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Abstract— The common spatial patterns (CSP) algorithm
is the most popular spatial filtering method applied to
extract electroencephalogram (EEG) features for motor
imagery (MI) based brain-computer interface (BCI) systems.
The effectiveness of the CSP algorithm depends on optimal
selection of the frequency band and time window from
the EEG. Many algorithms have been designed to optimize
frequency band selection for CSP, while few algorithms
seek to optimize the time window. This study proposes a
novel framework, termed common time-frequency-spatial
patterns (CTFSP), to extract sparse CSP features from
multi-band filtered EEG data in multiple time windows.
Specifically, the whole MI period is first segmented into mul-
tiple subseries using a sliding time window approach. Then,
sparse CSP features are extracted from multiple frequency
bands in each time window. Finally, multiple support vec-
tor machine (SVM) classifiers with the Radial Basis Func-
tion (RBF) kernel are trained to identify the MI tasks and
the voting result of these classifiers determines the final
output of the BCI. This study applies the proposed CTFSP
algorithm to three public EEG datasets (BCI competition III
dataset IVa, BCI competition III dataset IIIa, and BCI compe-
tition IV dataset 1) to validate its effectiveness, compared
against several other state-of-the-art methods. The exper-
imental results demonstrate that the proposed algorithm
is a promising candidate for improving the performance of
MI-BCI systems.
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I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) establish a direct
connection link between the brain and the external world,

which is independent of peripheral nerves and muscles [1], [2].
BCIs not only provide an alternative communication channel
for disabled patients [3]–[6], but also have many promising
applications for healthy users such as environment con-
trol [7], [8] or fatigue detection [9], [10]. To acquire brain sig-
nals for controlling a BCI the electroencephalography (EEG)
is commonly used due to its non-invasive nature, high temporal
resolution, and low cost [11], [12]. However, EEG signals
suffer from external noise and are prone to physiological
artifacts, which poses challenges when using them for BCI
control [13].

Among BCI systems, motor imagery (MI)-based BCIs can
be more flexible in their applications than many other types of
BCI because they can be operated asynchronously and can be
more intuitive to control [14]–[17]. During MI, the rhythmic
EEG activity is suppressed on the contralateral side of the
brain to the limb the individual is attempting to control. This
is the so-called event-related desynchronization (ERD) [18].
However, the spatial location in the brain, temporal onset,
relative decrease in EEG power, and stability of the ERD are
highly variable across trials, sessions, and individuals [19].
This poses a considerable challenge for designing MI-BCI
systems.

To optimally extraction of EEG features that describe the
ERD, researchers proposed the common spatial patterns (CSP)
algorithm, which seeks spatial filters to extract the features that
optimally discriminate different motor control attempts [20].
Due to its success, a large number of variants of CSP have
emerged. For instance, regularization was introduced to CSP
to solve the problem of overfitting [21]–[24].

The effectiveness of CSP depends on identifying the optimal
EEG frequency band. However, the optimal filter frequency
band is participant-specific, meaning a general solution with a
fixed frequency band is not possible. Thus, several variants of
CSP use different frequency bands, including methods such as
sub-band CSP (SBCSP) [25], filter bank CSP (FBCSP) [26],
discriminative FBCSP (DFBCSP) [27], and sliding window
discriminative CSP (SWDCSP) [28].
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Fig. 1. Timeline of one trial for (a) dataset IVa from BCI Competition
III, (b) dataset IIIa from BCI Competition III, (c) dataset 1 from BCI
Competition IV.

However, in the above literature, the importance of the
temporal onset of the ERD is often overlooked. The time
course of the ERD following a movement cue varies over
time and across participants [29]. Therefore, an optimal CSP
method should account for this variability when training the
spatial filter. However, only a few studies have tried to tackle
this problem by employing approaches for automatic selection
of the optimal time interval [30], [31].

This study proposed a novel framework, termed common
time-frequency-spatial patterns (CTFSP), to learn sparse CSP
features from multi-band filtered EEG data over multiple can-
didate time windows. The major innovations and contributions
of this work can be summarized as follows: 1) We adopted
a sliding time window approach to decode MI tasks. 2) In
each sub time window, we extracted sparse CSP features from
multiple candidate frequency bands. 3) We developed a novel
classification method that makes use of a classifier fusion
strategy. The final decision output is based on the results from
multi classifiers to reduce the risk of misclassification. Finally,
we validated the efficiency of the proposed framework using
three public EEG datasets.

