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Abstract

Obijective. In the last decade, the advent of code-modulated brain-computer interfaces (BCls) has allowed the implementation
of systems with high information transfer rates (ITRs) and increased the possible practicality of such interfaces. In this paper,
we evaluate the effect of different numbers of targets in the stimulus display, modulation sequences generators, and signal
processing algorithms on the accuracy and ITR of code-modulated BClIs. Approach. We use both real and simulated EEG
data, to evaluate these parameters and methods. Then, we compared numerous different setups to assess their performance

and identify the best configurations. We also evaluated the dependability of our simulated evaluation approach. Main results.
Our results show that Golay, Almost Perfect, and deBruijn sequence-based visual stimulus modulations provide the best
results, significantly outperforming the commonly used m-Sequences in all cases. We conclude that artificial neural network
processing algorithms offer the best processing pipeline for this type of BCI, achieving a maximum classification accuracy of
94.7% on real EEG data while obtaining a maximum ITR of 127.2 bits/min in a simulated 64-target system. Significance. We
used a simulated framework that demonstrated previously unattainable flexibility and convenience while staying reasonably

realistic. Furthermore, our findings suggest several new considerations which can be used to guide further code-based BCI

development.

Keywords: Brain-Computer Interface, Code Modulated Visual-Evoked Potentials, Canonical Correlation, Artificial Neural
Networks, m-Sequence, Almost Perfect Autocorrelation, DeBruijn, Golay Sequence.

1. Introduction

Electroencephalographic (EEG) data is acquired by
measuring the net synaptic excitations from the surface of the
scalp [1]. Components of the EEG elicited by exogenous
stimuli, known as event-related potentials (ERPs), are
commonly used in brain-computer interfaces (BClI) to identify
control commands, allowing BCI users to communicate
without motor or peripheral interaction [2]. These benefits
have led to the accelerated pursuit of high-performance BCI
systems in the last two decades [3][4][5][6].

Modern BCls are frequently based on the neural potentials
evoked by out-of-sequence or unexpected time-dependent
external events, such as P300 event-related potential-based
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systems, or by the response to frequency-dependent visual or
auditory stimuli, like steady-state visual-evoked potentials
(SSVEPs) [7]. Both types of BCI operate by presenting stimuli
to the user which alternates in appearance at regular intervals.
ERP-based BCls are more comfortable to use, while SSVEP
BCls offer better performance in terms of accuracy and speed
of the BCI [8][9].

In addition to the ERP and SSVEP types of BCI, systems
based on code-modulated visual evoked potentials (c-VEPS)
have gained relevance more recently as a proposed solution to
the issues of visual fatigue and sub-optimal information
transfer rates in users of several ERP and SSVEP-based BCls

[31[8][10][11].
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By modulating the display of an array of visual stimuli with
a predetermined pseudorandom binary sequence (PRBS) at
relatively high and uniform frequencies such as 60 and 120 Hz
[3][12], BCls based on c-VEP offer the potential for much
more pleasant operation [10]. Although there are several
methods for generating a PRBS, there is no definite optimal
choice for BCI applications. Numerous types of PRBS have
been implemented in this context, for example, m-Sequences
[3] [8] [12] [13], Almost Perfect Autocorrelation [14]
sequences, and Gold sequences have all been attempted [15].

The structure of the interface display used with c-VEP BCls
is similar to the interface typically used with other VEP-based
BCls and commonly consists of a rectangular arrangement of
multiple square target cells surrounded by complementary
non-target cells. By adopting the principle of equivalent
neighbors [16] and the comments by Bin et al. [17] regarding
the VEP field of view, it is reasonable to display all these
stimulus sources in a compactly arranged grid on a display
screen.

Besides reducing visual fatigue, several different c-VEP
BCls have been proposed which typically outperform the
information transfer rates (ITRs) obtained with SSVEP-based
systems. For example, in 2009 Bin et al. [17] obtained an
information transfer rate of 58+9.6 bit/min with an SSVEP-
based BCI, but later in 2010 proposed a c-VEP system that
achieved a much higher average ITR of 108+12 bits/min [3].
Two years later, this high ITR score was further improved by
Spuler et al. [7], reaching 144 bit/min with a BCI that also
incorporated error-related potentials, allowing online
adaptation. In 2018, Wei et al. [14] proposed a novel c-VEP
BCI structure based on grouped stimulus targets, yielding an
even higher ITR of 181.05 bits/min.

