
Decoding of semantic categories of imagined

concepts of animals and tools in fNIRS

Abstract. Objective. Semantic decoding refers to the identification of semantic

concepts from recordings of an individual’s brain activity. It has been previously

reported in fMRI and EEG. We investigate whether semantic decoding is possible with

functional near-infrared spectroscopy (fNIRS). Specifically, we attempt to differentiate

between the semantic categories of animals and tools. We also identify suitable

mental tasks for potential brain-computer interface (BCI) applications. Approach.

We explore the feasibility of a silent naming task, for the first time in fNIRS, and

propose three novel intuitive mental tasks based on imagining concepts using three

sensory modalities: visual, auditory, and tactile. Participants are asked to visualize

an object in their minds, imagine the sounds made by the object, and imagine the

feeling of touching the object. A general linear model is used to extract hemodynamic

responses that are then classified via logistic regression in a univariate and multivariate

manner. Main results. We successfully classify all tasks with mean accuracies of 76.2%

for the silent naming task, 80.9% for the visual imagery task, 72.8% for the auditory

imagery task, and 70.4% for the tactile imagery task. Furthermore, we show that

consistent neural representations of semantic categories exist by applying classifiers

across tasks. Significance. These findings show that semantic decoding is possible in

fNIRS. The study is the first step toward the use of semantic decoding for intuitive

BCI applications for communication.

Keywords : semantic decoding, mental imagery, functional near-infrared spectroscopy

(fNIRS), machine learning, general linear model (GLM), brain-computer interface

(BCI), concepts

1. Introduction

Neuroimaging studies have shown the possibility of semantic decoding, defined as the

identification of specific semantic concepts an individual is focusing on, or thinking of,

from a recording of their brain activity [1]. Work by several groups has shown that

several pairs of semantic categories can be differentiated, for instance, animals and tools

[2, 3, 4, 5, 6, 7], tools and dwellings [8], animals and body parts [9], animals and faces

[10]. Recent work has also shown that it is possible to differentiate more than two

categories at a time [11, 12, 13].

While the most promising results to date have been reported using functional

magnetic resonance imaging (fMRI) [14, 15, 8, 2], semantic decoding using neural signals

recorded from the scalp, such as electroencephalography (EEG) or functional near-

infrared spectroscopy (fNIRS), is of particular interest for potential applications such

as brain-computer interfaces (BCIs) [16, 17]. EEG and fNIRS are portable, relatively
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cheap, and provide better ecological validity in comparison with fMRI. EEG provides a

good temporal resolution but has a poor spatial resolution. This could be potentially

improved by combining it with fNIRS, as these two techniques have complementary

strengths.

BCIs provide an alternative pathway between a human brain and external devices.

They have been successfully used as a technological solution to aid communication for

people who experience difficulties communicating via other means [18, 19, 20]. However,

current BCI communication speeds and accuracies are relatively low in comparison with

other communication platforms [21, 22, 23]. New BCIs based on semantic decoding could

have the potential to be highly intuitive but it is currently unknown if they might allow

comparable levels of accuracy and communication speed to the other state-of-the-art

BCIs.

In this paper, we investigate whether semantic decoding is possible with fNIRS. To

this end, we must carefully choose mental tasks to elicit clear patterns of brain activity

that allow for the differentiation between semantic concepts or categories of interest. We

attempt to identify mental tasks suitable for potential BCI applications, particularly for

communication.

Semantic neuroimaging studies to date have used a variety of different mental tasks.

For instance, in a silent naming task [6, 7], participants are asked to silently name, in

their minds, an object displayed on the screen. The silent naming task has not been

tested in fNIRS yet. We test its feasibility for semantic decoding.

Several studies [8, 3, 4, 15] asked participants to think of the same object properties

each time the object was displayed. Each participant was asked to come up with a set

of properties to think about for each object before the start of the experiment. Another

study [9] removed this constraint and let participants think freely about the meaning

of the given object or any memory it evoked. In general, many studies have shown

that similar patterns of brain activity arise when perceiving and imagining objects

[24, 25, 26, 27]. We follow their lead and propose three novel intuitive imagery sensory-

based tasks using visual, auditory, and tactile perception. Participants are asked to

visualize an object in their minds, imagine the sounds made by the object, and imagine

the feeling of touching the object.

In [2, 5, 14], participants were presented with target and non-target semantic

categories and asked to respond upon the appearance of objects from the non-target

category, for instance, by pressing a mouse button. Similar tasks have been reported

to be feasible for BCI applications. For instance, Geuze and colleagues [28] presented a

BCI based on semantic relations in an association network. The BCI determined which

prime word a participant had in mind by presenting probe words. The BCI detected

whether the presented probe word was related to the prime word by the detecting

semantic priming response, which can be detected at the single-trial level [29]. The BCI

continued to choose new probe words from connections in the association network until

a pre-determined confidence threshold was reached.

To determine the feasibility of our mental tasks, we attempt to differentiate between
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semantic categories of animals and tools, that have mostly been used in existing semantic

studies based on EEG [6, 5, 30] and fMRI [2]. A variety of external stimulus modalities

have been used to cue participants to focus on an object, such as visual (photographs

[2, 6], line drawings [5, 8]), written words [2, 5, 14], spoken words [2, 5], or combinations

[9, 15]. We use the visual modality because it has frequently been used in semantic

EEG studies [6, 31, 10, 30, 5] and it is appropriate for all our mental tasks.