The remainder of this paper is organized as follows.
Section 2 introduces the three BCI Competition Datasets
used in this study and describes the details of our proposed
framework. Section 3 presents the experimental results, which
are then discussed in Section 4. Section 5 concludes this work.

II. METHODS

A. Data Description

Dataset 1 (DS1): The first dataset we use is Dataset IVa
from the BCI Competition III [32]. It was recorded from
five healthy participants labelled aa, al, av, aw, and ay.
Visual cues were displayed for a period of 3.5 s, during
which the participants were instructed to perform one of the
corresponding MI tasks: left hand, right hand, and right foot
imagination. Then, the participants were instructed to relax
for a period of between 1.75 to 2.25 s. Each participant was
asked to complete 280 trials. The timeline of this exper-
iment is shown in Fig. 1(a). The original dataset includes

TABLE I
LIST OF THE SYMBOLS USED

signals from 118 EEG channels, which are down-sampled to
100 Hz. More details can be found on the following website:
http://www.bbci.de/competition/iii/.

Dataset 2 (DS2): The second dataset is Dataset IIIa from
the BCI Competition III [32]. It was recorded from 60 EEG
electrodes with a sample rate of 250 Hz from three participants
labelled k3, k6, and l1. The participants were instructed
to rest for 2 s at the beginning of each trial. At t = 2 s,
an acoustic stimulus and fixation cross were presented.
At t = 3 s, an arrow pointing left, right, up, or down was
displayed for 1 s and the participant was asked to imagine
a left-hand, right-hand, foot, or tongue movement until the
cross disappeared at t = 7 s. The numbers of trials per
class are 90, 60, and 60 for participants ‘k3’, ‘k6’ and ‘l1’,
respectively. In this study, we only select the trials from two
MI classes: left- and right-hand movements for Participants
‘k3’ and ‘l1’; right-hand and tongue movements for Participant
‘k6’. Fig. 1(b) shows the timeline of the experiment.

Dataset 3 (DS3): The third dataset is Dataset 1 from the
BCI Competition IV [33]. This dataset was recorded from
seven participants performing MI. At the beginning of each
trial, a fixation cross was first displayed at the center of the
computer screen for a period of 2 s. At t = 2 s, an arrow
pointing left, right, or down was displayed and the participant
was asked to perform the corresponding MI task (left / right
hand and foot) until the cross disappeared at t = 6 s. Then,
the participant was instructed to rest for 2 s. Fig. 1(c) shows
the timeline of the experiment. Each participant was asked
to complete 200 trials. We do not use the data from three
participants labelled c, d, and e, because they are artificially
generated. The dataset includes signals from 59 EEG channels,
which are down-sampled to 100 Hz. More details can be found
on the following website: http://www.bbci.de/competition/iv/.

B. Preprocessing

Table I shows a list of the notations and definitions that
are used later. A fifth-order Butterworth band-pass filter of
8-30 Hz was first used to filter out components unrelated
to sensorimotor rhythms. Then, the filtered EEG signals are
divided into seven frequency bands: mu band (8-13 Hz), two
sub-bands of the mu band (8-10 Hz; 10-13 Hz), beta band
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(13-30 Hz), and three sub-bands of the beta band (13-18 Hz;
18-23 Hz; 23-30 Hz).

C. Feature Extraction

CSP is a widely used feature-extraction method in
MI-based BCIs. It optimizes a set of spatial filters to maximize
the variance of one class while minimizing the variance of
the other class. The average spatial covariance matrix can be
computed as

Rc = 1

Nc

Nc�
i=1

Ei,cET
i,c

tr(Ei,cET
i,c)

(1)

We can find a spatial filter that maximizes the variance of
one class and minimizes the other class by solving

arg max
w

wTRcw
wTRc̄w

(2)

The above Rayleigh quotient can be transformed into the
generalized eigenvalue problem

Rcw = λRc̄w (3)

where λ and w are the generalized eigenvalue and eigenvector,
respectively. The spatial filter Wcsp = [w1, . . . , w2m ] is
formed by the eigenvector corresponding to the m maximum
and minimum eigenvalues.

D. Feature Selection

By applying CSP on each of the filtered signals, we derive
the following feature set

X =
⎡
⎢⎣

x1,1 · · · x1,D
...

. . .
...

xN,1 · · · xN,D

⎤
⎥⎦ (4)

where xi, j denotes the j -th feature extracted from EEG in the
i -th trial and D = 2m × 7 is the dimensionality of the feature
set.