Several parameters influence the efficacy of a c-VEP BCI.
They include but are not limited to, the type of PRBS used to
present the stimuli, the feature extraction process used within
the signal processing pipeline, and the number of targets
presented to the user. Many different variants of these
parameters have been investigated by c-VEP BCI researchers.
However, to date, there is no clear consensus on which
parameters are most effective in allowing the construction of
a fast and accurate c-VEP BCI.
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Figure 1. The workflow overview diagram of the c-VEP BCI
system, composed of three stages executed cyclically: data
acquisition, signal processing, and visual stimulation.

In this paper, we work with a high-speed c-VEP BCI
framework using both a real EEG dataset and a simulated EEG
dataset. We evaluate the effect of multiple PRBS types, signal
processing algorithms, and numbers of stimuli in the
presentation setup on the overall performance of the c-VEP
BCI system, measured through accuracy and ITR. We also
compare various attributes between the experimental and the
simulated EEG datasets to assess the dependability of the
simulation approach.

2. Methods

2.1 Theory of Operation

Figure 1 shows the workflow overview diagram of a typical
c-VEP BCI system. It is composed of three stages executed
cyclically: data acquisition, signal processing, and visual
stimulation. The interface first presents multiple command
options to the user. Each of these commands displayed is
modulated, over time, by the PRBS. For example, commands
may be toggled between two different states (e.g. visible vs.
hidden, or greyed out vs. highlighted) according to the digit of
each bit in the PRBS. For the signal processing stage, as is
generally the case [5], the system acquires the c-VEP data
from the user, processes the
multi-channel signals in the
time and spatial domains,
extracting the relevant
features, to finally perform the
identification as to which
stimulus source the user is
fixating on, and ultimately
execute the command of the
user’s interest without

Figure 2. Visualization of an example of the modulation behavior of the first three stimulus
targets, showing a consecutive circular shift of 4 bits of the same pseudorandom binary
sequence

physical interaction with the
machine.
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2.2 Data Acquisition

2.2.1 Experimental Approach

m-Sequence (LFSR) Length: 63

The experimental dataset, provided by
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Wei et al [14], consisted of two independent

Golay Sequence

c-VEP data subsets recorded from 12
different c-VEP BCI users (8 females) with

normal or corrected to normal vision,

Gold Sequence Length: 63

between the ages of 21 and 26 years old. In
the training subset, users fixated on one

particular target from the array, defined as

the reference target, for 20 trials, effectively

Kasami Sequence

providing 240 training trials in total. In the

testing subset, each of the 12 participants

fixated on each target from an array of 16
square targets, for 5 useful cycles of the

deBruijn Sequence
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stimuli modulation sequence each, totaling
at 960 distinct trials.

[
Figure 3. Instances of modulation sequences visualized. Examples of the six
distinct PRBS evaluated in a 64-bit setup, from top to bottom: APA, m-

Sequence, Golay, Gold, Kasami, and DeBruijn sequences.

In this study we supersede the data acquisition and display
stages by employing an offline BCI, that is, by using pre-
recorded real and pre-generated synthetic EEG, allowing us to
focus on the processing pipeline. Specifically, we utilized a
signal simulation program (developed in MATLAB R2019b)
for EEG signal simulation, inspired by the open-source
framework developed by Lindgren et al. in 2018 [18]. While
for the real EEG, we used a dataset provided by Wei et al.
[14].

As shown in Figure 2, the behavior of each target stimuli
presented to the user is modulated frame by frame with a
consecutively shifted PRBS, in which the 0/1 value of the
momentary bit toggles a particular stimulus on and off, as
suggested by Wei et al. [19]:

M()rar, = PRBS (t + (i * Tgeray))  (eq.1)

where M is the binary value of target i (Tar;) at time t,
considering a z lag of 4 bits between consecutive targets, and
PRBS (x) defines digit x of the stimuli modulation sequence
in the BCI setup.