In contrast with most semantic neuroimaging studies, we attempt to ensure a

separation of input stimulus modality and task. Many studies focused on a comparison

of different input modalities (images, written words, spoken words, different languages,

etc.) while we focus on the comparison between different mental tasks when the concept

to focus on has already been communicated to the participants. This separation avoids

the problem of potential processing-related confounds in the classification process that is

present in many studies. For instance, focusing on a concept while seeing its image raises

the question of what is used for the differentiation between different concepts: the visual

processing of the image or the imagination of the concept. This is a pertinent question as

it has been shown that the viewed object can be identified from passive viewing of images

[24, 25]. Some studies explicitly analyzed the influence of some possible confounds. For

instance, the study by Murphy and colleagues [6] examined brightness, mean spatial

frequency, and visual complexity of the stimuli images. However, the set of potential

confounds and methods (for instance, how to measure image complexity) has not been

comprehensively studied. Our study design mitigates this problem. We also use a mask

after image presentation to reduce visual persistence [32].

Our objectives are: 1) to determine whether it is possible to differentiate between

the semantic categories of animals and tools using the silent naming task and our three

novel imagery sensory-based tasks in fNIRS, and 2) to explore whether consistent neural

representations of animals and tools exist across tasks.

2. Methods

In our experiments, we simultaneously acquired EEG and fNIRS. However, we focus

solely on fNIRS in this study. The fNIRS signals were modeled via a general linear

model [33, 34] to remove noise and influences from previous tasks and to extract evoked

hemodynamic responses that were then classified by regularized logistic regression in

both a univariate and multivariate manner.

2.1. Participants

Twelve right-handed native English speakers (3 males and 9 females, age range 20-

57, mean 32.75, standard deviation 11.55) from the student and staff population of the

University of Essex participated in the study. We recruited only native English speakers

to avoid a potential problem of differences in neural representations of semantic concepts

by individuals who speak different languages [35, 36], which could be particularly
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important for the silent naming task. All participants had normal or corrected-to-

normal vision. Participants received compensation of £16 for their time. They all

read, understood, and signed a consent form. The study was approved by the Ethics

Committee of the University of Essex on 25th October 2018.

2.2. Tasks

Participants were presented with images of concepts from two semantic categories

(animals and tools) to focus on. Each image presentation was followed by a set of

four individual tasks: silent naming, visual, auditory, and tactile imagery. The order of

tasks was randomized across blocks.

In the silent naming task, participants were asked to name the presented object in

their minds, in their mother tongue (English). In the visual imagery task, participants

were asked to visualize the presented object. They were instructed to try not to visualize

the particular image they had seen but their own representation of the concept. Similarly

in the auditory imagery task, they were asked to imagine sounds made by the presented

object when they interact with it. For instance, the sounds made by an animal (such

as the mewing of a cat) or the sounds produced when using a tool (such as the banging

of a hammer). Lastly, in the tactile imagery task, participants were asked to imagine

the feeling of touching the presented object. For instance, when petting an animal or

touching different parts of a tool.

Participants were presented with the above-mentioned descriptions of the tasks

(including the examples reported) but instructed to use the imagery strategy that came

most naturally to them. For all imagery tasks, they were instructed to be engaged for

the whole task duration (3 seconds). They were also instructed to try to avoid eye

movements, facial muscle contractions, and head or body movements during the tasks.

(See supplementary materials for the specific instructions provided to participants to

read while setting up fNIRS and EEG.)

Additionally, we did try not to influence the participants’ interpretation of images.

They were shown all images before the experiment. We named a particular image only

if they could not recognize it. Otherwise, we let them use their own interpretations.

2.3. Stimuli

A set of 18 animals and 18 tools were selected. We selected as many concepts from

previous studies [5, 6] as possible. We used concepts that are suitable for all tasks

and recognizable by most people. For instance, many animals were excluded from our

initial set as they were unsuitable for the auditory imagery task because we judged

that a considerable number of people would not be able to recall, and then imagine,

the sound such animals make. Images (with a license allowing non-commercial reuse

with modifications) were sourced from the Internet. They were converted to gray-scale,

cropped, resized to 400 × 400 pixels, and contrast stretched. In all images, the object

was presented on a white background. We used photos instead of line drawings because
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Figure 1. Illustration of one trial of concept presentation. The order of tasks is

randomized across blocks.

we did not want to be constrained by their limited variety. The selected concepts are

listed below (see supplementary materials for the corresponding images).

Animals: bear, cat, cock, cow, crab, crow, dog, donkey, duck, elephant, frog, lion,

monkey, owl, pig, sheep, snake, and tiger.

Tools: axe, bottle-opener, broom, chain saw, computer keyboard, computer mouse,

corkscrew, hammer, hand saw, hoover, kettle, knife, microwave, pen, phone, scissors,

shovel, and toothbrush.

2.4. Experimental design

As shown in figure 1, a trial started with the presentation of a black fixation cross on

a white background for 1-2 seconds (uniformly distributed), followed by the image of a

concept for 0.6 seconds. A mask (the image of a checkerboard) followed for 0.6 seconds

to reduce visual persistence and thus to get rid of potential visual confounds [32]. Then,

a blank white screen was presented for 0.5 seconds followed by a sequence of all four

tasks, each task lasting for 3 seconds and was separated from the following one by a

blank white screen lasting for 0.2 seconds. Participants were informed as to which task

to do by a textual command appearing on the screen for the whole duration of the task:

Silently name, Visualize, Listen, or Feel. The last task was followed by a short break

for 2 seconds indicated by a blank screen, which changed color over time from white to

black and back. One trial of the concept presentation took 17.3-18.3 seconds depending

on the duration of the fixation cross.

Each concept was presented five times, for a total of 90 trials per category (18

concepts, 5 repetitions each). The experiment was split into 15 blocks with 12 concepts

per block (207.6-219.6 seconds). Blocks were separated by breaks of at least 30 seconds.