When CSP is applied to multiple frequency bands multiple
features are generated. We used feature selection to reduce the
dimensionality of these features and simplify the subsequent
classification model. The least absolute shrinkage and selection
operator (LASSO) is a penalized least squares method impos-
ing an L1-penalty on the regression coefficients [34], [35]. The
LASSO estimates are defined as

arg min
β,β0

⎛
⎝ 1

2N

N�
i=1

(yi − β0 − xT
i β)2 + λ

D�
j=1

��β j
��
⎞
⎠ (5)

where yi is the class label for trial i , xi is the D-dimensional
feature vector for trial i , λ is a positive regularization para-
meter, and β and β0 are regression parameters (β is a
D-dimensional vector; β0 is a scalar).

The LASSO method does not depend on any classifier.
The features are automatically discarded corresponding to
coefficients that are exactly 0. Thus, the most significant
features are selected from multiple frequency bands.

E. SVM Classification

The support vector machine (SVM) has broad applications
in BCI systems. It finds an optimal hyperplane with the
largest possible margin to separate the samples from two
classes [36], [37].

One variant of the algorithm is to solve the following
optimization problem

min
ω,b,ξ

1

2
�ω�2 + C

N�
i=1

ξi

s.t . yi (ω
Tφ(xi ) + b) ≥ 1 − ξi , ξi ≥ 0, i = (1, . . . , n) (6)

where φ(xi ) maps xi into a higher-dimensional space, C is
the penalty parameter of the error term, and ξ is the slack
variable.

F. Sliding Time Windows

The time latency during the MI period varies across trials
for each participant [30]. To address this issue, we use three
temporal segments with 0.5 s intervals instead of time window
selection. A time window of length 2.5 s is used with DS1,
while a time window of length 3 s used is with DS2 and DS3.
Specifically, the three sub time windows used with DS1 are
[0-2.5], [0.5-3], and [1-3.5]. The three sub time windows used
with DS2 are [3-6], [3.5-6.5], and [4-7]. Finally, the three sub
time windows used with DS3 are [2-5], [2.5-5.5], and [3-6]
(please also refer to the timeline in Fig. 1).

G. Decision Output

Three SVM classifiers are formed because three sub time
windows are used. The decision output is based on the
“Max Wins” voting strategy [38], in which three binary SVM
classifiers will vote for each class, and the winner class will be
the class receiving the maximum votes. The decision function
Fj of each SVM classifier is

Fj = sgn(ωT
j φ j (x) + b j ). j = 1, 2, 3 (7)

The final decision output F is

F = sgn(

3�
j=1

Fj ) (8)

III. RESULTS

A. Whole Framework

We first give an overview of the architecture of our method.
Our goal is to learn a robust model that can achieve high
classification accuracy. To achieve this goal, we propose a
novel method, CTFSP, to learn the sparse features from
multi-band filtered EEG data across multiple time windows.
To be specific, CTFSP is formulated as a combination of
multi-band filtering, feature extraction, sparse feature selec-
tion, and classifier fusion, resulting in the overall architecture
illustrated in Fig. 2. First, the whole MI period is segmented
into multiple time windows. In each time window, multi-band
filtering is used to increase the signal-to-noise ratio (SNR) of
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Fig. 2. Architecture of the proposed CTFSP method. ‘TW’ represents time window.

the EEG signals by extracting MI-related features from the mu
band, beta band, and their sub-bands. Feature extraction and
selection may learn sparse spatial features by using the CSP
algorithm and the LASSO method. The final decision output
is determined by the voting result of three SVM classifiers.

B. Experimental Results

An extensive experimental comparison is implemented to
compare the performance of our proposed method to other
competing algorithms.

(1) CSP: Features are extracted by CSP from EEG data
within the whole time window ([0 3.5] with DS1, [3 7] with
DS2, and [2 6] with DS3) in the frequency band (8-30 Hz).

(2) FBCSP [39]: CSP features are extracted from EEG
data within the whole time window at multiple frequency
bands (4-8, 8-12, …, 36-40 Hz). Discriminative pairs of
frequency bands and corresponding CSP features are automati-
cally selected based on the Mutual Information Best Individual
Feature (MIBIF) selection algorithm.

(3) SCSP [40]: Features are extracted by CSP from EEG
data within the whole time window in the frequency band
(8-30 Hz) and then optimized to obtain sparse CSP features by
introducing an L1-norm regularization term in the optimization
problem of CSP.

