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Abstract 13 

Objective. In the last decade, the advent of code-modulated brain-computer interfaces (BCIs) has allowed the implementation 14 

of systems with high information transfer rates (ITRs) and increased the possible practicality of such interfaces. In this paper, 15 

we evaluate the effect of different numbers of targets in the stimulus display, modulation sequences generators, and signal 16 

processing algorithms on the accuracy and ITR of code-modulated BCIs. Approach. We use both real and simulated EEG 17 

data, to evaluate these parameters and methods. Then, we compared numerous different setups to assess their performance 18 

and identify the best configurations. We also evaluated the dependability of our simulated evaluation approach. Main results. 19 

Our results show that Golay, Almost Perfect, and deBruijn sequence-based visual stimulus modulations provide the best 20 

results, significantly outperforming the commonly used m-Sequences in all cases. We conclude that artificial neural network 21 

processing algorithms offer the best processing pipeline for this type of BCI, achieving a maximum classification accuracy of 22 

94.7% on real EEG data while obtaining a maximum ITR of 127.2 bits/min in a simulated 64-target system. Significance. We 23 

used a simulated framework that demonstrated previously unattainable flexibility and convenience while staying reasonably 24 

realistic. Furthermore, our findings suggest several new considerations which can be used to guide further code-based BCI 25 

development. 26 

Keywords: Brain-Computer Interface, Code Modulated Visual-Evoked Potentials, Canonical Correlation, Artificial Neural 27 

Networks, m-Sequence, Almost Perfect Autocorrelation, DeBruijn, Golay Sequence. 28 

 29 

1. Introduction 30 

Electroencephalographic (EEG) data is acquired by 31 

measuring the net synaptic excitations from the surface of the 32 

scalp [1]. Components of the EEG elicited by exogenous 33 

stimuli, known as event-related potentials (ERPs), are 34 

commonly used in brain-computer interfaces (BCI) to identify 35 

control commands, allowing BCI users to communicate 36 

without motor or peripheral interaction [2]. These benefits 37 

have led to the accelerated pursuit of high-performance BCI 38 

systems in the last two decades [3][4][5][6].  39 

Modern BCIs are frequently based on the neural potentials 40 

evoked by out-of-sequence or unexpected time-dependent 41 

external events, such as P300 event-related potential-based 42 

systems, or by the response to frequency-dependent visual or 43 

auditory stimuli, like steady-state visual-evoked potentials 44 

(SSVEPs) [7]. Both types of BCI operate by presenting stimuli 45 

to the user which alternates in appearance at regular intervals. 46 

ERP-based BCIs are more comfortable to use, while SSVEP 47 

BCIs offer better performance in terms of accuracy and speed 48 

of the BCI [8][9]. 49 

In addition to the ERP and SSVEP types of BCI, systems 50 

based on code-modulated visual evoked potentials (c-VEPs) 51 

have gained relevance more recently as a proposed solution to 52 

the issues of visual fatigue and sub-optimal information 53 

transfer rates in users of several ERP and SSVEP-based BCIs 54 

[3][8][10][11].  55 
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By modulating the display of an array of visual stimuli with 56 