There was also a longer break of at least 3 minutes in the middle of the experiment.



Decoding of semantic categories of imagined concepts of animals and tools in fNIRS 6

Fp1 Fpz Fp2
AF7

AF3
AFz

AF4

AF8

F7

F5
F3

F1 Fz F2
F4

F6

F8

FT7
FC5

FC3 FC1 FCz FC2 FC4
FC6

FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7
CP5

CP3 CP1 CPz CP2 CP4
CP6

TP8

P9

P7

P5
P3

P1 Pz P2
P4

P6

P8

P10
PO7

PO3
POz

PO4

PO8
O1 Oz O2

Iz

Frontal montage

Sources

Detectors

Channels

Temporal montage

Sources

Detectors

Channels

AFF5h

FFC2h

AFF1h

FFC3h

FCC1h

AFp2

FFT7h

FCC5h

FFC1h

AFp1

FFC5h

AFF2h

FFT9h

FTT7h

CCP5h

TPP7h

PPO9h

CPP3h

PPO5h

TTP7h

TPP9h

FTT9h

CPP5h

Figure 2. The frontal and temporal montage used for fNIRS data acquisition with the

joint EEG with 64 electrodes following the international 10-20 system. fNIRS sources

(circles) and detectors (squares) positioned in the 10-5 system form channels (small

circles) shown between them.

The experiment started with two additional short blocks (86.5-91.5 seconds,

containing a random subset of 5 concepts, each repeated two times) for familiarization

with the experiment.

The order of concepts and tasks was pseudo-randomized for each participant with

the following constraints. No concept was repeated twice in succession. All tasks in one

block had the same order. Different blocks had different orders of tasks and no order in

a given block was repeated in the following block.

2.5. Data acquisition

fNIRS data were acquired with a NIRx NIRScoutXP continuous wave imaging system

equipped with 4 light detectors, 8 light emitters (sources), and low-profile fNIRS

optodes. EEG data were acquired with a BioSemi ActiveTwo system with 64 electrodes

positioned according to the international 10-20 system, plus one electrode on each

earlobe as references. Additionally, 2 electrodes placed on the left hand measured

galvanic skin response (GSR) and a respiration belt around the waist measured

respiration. The sampling rate was 2048 Hz. Both electrodes and optodes were placed

in a NIRx NIRScap for integrated fNIRS-EEG layouts.

The brain regions selected for fNIRS channel placement were based on a review

by Binder and colleagues [37] which analyzed 120 functional neuroimaging studies to

locate the semantic system for semantic processing, which refers to the cognitive act

of accessing stored knowledge about the world. Their analysis showed a left-lateralized

network comprised of 7 regions: posterior inferior parietal lobe (angular gyrus and
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adjacent supramarginal gyrus), middle temporal gyrus (and posterior portions of the

inferior temporal gyrus), fusiform and parahippocampal gyri, dorsomedial prefrontal

cortex, inferior frontal gyrus (especially pars orbitalis), ventromedial prefrontal cortex,

and posterior cingulate gyrus (and adjacent ventral precuneus). We focused on regions

close to the scalp which could potentially be studied by fNIRS, namely left-lateralized:

posterior inferior parietal lobe, middle temporal gyrus, and dorsomedial prefrontal

cortex.

We designed two fNIRS montages because our equipment did not include enough

channels to record from all regions of interest (see figure 2). The first montage focused

on the left temporal lobe and posterior inferior parietal lobe. The montage was selected

based on the fOLD toolbox [38], which allows for probe arrangement guided by brain

regions of interest, with regions of interest in the left-lateralized inferior parietal lobe,

angular gyrus, middle and inferior temporal gyrus. We selectively eliminated optodes

with the lowest specificity for our regions of interest until the number of optodes satisfied

our equipment limitations. This montage used 4 detectors and only 7 sources creating

11 channels with a sampling rate of fs = 8.92 Hz. The second montage focused on

the left frontal cortex. The montage was selected using the same method based on the

fOLD toolbox with regions of interest in Brodmann areas 9 and 46. This montage used

4 detectors and 8 sources creating 14 channels with a sampling rate of fs = 7.81 Hz.

The inter-optode separations were approximately 3 cm. For the first six participants,

we used the prefrontal montage and for the final six, we used the temporal montage.

2.6. fNIRS data preprocessing

Bad channels were identified and removed based on the scalp coupling index (SCI) [39],

which assesses the correlation between two wavelength channels in the cardiac band.

The main visible artifact in the fNIRS signal is due to the cardiac cycle which is

approximately 1 Hz. Its presence is related to intracranial physiological parameters

and indicates a good contact between the optical probe and the scalp [40, 41]. To

compute an SCI, raw fNIRS data were band-pass filtered between 0.5 and 2.5 Hz (4th-

order Butterworth filter, forward-backward filtering by the sosfiltfilt method from

SciPy [42]) and z-scored. For each channel, the SCI was computed as the Pearson

correlation coefficient between the fNIRS signals of two wavelengths of 785 and 830 nm

defining the channel. In-phase and counter-phase identical waveforms have an SCI of

1 and -1, respectively, whereas uncorrelated signals have an SCI of 0. Channels with

a mean SCI across all blocks below 0.75 were removed. This threshold was suggested

in [39]. Two participants (participants 5 and 12) were excluded from further fNIRS

analysis because they had all channels removed.

Motion artifacts caused by relative motion between fNIRS optical fibers

and the scalp were corrected with a wavelet transform [43, 44, 45] using the

hmrMotionCorrectWavelet method from the Homer2 software package [46] with an

interquartile range of 1.5, as suggested in the function’s documentation. Motion-
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Figure 3. Illustration of creating the design matrix X with three conditions.