(4) SMFCSP: CSP features are extracted from EEG data
within the whole time window at multiple frequency bands
(8-13, 8-10, …, 23-30 Hz). The LASSO method is then used
to obtain sparse features from multi-frequency filtered CSP
features.

(5) CTFSP: The whole MI period is segmented into multiple
sub time windows. In each sub time window, the SMFCSP
algorithm is implemented.

We then used the LIBSVM classifier to classify the filtered
EEG data after applying each of the above comparative meth-
ods [41]. The Radial Basis Function (RBF) is chosen as the
kernel function, and the default classifier parameters are used.1

Note that, in our proposed CTFSP algorithm, three SVM
classifiers are formed and the final decision is determined by
their voting results.

For each of the three datasets, a 10-fold cross-validation
approach is used to evaluate the classification performance.
The number of CSP filters used is set to 4 (i.e., m = 2).

Table II summarizes classification accuracies for all par-
ticipants. For three datasets, the proposed CTFSP algorithm
achieved the highest classification accuracy among the five
algorithms. The classification performance of the CTFSP algo-
rithm was significantly better than the performance achieved
with CSP (p < 0.005), SCSP (p < 0.005), and SMFCSP
(p < 0.005), as assessed with a Wilcoxon signed-rank test.

Specifically, for five participants from DS1, the mean
accuracies were 78.57% (with CSP), 82.36% (with FBCSP),
78.43% (with SCSP), 82.57% (with SMFCSP), and 85.00%
(with CTFSP), respectively. For three participants from DS2,
the mean accuracies were 92.32% (with CSP), 87.32% (with
FBCSP), 90.36% (with SCSP), 93.43% (with SMFCSP), and
96.20% (with CTFSP), respectively. For four participants from
DS3, the mean accuracies were 56.38% (with CSP), 60.50%
(with FBCSP), 56.25% (with SCSP), 68.50% (with SMFCSP),
and 75.00% (with CTFSP), respectively.

C. Comparison of Feature Distributions

To facilitate the comparison of feature distributions, Fig. 3
shows the distributions of the two features obtained by CSP,

1www.csie.ntu.edu.tw/∼cjlin/libsvm/
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TABLE II
ACCURACY (%) AND SIGNIFICANCE COMPARISONS APPLIED ON DS1, DS2, AND DS3. FOR EACH PARTICIPANT, THE HIGHEST ACCURACY IS

MARKED IN BOLDFACE. “L VS R” IS LEFT HAND AND RIGHT HAND AND “R VS T” IS RIGHT HAND AND TONGUE

Fig. 3. Distributions of the two features obtained by CSP, FBCSP, SCSP
and SMFCSP, respectively, for exemplar participant aw. The two large
circles reflect the distribution range of 90% of the features in each class.

FBCSP, SCSP, and SMFCSP for exemplar participant aw. The
SMFCSP algorithm provided more easily separated feature
distributions in comparison with the other three algorithms.
This is consistent with the classification performance of the
four algorithms. Fig. 4 shows the distributions of the two
features with different sub time windows obtained by CTFSP,
for exemplar participant aw. The two features with sub time
window 1 are the least separable.

D. Classification Performance With Different Time
Windows

Fig. 5 presents the classification accuracies obtained by
applying the CSP algorithm to EEG data with different time
windows for all the participants. The results show that the
whole time window is not the best choice for all partici-
pants except participant aa. The classification accuracies with
sub time window 2 are higher for participants aa, ay, k3,
l1, a, and g. The classification accuracies with sub time
window 3 are higher for participants al, aw, b, and f. The
classification accuracy with sub time window 1 is higher for
participant k6. Finally, the classification accuracies with sub
time window 1 and with sub time window 3 are the same for
participant av.

This shows that the response times to the cues for MI
tasks are not the same for all participants. This, in turn,
suggests that our multiple time window approach may reduce
the risk of misclassification caused by selecting the wrong time
window.

E. Classification Performance With Different Fusion
Strategies

Fig. 6 describes the process of the frameworks with two
different fusion strategies. We carried out the proposed algo-
rithms with classifier fusion (Fig. 6(a)) and feature fusion
(Fig. 6(b)), respectively. Table III lists the individual classi-
fication accuracies for all participants with different fusion
strategies. We found that the feature fusion approach obtained
a slightly higher mean accuracy of 84.57%. However, there
was no significant difference between the two fusion strategies
in terms of accuracy ( p > 0.05), as measured with a Wilcoxon
signed-rank test.
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Fig. 4. Distributions of the two features with different sub time windows obtained by CTFSP, for exemplar participant aw.

