated panels where the idiosyncratic errors are serially uncor-
related (cf. Assumption 2.3), which covers errors generated from many commonly used
volatility processes. In this section, we replace Assumption 2.3 with the following more
general assumption that allows for serial correlation.

Assumption 3.1. for each i, {ei,t,−∞ < t <∞} is a stationary sequence. Also, Eei,t =

0, and there are constants ν0, ν̄0, κ > 4, β > 3 such that E|
∑`
t=1 ei,t|κ ≤ ν0`

κ/2 and
|Eei,0ei,h| ≤ ν̄0(|h|+ 1)−β.

Under Assumption 3.1, the long run variances of the sums of the ei,t’s are well defined
and we denote them as ω2

i =
∑∞
h=−∞Eei,0ei,h. Since ω2

i represents the limiting variance
of the partial sums of the errors, we need to modify Assumption 2.4 as

Assumption 3.2. limmin(N,T )→∞max1≤i≤N ρPL(T−1/2si(·), ωiW (·)) = 0 and lim infi→∞ ω2
i >

0, where W denotes the standard Wiener measure.

Similarly to σ̄4 of (2.5), let

ω̄2 = lim
N→∞

1

N

N∑
i=1

ω4
i . (3.17)
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Theorem 3.1. If H0, Assumptions 2.1, 2.3–2.6, 3.1–3.2 hold, c∗ = 0 and

N

T 2
→ 0, (3.18)

then we have that 1
TN1/2VN,T (u)

D[0,1]−→ Γ∗(u), where Γ∗(u) is a Gaussian process with
EΓ∗(u) = 0 and

EΓ∗(u)Γ∗(v) = ω̄2

(
g(u, v)− u(1− u)

τ(1− τ)
g(τ, v)− v(1− v)

τ(1− τ)
g(τ, u) +

u(1− u)

τ(1− τ)

v(1− v)

τ(1− τ)
g(τ, τ)

)
,

where g(u, v) and ω̄2 are defined in (2.6) and (3.17), respectively.

Theorem 3.2. If H0, Assumptions 2.1, 2.3–2.6, 3.1–3.2 hold, c∗ =∞ and

N1/2

T

N∑
i=1

‖λi‖2
→ 0, (3.19)

then Theorem 2.2 remains true.

Theorem 3.3. If H0, Assumptions 2.1, 2.3–2.7, 3.1–3.2, and condition (3.18) hold,
0 < c∗ <∞, then we have that

1

TN1/2
VN,T (u)

D[0,1]−→ Γ∗(u) + c∗trace

(
Q

(
BΣ(u)B>Σ(u)− u(1− u)

τ(1− τ)
BΣ(τ)B>Σ(τ)

))
,

where {Γ∗(u), 0 ≤ u ≤ 1} and {BΣ(u), 0 ≤ u ≤ 1} are independent Gaussian processes
defined in Theorem 3.1 and (2.9), respectively.

Furthermore, we may also consider applying weight functions to the proposed test
statistic to improve the power of the test against changes that occur early or late in the
sample. We provide detail in this direction in Online supplement.

4. BOOTSTRAP FOR THE CRITICAL VALUES

In this section, we provide some details regarding the implementation of the proposed
tests. Following the results in Section 2.2, we reject H0 for large values of the detector
vN,T defined in (2.15). For a specified significance level α, we define the asymptotic
critical value c(α) such that

P

{
sup

0≤u≤1
|∆(u)| > c(α)

}
= α, (4.20)

where the process ∆(u) is defined in Corollary 2.2. Direct computation of the critical value
c(α) is difficult since the value of c∗, as well as the long run variances and factor loadings
are unknown. As such, we propose bootstrap procedures to determine the empirical
distribution of vN,T and obtain approximate critical values from the sample.

We consider two new semi–parametric bootstrap approaches. Some similar procedures
have been developed in the literature to date. For example, Cho (2016) proposed a
semi–parametric method based on fitting a generalized dynamic factor model (GDFM),
and produced bootstrap samples by simulating from this model. Jirák (2015) considered
a wide range of bootstrap procedures with perhaps the most effective among them to



Common breaks in the means of high dimensional panels 13

simply simulate independent and identically distributed (IID) standard Gaussian random
variables in each cross section for producing a bootstrap sample of the test statistic. We
generally found their methods are not suitable in our set up due to the more general
serially dependent processes considered.

Our approaches are tailored to accommodate serial dependence in (2.1). The first
method is a factor model based bootstrap, similar in spirit to the GDFM bootstrap
of Cho (2016), but adapted to the assumptions of Theorems 2.1–2.3. It is detailed in
Algorithm 1, which aims to produce bootstrap samples that share the same relevant
features affecting the limiting distribution of vN,T .

Following this, and inspired by Jirák (2015), we also perform a bootstrap to approx-
imate the limit distribution by simulating panels with idiosyncratic errors following an
IID standard Gaussian distribution after controlling for cross–sectional dependence using
a common factor model. The second method is described as Algorithm 2.

Algorithm 1: Bootstrap I

Input: yi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T .
Output: estimator cN,T (α), 0 < α < 1, the critical value of vN,T .
Step 1. estimate p, the number of common factors by using the information criteria
proposed by Bai and Ng (2002), obtain the estimators λ̂i and f̂ t of the loadings
and the common factors;

Step 2. estimate σ̄ of 2.5, by taking the square root of the averaged squares of

long–run variances of cross–sectional residuals yi,t − λ̂
>
i f̂ t;

Step 3. simulate a T × p matrix f̃ t from the multivariate normal distribution

having the same long–run covariance structure as estimated by f̂ t;
Step 4. simulate sequences ẽi,t, 1 ≤ i ≤ N , and 1 ≤ t ≤ T , that follow an IID
normal distribution with zero mean and standard deviation σ̄;

Step 5. construct a bootstrap sample with observations B
(1)
i,t = λ̂

>
i f̃ t + ẽi,t. Repeat

Steps 4–5 a large number of times, we used 10,000 below. Based on these bootstrap
samples compute the empirical distribution of the bootstrap versions of vN,T . Set
cN,T (α) to be the critical value at significance level α.

Establishing the asymptotic validity of these bootstrap approaches is beyond the scope
of the paper, although we emphasize that this is an important issue worthy of further
study. The simulation results in Section 5 confirm that both bootstrap methods perform
reasonably well under a wide variety of settings. We also tried to use traditional block
and permutation bootstraps, which are also considered in Jirák (2015). However, the
results indicated the resulting test are quite under–sized when N is large. Similar poor
performance was also observed when using sub–sample bootstrap approaches. These
results are omitted to save space.

5. A MONTE CARLO SIMULATION STUDY

We now present the results of a Monte Carlo simulation study that aimed to evaluate
the finite sample properties of the proposed statistic and bootstrapping procedures, and
compare the proposed testing procedure to others available in the literature. In particular,
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Algorithm 2: Bootstrap II

Input: yi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T .
Output: estimator cN,T (α), 0 < α < 1, the critical value of vN,T .
Step 1. estimate p, the number of common factors by using the information criteria
proposed by Bai and Ng (2002), obtain the estimators of the loadings λ̂i and the

common factors f̂ t;

Step 2. obtain f̃ t by block–bootstrapping f̂ t with block length blog T c;
Step 3. simulate IID sequences ẽi,t from the standard normal distribution;

Step 4. Construct a bootstrap sample with observations B
(2)
i,t = λ̂

>
i f̃ t + ẽi,t; repeat

Steps 2–4 a large number of times. Based on these bootstrap samples compute the
empirical distribution of the bootstrap versions of vN,T . Set cN,T (α) to be the
critical value at significance level α.

we compared our results to the test statistics and bootstrap procedures in Horváth and
Hušková (2012), Jirák (2015), and Cho (2016).

In order to generate panel data following the model in (2.1), we considered two data
generating processes (DGPs) for the error sequence. Let vi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T,
denote IID standard normal random variables, and we gained

1 (ARMA) ei,t follows a stationary ARMA(1,1) process ei,t = 0.2ei,t−1−0.3ei,t−2−
0.1vi,t + 0.2vi,t−1.