Condition B (e.g., visual imagery task) is separately convolved by each function from

the temporal basis set. The results are regressors placed in the corresponding columns

of X. T represents one task trial from condition B. The design matrix XT is used to

extract the evoked hemodynamic response for T . XT is created the same way as X

but excluding T from the condition signal before the convolution.

corrected fNIRS signals with a wavelength of 785 and 830 nm were converted into

changes of concentration in oxygenated and deoxygenated hemoglobin (in M) using

the modified Beer-Lambert law [47] with differential path length factors (unitless)

DPF 785 = 7.25, and DPF 830 = 6.38, and molar absorption coefficients (in M−1cm−1)

α785
oxy = 1798.643, α785

deoxy = 2295.285, α830
oxy = 2321.424, and α830

deoxy = 1791.734.

2.7. fNIRS analysis

Each fNIRS channel (i.e., changes of concentration in oxygenated or deoxygenated

hemoglobin) was modeled by a general linear model (GLM) [33, 34] to remove noise

and influences from preceding tasks. This is important due to the short gap (200 ms)

between tasks. Since fNIRS records brain activity in a similar way to fMRI, the GLM

approach adopted for fMRI [33] can be applied to fNIRS [48, 49, 50, 51].

A single fNIRS channel can be modeled by the GLM as follows:

y = Xβ + ε (1a)

ε ∼ N (0, σ2IN) (1b)

where y ∈ RN represents N time samples of fNIRS signal, X ∈ RN×P is a design matrix,

β ∈ RP are unknown parameters, ε are normally distributed error terms with zero mean

and variance σ2, and IN ∈ RN×N is the identity matrix. The ordinary least squares

(OLS) estimates of β are given by

β̂ = (XTX)−1XTy (2)

The design matrix X models the experiment from the beginning of the first block

until the end of the last block. Each row represents a different time step in the

experiment. Columns represent regressors modeling the experiment. The first 160
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regressors are the result of the convolution of 10 conditions modeled in the experiment

and a set of 16 temporal basis functions.

We modeled the following conditions: four conditions represent the execution of 4

tasks for the animal category, four conditions represent the execution of 4 tasks for the

tools category, one condition represents the presentation of an image, and one condition

represents the mask. An element of a particular condition is 1 if the condition was

taking place at the time represented by the element. All other elements are 0. This is

illustrated in figure 3.

We used a temporal basis set based on the B-spline functions (see figure 3). It is

an alternative to the finite impulse response (FIR) basis set that uses contiguous boxcar

functions. The first function is non-zero from 0 to 2 seconds with a peak at 1 second.

The following function is shifted by 1 second and so on. Our basis set is flexible enough

to model different hemodynamic responses, with different timing between oxygenated

and deoxygenated hemoglobin [52]. The set contains 16 functions with the last peak at

the 16th second and the overall maximum length is 17 seconds. The number of functions

was chosen based on the canonical hemodynamic response function to include its most

informative segment.

All conditions and temporal basis functions were sampled at a higher

temporal resolution (16fs) and then downsampled (decimated) back to fs after the

convolution, similarly to the default setting in the fMRI SPM toolbox implementation

(defaults.stats.fmri.t = 16) [33]. The last 2 regressors are one column representing

the respiration signal (resampled to the sample rate of the fNIRS signal, fs), and one

column of ones representing an offset. Thus, the model contains P = 162 parameters to

be estimated.

Before the GLM analysis, fNIRS and the respiration signal were filtered between

0.01 and 0.7 Hz by two filters; first by an IIR high-pass 9th-order Butterworth filter with

0.01 Hz cutoff (forward-backward filtering, sosfiltfilt method) and then convolved

by a FIR low-pass filter of length b42fsc (374 for the temporal montage, 328 for the

frontal montage; 21 seconds is the shortest length after the last block before the end of

the experiment from all participants) with 0.7 Hz cutoff designed by the firwin method

from SciPy [42].

The error term εt at time point t in the fNIRS signal is correlated with its temporal

neighbors due to several slow physiological processes, such as respiration, heartbeat,

and blood pressure changes. This temporal correlation has to be modeled. Most of the

fNIRS-GLM analysis studies have used pre-whitening based on an autoregressive model

(AR) of the error terms [49, 53, 54]. A first-order autoregressive model (AR(1)) of the

error terms is

εt = a1εt−1 + υt (3a)

υt ∼ N (0, σ2
w) (3b)

where the value at the current time t depends on the value from the previous time t− 1

and the normally distributed error term υt with zero mean and variance σ2
w. First, the
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OLS estimates are calculated, as per equation (2). The parameter a1 is estimated by

fitting AR(1) to the resulting residuals. Then, the Cochrane-Orcutt method [55] to

reduce temporal correlation is defined as

yt − a1yt−1 = Xtβw − a1Xt−1βw + εt − a1εt−1 (4)

which can be rewritten as

yWt = XW
t βw + υt (5)

where yWt = yt − a1yt−1 and XW
t = Xt − a1Xt−1 represent the pre-whitened data and

design matrix respectively, and βw ∈ RP are new unknown parameters. We will use the

superscript W to denote the pre-whitened data yW and design matrix XW . Then, the

transformed GLM with reduced temporal correlation is given by

yW = XWβw + υ (6)

and the OLS estimates of βw are given by

β̂w = (XWT
XW )−1XWT

yW (7)

2.8. Classification

Our GLM approach for a single fNIRS channel was adapted for the classification of

evoked hemodynamic responses of a particular task (e.g., the visual imagery task) to

differentiate between the semantic categories of animals and tools in 15-block-wise cross-

validation in which one block is used for testing, while other blocks are used for training.