a predetermined pseudorandom binary sequence (PRBS) at 57 

relatively high and uniform frequencies such as 60 and 120 Hz 58 

[3][12], BCIs based on c-VEP offer the potential for much 59 

more pleasant operation [10]. Although there are several 60 

methods for generating a PRBS, there is no definite optimal 61 

choice for BCI applications. Numerous types of PRBS have 62 

been implemented in this context, for example, m-Sequences 63 

[3] [8] [12] [13], Almost Perfect Autocorrelation [14] 64 

sequences, and Gold sequences have all been attempted [15].   65 

The structure of the interface display used with c-VEP BCIs 66 

is similar to the interface typically used with other VEP-based 67 

BCIs and commonly consists of a rectangular arrangement of 68 

multiple square target cells surrounded by complementary 69 

non-target cells. By adopting the principle of equivalent 70 

neighbors [16] and the comments by Bin et al. [17] regarding 71 

the VEP field of view, it is reasonable to display all these 72 

stimulus sources in a compactly arranged grid on a display 73 

screen. 74 

Besides reducing visual fatigue, several different c-VEP 75 

BCIs have been proposed which typically outperform the 76 

information transfer rates (ITRs) obtained with SSVEP-based 77 

systems. For example, in 2009 Bin et al. [17] obtained an 78 

information transfer rate of 58±9.6 bit/min with an SSVEP-79 

based BCI, but later in 2010 proposed a c-VEP system that 80 

achieved a much higher average ITR of 108±12 bits/min [3]. 81 

Two years later, this high ITR score was further improved by 82 

Spüler et al. [7], reaching 144 bit/min with a BCI that also 83 

incorporated error-related potentials, allowing online 84 

adaptation. In 2018, Wei et al. [14] proposed a novel c-VEP 85 

BCI structure based on grouped stimulus targets, yielding an 86 

even higher ITR of 181.05 bits/min. 87 

Several parameters influence the efficacy of a c-VEP BCI. 88 

They include but are not limited to, the type of PRBS used to 89 

present the stimuli, the feature extraction process used within 90 

the signal processing pipeline, and the number of targets 91 

presented to the user. Many different variants of these 92 

parameters have been investigated by c-VEP BCI researchers. 93 

However, to date, there is no clear consensus on which 94 

parameters are most effective in allowing the construction of 95 

a fast and accurate c-VEP BCI. 96 

In this paper, we work with a high-speed c-VEP BCI 97 

framework using both a real EEG dataset and a simulated EEG 98 

dataset. We evaluate the effect of multiple PRBS types, signal 99 

processing algorithms, and numbers of stimuli in the 100 

presentation setup on the overall performance of the c-VEP 101 

BCI system, measured through accuracy and ITR. We also 102 

compare various attributes between the experimental and the 103 

simulated EEG datasets to assess the dependability of the 104 

simulation approach. 105 

2. Methods 106 

2.1 Theory of Operation 107 

Figure 1 shows the workflow overview diagram of a typical 108 

c-VEP BCI system. It is composed of three stages executed 109 

cyclically: data acquisition, signal processing, and visual 110 

stimulation. The interface first presents multiple command 111 

options to the user. Each of these commands displayed is 112 

modulated, over time, by the PRBS. For example, commands 113 

may be toggled between two different states (e.g. visible vs. 114 

hidden, or greyed out vs. highlighted) according to the digit of 115 

each bit in the PRBS. For the signal processing stage, as is 116 

generally the case [5], the system acquires the c-VEP data 117 

from the user, processes the 118 

multi-channel signals in the 119 

time and spatial domains, 120 

extracting the relevant 121 

features, to finally perform the 122 

identification as to which 123 

stimulus source the user is 124 

fixating on, and ultimately 125 

execute the command of the 126 

user’s interest without 127 

physical interaction with the 128 

machine. 129 

 
Figure 2. Visualization of an example of the modulation behavior of the first three stimulus 
targets, showing a consecutive circular shift of 4 bits of the same pseudorandom binary 
sequence 

 

Figure 1. The workflow overview diagram of the c-VEP BCI 
system, composed of three stages executed cyclically: data 
acquisition, signal processing, and visual stimulation. 
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In this study we supersede the data acquisition and display 130 