2 (GARCH) ei,t follows a stationary GARCH(1,1) process ei,t = σi,tvi,t, and σ2
i,t =

0.05 + 0.01e2i,t−1 + 0.9σ2
i,t−1.

We assume that there is at most one change, i.e. R = 1. The size of the change in the
means is δ = δi, 1 ≤ i ≤ N . In each case the error series of length T are generated after
discarding a burn–in sample of length 200. These errors are combined with common
factors to produce panels according to three different schemes with varying levels of
cross–sectional dependence:

1 (IND) Cross-sectionally independent panels

yi,t = 0.1 + δ1{t > bT/2c}+ ei,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T ;

2 (CF–W–λ) Common factor model with weak cross sectional dependence

yi,t = 0.1 + δ1{t > bT/2c}+ λi1{i ∈ J }ft + ei,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T,

where J is a random subset of {1, 2, . . . , N} of size b
√
Nc. The common factor ft

is taken to be an IID standard normal sequence.

3 (CF–S–λ) Common factor model with strong cross sectional dependence

yi,t = 0.1 + δ1{t > bT/2c}+ λift + ei,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T.

The common factor ft is again taken to be an IID standard normal sequence, and
the factor loadings λi, 1 ≤ i ≤ N , are all nonzero.
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The size of change δ = 0 under H0. Under HA, we consider small and large changes,
for choosing δ = 0.15 and 0.3, respectively. The cross–sectional dependence is determined
by the coefficient λi, 1 ≤ i ≤ N , selected from {0.25, 0.5, 1.0}. For each setting of these
parameters and dimensions, we generate the panels independently 400 times, and carry
out tests of H0 of size α = 0.05. The critical values of the test statistic are evaluated
from 200 bootstraps. We considered in limited situations a larger number (10,000) of
bootstraps, and found that the basic patterns observed in the simulations were the same,
and so we used 200 bootstraps in order to reduce the significant computational time
involved in carrying out the bootstrap in Algorithm 1.

In total, we compared six tests. The first two are based on the statistic vNT in (2.15)
with the tunning parameter τ = 0.1, and the critical values are computed from boot-
straps in Algorithm 1 and Algorithm 2. The bandwidth H used to define the normalizing
sequence and estimate the long run covariance of the common factors in the bootstrap
Algorithm 1 was H = blog T c, and the kernel used was the flat–top kernel. We label these

tests as V(1)
N,T and V(2)

N,T , respectively. In unreported simulations we tried numerous values
of the parameter τ , including τ = 0.05, 0.1, 0.25, 0.75, 0.9, and 0.95. We generally found
that the empirical sizes of the tests with varying values of τ were relatively similar, but
the power was in general reduced if τ was close to the change point, which encourages
taking τ to be relatively close to either 0 or 1 to avoid this.

The third and fourth tests are modified CUSUM statistics as proposed in Horváth and
Hušková (2012). As discussed in their paper, the original test statistic they proposed
is not suitable for change point detection when the cross–sections are highly correlated
and/or N >> T . We therefore consider a modified version of their process

HmodN,T (u) =
1

(Tw̄N,T )1/2

N∑
i=1

(
S2
i (u)− bTuc(T − bTuc)

T 2

)
,

and the statistic as well as change point estimator are

HmodN,T = sup
0≤u≤1

|HmodN,T (u)|, k̂H = bT θ̂Hc,

where θ̂H is the location of the maximum of |HmodN,T (u)|. Tests based on HmodN,T are then
carried out at a specified size using Algorithms 1 and 2. The resulting tests are denoted

by H
(1)
N,T and H

(2)
N,T . Additionally, we also considered Jirák’s (2015) test using the rec-

ommended parametric bootstrap method that was shown to work well for large N , and
we denote this test as JN,T . A comparison was also conducted to Cho’s (2016) double
CUSUM test, carried out using the GDFM bootstrap method, denoted as CN,T .

To evaluate the performances of competing tests, we compared their empirical size,
power, and the accuracy of their corresponding change point estimators for various values
of N and T . In particular, we considered six combinations between T and N that are
selected from 100, 250, and 500. The accuracy of the change point estimator is defined as
the percentage of estimators k̂N,T , conditionally on rejecting H0 at level α = 0.05, that
lies within the interval of [T/2−blog T c , T/2+blog T c]. The results for ARMA errors were
generally similar, when compared to the GARCH case, and so we omit similar results for
the GARCH case. The percentage of simulations that reject H0 at the 5% significance
level are reported in Tables 1, and the comparison of power of these procedures are
displayed in terms of power curves in Figures 1 and 2.
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Table 1. Rejection rates under H0 at 5% significance level when the errors are generated
from the ARMA process

T=100, N=100 T=100, N=250

V(1)
N,T V(2)

N,T H
(1)
N,T H

(2)
N,T JN,T CN,T V(1)

N,T V(2)
N,T H

(1)
N,T H

(2)
N,T JN,T CN,T

IN 0.02 0.02 0.01 0.02 0.01 0.00 0.04 0.05 0.02 0.02 0.01 0.00
CF-W-0.25 0.02 0.02 0.00 0.00 0.02 0.00 0.06 0.06 0.00 0.00 0.01 0.00
CF-W-0.5 0.02 0.02 0.00 0.01 0.02 0.00 0.06 0.06 0.01 0.01 0.01 0.00
CF-W-1 0.04 0.04 0.01 0.01 0.02 0.00 0.06 0.05 0.01 0.01 0.02 0.00
CF-S-0.25 0.03 0.05 0.02 0.03 0.01 0.00 0.03 0.03 0.02 0.02 0.02 0.00
CF-S-0.5 0.05 0.05 0.08 0.02 0.01 0.04 0.05 0.05 0.07 0.02 0.01 0.07
CF-S-1 0.06 0.05 0.05 0.02 0.02 0.11 0.05 0.06 0.03 0.03 0.02 0.16

T=250, N=100 T=250, N=250
IN 0.02 0.02 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00
CF–W–0.25 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
CF–W–0.5 0.02 0.02 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
CF–W–1 0.03 0.02 0.01 0.02 0.01 0.00 0.02 0.03 0.03 0.00 0.00 0.00
CF–S–0.25 0.02 0.04 0.02 0.02 0.01 0.00 0.01 0.03 0.08 0.01 0.00 0.00
CF–S–0.5 0.03 0.05 0.07 0.03 0.01 0.05 0.03 0.07 0.10 0.04 0.01 0.03
CF–S–1 0.04 0.06 0.02 0.04 0.01 0.09 0.04 0.07 0.02 0.05 0.01 0.06

T=500, N=100 T=100, N=500
IN 0.01 0.01 0.00 0.00 0.00 0.00 0.04 0.03 0.02 0.02 0.00 0.00
CF–W–0.25 0.01 0.01 0.00 0.00 0.00 0.00 0.05 0.05 0.01 0.01 0.00 0.00
CF–W–0.5 0.01 0.01 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.02 0.00 0.00
CF–W–1 0.02 0.03 0.07 0.01 0.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00
CF–S–0.25 0.00 0.01 0.02 0.01 0.00 0.00 0.04 0.03 0.04 0.04 0.00 0.00
CF–S–0.5 0.06 0.03 0.08 0.02 0.00 0.05 0.04 0.06 0.08 0.02 0.01 0.04
CF–S–1 0.06 0.04 0.05 0.02 0.00 0.07 0.06 0.06 0.02 0.02 0.01 0.11

Figure 1. Plots of the empirical power as a function of the size of the change δ for the tests

V(1)
N,T , V(2)

N,T , H
(1)
N,T , H

(2)
N,T , JN,T and CN,T . The left panel is based on data generated

according to IN with N = 250 and T = 100, and the right panel is based on data
generated according to CF-S-1 with N = 250 and T = 100.
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Figure 2. Plots of the empirical power as a function of the size of the change δ for the

tests V(1)
N,T (blue), V(2)

N,T , H
(1)
N,T , H

(2)
N,T , JN,T and CN,T . The left panel is based on data

generated according to CF-W-1 with N = 500 and T = 100, and the right panel is based
on data generated according to CF-W-1 with N = 100 and T = 250.