In one step of the cross-validation, let Xtrain be the full design matrix X with all

rows outside the training blocks set to zero, with data blocks extended 5 seconds beyond

the end of the experimental blocks to compensate for the hemodynamic delay and before

possible artifacts in the fNIRS signal at the beginning of the breaks. Similarly, let ytrain
be the fNIRS signal zeroed outside the training blocks. Keeping the original dimensions

(but zeroing rows) makes things easier for overall manipulations, fitting AR(1) and pre-

whitening without any time discontinuities. The terms a1 and β̂w are then estimated

from Xtrain and ytrain.

The next step is to extract the evoked hemodynamic response for each trial of

the desired task. Let T be one task trial for which we want to extract the evoked

hemodynamic response. The estimated GLM is used to remove influence from preceding

tasks and thus to isolate the evoked hemodynamic response for T . Let XT be the design

matrix created in the same way as described for X. The only difference is that, before

the convolution, the elements of the corresponding condition for T are 0, instead of 1,

when T is taking place. In other words, the design matrix XT is excluding T from the

design matrix X as if T did not take place in the experiment. This is illustrated in figure

3. The evoked hemodynamic response r for T , plus the normally distributed error, is

then computed via

r = yW −XW
T β̂w (8)
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On the other hand, the estimated hemodynamic response for T from the GLM model

is (X −XT )W β̂w, which is potentially non-zero from the task onset for up to 20 seconds

(given that the temporal basis set is up to 17 seconds long, plus 3 seconds of task

duration). We will consider only this segment of 20 seconds in the estimated and

extracted hemodynamic response from now on.

Finally, the extracted hemodynamic response r was classified by regularized logistic

regression with L2 norm (from scikit-learn [56], default settings but with a maximum

number of iterations of 1000). The classifier input was the normalized response (z-scored,

mean subtraction and division by standard deviation based on extracted responses from

training blocks) for each time point separately.

We explored classification performance using time windows of different lengths for

the hemodynamic responses starting at the task onset. The time lag between the onset

of the first task and the end of the last task in a trial is 12.6 seconds. Therefore, any

significant improvement in classification accuracies past these times is most probably

an artifact of “overfitting” due to the short gap of 0.2 seconds between tasks. A similar

argument can be made for classification accuracies starting at the task onset as this is

most probably due to the previous task. Considering a hemodynamic delay of up to 6

seconds plus the task duration of up to 3 seconds, anything outside this region is most

likely to be an artifact. Thus, we restrict our analysis to a maximal window length of

10 seconds. Most fMRI and fNIRS studies use a maximal temporal window of up to 9

seconds [8, 3, 4, 2, 9].

3. Results

3.1. Univariate classification

As already mentioned, each fNIRS channel was separately modeled by the GLM to

remove noise and influences from previous tasks and to extract evoked hemodynamic

responses that were then classified by regularized logistic regression for univariate

classification. The whole pipeline was applied within a 15-block-wise cross-validation.

The classifier can be said to have a classification accuracy that is statistically

significantly above chance level when the accuracy is above 56.11% for a significance

level of p < 0.05 (one-sided Binomial test (n = 180)), 58.89% for a significance level of

p < 0.01, and 61.67% for a significance level of p < 0.001.

Figure 4 shows classification accuracies of all channels for each participant using

different window lengths of hemodynamic responses starting at the time of task onset.

As the window length increases more and more channels can be individually used to

classify the semantic categories at a significant level of accuracy (p < 0.05) and the

classification accuracies increase for all tasks and both montages. Each participant

may have a different internal neural representation of the concepts and, thus, a

different response in each channel. Figure 5 shows mean classification accuracies across

participants for all channels. It shows the same trend of increasing classification
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Figure 4. Univariate classification accuracies of all channels for each participant

using different window lengths of hemodynamic responses. Horizontal lines represent

a significance borderline for p = 0.05 (56.11%, solid), p = 0.01 (58.89%, dashed), and

p = 0.001 (61.67%, dotted). Participants with the frontal montage are in the left

column and participants with the temporal montage are in the right column.
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Figure 5. Univariate mean classification accuracies across participants for all channels

using different window lengths of hemodynamic responses with corresponding scalp

locations of the channels. Horizontal lines represent a significance borderline for

p = 0.05 (56.11%, solid), p = 0.01 (58.89%, dashed), and p = 0.001 (61.67%, dotted)

for a single participant, similarly to figure 4. Scalp maps indicate performance above

the significance borderline (p = 0.05, 56.11%).

accuracies with increasing window length as seen for single participant classification.

This indicates that some channels give consistently good semantic category classification

accuracies across different participants. These channels varied between tasks. Their

spatial distribution over time is also illustrated in figure 5. The average accuracy is

calculated only from two to five participants, depending on which particular channel is

used, and thus any reasonable statistical testing is not possible. Thus we will use the

same statistical thresholds as for a single participant in all the following analysis.

We inspect participant 6 in more detail as this is a typical participant. Figure

6 shows estimated and extracted hemodynamic responses for animals and tools for

channel AFF5h-FFC5h when trained using all data (blocks). The generality of the

temporal basis set adopted allows the timing of the main peak, if present, to vary for

each channel type and task. Estimated and extracted hemodynamic responses follow

the expected relationship between changes in oxygenated and deoxygenated hemoglobin.