To evaluate the effect of different configurations on the
system performance we explored multiple options for three
key parameters from the typical c-VEP BCI setup and
processing pipeline. First, we used three distinct numbers of
targets (16, 32, and 64 targets). This choice of numbers of
available targets was based on the comments made by Baseler
et al. [20] describing the negative impact on performance from
an increase of targets presented to users in a BCI. Second, we
evaluated 6 of the most widely used types of PRBS for
modulation of the stimuli (detailed in section 2.3). Finally, we
implemented 6 decoding algorithms that are commonly used
in the context of BCI feature extraction (section 2.4).

The setup for the acquisition of the real
experimental EEG data utilized an almost
perfect autocorrelation (APA) sequence of
length 64 bits with frequency modulation of
60Hz and a sampling rate of 1000Hz. The electrode
impedances were <10kQ and EEG electrodes were placed at
positions P3, Pz, P4, PO7, POz, PO8, O1, Oz, and O2 in the
international 10/20 system for EEG electrode placement.

2.2.2 Simulated Approach

Using the EEG simulator program, we generated an
extensive synthetic EEG dataset for use in our analysis,
consisting of two independent subsets for training and testing
data, with a total of 240 and 1920 trials respectively, mirroring
the structure from the experimental EEG dataset, while
doubling the extent of the testing data.

The generation of the artificial EEG signals consisted of a
composite of three elements: the purely code-modulated
responses to the PRBS stimulation, white and pink noise
originating uniformly from the scalp surface and the head
volume, respectively, with internal signal-to noise-ratios of 1
and 0.8, as suggested in [18]. We also added heuristically-
sourced eye movement and eye blink noise artifacts, which in
the simulation were set to occur at random times within the
trial with probabilities of 30% and 10% respectively, and have
random lengths of between 0 (i.e. non-existent) and 2 seconds,
as proposed by Tangermann et al. [21]. This signal was passed
through a 2-45Hz bandpass filter to limit the data to the
frequency bands of interest, resulting in the final simulated
EEG.

To calibrate the proportions between the noise components
and the purely evoked responses, we incorporated a global
signal-to-noise ratio (SNR) coefficient into the simulator. We
tuned the SNR to maximize the resemblance of the
performance results between both approaches and those
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obtained by Wei et al [14] using an identical
setup in simulation. Once tuned, the global
SNR coefficient was set to a unitary value
to later analyze the performance of our BCI
with a range of SNR values (from 0.2 to 2
dB) and observe how influential this
simulation parameter is. These results are
shown in Figure 9 and detailed in section 3.

Finally, the modulation frequency and
the sampling rate were set to 60Hz and
1000Hz, respectively, and the simulated
EEG electrodes were placed in the same
positions as those from the experiments,
following the international 10/20 system for
EEG electrode placement: P3, Pz, P4, PO7,
POz, PO8, 01, Oz, and O2. To achieve this
in simulation, the signal generation is based
on a linear superposition model that uses a
leadfield matrix encoding the electrical
propagation of the head model [18]. We

EEG

ccA AR

k-ICA

PCA |-

SNN

DNN

work with a physiologically realistic non- Avg. |1l oll
specific brain model, which projects "
uniform brain volume data to the surface

electrodes, constrained by the cortical i

surface normal.  The  conductivity

parameters of the model consist of scalp,
skull, and brain mesh layers, with
normalized conductivities of 1, 1/15, and 1,
respectively, per Oostendorp et al. [22].
Finally, this head model also contains the
dipole sources located at the front of the head representing the
users’ eyes, from which the previously mentioned eye noise
artifacts are set to originate.

bits.

