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Abstract—Deep-learning models such as Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) have
been successfully used for process-mining tasks. They have
achieved better performance for different predictive tasks than
traditional approaches. We extend the existing body of research
by testing four different variants of Graph Neural Networks
(GNN) and a fully connected Multi-layer Perceptron (MLP) with
dropout for the tasks of predicting the nature and timestamp
of the next process activity. In contrast to existing studies,
we evaluate our models’ performance at different stages of
a process, determined by quartiles of the number of events
and normalized quarters of the case duration. This provides
new insights into the performance of a prediction model, as
they behave differently at different stages of a business-process.
Interestingly, our experiments show that the simple MLP often
outperforms more sophisticated deep-learning models in both
prediction tasks. We argue that care needs to be taken when
applying automated process-prediction techniques at different
stages of a process. We further argue that researchers should
reflect their results with strong baselines methods like MLPs.

I. INTRODUCTION

Most businesses thrive on the effective use of event logs
and process records. The ability to predict the nature of
an unseen event in a business-process can have very useful
applications [4]. This can help in more efficient customer
service, and facilitate in developing an improved work-plan
for companies. The domain of process mining deals with
combining a wide range of classical model-based predictive
techniques along with traditional data-analysis techniques [27].
A process can be a representation of any set of activities that
take place in a business enterprise; for example, the procedure
for obtaining a financial document, the steps involved in a
complaint-registering system, etc.

Business-process mining, in general, deals with the analysis
of the sequence of events produced during the execution of
such processes [6, 16, 18]. Even though the classical approach
of depicting event logs is with the help of process graphs [1,
30], Pasquadibisceglie et al. [20], Tax et al. [23], Taymouri
et al. [25], and others have recently applied deep-learning
techniques like Convolutional Neural Networks (CNN), Long
Short-Term Memory (LSTM) networks, and Generative Ad-

versarial Nets (GANs) for the task of predictive process
mining. The deep-learning based models obtained results that
outperformed traditional models.

Inspired from these works and taking into consideration the
graph nature of processes, we aim to model event logs as
graph structures and apply different Graph Neural Network
(GNN) models on such data structures. GNNs have shown
superior results for the vertex-classification task [14], link-
prediction task [33], and recommender systems [32]. In this
work, we use a new representation for the event-log data and
investigated the performance of different variants of a Graph
Convolutional Network (GCN) [14] as a successful example
of GNNs. We compare the GCN model among others with the
CNN and LSTM models along with a Multi-Layer Perceptron
(MLP) and classical process-mining techniques [4, 28].

In contrast to the existing body of research [20, 9, 5, 23,
25, 15], we analyze how the performance of the models for
business-process prediction depend on the stage of a process.
The results show that the next activity type and timestamp
prediction depend a lot on the model and also on whether
an early, mid, or late stage of the process is considered.
Furthermore, we observe from our experiments that MLP is a
strong baseline and in many cases outperforms more advanced
neural networks like LSTMs, GCNs, and CNNs. The MLP
model achieves a maximum of 82% accuracy in predicting
the next event type, and a minimum mean absolute error of
1.3229 days for predicting the timestamp of the next event.

Below, we discuss related works in business-process mining.
Section III introduces our experimental apparatus, datasets and
pre-processing, as well as our GCN-based models. Sections IV
and V highlights the major results from the experiments,
followed by a discussion in Section VI, before we conclude.

II. RELATED WORKS

Business-process mining deals with several prediction tasks
like predicting the next activity type [2, 23, 20, 9, 4], the
timestamp of the next event in the process [23, 28], the overall
outcome of a given process [24], or the time remaining until
the completion of a given process instance [21]. There is a
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huge body of algorithms for these process-mining tasks [4,
28]. In the context of this work, we focus on the first two
aspects of the aforementioned list of predictive tasks, namely,
the task of predicting the nature and timestamp of the next
event in a given process. We reconsider the results from the
classical methods and compare them with latest developments
on business-process mining using deep learning.

There has been a recent shift towards deep-learning models
for the task of predictive business-process monitoring. Tax
et al. [23] proposed to use a Recurrent Neural Network
(RNN) architecture with Long Short-Term Memory (LSTM)
for the task of predicting the next activity and timestamp, the
remaining cycle time, and the sequence of remaining events in
a case. Their model was able to model the temporal properties
of the data and improve on the results obtained from traditional
process-mining techniques. The main motivation for using an
LSTM model was to obtain results that were consistent for a
range of tasks and datasets. The LSTM architecture of Tax et
al. could also be extended to the task of predicting the case
outcome. Camargo et al. [5] and Lin et al. [15] both use LSTM
models, too. The first one to predict the next event including
timestamp and the associated resource pool, the latter to
predict the next event, including its attributes. Evermann et
al. [9] also used RNN for the task of predicting the next event
on two real-life datasets. Their system architecture involved
two hidden RNN layers using basic LSTM cells.