Table 2. Accuracy of change point estimation at 5% significance level for DGP CF-S-0.5
when the errors are generated from the ARMA process

δ = 0.15 δ = 0.30

V(1)
N,T V(2)

N,T H
(1)
N,T H

(2)
N,T JN,T CN,T V(1)

N,T V(2)
N,T H

(1)
N,T H

(2)
N,T JN,T CN,T

T=100,N=100 0.45 0.53 0.50 0.65 0.46 0.38 0.75 0.73 0.78 0.76 0.63 0.57
T=100,N=250 0.58 0.53 0.56 0.61 0.52 0.33 0.73 0.74 0.76 0.77 0.61 0.62
T=250,N=100 0.43 0.44 0.45 0.47 0.40 0.31 0.69 0.72 0.72 0.74 0.45 0.67
T=250,N=250 0.51 0.42 0.51 0.43 0.37 0.31 0.77 0.69 0.77 0.72 0.43 0.66
T=500,N=100 0.35 0.40 0.37 0.42 0.23 0.29 0.74 0.70 0.74 0.71 0.39 0.68
T=100,N=500 0.58 0.44 0.58 0.45 0.64 0.37 0.71 0.74 0.75 0.79 0.69 0.65

We summarize these results as follows. In general, all tests exhibited reasonably good
empirical size under H0, with a slight tendency to be under-sized under weak serial/cross

sectional dependence. The tests V(1)
N,T and V(2)

N,T overall performed the best in terms of
size, although the improvement over the other tests was fairly modest. The two proposed
bootstraps generally performed similarly, although the bootstrap Algorithm 2 started to
show some poor performance under strong cross–sectional dependence. The test JN,T
was under-sized which is consistent with the results presented in Jirák (2015). Similarly,
the test CN,T was under-sized in independent panels, and was somewhat over-sized in
highly dependent panels.

In terms of power, Figures 1 and 2 show power curves as a function of the change
magnitude δ = 0.15 and 0.30 when the significance level is set at 5% in the case of ARMA
errors for several settings. In general, all tests gain more power as expected when N and
T increase, and they attain nearly unit power in dimensions of (T = 250, N = 100), (T =
250, N = 250), and (T = 500, N = 100) if the change is large. In many cases, the tests

V(1)
N,T and V(2)

N,T outperformed all other tests across dimensions and dependence levels.

Furthermore, the V(1)
N,T and V(2)

N,T tests almost uniformly outperformed the HmodN,T tests,
which showed the improvement generated by applying the proposed centering scheme

defining VN,T (u) in (2.3). One exception to the superiority of the V(1)
N,T and V(2)

N,T tests is
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the case of large N and highly cross–sectionally dependent panels, in which the test CN,T
tended to perform better. The test JN,T showed poor performance in our simulations,
although this is likely due to the relatively small changes in the mean under strong
dependence, while this test should perform comparatively better in the case when the
changes are larger but only in a few cross-sections. Although our tests are not designed

for a panel with either small N or T , in an unreported simulation, the tests V(1)
N,T and

V(2)
N,T still maintain good power in the case that N >> T , e.g., N = 2000 and T = 30.

The power of the other tests considered were low in this scenario.
The results on change point accuracy are provided in Tables 2 in the case of CF–

S–0.5 with ARMA errors only, in order to save space. The chosen DGP with stronger
dependence structure exhibits an overall change point estimation accuracy for all methods
that is much lower than the other DGPs we consider, but the pattern that emerges here

was also observed for the other DGPs. The statistics V(1)
N,T , V(2)

N,T , H
(1)
N,T , H

(2)
NT , and CN,T

perform similarly well in all dimensions of panels. The H
(1)
N,T and H

(2)
N,T typically perform

the best. This is to some extent expected given the way the process VN,T (u) is centered.

6. APPLICATIONS TO US MACROECONOMIC DATA

In this section, we demonstrate the applicability of the proposed test to detect and
analyze structural breaks in large panels of macroeconomic data related to the United
States (US). We focus on the FRED–MD data set, which comprises monthly resolution
data on 128 macroeconomic variables available from the United States federal reserve
economic database (FRED). The analysis of high–dimensional macroeconomic panel data
has drawn a great deal of attention in the last decade. One of the most influential papers
on this area of research is Stock and Watson (2012), who used up to 200 time series
of macroeconomic variables to investigate the dynamics of the great recession during
2007–09.

In total, the 128 time series are taken from the period from June 1999 to June-2019,
with information related to nine areas, including output and income, labor markets,
consumption and orders, orders and inventories, money and credit, interest rate and
exchange rates, prices, and the stock market. McCracken and Ng (2016) provided detailed
descriptions of this dataset. They also suggested transformations of each series towards
stationarity so the data are suitable for a factor analysis, which we follow. They found
that the transformed data have a factor structure similar to the model considered in
Stock and Watson (2012). Analysis of this panel data using the criteria proposed by Bai
and Ng (2002) suggests that the cross–sectional dependence is well explained by eight
factors.

We take as the goal of the analysis to evaluate for structural breaks in the means of this
panel over the observation period. Change points in the means of the cross-sections may
represent changing phases of the US economy. To detect change points in the panel, we
applied the tests discussed in Section 5. We used a binary segmentation method, which
entails the segmentation of the data into pre- and post–break segments, to estimate and
detect additional changes in the means.

We applied all six change point tests used in Section 5 to the FRED–MD data. Each

method identified three change points at relatively similar time points. All the tests V(1)
N,T ,

V(2)
N,T , H

(1)
N,T and H

(2)
NT found that the biggest change in the macroeconomic structure oc-

curred in March 2008, which corresponds to when the US government bailout began.
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However, different dates were found in the second and third step of the binary segmenta-

tion. The tests V(1)
N,T and V

(2)
N,T detected changes in June 2006 and January 2016, whereas

H
(1)
N,T and H

(2)
N,T found that August 2003 and August 2012 are the most likely times of

changes in the means. Instead of finding the first change in 2008, the tests JN,T and
CN,T detected changes on December 2011 and July 2007, respectively. The change in
2007 seems plausible due to the “sub–prime mortgage crisis”, but it is rather difficult to
interpret the detected change in 2011. This finding is likely due to the properties of JN,T
that is tailored for sparse data with weak cross sectional dependence.

7. CONCLUSION

In this paper, we consider the changes in the means of high dimensional panel data
with potentially strong cross–sectional dependence. A new CUSUM-type statistic is pro-
posed to distinguish the null of no change point from the alternative of multiple changes.
To establish the asymptotic results, we only require the mild condition on the rela-
tive divergence rate of the cross-sectional dimension N and time series observations T
that min(N,T ) →∞. Assuming that the cross–sectional dependence is captured by la-
tent common factors, we show that the statistic converges to its limits differently under
three scenarios: the common factors are asymptotically negligible, i.e., no or weak cross–
sectional dependence; the common factors are asymptotically dominating, i.e., strong
dependence; and a status between these two. The main results are also extended and
shown to be valid even if the error sequences are serially correlated. We suggest using
semi-parametric bootstrap methods to obtain critical values. The finite sample perfor-
mance of the proposed test is assessed in a Monte Carlo simulation study. Our tests enjoy
good rejection rates in terms of size and power in arbitrary relationship between N and
T , and they nearly always outperform the existing tests. Two data applications are also
provided. We detect breaks in means of the FRED–MD microeconomic data set.
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Horváth, L. and Hušková, M. (2012). Change–point detection in panel data. Journal of
Time Series Analysis 33, 631–648
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ONLINE SUPPLEMENT TO “DETECTING COMMON BREAKS IN THE MEANS

OF HIGH DIMENSIONAL CROSS-DEPENDENT PANELS”

1. Proofs of Theorem 2.1–2.4

We assume that H0 holds. It is clear that Si(u) does not depend on µi so we can assume without loss of
generality that µi = 0, 1 ≤ i ≤ N . Hence for all 0 ≤ u ≤ 1 we have

Si(u) = si(u)− bTuc
T

si(1) + λ>i

bTuc∑
t=1

f t −
bTuc
T

λ>i

T∑
t=1

ft,

where si(u) is defined in (2.4). Thus we get

S2
i (u) =

(
si(u)− bTuc

T
si(1)

)2

+ 2

(
si(u)− bTuc

T
si(1)

)λ>i

bTuc∑
t=1

ft −
bTuc
T

λ>i

T∑
t=1

ft


+

λ>i

bTuc∑
t=1

ft −
bTuc
T

λ>i

T∑
t=1

ft

2

. (1.1)

Let

V̄N,T (u) =

N∑
i=1

ξi(u) with ξi(u) =

(
si(u)− bTuc

T
si(1)

)2

− σ2
i

bTuc(T − bTuc)
T

.