2.3 Modulation Sequences

Six different PRBS were selected. These modulation
sequences (MS) were chosen because they all are
deterministically generated and have desirable statistical
properties, such as low autocorrelation, despite the non-linear
influence that these characteristics have on VEPs [3]. The
sequences used in this study were: Linear-feedback shift
register (LFSR, also known as m-Sequences), deBruijn,
Almost Perfect Autocorrelation, Golay, Gold, and Kasami
sequences. Examples of each of these MS are shown in Figure
3. The sequences are generated through brute computational
methods and/or distinct recursive algorithms. This is the case
for LFSR and DeBruijn sequences where, for instance, the
following primitive polynomials (mod 2 and 3 respectively)
can be used recursively to generate both of these PRBS:

(eq.2)
(eq.3)

fOrsr =x*+x3+x2+1

f(x)deBruijn =x*+2x 42
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Figure 4. Comparison of single-cycle signals. From top to bottom: Raw EEG
signal, pre-processed signal outputs of the six decoding algorithms, the signal
average from 20 cycles, and an APA modulation sequence with a length of 64

where the exponents of each x term (also referred to as taps),
represent the non-zero bit positions influencing the feedback
for the next state in the recursive arrangement. In this case, the
polynomial degree of n=4 results in a PRBS of 15 (2"-1) and
16 (2") bits in length, respectively.

Each of these MS is commonly used in cryptography and
spectrometry [23], neurological research [8] [24], and
communication systems [25] due to their semi-random
statistical properties [26] [27]. Furthermore, DeBruijn
sequences have been beneficial for neural decoding processes
in the wider neuroscientific context ([4]). While m-Sequences
are perhaps the most frequently implemented type of MS in
the context of c-VEP BCI research ([3] [8] [12] [13]), Golay
and APA sequences have also been successfully implemented
in novel c-VEP paradigms ([14]). Although to a lesser extent,
Gold sequences have also previously been explored by
Thielen et. al. [15] in another VEP-based paradigm consisting
of asynchronously evoked Broad-band VEPs, due to the
optimal cross-correlation properties of such sequences.
Similarly, while Kasami sequences have had a highly limited
presence in BCI research, these demonstrated inconclusive
results in the context of c-VEP modulation when studied in
2017 by Isaksen et al. [28].
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2.4 Decoding Algorithms

Multiple decoding algorithms were implemented to assess
their effectiveness at decluttering an EEG signal through
feature extraction.

In our evaluation of the c-VEP processing pipeline, we use
six of the most commonly used decoders for EEG feature
extraction [8] [13] [29] [30]. The feature algorithms
implemented are Canonical correlation analysis (CCA),
principal component analysis (PCA), independent component
analysis with maximum kurtosis (k-ICA) and maximum
negative entropy criterion (n-ICA), shallow (SNN), and deep
neural networks (DNN).

We used these algorithms to perform a translation from the
multidimensional raw EEG signal to a one-dimensional
processed feature signal. Each of the algorithms is described
in the following sections. The resulting processed one-
dimensional feature set was then passed to the classification
phase, thus identifying which c-VEP target stimuli the user
was attending to in a given trial (described in section 2.5).

2.4.1 Canonical Correlation Analysis

The CCA algorithm was utilized to create the spatial filter:
c

yinl = > xfn] wy

i=1
where xi[n] represents the n-th element of the i-th channel (i=
1, 2,..., C) from the multichannel input signal, which, once
multiplied by the i-th weight from the set of weights Wx,
results in the one-dimensional spatially-filtered signal y. And
the set of weights Wx is calculated from the CCA:

(eq.-4)

Wi X XT W,

max

max (eq.5)
Y \/WXTXXTWx-WyT)?)?TWy

where the terms Wx and Wy denote the linear canonical
coefficients that maximize the correlation between the
unprocessed EEG input X and an averaged multichannel signal
replicated for congruency, denoted here as X, and computed
as follows:

X=1[X; Xo X3 - Xy] (eq.6)
N

_ 1

X :NZXi (eq.7)

X=[XXX- X (eq.8)

where the X input signal is collected from N stimulus cycles
and X represents the averaged signal before being replicated
lengthwise N number of times.

2.4.2 Principal component analysis

Principal component analysis increases the interpretability
of the signal X, by identifying a projection of the data such that
the new dimensions of the data projected are organized by
decreasing variance. The dimensionality of the signal can then
be reduced by sub-selecting components from the new
projected dimensions [31]. We select and further process only
the one principal component with the largest corresponding
Eigenvalue, here denoted as Wi:

WIXTx w,
max

- .9
AT (eq.9)

which in our testing corresponds to the single projected
component of the data that represented 75-90% of the total
variance in the case of simulation, and 35-50% for
experimental data, indiscriminate of the particular stimulus
source or modulation sequence.