Pasquadibisceglie et al. [20] used Convolutional Neural
Networks (CNN) for the task of predictive process analytics.
An image-like data engineering approach was used to model
the event logs and obtain results from benchmark datasets.
In order to adapt a CNN for process-mining tasks, a novel
technique of transforming temporal data into a spatial structure
similar to images was introduced. The CNN results improve
over the accuracy scores obtained by Tax et al.’s LSTM [23]
for the task of predicting the next event.

Scarselli et al. [22] introduced Graph Neural Networks
(GNNs) as a new deep-learning technique that could efficiently
perform feature extraction. Especially in the last year, GNNs
have gained widespread attention and use in different domains.
Wu et al. [31] provided a comprehensive survey of GNNs.
They categorize the different GNN architectures into Graph
Convolutional Networks (GCN, or also called: ConvGNN),
Spatio-temporal Graph Neural Networks (STGNNs), Recur-
rent Graph Neural Networks (RecGNN), and Graph Autoen-
coders (GAEs). Esser et al. [8] discussed the advantages
of using graph structures to model event logs. Performing
process-mining tasks by modelling the relationships between
events and case instances as process graphs has been a widely
accepted approach [19, 29].

Recently, Taymouri et al. [25] have used Generative Ad-
versarial Nets (GANs) for predicting the next activity and its
timestamp. In a minmax game of discriminator and generator,
both consisting of RNNs in a LSTM architecture and feed-
forward neural networks, a prediction is made of the next
step, including event type and event-timestamp prediction.
Taymouri et al. used different models each trained over a

specific length of sub-sequences of processes, modeled by the
parameter k. For example, a value of k = 20 means that sub-
sequences of length 20 are used for training, and testing would
be applied on process steps 21, 22, 23, and following until the
end of the process.

Other works used features from unstructured data like
texts in deep-learning architectures to improve the process-
prediction task. Ding et al. [7] demonstrate how a deep-
learning model using events extracted from texts improves
predictions in the stock markets domain. For business-process
modelling, Teinemaa et al. [26] improve the performance of
predictive business models by using text-mining techniques on
the unstructured data present in event logs.

In this work, we aim to combine traditional process mining
from event graphs along with deep-learning techniques like
GCNs to achieve a better performance in predictive business-
process monitoring. We evaluate each of the model variants
at different stages of a process, determined by quartiles of the
number of events in a case and normalized quarters computed
over the case durations. This would provide a more detailed
understanding of the models’ performance.

III. EXPERIMENTAL APPARATUS

We introduce the datasets used in this work and the method-
ology adopted for representing the feature vectors correspond-
ing to each row in the dataset. Following this, a mathematical
formulation of graphs and the specific case of process graphs
is provided, which lays the foundation to understand a Graph
Convolutional Network. We conclude with a description of the
procedure and metrics adopted for this work.

A. Datasets

We use two well-known benchmark event-log datasets,
namely Helpdesk and BPI12 (W). These two representative
datasets have been chosen as they are used by the models we
want to compare with, namely the CNN by Pasquadibisceglie
et al. [20], LSTMs from Camargo et al. [5] and Tax et al. [23],
and the GAN from Taymouri et al. [25]. Thus, the datasets
best possible serve the purpose to compare the different Deep-
Learning architectures. All datasets are characterised by three
columns: “Case ID” (the process-case identifier), “Activity
ID” (the event-type identifier), and the “Complete Timestamp”
denoting the time at which a particular event took place.
Table I shows an overview of the datasets.

Table I
OVERVIEW OF THE DATASETS USED

Attribute Dataset
Helpdesk BPI12(W)

No. of events 13,710 72,413
No. of process cases 3,804 9,658
No. of activity types 9 6
Avg. case duration (sec.) 22,475 1,364
Avg. no. of events per case 3.604 7.498



a) Helpdesk dataset: This dataset presents event logs
obtained at the helpdesk of an Italian software company.1 The
events in the log correspond to the activities associated with
different process instances of a ticket management scenario.
It is a database of 13,710 events related to 3,804 different
process instances. There are 9 activity types, i. e., classes in
the dataset. Each process contains events from a list of nine
unique activities involved in the process. A typical process
instance spans events from inserting a new ticket, until it is
closed or resolved. Table I shows the average case duration
and the number of activities per case.

b) BPIC’12 (Sub-process W) dataset: The Business-
Process Intelligence Challenge (BPIC’12) dataset2 contains
event logs of a process consisting of three sub-processes,
which in itself is a relatively large dataset. As described in [23]
and [20], only completed events that are executed manually are
taken into consideration for predictive analysis. This dataset,
called BPI12 (W), includes 72,413 events from 9,658 process
instances. Each event in a process is one among 6 activity
types involved in a process instance, i. e., a process case. The
activities denote the steps involved in the application procedure
for financial needs, like personal loans and overdrafts.