Lemma 1.1. If Assumptions 2.2–2.4 hold, then we have that

1

N1/2T
V̄N,T (u)

D[0,1]−→ Γ0(u),

where Γ0(u) is a Gaussian process, EΓ0(u) = 0, EΓ0(u)Γ0(v) = σ̄4g(u, v) with σ̄4 and g(u, v) of (2.5)
and (2.6), respectively.

Proof. Using Assumption (2.3) we get that

E

(
si(u)− bTuc

T
si(1)

)2

= σ2
i

bTuc(T − bTuc)
T

.

Hence Eξi(u) = 0 for all i and {ξi(u), 0 ≤ u ≤ 1} are independent processes.
We start with the proof of tightness. Using Rosenthal’s inequality (cf. Petrov 1995, p. 59) we get

E

∣∣∣∣∣
N∑
i=1

(ξi(u)− ξi(v))

∣∣∣∣∣
κ/2

(1.2)

≤ C

 N∑
i=1

E|ξi(u)− ξi(v)|κ/2 +

(
N∑
i=1

E(ξi(u)− ξi(v))2

)κ/4 .

Also, for 0 ≤ v ≤ u ≤ 1

ξi(u)− ξi(v) =s2
i (u)− s2

i (v)− σ2
i

(
bTuc(T − bTuc)

T
− bTvc(T − bTvc)

T

)
− 2

(
bTuc
T

si(u)− bTvc
T

si(v)

)
si(1)

1



2

+

((
bTuc
T

)2

−
(
bTvc
T

)2
)
s2
i (1).

We note that by Assumption (2.3) we have for all 0 ≤ v ≤ u ≤ 1

E|s2
i (u)− s2

i (v)|κ/2

≤ E|si(u)− si(v)|κ/2(|si(u)|+ |si(v)|)κ/2

≤ 2κ/2

E
∣∣∣∣∣∣
bTuc∑

t=bTvc+1

ei,t

∣∣∣∣∣∣
κ1/2E

∣∣∣∣∣∣
bTuc∑
t=1

ei,t

∣∣∣∣∣∣
κ

+ E

∣∣∣∣∣∣
bTvc∑
t=1

ei,t

∣∣∣∣∣∣
κ1/2

≤ ν02κ/2+1T κ/4(bTuc − bTvc)κ/4

≤ ν02κ/2+2T κ/2(u− v)κ/4.

Similar arguments yield

E

∣∣∣∣(bTucT si(u)− bTvc
T

si(v)

)
si(1)

∣∣∣∣κ/2 ≤ C1T
κ/2(u− v)κ/4,

E

∣∣∣∣∣
(
bTub
T

)
2−
( bTvc

T

)2
∣∣∣∣∣ s2
i (1) ≤ C2T

κ/2(u− v)κ/2,

and therefore

E|ξi(u)− ξi(v)|κ/2 ≤ C3T
κ/2|u− v|κ/4 (1.3)

with some constants C1, C2 and C3. Following the arguments leading to (1.3) one can verify that

E|ξi(u)− ξi(v)|2 ≤ C4T
2|u− v| (1.4)

with some constant C4. Putting together (1.2)–(1.4) we conclude

E

∣∣∣∣∣
N∑
i=1

(ξi(u)− ξi(v))

∣∣∣∣∣
κ/2

≤ C5

(
NT κ/2|u− v|κ/4 +Nκ/4T κ/2|u− v|κ/4

)
with some constant C5 and therefore tightness follows from Billingsley (1968, p. 95).
Next we show the convergence of the finite dimensional distributions. Let M ≥ 1 be an integer, 0 ≤ u1 <
u2 < . . . < uM ≤ 1 and α1, α2, . . . , αM be constants. Next we define

ηi =
M∑
`=1

α`ξi(u`).

It follows from the proof of (1.3) that

E|ηi|κ/2 ≤ C6T
κ/2. (1.5)

Using Assumption (2.4) there are Brownian bridges Bi,T such that for all δ > 0 there is an integer T0

such that

P

{
sup

0≤u≤1
|T−1ξi(u)− σ2

i (B
2
i,T (u)− u(1− u)| > δ

}
≤ δ, if T ≥ T0.

Assumption (2.4) yields

E sup
0≤u≤1

|T−1ξi(u)− σ2
i (B

2
i,T (u)− u(1− u)|4 (1.6)

≤ δ4 + E

(
sup

0≤u≤1
|T−1ξi(u)|I

{
sup

0≤u≤1
|T−1ξi(u)− σ2

i (B
2
i,T (u)− u(1− u)| > δ

})4

+ E

(
sup

0≤u≤1
|σ2
i (B

2
i,T (u)− u(1− u)|I

{
sup

0≤u≤1
|T−1ξi(u)− σ2

i (B
2
i,T (u)− u(1− u)| > δ

})4



3

≤ δ4 +

(
E

(
sup

0≤u≤1
|T−1ξi(u)|

)κ)4/κ

×
(
E(I

{
sup

0≤u≤1
|T−1ξi(u)− σ2

i (B
2
i,T (u)− u(1− u)| > δ

}
)4κ/(κ−4)

)(κ−4)/κ

+

(
E

(
sup

0≤u≤1
|σ2
i (B

2
i,T (u)− u(1− u)|

)κ)4/κ

×

(
E

(
I

{
sup

0≤u≤1
|T−1ξi(u)− σ2

i (B
2
i,T (u)− u(1− u)| > δ

})4κ/(κ−4)
)(κ−4)/κ

≤ δ4 + δ(κ−4)/κ

(
E

(
sup

0≤u≤1
|T−1ξi(u)|

)κ)4/κ

+ δ(κ−4)/κσ8
i

(
E

(
sup

0≤u≤1
|B2

i,T (u)− u(1− u)|
)κ)4/κ

.

Using Assumption (2.3) we get that

lim sup
i→∞

σi <∞. (1.7)

The distribution of Bi,T does not depend on i nor on T and the distribution of the supremum of B,
Brownian bridge, gives that

E

(
sup

0≤u≤1
|B2(u)− u(1− u)|

)κ
<∞. (1.8)

Now

sup
0≤u≤1

1

T
|ξi(u)| ≤ σ2

i + 4 sup
0≤u≤1

(
T−1/2si(u)

)2
. (1.9)

Using again Assumption (2.3) we obtain that

E

∣∣∣∣∣
k∑

t=`+1

ei,t

∣∣∣∣∣
κ

≤ C6(k − `)κ/2,

where C6 does not depend on i, so by Móricz et al. (1982) we conclude

E sup
0≤u≤1

(
T−1/2si(u)

)κ
≤ C7. (1.10)

Putting together (1.5)–(1.10) we see that

lim
min(N,T )→∞

max
1≤i≤N

E

{
sup

0≤u≤1
|T−1ξi(u)− σ2

i (B
2
i,T (u)− u(1− u))|

}2

= 0. (1.11)

The approximation in (1.11) yields

N∑
i=1

1

T 2
Eη2

i =
N∑
i=1

Eη̄2
i + o(N), (1.12)

where

η̄i = σ2
i

K∑
`=1

α`(B(u`)− u`(1− u`)), (1.13)
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where B is a Brownian bridge. It follows from (1.5) that with some constant C8(
N∑
i=1

E|ηi|κ/2
)2/κ

(
N∑
i=1

Eη2
i

)1/2
≤ C8

(NT κ/2)2/κ

(NT 2)1/2
→ 0, as min(N,T )→∞.

hence Lyapunov’s theorem gives the convergence to normal distribution of the finite dimensional distri-
butions of V̄N,T (u). Our arguments also show that EΓ0(u) = 0 and for all 0 ≤ u, v ≤ 1

EΓ0(u)Γ0(v) = E(B2(u)− u(1− u))(B2(v)− v(1− v)) lim
T→∞

1

N

N∑
i=1

σ4
i .