2.4.3 Independent component analysis

By assuming that the input X is an initial linear combination
of real independent sources, denoted as S, we can use
Independent Component Analysis (ICA) to extract a single
feature set. These algorithms seek the linear transformation
matrix A that transforms the EEG signals X into a new
component space Y that approximates S. This is achieved by
maximizing the statistical independence between each of the
output components. Specifically, each recorded signal trial X
is assumed to be a linear mixture of sources:

X=A%S (eq.10)

Where S denotes the original sources and A denotes the
linear mixing matrix. An estimate of the sources Y can then be
found by inverting the mixing matrix:

Y=A"1xX (eq.11)

ICA has been demonstrated to produce a useful
decomposition of EEG signals in numerous BCI applications
[29] [32].

However, when using an ICA method the dimensionality of
the EEG signal set is not reduced, but maintained. Therefore,
it is necessary to define some method to select one of the C
independent components of a test trial available for eventual
use in classifying the c-VEPs. To accomplish this, we measure
the Pearson correlation coefficient between all independent
components and all T reference templates produced for the
current BCI setup, hence performing TxC computations.
Whichever component maximizes the Pearson correlation
coefficient with any of the reference templates is selected as
the feature of interest for the subsequent classification stage.
The generation of said templates is elaborated upon in section
2.5, while a discussion on the benefits and caveats of this
procedure is included in section 4.2.



Journal XX (XXXX) XXXXXX Author et al

Experiment Simulation
Accuracy Information Transfer Rate Accuracy Information Transfer Rate
100% 120 100% 120
************** Maximum ITR i i et iiepsanespaen vt et ARSRISEN FTTR

90%

100
80%
70%

80
60%

£ £
50% £ 60 £
@ o

40%

40
30%
20%

20
10%F ss
o Fger | B '-e‘e * S & ‘ S &

¥ ¥ v Nl S e ) ol ol o & o ¥ XX ok
FEFEsF SIS FIFIFCs S FEFECsS
A) (B)

Figure 5. Comparison of experimental and simulated analysis. Results obtained from both experimental (A) and simulated
(B) approaches with the same configuration: APA sequence modulation with a 16-target BCI. The left plots of (A) and (B)
show the accuracies [%] with error bars and statistical significance line with a p-value < 0.01 of a random 16-target
classifier. The right plots of (A) and (B) show the ITR for each decoder [bits/min]. The maximum ITR (red horizontal line) is
achieved when the accuracy reaches 100%, resulting in an ITR of 112.5 bits/min.

3722.4.4 Artificial neural networks 39zconsecutive circular shift of one reference template, T number

) ] o 3990f times. This initial reference template is obtained by
275 Although the incorporation of artificial neural networks, ;5 eraging the EEG data from all the trials collected for the
274(ANNS) into c-VEP BCls is not the most common practice,, , yrining subset, in the case of the experimental approach; and

s7sthese methods have previously achieved highly accurate, ,, ¢rom the average of all signals generated as the training subset
s7eresults ina few BCI systems [30] [33] [34]. We evaluated tWo, .. g the simulator, for the simulated approach. Since all
277 different multi-layer perceptrons for their computationally, ,, otmyjus targets are modulated by the same circularly-shifted

+¢light signal processing capacity and their high accuracies [35]., .. prgs each resulting reference template can be associated

379Whi|e one consi_sts of 4 hidden Iayer.s, with 9, 18, 18, and 9, .- with each individual target.
sz0hidden neurons in each layer respectively; the other network,

. . . . 407 Once all templates are available after the training, the
281is shallow, consisting of a single 10-neuron hidden layer. Jostesting phase can be performed. In this phase, whichever

262 We trained both ANN structures using sigmoid activation, ., sterence template has the highest correlation coefficient with

sezand with the same inputs and the summed channels of the, e feature set indicates which of the T target positions the BCI
seaoutputs with which the CCA-based filter was also generated,, sy js attempting to select, classifying it as such. Lastly, each

s but staying independent from the CCA method. That isto say,, ¢ the 18 simulated configurations possible, as well as the

286the training inputs consist of the unprocessed EEG signal X °f413decoding algorithms on the real data, were assessed by
387C-channels (from eq. 6), while the training outputs consisted