Dotted lines show classification accuracies from cross-validation using different window

lengths of extracted responses. We can directly see which times are important for the

differentiation between animals and tools. For instance, in the visual imagery task,

classification accuracies are above chance level (p = 0.05, 56.11%) after 2.3 and 4.6
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Figure 6. Estimated and extracted hemodynamic responses of animals and tools

for channel AFF5h-FFC5h from participant 6 when trained using all data (blocks).

Extracted responses are shown with mean and 95% confidence interval. Changes in

oxygenated hemoglobin are in the left column and changes in deoxygenated hemoglobin

are in the right column. Dotted lines represent classification accuracies from cross-

validation using corresponding window lengths of extracted responses.

seconds for changes in oxygenated and deoxygenated hemoglobin respectively.

3.2. Multivariate classification with channel selection

We explored the feasibility of aggregating multiple channels for classification. We used

15-block-wise nested-cross-validation for automatic channel selection. The n channels

with the highest classification accuracies from the inner cross-validation were selected.

The selected channels were used for soft voting (sum of classifier probabilities) on the

test block of the outer cross-validation.
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Figure 7. Mean classification accuracies across participants from nested-cross-

validation for automatic channel selection using different window lengths of

hemodynamic responses. Participants with the frontal montage are in the left column

and participants with the temporal montage are in the right column. Horizontal lines

represent a significance borderline for p = 0.05 (56.11%, solid), p = 0.01 (58.89%,

dashed), and p = 0.001 (61.67%, dotted) for a single participant, similarly to figure 4.

Dotted vertical lines represent time points (i.e., lengths of responses) for each number of

channels using the same color from when mean accuracies stayed above the significance

borderline (p = 0.05, 56.11%).
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Figure 8. Mean multivariate classification accuracies across participants when the

classifier is trained using all channels. Horizontal lines represent a significance

borderline for p = 0.05 (56.11%, solid), p = 0.01 (58.89%, dashed), and p = 0.001

(61.67%, dotted) for a single participant, similarly to figure 4. Dotted vertical lines

represent time points (i.e., lengths of responses) for each task using the same color from

when mean accuracies stayed above the significance borderline (p = 0.05, 56.11%).

Figure 7 shows mean classification accuracies across participants from this nested-

cross-validation for n ∈ {1, 2, ..., 12}. The results for each task had a similar behavior for

both montages. Mean classification accuracies stayed above the threshold of statistical

significance (p = 0.05, 56.11%) from between 0.9 seconds (for the visual imagery task)

to 3.8 seconds (for the tactile imagery task). In general, a shorter time window was

needed to reach statistically better-than-chance classification for the silent naming task

and the visual imagery task, while a longer window was needed for the auditory and

tactile imagery tasks.

3.3. Multivariate classification of all channels

Results from univariate classification showed that most channels are suitable for

classification, especially when using the silent naming task and the visual imagery

task. This suggests the possibility of using all channels for the classification rather

than selecting a subset of channels. Instead of using one classifier for each channel,

extracted responses from all channels were concatenated, normalized as before, and

input into the regularized logistic regression during the cross-validation.

Figure 8 shows the mean classification accuracies across participants when classifiers

were trained on all channels. Mean classification accuracies stayed above the threshold

of statistical significance (p = 0.05, 56.11%) from between 0.4 seconds (for the visual

imagery task) to 4.2 seconds (for the tactile imagery task). Similar to previous results,

a shorter time window was needed for the silent naming and the visual imagery task,

while a longer window was needed for the auditory and tactile imagery tasks.

3.4. Consistent representations across tasks

To inspect whether the current results are task-specific or whether there is some

“universal” neural representation of the semantic categories of animals and tools that
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Figure 9. Univariate classification accuracies for participant 6 (solid lines) and mean

classification accuracies with 95% confidence interval across all participants with the

same montage (dashed lines) for two typical channels oxy AFF5h-FFC5h and deoxy

FFC3h-FFC5h when the classifier was trained on one particular task and tested on

a different task. Rows represent tasks used for training and columns represent tasks

used for testing. Horizontal dotted lines represent a significance borderline for p = 0.05

(56.11%) for a single participant.

is consistent across tasks, we trained classifiers on one particular task and then tested

them on a different task (from the test fold during the cross-validation).

First, we inspected the results from univariate classification. Figure 9 shows

classification accuracies for two typical channels from participant 6 and the mean

accuracies, for those same channels, across all the participants with the same montage.

In channel oxy AFF5h-FFC5h, most classifiers for participant 6 across tasks struggled

to stay above the chance level. In some instances, they crossed the chance level but

then dropped below again when the window length was increased. Mean classification

accuracies of oxy AFF5h-FFC5h showed the same struggle to generalize across tasks.

On the other hand, channel deoxy FFC3h-FFC5h showed the opposite behavior. Most

classifiers for participant 6 could be interchanged across tasks while staying above

the chance level. This behavior is also observed when inspecting mean classification

accuracies. This suggests the possibility to generalize across tasks if the correct fNIRS

channels are chosen.

Furthermore, figure 10 shows results of the same analysis when using all channels

for multivariate classification, as in section 3.3. Mean classification accuracies across
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Figure 10. Mean multivariate classification accuracies across participants for each

montage when the classifier was trained using all channels on one particular task and

tested on a different task. Rows represent tasks used for training and columns represent

tasks used for testing. Accuracies are shown with mean and 95% confidence interval.

Horizontal dotted lines represent a significance borderline for p = 0.05 (56.11%) for a

single participant.

participants show that all classifiers could be interchanged across different tasks with

an increasing window length of responses. This strongly supports the idea that there

are consistent neural representations of the semantic categories across different imagery

tasks.