Horváth and Hušková (2012) showed that E(B2(u)− u(1− u))(B2(v)− v(1− v)) = g(u, v), completing
the proof of Lemma 1.1. �

Lemma 1.2. If H0 and Assumption 2.6 hold, then we have that

1

T

(
N∑
i=1

‖λi‖2
)−1

λ>i

bTuc∑
t=1

ft −
bTuc
T

λ>i

T∑
t=1

ft

2

D[0,1]−→ trace
(
QBΣ(u)B>Σ(u)

)
,

where B(u) is defined in (2.9).

Proof. It is easy to see thatλ>i

bTuc∑
t=1

ft −
bTuc
T

λ>i

T∑
t=1

ft

2

=λ>i

bTuc∑
t=1

ft

bTuc∑
t=1

ft

> λi − 2
bTuc
T

λ>i

bTuc∑
t=1

ft

(
T∑
t=1

ft

)>
λi

+

(
bTuc
T

)2

λ>i

T∑
t=1

ft

(
T∑
t=1

ft

)>
λi,

We have that

λ>i

bTuc∑
t=1

ft

bTuc∑
t=1

ft

> λi =trace

λ>i

bTuc∑
t=1

ft

bTuc∑
t=1

ft

> λi


=trace

λiλ
>
i

bTuc∑
t=1

ft

bTuc∑
t=1

ft

>


and by similar argumentsλ>i

bTuc∑
t=1

ft −
bTuc
T

λ>i

T∑
t=1

ft

2

= trace

λiλ
>
i

bTuc∑
t=1

ft −
bTuc
T

T∑
t=1

ft

bTuc∑
t=1

ft −
bTuc
T

T∑
t=1

ft

>
 .

The result now follows from Assumption 2.6 and the definition of Q. �

Lemma 1.3. If Assumptions 2.2–2.6 hold, then we have

sup
0≤u≤1

∣∣∣∣∣∣
(
si(u)− bTuc

T
si(1)

)λ>i

bTuc∑
t=1

ft

∣∣∣∣∣∣ = OP

T ( N∑
i=1

‖λi‖2
)1/2

+ T

 .
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Proof. Let

V̂N,T (u) =

N∑
i=1

λi

(
si(u)− bTuc

T
si(1)

)
, 0 ≤ u ≤ 1.

Using Assumption 2.6 we get that

sup
0≤u≤1

∣∣∣∣∣∣
(
si(u)− bTuc

T
si(1)

)λ>i

bTuc∑
t=1

ft

∣∣∣∣∣∣ = sup
0≤u≤1

|V̂N,T (u)|OP (T 1/2),

so we need to show only that

sup
0≤u≤1

|V̂N,T (u)| = OP

T 1/2

(
N∑
i=1

‖λi‖2
)1/2

+ T 1/2

 . (1.14)

Assumptions 2.3 and 2.6 imply that for all 0 ≤ u ≤ 1∥∥∥E [V̂N,T (u)(V̂N,T (u))>
]∥∥∥ ≤ T ∥∥∥∥∥

N∑
i=1

σ2
i λiλ

>
i

∥∥∥∥∥ ≤ c1

N∑
i=1

‖λi‖2,

with some constant c1 so (1.14) is proven if the tightness of {V̄N,T (u)/(T 1/2aN ), 0 ≤ u ≤ 1}, where

a2
N =

∑N
i=1 ‖λi‖2 + 1. Let λi,k be the ith coordinate of λi. Following the proof of Lemma 1.1 one can

show that

E

∣∣∣∣∣ 1

aNT 1/2

N∑
i=1

λi,k

[(
si(u)− bTuc

T
si(1)

)
−
(
si(v)− bTvc

T
si(1)

)]∣∣∣∣∣
κ

≤ C1

 1

aκN

N∑
i=1

|λi,k|κ +

(
1

a2
N

N∑
i=1

λ2
i,k

)κ/2 |u− v|κ/2
≤ C2|u− v|κ/2

since according to Assumption 2.5

N∑
i=1

|λi,k|

aκN
≤ c2

N∑
i=1

‖λi‖2

aκN
≤ c3

with some constants c2 and c3. Hence the tightness follows from Billingsley (1968, p. 95). �

Proof of Theorem 2.1. It follows from Lemmas 1.1–both and the assumption c∗ = 0 that

sup
0≤u≤1

∣∣∣∣∣
N∑
i=1

(
S2
i (u)− σ2

i

bTuc(T − bTuc)
T

)
− V̄N,T (u)

∣∣∣∣∣ = oP (N1/2T )

and therefore

sup
0≤u≤1

∣∣∣∣VN,T (u)−
(
V̄N,T (u)− bTuc(T − bTuc)

bTτc(T − bTτc)
V̄N,T (τ)

)∣∣∣∣ = oP (N1/2T ).

Hence the result follows immediately from Lemma 1.1. �

Proof of Theorem 2.2. By Lemmas 1.1–1.3 and condition c∗ =∞ we conclude that

sup
0≤u≤1

∣∣∣∣∣VN,T (u)−

{λ>i

bTuc∑
t=1

ft −
bTuc
T

λ>i

T∑
t=1

ft

2
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− bTuc(T − bTuc)
bTτc(T − bTτc)

λ>i

bTτc∑
t=1

ft −
bTτc
T

λ>i

T∑
t=1

ft

2}∣∣∣∣∣= oP

(
T

N∑
i=1

‖λi‖2
)
.

Now Theorem 2.2 follows from Lemma 1.2.
�

Proof of Theorem 2.3. The result is an immediate consequence of (1.1) and Lemmas 1.1–1.3. �
Proof of Theorem 2.4. It is easy to see that vi(u) is the asymptotic drift term of the CUSUM process

of the ith panel T−1/2Si(u). Now conditions of the theorem imply that the drift terms dominate the
process. �

2. Proof of Theorem 2.5

Since H0 holds, zi,t does not depend on µi se we can assume that µi = 0, Using the definition of yi,t we
can write

zi,t = [(ei,t − ēi,T ) + λ>(ft − f̄T )]2 − 1

T

T∑
s=1

[(ei,s − ēi,T ) + λ>(fs − f̄T )]2 (2.1)

where

ēi,T =
1

T

T∑
s=1

ei,s, f̄T =
1

T

T∑
s=1

fs

zi,t,1 = (ei,t − ēi,T )2 −
(

1− 1

T

)
Ee2

i,0, zi,t,2 = 2(ei,t − ēi,T )λ>i (ft − f̄T ), (2.2)

zi,t,3 = (λ>i (ft − f̄T ))2 − E(λ>i (ft − f̄T ))2, (2.3)

zi,4 =
1

T

T∑
s=1

{
[(ei,s − ēi,T ) + λ>i (fs − f̄T )]2 −

((
1− 1

T

)
Ee2

i,0 + E(λ>i (ft − f̄T ))2

)}
. (2.4)

We note that by stationarity Ezi,t,1 = 0, 1 ≤ i ≤ N, 1 ≤ t ≤ T, ` = 1, 2, 3, 4. Also, for all −H ≤ h ≤ H
Ezi,t,1zj,t+h,1 = 0, if i 6= j.

Since

zi,t,1 = e2
i,t − Ee2

i,0 − 2

(
ei,tēi,T −

1

T
Ee2

i,0

)
+ ē2

i,T −
1

T
Ee2

i,0,

Assumptions 2.2, 2.3 and 2.7 yield that

Ezi,t,1zi,t+h,1 = cov(e2
i,0, e

2
i,h) + ri,t,h,1 and max

1≤i≤N
max

1≤t≤T
max
|h|≤H

|ri,t,h,1| = O(1/T 1/2).