stages by employing an offline BCI, that is, by using pre-131 

recorded real and pre-generated synthetic EEG, allowing us to 132 

focus on the processing pipeline. Specifically, we utilized a 133 

signal simulation program (developed in MATLAB R2019b) 134 

for EEG signal simulation, inspired by the open-source 135 

framework developed by Lindgren et al. in 2018 [18]. While 136 

for the real EEG, we used a dataset provided by Wei et al. 137 

[14].  138 

As shown in Figure 2, the behavior of each target stimuli 139 

presented to the user is modulated frame by frame with a 140 

consecutively shifted PRBS, in which the 0/1 value of the 141 

momentary bit toggles a particular stimulus on and off, as 142 

suggested by Wei et al. [19]: 143 

𝑀(𝑡)𝑇𝑎𝑟𝑖
= 𝑃𝑅𝐵𝑆 (𝑡 + (𝑖 ∗ 𝜏𝑑𝑒𝑙𝑎𝑦))        (𝑒𝑞. 1) 144 

where 𝑀 is the binary value of target i (𝑇𝑎𝑟𝑖) at time 𝑡, 145 

considering a τ lag of 4 bits between consecutive targets, and 146 

𝑃𝑅𝐵𝑆(𝑥) defines digit 𝑥 of the stimuli modulation sequence 147 

in the BCI setup.  148 

 To evaluate the effect of different configurations on the 149 

system performance we explored multiple options for three 150 

key parameters from the typical c-VEP BCI setup and 151 

processing pipeline. First, we used three distinct numbers of 152 

targets (16, 32, and 64 targets). This choice of numbers of 153 

available targets was based on the comments made by Baseler 154 

et al. [20] describing the negative impact on performance from 155 

an increase of targets presented to users in a BCI. Second, we 156 

evaluated 6 of the most widely used types of PRBS for 157 

modulation of the stimuli (detailed in section 2.3). Finally, we 158 

implemented 6 decoding algorithms that are commonly used 159 

in the context of BCI feature extraction (section 2.4). 160 

2.2 Data Acquisition 161 

2.2.1 Experimental Approach 162 

The experimental dataset, provided by 163 

Wei et al [14], consisted of two independent 164 

c-VEP data subsets recorded from 12 165 

different c-VEP BCI users (8 females) with 166 

normal or corrected to normal vision, 167 

between the ages of 21 and 26 years old. In 168 

the training subset, users fixated on one 169 

particular target from the array, defined as 170 

the reference target, for 20 trials, effectively 171 

providing 240 training trials in total. In the 172 

testing subset, each of the 12 participants 173 

fixated on each target from an array of 16 174 

square targets, for 5 useful cycles of the 175 

stimuli modulation sequence each, totaling 176 

at 960 distinct trials.  177 

The setup for the acquisition of the real 178 

experimental EEG data utilized an almost 179 

perfect autocorrelation (APA) sequence of 180 

length 64 bits with frequency modulation of 181 

60Hz and a sampling rate of 1000Hz. The electrode 182 

impedances were <10kΩ and EEG electrodes were placed at 183 

positions P3, Pz, P4, PO7, POz, PO8, O1, Oz, and O2 in the 184 

international 10/20 system for EEG electrode placement.  185 

2.2.2 Simulated Approach 186 

 Using the EEG simulator program, we generated an 187 

extensive synthetic EEG dataset for use in our analysis, 188 

consisting of two independent subsets for training and testing 189 

data, with a total of 240 and 1920 trials respectively, mirroring 190 

the structure from the experimental EEG dataset, while 191 

doubling the extent of the testing data.  192 

The generation of the artificial EEG signals consisted of a 193 

composite of three elements: the purely code-modulated 194 

responses to the PRBS stimulation, white and pink noise 195 

originating uniformly from the scalp surface and the head 196 

volume, respectively, with internal signal-to noise-ratios of  1 197 

and 0.8, as suggested in [18]. We also added heuristically-198 

sourced eye movement and eye blink noise artifacts, which in 199 

the simulation were set to occur at random times within the 200 

trial with probabilities of 30% and 10% respectively, and have 201 

random lengths of between 0 (i.e. non-existent) and 2 seconds, 202 

as proposed by Tangermann et al. [21]. This signal was passed 203 

through a 2-45Hz bandpass filter to limit the data to the 204 

frequency bands of interest, resulting in the final simulated 205 

EEG.  206 

To calibrate the proportions between the noise components 207 

and the purely evoked responses, we incorporated a global 208 

signal-to-noise ratio (SNR) coefficient into the simulator. We 209 

tuned the SNR to maximize the resemblance of the 210 

performance results between both approaches and those 211 

 
Figure 3. Instances of modulation sequences visualized. Examples of the six 

distinct PRBS evaluated in a 64-bit setup, from top to bottom: APA, m-

Sequence, Golay, Gold, Kasami, and DeBruijn sequences. 
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obtained by Wei et al [14] using an identical 212 