Fig. 5. Classification accuracies for all participants from datasets DS1, DS2, and DS3 with different time windows.

Fig. 6. The frameworks with different fusion strategies. (a) The fusion strategy is applied in the decision space. (b) The fusion strategy is applied in
the feature space.

F. Computational Efficiency

We also investigated the computational efficiency for each
of the compared algorithms on DS1. Fig. 7 shows the com-
putational time evaluated with 10-fold cross validation using
MATLAB R2016b on a PC with a i5-9600K 3.7GHz CPU, and
16GB of RAM. The results indicate that all of these algorithms
can be implemented efficiently. Beside this, Table IV lists the
testing time needed for each of these algorithms for one trial
for participant aa. Although our algorithm took a longer time
to compute than other methods, it could meet the requirement
of real-time processing (it took less time to compute than
the length of the trial). Most of time cost of our method

is spent on training multiple models. In other words, our
proposed CTFSP algorithm achieved classification accuracy
improvements without sacrificing computational efficiency for
BCI applications.

IV. DISCUSSION

CSP is a spatial feature extraction method that has become
the most commonly used algorithm in MI-BCIs [31]. How-
ever, it is also sensitive to noise and has low generalization
capacity. Thus, many modifications to the CSP algorithm
have been proposed to extend the generalizability of the CSP
algorithm across the frequency domain to compensate for the
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TABLE III
ACCURACIES (%) FOR ALL PARTICIPANTS USING CTFSP WITH DIFFERENT FUSION STRATEGIES

Fig. 7. Computational time taken by each of the compared algorithms
on DS1 with 10-fold cross validation.

TABLE IV
COMPARISON OF COMPUTATIONAL TIME FOR TESTING ONE TRIAL

WITH DIFFERENT ALGORITHMS. THE TRIAL IS

MORE THAN 5.25 S LONG

shortcomings of conventional CSP. Extensions to CSP have
included efforts such as SFBCSP [42] and SBLFB [43]. In the
current study, we used multiple frequency bands to extract CSP
features, including the mu band, beta band, and their sub-
bands. Then, our proposed method selected the most useful
features from the set of extracted features by means of sparse
regression.

Previous studies only considered the influence of the fre-
quency domain and ignored the differences in response times
to the cues during MI tasks. As shown in Fig. 5, the response
latency of the MI tasks varied for each participant. Therefore,
this study used a sliding time window approach and segmented
the entire MI period into three sub time windows. We also
compared the performance of the frameworks with two fusion
strategies. The results show that the classification accuracy
with the classifier fusion was not significantly different from
that achieved with the feature fusion approach.

Despite the proposed CTFSP algorithm obtaining highly
encouraging performance in comparison with other algorithms,
this work can further be improved along the following lines.
First, the feature selection method based on LASSO does not
depend on any classifier, so it may also omit some useful
features for classification. Similarly, a previous study [44]
showed that the sparse CSP algorithm generally gave lower
performance than CSP. Therefore, there may be more effective
feature-selection methods that can further improve classifica-
tion performance. Second, in this study we only used the “Max
Wins” voting strategy in the classifier fusion step. This might
be the easiest classifier fusion strategy, but is not necessarily
the best. Other approaches such as minimum / maximum
fusion or Dempster-Shafer fusion could be considered in
future work [45], [46]. Third, in fact motor imagery pro-
duces not only sensory motor rhythm (SMR) signals but also
movement-related cortical potential (MRCP) signals [47]–[50].
Several signal-processing and classification methods have been
used in low-frequency MRCP detection including Locality
Preserving Projection (LPP) [51], Discriminative Canonical
Pattern Matching (DCPM) [52] and CSP [53]. Therefore
in future work, we will try to investigate the feasibility of
the proposed CTFSP algorithm for simultaneous decoding
of SMR and MRCP to reduce BCI inefficiency. Of course,
transfer learning and deep learning have also receive increas-
ing attention at the current BCI research [54], [55]. The
combination of our work and these approaches may induce
new vitality in the BCI field, and is worthy of further
study.
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V. CONCLUSION

This study proposed an integrated framework of multi-band
filtering, CSP feature extraction, sparse feature selection, and
classifier fusion, termed CTFSP. We evaluated our proposed
algorithm on three public EEG datasets. Our results demon-
strate that the CTFSP algorithm outperformed other competing
algorithms, indicating that our proposed method is a promising
framework to enhance the decoding of MI patterns, which is
significant for the development of high-performance BCIs.
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