. p 214calculating the accuracy [%], with its variance, and the
szzof the signal X' (see eq. 8), averaged along the C channels, , .jytomation transfer rate (ITR) expressed in bits/min.
3g9resulting in a one-dimensional signal, here denoted as H:

416 Beyond evaluating all configuration parameters in the
1 ¢ s17simulated framework, we are interested in assessing the

390 H = _Z X (eq.12) s1greliability of the framework itself. To carry out this evaluation,
C = 419we statistically compare the power spectra and the grand

420average ERPs obtained from both approaches, as well as the

3912.5 Classification and Evaluation 421SNR-accuracy relationship in simulation. The following

o ] ) 422section describes the results of all analyses, while a discussion
392 The classification procedure consisted of matching the, .. 4, their significance is contained in Section 4.

393 processed one-dimensional feature set extracted from the EEG -
394signals using each of the previously described decoding
295algorithms to one template from a set of T reference templates,
s96where T is the number of classes (or targets) in the particular
397setup. All the necessary templates are obtained from the



Journal XX (XXXX) XXXXXX

Author et al

3. Results

The accuracy and ITR of the offline classification tests
carried out on the experimental set are presented in Figure
5(A), while those results achieved by the simulator in an
identical setup (16 targets with APA modulation) are
contained in Figure 5(B). Also included in both accuracy
graphs within Figure 5 is the variance and statistical
significance level (p < 0.01), the latter of which is indicated
by a dashed horizontal line at 8.13% and represents the
accuracy level that we expect less than 1% of a set of random
16-target classifiers to obtain, as assessed against a binomial
distribution (see [36]). This figure
shows nearly equal scores obtained
through both approaches using
CCA, SNN, and DNN, reaching
accuracies of 94.38%, 95.34%, and
94.22%, in the respective
experiments; and 95.63%, 95.94%,

80%. However, it is worth pointing out that all three Golay,
APA, and DeBruijn modulation sequences achieve the most
promising results in all cases, frequently without being
significantly distant from each other.

Additionally,  Linear-feedback  shift register (m-
Sequences), Gold, and Kasami sequences demonstrated
substantially poorer performances in almost all scenarios. In
particular, Kasami sequences resulted in an average
decrement from the highest accuracy of -50.9%, -44.3%, and
-48.5% throughout each of the 64, 32, and 16-target simulated
configurations, respectively.

Simulation Analysis on Accuracy [%]

and 95.31%, in the respective
simulations. Note, while both ICA
and the PCA algorithm return
much lower scores relative to the
rest of the decoders in experiments

Number of Targets

and simulation, it must be noted
that both approaches achieve
significantly  different  scores,
which is discussed in Section 4.2.

Proceeding with the evaluation
through purely simulated means,
Figure 6 condenses the scores

CCA

n-ICA
Simulation Analysis on Information Transfer Rate [bits/min]

k-ICA PCA SNN DNN

obtained by each of the possible 0
BCl setups. From the upper
portion of this figure, which
contains the accuracies, variance,
and significance level of each

1228

5 l g i 556
o

instance, there is a noticeable
decline in the scores as the number
of targets is increased. On the other
hand, as can be observed from the
information transfer rates shown in
the lower section of Figure 6, this
negative tendency is partially
counteracted by this same increase
in targets, resulting in the net
relative increase of ITR with a
higher target number.

Concerning the modulation
sequence used, Golay sequences
produced all of the highest
accuracies in the 16-target setups,
while Almost Perfect sequences
provide the best results of 32 and
64-target configurations above

114.34

Number of Targets
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o
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Figure 6. Simulated analysis results summary. (Upper) The
accuracies obtained from all possible combinations of decoder,
target number, and sequence type, with corresponding variances,
and statistical significance levels (with p-value < 0.01) marked with
a black dotted lines and the subscript “SS”. (Lower) The
corresponding ITRs calculated as a function of the number of targets
and the accuracy of each setup. Additionally, the red dashed lines
mark the maximum scores achieved within each one of the setups.
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Figure 7. Grand ERP averages, z-scored. Grand ERP average
of channel Pz from simulated data (green) and experimental
data (red). Both are obtained by averaging over 20 cycles.
The visual stimulus is presented at time zero.
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Finally, concerning the impact of each feature extraction
algorithm, the results demonstrate that both ICA algorithms
get remarkably lower scores, while CCA and both NNs
represent the most efficient decoding methods. Even though
Figure 6 suggests these three decoders are similarly
competent, the SNN notably achieves the highest accuracy of
98.8% with a 16-target Golay setup and the maximum ITR of
127.2 bits/min with an APA 64-target system.