setup in simulation. Once tuned, the global 213 

SNR coefficient was set to a unitary value 214 

to later analyze the performance of our BCI 215 

with a range of SNR values (from 0.2 to 2 216 

dB) and observe how influential this 217 

simulation parameter is. These results are 218 

shown in Figure 9 and detailed in section 3.  219 

Finally, the modulation frequency and 220 

the sampling rate were set to 60Hz and 221 

1000Hz, respectively, and the simulated 222 

EEG electrodes were placed in the same 223 

positions as those from the experiments, 224 

following the international 10/20 system for 225 

EEG electrode placement: P3, Pz, P4, PO7, 226 

POz, PO8, O1, Oz, and O2. To achieve this 227 

in simulation, the signal generation is based 228 

on a linear superposition model that uses a 229 

leadfield matrix encoding the electrical 230 

propagation of the head model [18]. We 231 

work with a physiologically realistic non-232 

specific brain model, which projects 233 

uniform brain volume data to the surface 234 

electrodes, constrained by the cortical 235 

surface normal. The conductivity 236 

parameters of the model consist of scalp, 237 

skull, and brain mesh layers, with 238 

normalized conductivities of 1, 1/15, and 1, 239 

respectively, per Oostendorp et al. [22]. 240 

Finally, this head model also contains the 241 

dipole sources located at the front of the head representing the 242 

users’ eyes, from which the previously mentioned eye noise 243 

artifacts are set to originate.  244 

2.3 Modulation Sequences 245 

Six different PRBS were selected. These modulation 246 

sequences (MS) were chosen because they all are 247 

deterministically generated and have desirable statistical 248 

properties, such as low autocorrelation, despite the non-linear 249 

influence that these characteristics have on VEPs [3]. The 250 

sequences used in this study were: Linear-feedback shift 251 

register (LFSR, also known as m-Sequences), deBruijn, 252 

Almost Perfect Autocorrelation, Golay, Gold, and Kasami 253 

sequences. Examples of each of these MS are shown in Figure 254 

3. The sequences are generated through brute computational 255 

methods and/or distinct recursive algorithms. This is the case 256 

for LFSR and DeBruijn sequences where, for instance, the 257 

following primitive polynomials (mod 2 and 3 respectively) 258 

can be used recursively to generate both of these PRBS: 259 

𝑓(𝑥)𝐿𝐹𝑆𝑅 = 𝑥4 + 𝑥3 + 𝑥2 + 1         (𝑒𝑞. 2) 260 

𝑓(𝑥)𝑑𝑒𝐵𝑟𝑢𝑖𝑗𝑛 = 𝑥4 + 2𝑥 + 2            (𝑒𝑞. 3) 261 

where the exponents of each x term (also referred to as taps),  262 

represent the non-zero bit positions influencing the feedback 263 

for the next state in the recursive arrangement. In this case, the 264 

polynomial degree of n=4 results in a PRBS of 15 (2n-1) and 265 

16 (2n) bits in length, respectively. 266 

Each of these MS is commonly used in cryptography and 267 

spectrometry [23], neurological research [8] [24], and 268 

communication systems [25] due to their semi-random 269 

statistical properties [26] [27]. Furthermore, DeBruijn 270 

sequences have been beneficial for neural decoding processes 271 

in the wider neuroscientific context ([4]). While m-Sequences 272 

are perhaps the most frequently implemented type of MS in 273 

the context of c-VEP BCI research ([3] [8] [12] [13]), Golay 274 

and APA sequences have also been successfully implemented 275 

in novel c-VEP paradigms ([14]). Although to a lesser extent, 276 

Gold sequences have also previously been explored by 277 

Thielen et. al. [15] in another VEP-based paradigm consisting 278 

of asynchronously evoked Broad-band VEPs, due to the 279 

optimal cross-correlation properties of such sequences. 280 

Similarly, while Kasami sequences have had a highly limited 281 

presence in BCI research, these demonstrated inconclusive 282 

results in the context of c-VEP modulation when studied in 283 

2017 by Isaksen et al. [28].  284 

  285 

 
Figure 4. Comparison of single-cycle signals. From top to bottom: Raw EEG 
signal, pre-processed signal outputs of the six decoding algorithms, the signal 
average from 20 cycles, and an APA  modulation sequence with a length of 64 
bits.  
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2.4 Decoding Algorithms 286 