B. Graphs and Graph Convolutional Layer

A graph can be represented as G = (V,E), where V is the
set of vertices and E denotes the edges present between the
vertices [31]. An edge between vertex i and vertex j is denoted
as eij ∈ E. A graph can be either directed or undirected,
depending on the nature of interaction between the vertices.
In addition, a graph may be characterized by vertex attributes
or edge attributes, which in simple terms are feature vectors
associated with that particular vertex or edge. The adjacency
matrix of a graph is an n× n matrix with Aij = 1 if eij ∈ E
and Aij = 0 if eij /∈ E, where n is the number of vertices in
the graph. A degree matrix is a diagonal matrix which stores
the degree of each vertex, which numerically corresponds to
the number of edges that the node is attached to.

A GCN layer operates by calculating a hidden embedding
vector for each node of the graph. It calculates this hidden
vector by combining each node’s feature-vector with the
adjacency matrix for the graph, by the equation (Kipf and
Welling [14]):

f(X,A,W ) = σ(D−1AXW ), (1)

where X is the input-feature matrix containing the feature
vector for each of the vertices, A is the adjacency matrix of
the graph, D is the degree matrix, W is a learnable weight
matrix, and σ is the activation function of that layer.

In (1), the product D−1A represents an attempt to normalize
the adjacency matrix. However, as matrix multiplication is

1https://data.mendeley.com/datasets/39bp3vv62t/1
2https://www.win.tue.nl/bpi/doku.php?id=2012:challenge&redirect=1id=

2012/challenge

non-commutative, an alternative symmetric normalisation is
preferred [14], changing the GCN layer’s operation to:

f(X,A,W ) = σ(D− 1
2AD− 1

2XW ) (2)

Note, all the models used in this work, the GCN layer
calculations are done as described in (2). For the model
variants described in Section III-F involving the Laplacian
matrix, the adjacency matrix (A) in (2) is replaced by the
corresponding unnormalized Laplacian.

C. Data Pre-processing

The timestamp corresponding to each event in the dataset
can be used to derive a feature-vector representation for each
row in the data. The approach introduced in [23] has been
used to initially get a feature vector consisting of the following
four elements: 1. The time since previous event in the case.
2. The time since the case started. 3. The time since midnight.
4. The day of the week for the event. All four values are
treated as real-valued durations. This results in a 4-element
feature vector for every row in the dataset. The drawback in
this kind of a representation is that it treats each event in a
case independently. In order to overcome this drawback, it
was necessary for the feature vector of every event to have
a history of other events that had already occurred for that
particular Case ID. Hence, a new comprehensive feature vector
representation was introduced.

In this work, each entry in a dataset is assigned a matrix
representation (X) whose dimensions depend on the dataset
which is considered. The number of rows in X can be obtained
by identifying the unique entries in the ‘Activity ID’ column,
i. e., the unique activity types as shown in Table I, or can be
visually identified as the number of vertices in the process
graphs for each of the datasets (Figure 1). Let us denote
this value by ‘num of nodes’ for ease of representation. As
it can be observed from Table I, num of nodes is 9 for the
Helpdesk dataset and 6 for the BPI’12 (W) dataset. The
number of columns in X corresponds to the length of the initial
feature vector, i. e., 4. This would result in a matrix of size
‘num of nodes× 4’ for each data entry.

The matrix X is first initialized with zeroes. Each row index
of X stores the 4-element long feature vector corresponding
to the most-recent Activity ID denoted by that particular row
index, for the current case ID. For example, the first row stores
the 4-element long feature vector for the event with Activity ID
equal to 1, and so on. One approximation that we have used
in this step is that if an event corresponding to a particular
Activity ID has occurred more than once in a case, we use
the feature vector for only the most-recent occurrence of that
event. In scenarios where events with a particular Activity ID
have not occurred yet in a given case, the feature matrix will
hence just store a vector with zeroes corresponding to that
Activity ID. This method of representation gives each row of
the Helpdesk dataset a 9×4 matrix, and each row of the BPI’12
(W) dataset a 6 × 4 matrix. The motivation behind choosing
such a representation is to facilitate the computation involved
in a Graph Convolutional Layer, as explained in Section III-B.

https://data.mendeley.com/datasets/39bp3vv62t/1
https://www.win.tue.nl/bpi/doku.php?id=2012:challenge&redirect=1id=2012/challenge
https://www.win.tue.nl/bpi/doku.php?id=2012:challenge&redirect=1id=2012/challenge


For a given row, the Activity ID of the next event and the time
since current event are taken as the target labels for the event-
predictor and the time-predictor, respectively.