Proceeding with the evaluation of the simulator properties,
a comparison of the normalized grand ERP averages and
power spectra of both data acquisition approaches is shown in
Figure 7 and Figure 8, respectively. We can observe that the
morphologies of the positive peaks from the simulated and
experimental responses in Figure 7 are noticeably similar,
with no statistically significant difference based on a two-
sample t-test with a significance of 0=0.05. Still, there is an
approximate deviation of 11.9% between both response
latencies, and approximately a 14.6% increase in the
amplitude of the simulator’s ERP relative to the one generated
with real EEG data.

Experiment

Power Spectrum (dB)

. L L L L I . L
0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

O Q

25.0 Hz

@ I

Further analysis between signals obtained through both
approaches can be done with the power spectra from all 9
electrodes, shown in Figure 8. From this figure we can draw
two conclusions: the frequency bands are greatly comparable
since the relevant portions of both (the 0-50 Hz range
approximately) are not statistically different based on a two-
sample t-test with a significance level of 0=0.05; and that the
simulation provides more orderly activation among the
electrodes than the real EEG data provides, suggesting
unrealistic response distribution among the electrodes, as well
as slightly larger amplitudes in the higher frequencies before
the cutoff at ~50Hz (i.e. 30-40Hz).

Finally, Figure 9 is intended to show the influence of the
signal-to-noise ratio (SNR) coefficient of the simulator on the
accuracy of each feature extractor. As detailed in section 2.2.2,
a coefficient of 1 was set as a baseline for the SNR that
provides the most realistic results, using the experimental data
as a reference. The outcomes depicted were obtained by
averaging the accuracies scored by the three setups using APA
modulation (16, 32, and 64 targets), resulting in an inverted
exponential relationship between SNR and the accuracy.

4, Discussion

4.1 On the BCI System

As previously stated, our results show that the SNN and
CCA algorithms represent the most promising feature
extractors for building c-VEP-based BCls at a somewhat equal
degree, since these achieve the highest scores throughout all
numbers of targets without diverging significantly. However,
by taking into account the considerably higher computational
load and training time required to set up neural networks, we
consider CCA a more favorable choice for an online system,
especially if computing capacity is of the essence. The
consistently inferior performances from the ICA and PCA
algorithms suggest that these are not suitable for this type of
BCI. Additionally, the correlation-based component selection
procedure of ICA feature extraction (described in Section
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Figure 8. The frequency power spectrum was obtained from experimental (left) and simulated (right) c-VEP datasets. With a
topological activation map of the regions with electrodes at 5, 15, and 25 Hz for each approach.
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2.4.3) is a non-ideal process in terms of Simulation Analysis of Accuracy vs Signal-To-Noise Ratio

computation, since the number of calculations 100% ' ‘ ‘ ' ' ' ' ! :
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number of targets, which in an online system 80% r ]

represents a reduction of processing speed. = "
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While APA sequences are fairly common in c-

VEP studies, Golay and DeBruijn sequences 0% . | [ . . . . .

have only been implemented to a very limited 02 04 06 08 1 12 14 16 18 2

extent, which prompts a highly interesting
hypothesis for further testing through non-
simulated means. Furthermore,  the
consistently suboptimal results obtained with
the Kasami, Gold, and m-Sequence PRBS
suggest that these have unfavorable characteristics for code-
modulated BCls.

Finally, as indicated earlier, the increase in the number of
targets in the BCI results in a noticeable decline in the
accuracy of all of the configurations. This highlights the
limited scalability of numbers of targets in c-VEP BCI
systems, as noted by [14] and [20]. This tendency is likely due
to the nature of the correlation classifier, since as the number
of classes increases, the discrimination between consecutive
targets has lower classification tolerance, becoming less
reliable. Taking this into account, we consider that a direct
increment in the number of stimuli without additional
modifications to the BCI structure is not practical nor
dependable.