Multiple decoding algorithms were implemented to assess 287 

their effectiveness at decluttering an EEG signal through 288 

feature extraction.   289 

In our evaluation of the c-VEP processing pipeline, we use 290 

six of the most commonly used decoders for EEG feature 291 

extraction [8] [13] [29] [30]. The feature algorithms 292 

implemented are Canonical correlation analysis (CCA), 293 

principal component analysis (PCA), independent component 294 

analysis with maximum kurtosis (k-ICA) and maximum 295 

negative entropy criterion (n-ICA), shallow (SNN), and deep 296 

neural networks (DNN). 297 

We used these algorithms to perform a translation from the 298 

multidimensional raw EEG signal to a one-dimensional 299 

processed feature signal. Each of the algorithms is described 300 

in the following sections. The resulting processed one-301 

dimensional feature set was then passed to the classification 302 

phase, thus identifying which c-VEP target stimuli the user 303 

was attending to in a given trial (described in section 2.5). 304 

2.4.1 Canonical Correlation Analysis 305 

The CCA algorithm was utilized to create the spatial filter: 306 

𝑦[𝑛] = ∑ 𝑥𝑖[𝑛] 𝑤𝑥𝑖

𝐶

𝑖=1

            (𝑒𝑞. 4) 307 

where xi[n] represents the n-th element of the i-th channel (i= 308 

1, 2,…, C) from the multichannel input signal, which, once 309 

multiplied by the i-th weight from the set of weights Wx, 310 

results in the one-dimensional spatially-filtered signal y. And 311 

the set of weights Wx is calculated from the CCA:   312 

max
𝑊𝑥,𝑊𝑦

𝑊𝑥
𝑇 𝑋 𝑋̂𝑇  𝑊𝑦 

√𝑊𝑥
𝑇𝑋𝑋𝑇𝑊𝑥 ∙ 𝑊𝑦

𝑇𝑋̂𝑋̂𝑇𝑊𝑦

             (𝑒𝑞. 5) 313 

where the terms Wx and Wy denote the linear canonical 314 

coefficients that maximize the correlation between the 315 

unprocessed EEG input X and an averaged multichannel signal 316 

replicated for congruency, denoted here as X̂, and computed 317 

as follows: 318 

𝑋 = [𝑋1  𝑋2  𝑋3  ⋯ 𝑋𝑁]        (𝑒𝑞. 6) 319 

𝑋̅ =
1

𝑁
∑ 𝑋𝑖

𝑁

𝑖=1

                            (𝑒𝑞. 7) 320 

𝑋̂ = [𝑋̅  𝑋̅  𝑋̅  ⋯ 𝑋̅]                 (𝑒𝑞. 8) 321 

where the X input signal is collected from N stimulus cycles 322 

and X̅ represents the averaged signal before being replicated 323 

lengthwise N number of times. 324 

2.4.2 Principal component analysis 325 

Principal component analysis increases the interpretability 326 

of the signal X, by identifying a projection of the data such that 327 

the new dimensions of the data projected are organized by 328 

decreasing variance. The dimensionality of the signal can then 329 

be reduced by sub-selecting components from the new 330 

projected dimensions [31]. We select and further process only 331 

the one principal component with the largest corresponding 332 

Eigenvalue, here denoted as W1: 333 

max
𝑊1

𝑊1
𝑇𝑋𝑇𝑋 𝑊1

𝑊1
𝑇𝑊1

                  (𝑒𝑞. 9) 334 

which in our testing corresponds to the single projected 335 

component of the data that represented 75-90% of the total 336 

variance in the case of simulation, and 35-50% for 337 

experimental data, indiscriminate of the particular stimulus 338 

source or modulation sequence. 339 

2.4.3 Independent component analysis 340 

By assuming that the input X is an initial linear combination 341 

of real independent sources, denoted as S, we can use 342 

Independent Component Analysis (ICA) to extract a single 343 

feature set. These algorithms seek the linear transformation 344 

matrix A that transforms the EEG signals X into a new 345 

component space Y that approximates S. This is achieved by 346 

maximizing the statistical independence between each of the 347 

output components. Specifically, each recorded signal trial X 348 

is assumed to be a linear mixture of sources:  349 

𝑿 = 𝑨 × 𝑺            (𝑒𝑞. 10) 350 

Where S denotes the original sources and A denotes the 351 

linear mixing matrix. An estimate of the sources Y can then be 352 

found by inverting the mixing matrix: 353 

𝒀 = 𝑨−𝟏 × 𝑿            (𝑒𝑞. 11) 354 

 ICA has been demonstrated to produce a useful 355 

decomposition of EEG signals in numerous BCI applications 356 

[29] [32].  357 

However, when using an ICA method the dimensionality of 358 

the EEG signal set is not reduced, but maintained. Therefore, 359 

it is necessary to define some method to select one of the C 360 

independent components of a test trial available for eventual 361 

use in classifying the c-VEPs. To accomplish this, we measure 362 

the Pearson correlation coefficient between all independent 363 

components and all T reference templates produced for the 364 

current BCI setup, hence performing T×C computations. 365 

Whichever component maximizes the Pearson correlation 366 

coefficient with any of the reference templates is selected as 367 

the feature of interest for the subsequent classification stage. 368 

The generation of said templates is elaborated upon in section 369 

2.5, while a discussion on the benefits and caveats of this 370 

procedure is included in section 4.2.  371 
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2.4.4 Artificial neural networks 372 