Similarly, by Assumption 2.7 we have

Ezi,t,1zj,t+h,2 = 0, Ezi,t,1zj,t+h,3 = 0 and Ezi,t,2zj,t+h,3 = 0 for all i, j, h, t.

and

zi,t,2zj,t+h,2 = 0, if i 6= j.

Also

Ezi,t,2zi,t+h,2 =


− 4

T
Ee2

i,0λ
>
i E

[(
ft − f̄T

) (
ft − f̄T

)>]
λi, if h 6= 0(

1− 1

T

)
Ee2

i,0λ
>
i E

[(
ft − f̄T

) (
ft − f̄T

)>]
λi, if h = 0

and therefore since Eftf
> is the identity matrix

|Ezi,t,2zi,t+h,2| ≤ c1‖λi‖2/T, if h 6= 0,∣∣Ez2
i,t,2

∣∣ ≤ c2Ee
2
i,0‖λi‖2 + c2‖λi‖2/T ≤ c3‖λi‖2
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with some constants c1, c2 and c3. On account of Assumption 2.11 we conclude∣∣∣Ezi,t,3zj,t+h,3 − vec(λiλ
>
i )>E [RtRt+h] vec(λjλ

>
j )
∣∣∣ ≤ c4‖λi‖2‖λj‖2T−1/2

with some constant c4. Repeating the arguments above one can verify that

|Ezi,t+h,`zj,t| ≤ c5

{
T−1/2Ee2

i,01{i = j, h = 0}+ ‖λi‖21{i = j, h = 0}+ T−1/2‖λi‖2‖λj‖2
}

with some constant c5. Putting together the calculations above we conclude that

EwN,T =

H∑
h=−H

K

(
h

T

)[
T

N∑
i=1

cov(e2
i,0, e

2
i,h)(1 + o(1))

+ T

N∑
i=1

N∑
j=1

vec(λiλ
>
i )>E [R0Rh] vec(λjλ

>
j )(1 + o(1))

]

= T

 N∑
i=1

s2
i (1 + o(1)) +

{
N∑
i=1

vec(λiλ
>
i )>

}
R


N∑
j=1

vec(λjλ
>
j )

 (1 + o(1))


using the properties of K in Assumption 2.9.
Next we show that

1

d2
N

var(wN,T )→ 0, (2.5)

where

dN = T max

N,
(

N∑
i=1

‖λi‖

)2
 .

By the definition of wN,T we get that

var(wN,T )

=

N∑
i,j,k,`=1

H∑
h,h′=−H

K(h/T )

T − h
K(h′/T )

T − h′
T−h∑
s=1

T−h′∑
t=1

(zi,szj,s+h − Ezi,szj,s+h)
(
zk,tz`,t+h′ − Ezk,tz`,t+h′

)
and we use the expression for zi,t in (2.1). The expression for zi,t is further decomposed in (2.2)–(2.4).
We demonstrate the proof of (2.5) using the leading terms only; the other terms can be handled similarly.
Now by Assumptions 2.12

E(e2
i,s − Ee2

i,0)(e2
j,s+h − Ee2

j,0)(e2
k,t − Ee2

k,0)(e2
`,t+h′ − Ee2

`,0)

=



E(e2
i,s − Ee2

i,0)(e2
i,s+h − Ee2

i,0)(e2
i,t − Ee2

i,0)(e2
i,t+h′ − Ee2

i,0), if i = j = k = `,

E(e2
i,s − Ee2

i,0)(e2
i,s+h − Ee2

i,0)(e2
k,t − Ee2

k,0)(e2
k,t+h′ − Ee2

k,0), if i = j 6= k = `,

E(e2
i,s − Ee2

i,0)(e2
j,s+h − Ee2

j,0)(e2
j,t − Ee2

j,0)(e2
i,t+h′ − Ee2

i,0), if i = ` 6= j = k,

E(e2
i,s − Ee2

i,0)(e2
j,s+h − Ee2

j,0)(e2
i,t − Ee2

i,0)(e2
j,t+h′ − Ee2

j,0), if i = k 6= j = `,

0, otherwise.

Hence∣∣∣∣∣
N∑

i,j,k,`=1

H∑
h,h′=−H

K(h/T )

T − h
K(h′/T )

T − h′
T−h∑
s=1

T−h′∑
t=1

E

[
(e2
i,s − Ee2

i,0)

× (e2
j,s+h − Ee2

j,0)(e2
k,t − Ee2

k,0)(e2
`,t+h′ − Ee2

`,0)

]∣∣∣∣∣
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≤ c5
1

T 2

N∑
i=1

H∑
h,h′=−H

∣∣∣∣∣E
(
T−h∑
s=1

[(e2
i,s − Ee2

i,0)(e2
i,s+h − Ee2

i,0)− cov(e2
i,0, e

2
i,h)]

×
T−h′∑
t=1

[(e2
i,t − Ee2

i,0)(e2
i,t+h′ − Ee2

i,0)− cov(e2
i,0, e

2
i,h′)]

)

− (T − h)(T − h′)cov(e2
i,0, e

2
i,h)cov(e2

i,0, e
2
i,h′)

∣∣∣∣∣
+ c5

1

T 2

N∑
i 6=k=1

H∑
h=−H

∣∣∣∣∣
T−h∑
s=1

E(e2
i,s − Ee2

i,0)(e2
i,s+h − Ee2

i,0)

∣∣∣∣∣
H∑

h′=−H

∣∣∣∣∣
T−h′∑
t=1

E(e2
k,t − Ee2

k,0)(e2
k,t+h′ − Ee2

k,0)

∣∣∣∣∣
+ c5

1

T 2

N∑
i 6=j=1

H∑
h,h′=−H

∣∣∣∣∣
T−h∑
s=1

T−h′∑
t=1

E(e2
i,s − Ee2

i,0)(e2
i,t+h′ − Ee2

i,0)E(e2
j,s+h − Ee2

j,0)(e2
j,t − Ee2

j,0)

∣∣∣∣∣
≤ c6

1

T 2

{
H2

N∑
i=1

max
|h|≤H

E

(
T−h∑
s=1

[(e2
i,s − Ee2

i,0)(e2
i,s+h − Ee2

i,0)− cov(e2
i,0, e

2
i,h)]

)2

+NT 2

}

+ c7N
2 max

1≤i≤N

( ∞∑
h=−∞

|cov(e2
i,0, e

2
i,h)|

)2

+ c8
1

T 2

N∑
i 6=j=1

H∑
h,h′=−H

∣∣∣∣∣
T−h∑
s=1

T−h′∑
t=1

cov(e2
i,0, e

2
i,t−s+h′)cov(e2

j,0, e
2
t−s−h)

∣∣∣∣∣≤ c9

{
H2N

T
+N2

}
with the applications of Assumptions 2.2, 2.12 and the Cauchy–Schwartz inequality.
According to Assumptions 2.2 and 2.7 we have

E[{(e2
i,s − Ee2

i,0)(e2
j,s+h − e2

j,0)− cov(e2
i,0, e

2
j,h)}

× {((λ>k ft)
2 − E(λ>k f0)2)((λ>` ft+h′)

2 − E(λ>` f0)2)− cov((λ>k f0)2, (λ>` fh′)
2}]

= E[(e2
i,s − Ee2

i,0)(e2
j,s+h − e2

j,0)− cov(e2
i,0, e

2
j,h)]

× E[((λ>k ft)
2 − E(λ>k f0)2)((λ>` ft+h′)

2 − E(λ>` f0)2)− cov((λ>k f0)2, (λ>` fh′)
2]

= 0.