3.5. Order of tasks

In the course of our analysis, we discovered a minor error in our experiment script that

was used to present stimuli to participants. All participants but participant 1 had the

same seed for the random number generator and they thus shared the same order of

tasks and concepts. We will focus on these participants and ignore participant 1 in this

section. Figure 11 shows how many times tasks appeared as the first, second, third,

and fourth task in blocks. The distribution is clearly not uniform. It was skewed to

present the auditory and tactile imagery tasks more frequently as the first task and

the auditory imagery task as the second task. This might potentially explain why

longer time windows were needed for the auditory and tactile imagery tasks. These

tasks followed after the initial stimuli image and mask presentation more often and
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Figure 11. Number of task appearances as the first, second, third, and fourth task

in the shared order of tasks in participants 2 to 12.
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Figure 12. Mean multivariate classification accuracies using all channels across

participants for each subset of blocks simulating different distributions of task

appearance orders. Distributions of accuracies are shown with quartiles. Circles

represent the results found when the complete set of data is used in the analysis.

participants then needed to switch to a new concept, which may explain why longer

time windows were needed to classify these tasks.

We performed a post-hoc analysis to investigate how much our results depend on

different distributions of the order of task appearances. We re-computed our analysis on

subsets of blocks from the experiment by excluding individual blocks from the analysis to

simulate different distributions. We used subsets of blocks with sizes from 7 to 14 blocks

and only considered subsets in which all tasks appeared as the first, second, third, and
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fourth task. From these 4023 subsets, 100 were randomly selected. Figure 12 shows the

mean multivariate classification accuracies using all channels, as in section 3.3, across

participants for each subset of blocks. Our results from the complete set of data visually

appear to fall within the “middle” of the distribution. Mean classification accuracies

across all subsets were above 60% for all tasks from 5 seconds onwards. Thus, our

results would be significant even if the order of tasks had been correctly randomized

across participants. In other words, the error we discovered in our experiment script

did not adversely affect our results.

3.6. Possible confounds

Components of fNIRS signals that are not driven by neuronal activity (i.e., neurovascular

coupling) can act as possible confounds. These components include extracerebral

hemodynamics and intracerebral hemodynamics caused by task-related systemic

activity. They act as confounds as they may mimic the presence of, or attenuate,

the neuronally induced hemodynamic response [57, 58, 59]. In our study, the inclusion

of the respiration signal as a regressor in the GLM and autoregressive model reduced

the influence of only some of these components. However, we also tested using two

preprocessing methods for fNIRS signals before the model estimation to further mitigate

this issue in the multivariate classification, as in section 3.3. The first method was

based on the principal component analysis to remove global interference by removing

an eigenvector with the highest eigenvalue [60, 61]. The second method was the common

average reference [62]. Both methods were applied to channels of oxygenated and

deoxygenated channels separately. Mean classification accuracies from both methods

were not statistically different in comparison with the results in section 3.3 (two-sided

Wilcoxon test corrected with the false discovery rate). Based on these results, we

believe that there is not a significant interference from the aforementioned sources in

the classification.

4. Discussion

We showed that it is possible to differentiate between the semantic categories of animals

and tools in all mental tasks with mean classification accuracies of 76.2% for the silent

naming task, 80.9% for the visual imagery task, 72.8% for the auditory imagery task,

and 70.4% for the tactile imagery task using window lengths of hemodynamic responses

of up to 10 seconds long in the multivariate classification approach using all channels.

Our results show that generalization across different tasks is possible to a certain

degree (in certain channels), and thus it seems that the classifier exploits common

features of the neural representations of animals and tools across different tasks. Another

possible interpretation is that information from preceding and following task(s) could

be exploited for classification due to the short gap of 0.2 seconds between tasks. This

issue should be partly mitigated by the random order that the tasks were presented
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across different blocks. However, we cannot be sure purely based on this experiment.

A presentation of stimulus image causes semantic priming. This form of visual

priming could enhance performance of the visual imagery task in comparison with

using non-visual stimulus [63, 24, 64]. This prior semantic processing can also enhance

subsequent picture naming performance [65]. Additionally, participants could recall the

object name during the presentation of the stimulus image and kept it in mind for all

subsequent tasks. This could explain the difference in shorter time windows that were

needed for the silent naming and visual imagery task in comparison with longer windows

for the auditory and tactile imagery task.

Further research is needed to investigate which modality of mental imagery is

the most suitable for semantic decoding and whether a single modality or a sequence

of modalities performs better. Multimodal (multisensory) mental imagery could be

especially promising [66, 67, 68]. In informal talks with participants during and after the

experiment, some participants mentioned that they were unable to distinguish between

different tasks. For instance, imagining touching an object included visualizing the

object itself. This is not a problem for us because our goal is to choose mental tasks

that elicit clear neural correlates for differentiation between the semantic categories.

These questions are ultimately interconnected with imagery mental strategies and task

instructions given to participants. Nevertheless, imagery vividness and strength varies

between individuals [69, 70]. In potential BCI applications, the mental imagery strategy

should be specifically selected for each individual according to their abilities and needs.

It is important to note that this study has been conducted offline. It is currently

unknown whether similar results could be achieved in an online experimental paradigm

for BCI applications. Online implementation entails several challenges. For instance,

preprocessing, mainly motion correction and filtering, must be replaced with online

alternatives. However, the method presented here, based on the GLM to extract the

evoked hemodynamic response for a task trial, can be used in online analysis and

classification by modifying the experimental design. Intervals between task trials must

be appropriately chosen in order to avoid, or minimize, the influence between their

hemodynamic responses.

In follow-up research, we will analyze recorded EEG signals and/or the combination

of EEG and fNIRS for classification. We will make the recorded data publicly available

afterwards. We intend to replicate the results presented in this paper in an online

experimental paradigm. Also, future experiments should use additional short-distance

detectors to detect and directly remove extracerebral signals close to the source [71, 72].