Although the incorporation of artificial neural networks 373 

(ANNs) into c-VEP BCIs is not the most common practice, 374 

these methods have previously achieved highly accurate 375 

results in a few BCI systems [30] [33] [34]. We evaluated two 376 

different multi-layer perceptrons for their computationally 377 

light signal processing capacity and their high accuracies [35]. 378 

While one consists of 4 hidden layers, with 9, 18, 18, and 9 379 

hidden neurons in each layer respectively; the other network 380 

is shallow, consisting of a single 10-neuron hidden layer.  381 

We trained both ANN structures using sigmoid activation 382 

and with the same inputs and the summed channels of the 383 

outputs with which the CCA-based filter was also generated, 384 

but staying independent from the CCA method. That is to say, 385 

the training inputs consist of the unprocessed EEG signal X of 386 

C-channels (from eq. 6), while the training outputs consisted 387 

of the signal X̂ (see eq. 8), averaged along the C channels, 388 

resulting in a one-dimensional signal, here denoted as H: 389 

𝐻 =
1

𝐶
∑ 𝑥̂𝑖

𝐶

𝑖=1

              (𝑒𝑞. 12) 390 

2.5 Classification and Evaluation 391 

The classification procedure consisted of matching the 392 

processed one-dimensional feature set extracted from the EEG 393 

signals using each of the previously described decoding 394 

algorithms to one template from a set of T reference templates, 395 

where T is the number of classes (or targets) in the particular 396 

setup. All the necessary templates are obtained from the 397 

consecutive circular shift of one reference template, T number 398 

of times. This initial reference template is obtained by 399 

averaging the EEG data from all the trials collected for the 400 

training subset, in the case of the experimental approach; and 401 

from the average of all signals generated as the training subset 402 

using the simulator, for the simulated approach. Since all 403 

stimulus targets are modulated by the same circularly-shifted 404 

PRBS, each resulting reference template can be associated 405 

with each individual target. 406 

Once all templates are available after the training, the 407 

testing phase can be performed. In this phase, whichever 408 

reference template has the highest correlation coefficient with 409 

the feature set indicates which of the T target positions the BCI 410 

user is attempting to select, classifying it as such. Lastly, each 411 

of the 18 simulated configurations possible, as well as the 412 

decoding algorithms on the real data, were assessed by 413 

calculating the accuracy [%], with its variance, and the 414 

information transfer rate (ITR) expressed in bits/min.  415 

Beyond evaluating all configuration parameters in the 416 

simulated framework, we are interested in assessing the 417 

reliability of the framework itself. To carry out this evaluation, 418 

we statistically compare the power spectra and the grand 419 

average ERPs obtained from both approaches, as well as the 420 

SNR-accuracy relationship in simulation. The following 421 

section describes the results of all analyses, while a discussion 422 

on their significance is contained in Section 4. 423 

  424 

     
                                                 (A)                                                                                                   (B) 
Figure 5. Comparison of experimental and simulated analysis. Results obtained from both experimental (A) and simulated 
(B) approaches with the same configuration: APA sequence modulation with a 16-target BCI. The left plots of (A) and (B) 
show the accuracies [%] with error bars and statistical significance line with a p-value < 0.01 of a random 16-target 
classifier. The right plots of (A) and (B) show the ITR for each decoder [bits/min]. The maximum ITR (red horizontal line) is 
achieved when the accuracy reaches 100%, resulting in an ITR of 112.5 bits/min. 
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3. Results 425 

The accuracy and ITR of the offline classification tests 426 

carried out on the experimental set are presented in Figure 427 

5(A), while those results achieved by the simulator in an 428 

identical setup (16 targets with APA modulation) are 429 

contained in Figure 5(B). Also included in both accuracy 430 

graphs within Figure 5 is the variance and statistical 431 

significance level (p < 0.01), the latter of which is indicated 432 

by a dashed horizontal line at 8.13% and represents the 433 

accuracy level that we expect less than 1% of a set of random 434 

16-target classifiers to obtain, as assessed against a binomial 435 

distribution (see [36]). This figure 436 

shows nearly equal scores obtained 437 

through both approaches using 438 

CCA, SNN, and DNN, reaching 439 

accuracies of 94.38%, 95.34%, and 440 

94.22%, in the respective 441 

experiments; and 95.63%, 95.94%, 442 

and 95.31%, in the respective 443 

simulations. Note, while both ICA 444 

and the PCA algorithm return 445 

much lower scores relative to the 446 

rest of the decoders in experiments 447 

and simulation, it must be noted 448 

that both approaches achieve 449 

significantly different scores, 450 

which is discussed in Section 4.2.  451 

Proceeding with the evaluation 452 

through purely simulated means, 453 

Figure 6 condenses the scores 454 

obtained by each of the possible 455 

BCI setups. From the upper 456 

portion of this figure, which 457 

contains the accuracies, variance, 458 

and significance level of each 459 

instance, there is a noticeable 460 

decline in the scores as the number 461 

of targets is increased. On the other 462 

hand, as can be observed from the 463 

information transfer rates shown in 464 

the lower section of Figure 6, this 465 

negative tendency is partially 466 

counteracted by this same increase 467 

in targets, resulting in the net 468 

relative increase of ITR with a 469 

higher target number. 470 

Concerning the modulation 471 

sequence used, Golay sequences 472 

produced all of the highest 473 

accuracies in the 16-target setups, 474 

while Almost Perfect sequences 475 

provide the best results of 32 and 476 

64-target configurations above 477 

80%. However, it is worth pointing out that all three Golay, 478 

APA, and DeBruijn modulation sequences achieve the most 479 

promising results in all cases, frequently without being 480 

significantly distant from each other.  481 

Additionally, Linear-feedback shift register (m-482 

Sequences), Gold, and Kasami sequences demonstrated 483 

substantially poorer performances in almost all scenarios. In 484 

particular, Kasami sequences resulted in an average 485 

decrement from the highest accuracy of -50.9%, -44.3%, and 486 

-48.5% throughout each of the 64, 32, and 16-target simulated 487 

configurations, respectively.  488 

 
Figure 6. Simulated analysis results summary. (Upper) The 
accuracies obtained from all possible combinations of decoder, 
target number, and sequence type, with corresponding variances, 
and statistical significance levels (with p-value < 0.01) marked with 
a black dotted lines and the subscript “SS”. (Lower) The 
corresponding ITRs calculated as a function of the number of targets 
and the accuracy of each setup.  Additionally, the red dashed lines 
mark the maximum scores achieved within each one of the setups. 
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Finally, concerning the impact of each feature extraction 489 