Similarly,∣∣∣∣∣
T−h∑
s=1

T−h′∑
t=1

E[{((λ>i fs)
2 − E(λ>i f0)2)((λ>j fs+h)2 − E(λ>i f0)2)− cov((λ>i f0)2, (λ>j fh)2}

× {((λ>k ft)
2 − E(λ>k f0)2)((λ>` ft+h′)

2 − E(λ>` f0)2)− cov((λ>k f0)2, (λ>` fh′)
2}]

∣∣∣∣∣
≤ c10T‖λi‖2‖λj‖2‖λk‖2‖λ`‖2

and therefore∣∣∣∣∣
N∑

i,j,k,`=1

H∑
h,h′=−H

K(h/T )

T − h
K(h′/T )

T − h′
T−h∑
s=1

T−h′∑
t=1

E[{((λ>i fs)
2 − E(λ>i f0)2)((λ>j fs+h)2 − E(λ>i f0)2)

− cov((λ>i f0)2, (λ>j fh)2}{((λ>k ft)
2 − E(λ>k f0)2)((λ>` ft+h′)

2 − E(λ>` f0)2)

− cov((λ>k f0)2, (λ>` fh′)
2}]

∣∣∣∣∣≤ c11

(
N∑
i=1

‖λi‖2
)4

H2

T
.
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Assumption 2.7 yields that

Eei,tλ
>
i ftej,t+hλ

>
j ft+hek,sλ

>
k fse`,s+h′λ

>
` fs+h′ = Eei,tej,t+hek,se`,s+h′Eλ>i ftλ

>
j ft+hλ

>
k fsλ

>
` fs+h′

=



Eei,tei,t+hei,sei,s+h′Eλ>i ftλ
>
i ft+hλ

>
i fsλ

>
i fs+h′ , if i = j = k = `,

Eei,tei,t+hEek,sek,s+h′Eλ>i ftλ
>
i ft+hλ

>
k fsλ

>
k fs+h′ , if i = j 6= k = `,

Eei,tei,sEej,t+hej,s+h′Eλ>i ftλ
>
j ft+hλ

>
i fsλ

>
j fs+h′ , if i = k 6= j = `,

Eei,tei,s+h′Eej,t+hej,sEλ>i ftλ
>
j ft+hλ

>
j fsλ

>
i fs+h′ , if i = ` 6= j = k,

0, otherwise

and by Assumptions 2.5, 2.11 and 2.12

|Eei,tei,t+hei,sei,s+h′Eλ>i ftλ
>
i ft+hλ

>
i fsλ

>
i fs+h′ | ≤ c12‖λi‖4Ee4

i,0E‖f0‖4,

|Eei,tei,t+hEek,sek,s+h′Eλ>i ftλ
>
i ft+hλ

>
k fsλ

>
k fs+h′ | ≤ c13|cov(ei,0, ei,h)||cov(ek,0, ek,h′)|,

|Eei,tei,sEej,t+hej,s+h′Eλ>i ftλ
>
j ft+hλ

>
i fsλ

>
j fs+h′ | ≤ c14‖Ef0f

>
h ‖‖Ef0f

>
h′‖,

|Eei,tei,s+h′Eej,t+hej,sEλ>i ftλ
>
j ft+hλ

>
j fsλ

>
i fs+h′ | ≤ c15‖Ef0f

>
h ‖‖Ef0f

>
h′‖.

Thus we conclude

∣∣∣∣∣
N∑

i,j,k,`=1

H∑
h,h′=−H

K(h/T )

T − h
K(h′/T )

T − h′
T−h∑
s=1

T−h′∑
t=1

Eei,tλ
>
i ftej,t+hλ

>
j ft+hek,sλ

>
k fse`,s+h′λ

>
` fs+h′

∣∣∣∣∣
≤ c16

{
NH2 +N2

}
.

3. Proofs of Theorems 3.1–3.3

Proof of Theorems 3.1-3.3. Using Assumption 3.1 we get that under the null hypothesis with k = bTuc

ES2
i (u) =

(
1− 2k

T

)
E

(
k∑
t=1

ei,t

)2

− 2k

T

k∑
t=1

T∑
s=k+1

E(ei,tei,s) +
k2

T 2
E

(
T∑
t=1

ei,t

)2

(3.1)

=
(T − k)k

k

∞∑
h=−∞

Eei,0ei,h − z
(1)
k,T −

2k

T
z

(2)
k,T ,

where

z
(1)
k,T =

(
1− 2k

T

)(
2k

∞∑
h=k

Eei,0ei,h + 2

k−1∑
h=1

hEei,0ei,h

)
+
k2

T 2

(
2k

∞∑
h=T

Eei,0ei,h + 2

T−1∑
h=1

hEei,0ei,h

)
and

z
(2)
k,T =



k−1∑
h=1

hEei,0ei,h +

k−1∑
h=1

hEei,0ei,T−h + k

T−k+1∑
h=k

Eei,0ei,h, if T ≥ 2k − 1

k−1∑
h=1

hEei,0ei,h +

k−1∑
h=1

hEei,0ei,T−h + k

k∑
h=T−k+1

Eei,0ei,h, if T < 2k − 1.

It follows from Assumption 3.1 that

max
1≤k≤T

∣∣∣∣z(1)
k,T +

2k

T
z

(2)
k,T

∣∣∣∣ = O(1)
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and therefore

sup
0≤u≤1

|VN,T (u)− EVN,T (u)| = O(1).

Now the proof goes along the lines the arguments used in verifying Theorems 2.1–2.3. �

4. Additional discussion on the weighted CUSUM tests.

In this appendix, we briefly discuss the extension of our test to weighted CUSUM statistics that might
improve the power of the test to detect change points that occur near the end points of the sample. In
order to do so, we require the following additional conditions on the error and common factor processes.

Assumption 4.1. (i) For every i, 1 ≤ i ≤ N , ei,j , 0 ≤ j <∞ are identically distributed
(ii) Ee2

i,0 ≤ C and Ee4
i,0 ≤ C for all i with some C.

We also need bounds for the rate of convergence in Assumption 2.6:

Assumption 4.2. For each T there are two Gaussian processes {W(1)

Σ,T
(u), u ≥ 0} and {W(2)

Σ,T
(u), u ≥

0} with EW
(1)

Σ,T
(u) = EW

(2)

Σ,T
(u) = 0, EW

(1)

Σ,T
(u)(W

(1)

Σ,T
(v))> = EW

(2)

Σ,T
(u)(W

(2)

Σ,T
(v))> = Σ min(u, v),

max
1≤`<T

1

`ζ

∥∥∥∥∥∑̀
t=1

ft −W
(1)

Σ,T
(`)

∥∥∥∥∥ = OP (1),

and

max
1≤`<T

1

(T − `)ζ

∥∥∥∥∥
T∑

t=`+1

ft −W
(2)

Σ,T
(T − `)

∥∥∥∥∥ = OP (1),

with some ζ < 1/2.

Theorem 4.1. We assume that H0, Assumptions 4.1, 4.2 are satisfied and Υ(u) = (u(1 − u))υ with
0 ≤ υ < 1.
(i) If the conditions of Theorem 2.1 are satisfied, then

T

N1/2
sup

1/(T+1)≤u≤T/(T+1)

1

Υ(u)
|VN,T (u)| D→ sup

0<u<1

1

Υ(u)
|Γ(u)|,

where Γ(u) is defined in Theorem 2.1.
(ii) If the conditions of Theorem 2.2 are satisfied, then

1

T

(
N∑
i=1

‖λi‖2
)−1

sup
1/(T+1)≤u≤T/(T+1)

1

Υ(u)
|VN,T (u)| D→

sup
0<u<1

1

Υ(u)

∣∣∣∣trace

(
Q

(
BΣ(u)B>Σ(u)− u(1− u)

τ(1− τ)
BΣ(τ)B>Σ(τ)

))∣∣∣∣ ,
where Q and BΣ(u) are defined (2.7) and (2.9).
(iii) If the conditions of Theorem 2.3 are satisfied, then

T

N1/2
sup

1/(T+1)≤u≤T/(T+1)

1

Υ(u)
|VN,T (u)| D→

sup
0<u<1

1

Υ(u)

∣∣∣∣Γ(u) + c∗trace

(
Q

(
BΣ(u)B>Σ(u)− u(1− u)

τ(1− τ)
BΣ(τ)B>Σ(τ)

))∣∣∣∣ ,
where c∗ is defined in (2.8).