4.1. Silent naming task

Murphy et al. [6] were able to differentiate between semantic categories of mammals

and tools in EEG with a mean classification accuracy of 72% under 0.5 second after

the stimulus onset, while participants viewed images and performed the silent naming

task. Due to the hemodynamic delay, fNIRS signals cannot compete with a similar
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short duration after the task onset for classification. Similar mean accuracies above

70% were achieved after 4.5 seconds in the frontal montage and after 6.5 seconds in

the temporal montage while accuracies stayed above the chance level (56.1%, p < 0.05)

from 0.6 seconds in both montages.

4.2. Imagery tasks

The most similar mental tasks in comparison with our proposed imagery tasks are tasks

based on imagining of object properties.

Shinkareva et al. [8] were able to differentiate between semantic categories of

tools and dwellings in fMRI, while participants viewed line drawings for 3 seconds

followed by a 7 seconds rest period. Participants were asked to think of the same object

properties generated before the recording. A single trial-level data set for classification

was computed by averaging between 4 and 7 seconds after the stimulus onset. Mean

classification accuracies were 87%.

Akama et al. [3] were able to differentiate between semantic categories of mammals

and tools in fMRI, while participants viewed photographs with either an accompanying

caption or with a spoken word description of the object in different sessions. As in the

study above, participants were asked to silently enumerate concept properties that were

generated before the recording. Each stimulus was presented for 3 seconds followed by a

rest period for 7 seconds. A single trial-level fMRI image for classification was computed

by averaging consecutive fMRI volumes between 4 and 7 seconds after the stimulus

onset. Uni-modal prediction achieved accuracies in the 80-90% range and cross-modal

classification accuracies were in the 65-75% range. In the same experimental design

but using only accompanying captions in 2 different languages for each participant in

different sessions, Akama et al. [4] achieved mean uni-modal classification accuracies of

90.8-93.4% and cross-modal classification accuracies (different languages) of 82.9-86.7%.

In comparison with these fMRI studies, our mean classification accuracies using

hemodynamic response lengths of up to 7 seconds were 77.2% for the visual imagery

task, 67.8% for the auditory imagery task, and 66.7% for the tactile imagery task. The

accuracies are lower, as expected, because fNIRS can only measure cortical brain activity

up to about 2 cm deep and has a smaller spatial resolution. On the other hand, our

experimental design did not have the canonical 7 seconds rest period in between tasks.

In fNIRS, Zinszer et al. [9] discriminated between semantic categories of animals

and body parts while participants focused on audiovisual stimuli (photographs with a

simultaneous auditory presentation of object name) and thought about the meaning of

that stimulus or any memory it evoked. Each stimulus was presented for 3 seconds and

followed by an interstimulus interval of 6-9 seconds composed of fireworks and a short

musical clip. Mean accuracies were 66%. Data were epoched in 6.5 to 9.0 seconds after

the stimulus onset.

In comparison, our mean classification accuracies using hemodynamic response

lengths of up to 9 seconds were 80.1% for the visual imagery task, 71.8% for the auditory
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imagery task, and 69.7% for the tactile imagery task.

5. Conclusion

We demonstrated that semantic decoding is possible in fNIRS by differentiating between

the semantic categories of animals and tools in all mental tasks with mean classification

accuracies above 70%. Selection of suitable mental tasks is the first step towards intuitive

BCI applications for communication. In follow-up research, we will include recorded

EEG signals into classification. Also, we intend to replicate the results presented in this

paper in an online experimental paradigm.
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natural scenes: How specific to human faces is the N170 ERP component? Journal of Vision,

4(1):13–21, jan 2004.

[11] Blair Kaneshiro, Marcos Perreau Guimaraes, Hyung-Suk Kim, Anthony M. Norcia, and Patrick

Suppes. A Representational Similarity Analysis of the Dynamics of Object Processing Using

Single-Trial EEG Classification. PLOS ONE, 10(8):e0135697, aug 2015.

[12] Greta Tuckute, Sofie Therese Hansen, Nicolai Pedersen, Dea Steenstrup, and Lars Kai Hansen.

Single-Trial Decoding of Scalp EEG under Natural Conditions. Computational Intelligence and

Neuroscience, 2019:1–11, apr 2019.



Decoding of semantic categories of imagined concepts of animals and tools in fNIRS 24

[13] Alex Clarke, Barry J Devereux, Billi Randall, and Lorraine K Tyler. Predicting the Time Course

of Individual Objects with MEG. Cerebral Cortex, 25(10):3602–3612, oct 2015.

[14] Tom M. Mitchell, Rebecca Hutchinson, Radu S. Niculescu, Francisco Pereira, Xuerui Wang, Marcel

Just, and Sharlene Newman. Learning to Decode Cognitive States from Brain Images. Machine

Learning, 57(1):145–175, oct 2004.

[15] Tom M. Mitchell, Svetlana V. Shinkareva, Andrew Carlson, K.-M. Chang, Vicente L. Malave,

Robert A. Mason, and Marcel Adam Just. Predicting Human Brain Activity Associated with

the Meanings of Nouns. Science, 320(5880):1191–1195, may 2008.

[16] Bernhard Graimann, Brendan Allison, and Gert Pfurtscheller. Brain–Computer Interfaces: A

Gentle Introduction, pages 1–27. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[17] Luis Fernando Nicolas-Alonso and Jaime Gomez-Gil. Brain Computer Interfaces, a Review.

Sensors, 12(2):1211–1279, jan 2012.
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