algorithm, the results demonstrate that both ICA algorithms 490 

get remarkably lower scores, while CCA and both NNs 491 

represent the most efficient decoding methods. Even though 492 

Figure 6 suggests these three decoders are similarly 493 

competent, the SNN notably achieves the highest accuracy of 494 

98.8% with a 16-target Golay setup and the maximum ITR of 495 

127.2 bits/min with an APA 64-target system.  496 

Proceeding with the evaluation of the simulator properties, 497 

a comparison of the normalized grand ERP averages and 498 

power spectra of both data acquisition approaches is shown in 499 

Figure 7 and Figure 8, respectively. We can observe that the 500 

morphologies of the positive peaks from the simulated and 501 

experimental responses in Figure 7 are noticeably similar, 502 

with no statistically significant difference based on a two-503 

sample t-test with a significance of α=0.05. Still, there is an 504 

approximate deviation of 11.9% between both response 505 

latencies, and approximately a 14.6% increase in the 506 

amplitude of the simulator’s ERP relative to the one generated 507 

with real EEG data.   508 

Further analysis between signals obtained through both 509 

approaches can be done with the power spectra from all 9 510 

electrodes, shown in Figure 8. From this figure we can draw 511 

two conclusions: the frequency bands are greatly comparable 512 

since the relevant portions of both (the 0-50 Hz range 513 

approximately) are not statistically different based on a two-514 

sample t-test with a significance level of α=0.05; and that the 515 

simulation provides more orderly activation among the 516 

electrodes than the real EEG data provides, suggesting 517 

unrealistic response distribution among the electrodes, as well 518 

as slightly larger amplitudes in the higher frequencies before 519 

the cutoff at ~50Hz (i.e. 30-40Hz).  520 

Finally, Figure 9 is intended to show the influence of the 521 

signal-to-noise ratio (SNR) coefficient of the simulator on the 522 

accuracy of each feature extractor. As detailed in section 2.2.2, 523 

a coefficient of 1 was set as a baseline for the SNR that 524 

provides the most realistic results, using the experimental data 525 

as a reference. The outcomes depicted were obtained by 526 

averaging the accuracies scored by the three setups using APA 527 

modulation (16, 32, and 64 targets), resulting in an inverted 528 

exponential relationship between SNR and the accuracy. 529 

4. Discussion 530 

4.1 On the BCI System 531 

As previously stated, our results show that the SNN and 532 

CCA algorithms represent the most promising feature 533 

extractors for building c-VEP-based BCIs at a somewhat equal 534 

degree, since these achieve the highest scores throughout all 535 

numbers of targets without diverging significantly. However, 536 

by taking into account the considerably higher computational 537 

load and training time required to set up neural networks, we 538 

consider CCA a more favorable choice for an online system, 539 

especially if computing capacity is of the essence. The 540 

consistently inferior performances from the ICA and PCA 541 

algorithms suggest that these are not suitable for this type of 542 

BCI. Additionally, the correlation-based component selection 543 

procedure of ICA feature extraction (described in Section 544 

 
Figure 8. The frequency power spectrum was obtained from experimental (left) and simulated (right) c-VEP datasets. With a 
topological activation map of the regions with electrodes at 5, 15, and 25 Hz for each approach. 

  
Figure 7. Grand ERP averages, z-scored. Grand ERP average 
of channel Pz from simulated data (green) and experimental 
data (red). Both are obtained by averaging over 20 cycles. 
The visual stimulus is presented at time zero. 
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2.4.3) is a non-ideal process in terms of 545 