4.2 On the EEG Simulator

Regarding the reliability of realistic c-VEP simulation, we
first observe some non-significant inconsistencies in the grand
ERP averages and power spectra of Figures 7 and 8. However,
perhaps the most notable discrepancy concerns the results
obtained from both ICAs and PCA in Figure 5. This figure
shows significant differences in accuracy between the same
feature extractors in identical setups. Since we can rule out the
SNR as the origin of these inconsistencies based on the result
in Figure 9 (showing relatively little variation throughout the
whole range), and the discrepancy is exclusive to component
analysis algorithms, we estimate that it derives from
insufficiently realistic component rankings and orthogonality
among data sources. Therefore, we conclude that the biggest
shortcoming identified in the simulator originate from the
limitations of the simulated electrodes and head model,
resulting in significantly more favourable performance in the
PCA algorithm’s orthogonal transformations.

While we do acknowledge numerous areas of improvement
for the EEG simulator, within the scope of this study, we
consider that the operation and results achieved through a

Signal-to-Noise Ratio [dB-SNR]

Figure 9. Analysis of the averaged influence of the simulated SNR coefficient
on the accuracy of the BCI for each of the feature extractor methods in all
target setups with an APA sequence. The x-axis represents the dB ratio
between the signal and noise components in the EEG simulation.

simulated approach are satisfactory. It effectively provided a
genuinely practical, flexible, and robust platform for in-depth
BCI analysis, with a certain degree of dependability. We
believe, it is a powerful framework and a highly promising
tool for streamlining the development of modern high-
performance brain-computer interfaces. Undoubtedly, more
sophisticated and realistic simulations will further benefit the
development of BCls in the future.

4.3 Future work

The majority of the observations and results obtained in this
study suggest promising methodologies and parameters, but
also demand future experimentation. Particular effects of
interest include the effects of the Golay and DeBruijn
sequences, new paradigms to increase the number of targets
per system, and the optimization of the ANN architecture in
the feature extraction stage with a comparable speed to that
achieved through CCA-based processing.

More sophisticated signal processing algorithms are
perhaps the development with the most potential to influence
the performance of c¢-VEP BCIl systems. Although
computational  requirements should be taken into
consideration, we consider the integration of multiple
advanced methodologies for signal decoding (i.e.
convolutional neural networks, fuzzy logic), classification
(i.e. Support Vector Machines, k-Nearest Neighbour), and
methodologies that optimize user adaptability [7], such as
higher modulation frequencies and stimulation sequences that
move beyond binary presentation modalities, comprise the
contemporary priorities of c-VEP BCI implementations.

Finally, we consider that the insights and advancements
made on realistic c-VEP simulation represent a tool that will
likely provide highly significant benefits to all types of code-
modulated BCls. A simulated framework provides
unparalleled practicality and control and is an approach for
which we strongly encourage further development.
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5. Conclusion

In this paper, we evaluated the effects of various feature
extractors, modulation sequences, and the number of targets
in the stimulus interface on the accuracy and information
transfer rates of c-VEP BCI systems. We utilized both real and
generated EEG datasets through simulation, evaluating the
characteristics of the latter, and ultimately assessing its
reliability. We were able to achieve a maximum information
transfer rate of 127.2 bits/min with a 64-targets setup using an
Almost Perfect Autocorrelation sequence for modulation, and
98.8% accuracy in a Golay-modulated 16-target system, both
with a shallow neural network as a feature extractor.

Our results suggest several branching paths for the research
and development of contemporary c-VEP BCI systems. Most
notably our results suggest that the Golay and DeBruijn
sequences, studies of which are not extensive, are highly
effective for c-VEP BCI performance. We observed that the
CCA and SNN methods represent the most effective feature
extractors compared to multiple typical algorithms. Finally,
we explored a realistic simulation framework, which not only
achieved satisfactory fidelity but also provided highly
valuable flexibility and exceptional accessibility to the
processing pipeline analysis of a c-VEP-based BCI.
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