Theorem 4.1 provides the convergence in distribution of the supremum functional of the process VN,T (u)
weighted by Υ(u). Our arguments can be used to obtain the convergence in distribution of other func-
tionals, for instance Lp functionals, of the process VN,T (u) weighted by Υ(u). We now prove Theorem
4.1.
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Lemma 4.1. If Assumption 4.1 holds, then

lim
x→0

lim sup
min(N,T )→∞

P

 max
1≤`≤Tx

T ι−1

`ι

∣∣∣∣∣∣ 1

N1/2

N∑
i=1

∑̀
j=1

ei,j

2

− σ2
i `

∣∣∣∣∣∣ > t

 = 0 (4.1)

and

lim
x→0

lim sup
min(N,T )→∞

P

 max
T−Tx≤`<T

T ι−1

(T − `)ι

∣∣∣∣∣∣ 1

N1/2

N∑
i=1

 N∑
j=`+1

ei,j

2

− σ2
i (T − `)

∣∣∣∣∣∣ > t

 = 0

for all ι < 1 and t > 0.

Proof. We only prove (4.1), the second part of Lemma 4.1 follows by symmetry. Let

ζ2
N =

1

N

N∑
i=1

σ4
i .

Chan et al. (2013) constructed Wiener processes {WT (x), x ≥ 0} such that

max
1≤`≤T

1

`ῑ

∣∣∣∣∣∣ 1

N1/2

N∑
i=1

∑̀
j=1

ei,j

2

− σ2
i `

− ζNWT (`2)

∣∣∣∣∣∣ = OP (1) (4.2)

with some ῑ < 1. We write

max
1≤`≤Tx

T ι−1

`ι

∣∣∣∣∣∣ 1

N1/2

N∑
i=1

∑̀
j=1

ei,j

2

− σ2
i `

∣∣∣∣∣∣
≤ max

1≤`≤Tx

T ι−1

`ι

∣∣∣∣∣∣ 1

N1/2

N∑
i=1

∑̀
j=1

ei,j

2

− σ2
i `

− ζNWT (`2)

∣∣∣∣∣∣+ max
1≤`≤Tx

T ι−1

`ι
∣∣ζNWT (`2)

∣∣
and by (4.2) we have for all x > 0

max
1≤`≤Tx

T ι−1

`ι

∣∣∣∣∣∣ 1

N1/2

N∑
i=1

∑̀
j=1

ei,j

2

− σ2
i `

− ζNWT (`2)

∣∣∣∣∣∣
≤ max

1≤`≤Tx

T ι−1

`ι−ῑ
max

1≤`≤Tx

1

`ῑ

∣∣∣∣∣∣ 1

N1/2

N∑
i=1

∑̀
j=1

ei,j

2

− σ2
i `

− ζNWT (`2)

∣∣∣∣∣∣ = OP (T ῑ−1)

since we can assume ι < ῑ < 1. Using the scale transformation of the Wiener process we have

max
0<y≤Tx

T ι−1

yι
∣∣WT (y2)

∣∣ D= max
0<u≤x

1

uι
|W (u2)|,

where {W (u), u ≥ 0} is a Wiener process. The law of iterated logarithm for the Wiener process yields

max
0<u≤x

1

uι
|W (u2)| → 0 a.s.

for all ι < 1, completing the proof of (4.1). �

Lemma 4.2. If Assumption 4.2 holds, then

lim
x→0

lim sup
min(N,T )→∞

P

 max
1≤`≤Tx

T ι−1

`ι

∥∥∥∥∥∑̀
t=1

ft

∥∥∥∥∥
2

> t

 = 0
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and

lim
x→0

lim sup
min(N,T )→∞

P

 max
T−Tx≤`<t

T ι−1

(T − `)ι

∥∥∥∥∥
T∑

t=`+1

ft

∥∥∥∥∥
2

> t

 = 0

for all ι < 1 and t > 0.

Proof. We can repeat the proof of Lemma 4.1, we just need to replace the weighted approximation in
(4.2) with Assumption 4.2. �

Proof of Theorem 4.1. We only prove (i) since the same arguments can be used to establish the
other parts of Theorem 4.1. We note that using Theorem 2.1 we get for all 0 < x < 1/2 that

T

N1/2
sup

x≤u≤1−x

1

Υ(u)
|VN,T (u)| D→ sup

x≤u≤1−x

1

Υ(u)
|Γ(u)|.

Using Lemmas 4.1 and 4.2, we obtain

lim
x→0

lim sup
min(N,T )→∞

P

{
T

N1/2
sup

1/(N+1)≤u≤x

1

Υ(u)
|VN,T (u)| > t

}
= 0,

and

lim
x→0

lim sup
min(N,T )→∞

P

{
T

N1/2
sup

1−x≤u≤T/(T+1)

1

Υ(u)
|VN,T (u)| > t

}
= 0,

for all t > 0. Using the representation of Γ(u) in Horváth and Hušková (2012) we get

sup
0<u≤x

1

Υ(u)
|Γ(u)| P→ 0,

and

sup
1−x≤u<1

1

Υ(u)
|Γ(u)| P→ 0,

as x→ 0. This concludes the proof. �

5. Additions to data applications

In this section, we first supplement more information on the application of FRED-MD data. Figure 5.1
illustrate 20 randomly selected series from this panel.

Figure 5.1. 20 randomly selected series from the FRED-MD data set with vertical lines
representing estimated change points significant at level 0.05 after applying a binary seg-

mentation procedure based on the statistic/test V(1)
N,T .
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Table 5.1. Detected changes and the corresponding relevant events in the FRED–MD
data with the corresponding p–values in brackets.

Tests 1st Change Event 2nd Change Event 3rd Change Event

V(1)
N,T

Jun/06
(0.00)

Housing
boom end

Mar/08
(0.00)

Federal
bailout

Jan/16
(0.00)

Growth
rate decrease

V(2)
N,T

Jun/06
(0.00)

Housing
boom end

Mar/08
(0.00)

Federal
bailout

Jan/16
(0.00)

Growth
rate decrease

H
(1)
N,T

Aug/03
(0.00)

Labor
market recover

Mar/08
(0.01)

Federal
bailout

Aug/12
(0.04)

Unemployment
rate bottom

H
(2)
N,T

Aug/03
(0.00)

Labor
market recover

Mar/08
(0.00)

Federal
bailout

Aug/12
(0.00)

Unemployment
rate bottom

JN,T
Apr/03
(0.00)

Market
rebound

Dec/11
(0.00)

Growth
slow down

Jun/16
(0.00)

Growth
rate decrease

CN,T
Jun/03
(0.00)

Unemployment
rate peak

Jul/07
(0.00)

Sub-prime
mortgage

crisis

Nov/11
(0.00)

Growth
slow down

Table 5.1 shows the p-values of the corresponding tests as discussed in the main text.
Next, to illustrate the case when T is much smaller than N , we also investigated changes in the volatilities
of the log returns on S&P 500 composites. In this data example we downloaded S&P 500 composites from
Thomson Reuters Datastream database covering the period from 31 March 2015 to 31 March 2016. This
data set forms a panel with T = 262 and N = 345, allowing us to compare the empirical performances of
change point tests in the large N context. The log return transformation was performed, and by taking
the squares of returns, so we aim to detect changes in the volatility of returns, i.e., market risks. Using
the method of Bai and Ng (2002), we found four significant factors. During the short observation period
three major events occurred on the market: the market slowly started to slide down in the middle of 2015,
followed by a major sell off in August, with a rebound that started in mid December. All tests identified

these or some of these changes in the squared log returns. The tests V(1)
N,T , H

(1)
N,T and CN,T found three

change points, and they agreed with 25 June 2015 and 18 August 2015 for the first and second changes,

differed in detecting and estimating the third change: these were 14 December 2015 (V(1)
N,T ), 7 December

2015 (H
(1)
N,T ), and 04 September 2015 (CN,T ). The test V(2)

N,T detected two changes on 18 August 2015

and 14 December 2015. The remaining tests H
(2)
N,T and JN,T detected a single change on 18 August 2015

and 7 September 2015, respectively, as a probable time of change in volatility.
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