computation, since the number of calculations 546 

greatly increases along with an increase in the 547 

number of targets, which in an online system 548 

represents a reduction of processing speed. 549 

 We also conclude that among the PRBS 550 

investigated with simulation, Golay, 551 

DeBruijn, and Almost Perfect sequences are 552 

the most effective for stimuli modulation. 553 

While APA sequences are fairly common in c-554 

VEP studies, Golay and DeBruijn sequences 555 

have only been implemented to a very limited 556 

extent, which prompts a  highly interesting 557 

hypothesis for further testing through non-558 

simulated means. Furthermore, the 559 

consistently suboptimal results obtained with 560 

the Kasami, Gold, and m-Sequence PRBS 561 

suggest that these have unfavorable characteristics for code-562 

modulated BCIs. 563 

Finally, as indicated earlier, the increase in the number of 564 

targets in the BCI results in a noticeable decline in the 565 

accuracy of all of the configurations. This highlights the 566 

limited scalability of numbers of targets in c-VEP BCI 567 

systems, as noted by [14] and [20]. This tendency is likely due 568 

to the nature of the correlation classifier, since as the number 569 

of classes increases, the discrimination between consecutive 570 

targets has lower classification tolerance, becoming less 571 

reliable. Taking this into account, we consider that a direct 572 

increment in the number of stimuli without additional 573 

modifications to the BCI structure is not practical nor 574 

dependable. 575 

4.2 On the EEG Simulator 576 

Regarding the reliability of realistic c-VEP simulation, we 577 

first observe some non-significant inconsistencies in the grand 578 

ERP averages and power spectra of Figures 7 and 8. However, 579 

perhaps the most notable discrepancy concerns the results 580 

obtained from both ICAs and PCA in Figure 5. This figure 581 

shows significant differences in accuracy between the same 582 

feature extractors in identical setups. Since we can rule out the 583 

SNR as the origin of these inconsistencies based on the result 584 

in Figure 9 (showing relatively little variation throughout the 585 

whole range), and the discrepancy is exclusive to component 586 

analysis algorithms, we estimate that it derives from 587 

insufficiently realistic component rankings and orthogonality 588 

among data sources. Therefore, we conclude that the biggest 589 

shortcoming identified in the simulator originate from the 590 

limitations of the simulated electrodes and head model, 591 

resulting in significantly more favourable performance in the 592 

PCA algorithm’s orthogonal transformations. 593 

While we do acknowledge numerous areas of improvement 594 

for the EEG simulator, within the scope of this study, we 595 

consider that the operation and results achieved through a 596 

simulated approach are satisfactory. It effectively provided a 597 

genuinely practical, flexible, and robust platform for in-depth 598 

BCI analysis, with a certain degree of dependability. We 599 

believe, it is a powerful framework and a highly promising 600 

tool for streamlining the development of modern high-601 

performance brain-computer interfaces. Undoubtedly, more 602 

sophisticated and realistic simulations will further benefit the 603 

development of BCIs in the future.  604 

4.3 Future work 605 

The majority of the observations and results obtained in this 606 

study suggest promising methodologies and parameters, but 607 

also demand future experimentation. Particular effects of 608 

interest include the effects of the Golay and DeBruijn 609 

sequences, new paradigms to increase the number of targets 610 

per system, and the optimization of the ANN architecture in 611 

the feature extraction stage with a comparable speed to that 612 

achieved through CCA-based processing.  613 

More sophisticated signal processing algorithms are 614 

perhaps the development with the most potential to influence 615 

the performance of c-VEP BCI systems. Although 616 

computational requirements should be taken into 617 

consideration, we consider the integration of multiple 618 

advanced methodologies for signal decoding (i.e. 619 

convolutional neural networks, fuzzy logic), classification 620 

(i.e. Support Vector Machines, k-Nearest Neighbour), and 621 

methodologies that optimize user adaptability [7], such as 622 

higher modulation frequencies and stimulation sequences that 623 

move beyond binary presentation modalities, comprise the 624 

contemporary priorities of c-VEP BCI implementations. 625 

Finally, we consider that the insights and advancements 626 

made on realistic c-VEP simulation represent a tool that will 627 

likely provide highly significant benefits to all types of code-628 

modulated BCIs. A simulated framework provides 629 

unparalleled practicality and control and is an approach for 630 

which we strongly encourage further development.  631 

 
Figure 9. Analysis of the averaged influence of the simulated SNR coefficient 
on the accuracy of the BCI for each of the feature extractor methods in all 
target setups with an APA sequence. The x-axis represents the dB ratio 
between the signal and noise components in the EEG simulation. 
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5. Conclusion 632 

 In this paper, we evaluated the effects of various feature 633 

extractors, modulation sequences, and the number of targets 634 

in the stimulus interface on the accuracy and information 635 

transfer rates of c-VEP BCI systems. We utilized both real and 636 

generated EEG datasets through simulation, evaluating the 637 

characteristics of the latter, and ultimately assessing its 638 

reliability.  We were able to achieve a maximum information 639 

transfer rate of 127.2 bits/min with a 64-targets setup using an 640 

Almost Perfect Autocorrelation sequence for modulation, and 641 

98.8% accuracy in a Golay-modulated 16-target system, both 642 

with a shallow neural network as a feature extractor.  643 

Our results suggest several branching paths for the research 644 

and development of contemporary c-VEP BCI systems. Most 645 

notably our results suggest that the Golay and DeBruijn 646 

sequences, studies of which are not extensive, are highly 647 

effective for c-VEP BCI performance. We observed that the 648 

CCA and SNN methods represent the most effective feature 649 

extractors compared to multiple typical algorithms. Finally, 650 

we explored a realistic simulation framework, which not only 651 

achieved satisfactory fidelity but also provided highly 652 

valuable flexibility and exceptional accessibility to the 653 

processing pipeline analysis of a c-VEP-based BCI. 654 
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