D. Process Graphs as Input to GCNs

Figure 1. Directly-follows graphs generated for the Helpdesk dataset (left) and
BPI’12 (W) dataset (right) using PM4Py. The vertices represent the unique
Activity IDs (i. e., activity types) along with their frequencies denoted in
brackets. The numbers on the directed edges denote the frequency of directly-
follows relations.

Process discovery from event logs can be achieved using
different traditional process-mining techniques. In this work,
we have used an inductive mining approach with Directly-
Follows Graphs (DFGs) to represent the processes extracted
from each of the datasets. The choice is motivated by the
simplicity and efficiency with which the entire data can be
represented in the form of a graph.

A Directly-Follows Graph for an Event Log L is denoted
as [27]: G(L) = (AL, 7→L, A

start
L , Aend

L ), where AL is the set
of activities in L with Astart

L and Aend
L denoting the set of

start and end activities, respectively. 7→L denotes the directly-
follows operation, which exists between two events if and only
if there is a case instance in which the source event is followed
by the other target event. The vertices in the graph represent
the unique activities present in the event log, and the directed
edges of the graph exist if there is a directly-follows relation
between the vertices. The number of directly-follows relations
that exist between two vertices is denoted by a weight for the
corresponding edge.

Berti et al. [3] presented a process-mining tool for Python
called PM4Py. The Directly-Follows Graphs for both the
datasets (considering all the events/rows) were visualised
using the PM4Py package as shown in Figure 1. Consider
the following binary adjacency matrix for the process graph
generated, as example, from the BPI’12 (W) dataset:

BBPI′12(W ) =


1 1 1 0 0 0
1 1 1 0 0 1
0 1 1 0 1 0
0 0 0 1 0 1
0 0 1 0 1 1
0 1 0 1 1 1


This 6 × 6 matrix needs to be normalized as per Equation

(2) to be used in a GCN. The elements of the diagonal degree
matrix can be numerically computed as a row-wise sum from

the above matrix. The dimensions of the normalized matrix
(6 × 6) and the dimension of X (6 × 4 for BPI’12 (W)
dataset) makes it compatible for matrix multiplication in the
GCN layer. In general, the normalized adjacency matrix will
have dimensions num of nodes×num of nodes and X the
dimensions num of nodes× 4.

E. Procedure

The network depicted in Figure 2 shows the architecture
for the GCN model that learns the next Activity ID and
the timestamp of the next activity. The overall structure that
was constructed for this work mainly focuses on a Graph
Convolutional Layer followed by a sequential layer consisting
of three fully-connected layers with Dropout (present after
the GCN layer and before the last fully-connected layer).
The weight matrix (W) in the GCN layer is of size 4 × 1.
The Event Predictor Network has tanh activation for the
first two fully connected layers and softmax activation at the
last layer. Cross-entropy loss is used during training. The
Timestamp Predictor Network on the other hand consists of
ReLU activation for the first two layers and a linear activation
function at the last layer. The training process uses the Mean
Absolute Error as the loss function. An Adam optimizer [13] is
used for the training processes for all variants. In line with the
training procedure of prior studies [23, 20], each of the datasets
is divided into train (2/3) and test sets (1/3). We use 20%
of the training as validation set during the training process.
The validation set is randomly sampled from the training set
in each of the five experimental runs. Note, the chronological
nature of the datasets have been preserved during the train-test
splitting. One row is taken at a time during training resulting
in a mini-batch size of 1. The final results after the evaluation
on the test set are reported as an average measure of 5 runs.

F. GCN Model Variants and MLP Baseline

We have introduced four GCN variants of this general
architecture and an MLP-only variant for the experiments
carried out in this work.

a) GCNW (GCN with Weighted Adjacency Matrix): The
adjacency matrix of the process graph depicted in Figure 1 is
computed. Rather than a traditional approach of using binary
entries (as in BBPI′12(W )), we introduce a new method in
this variant by having the adjacency matrix store the values
corresponding to the weighted edges of the process graph. The
normalization procedure given in Eq. (2) is then applied to this
adjacency matrix in the GCN layer.

b) GCNB (GCN with Binary Adjacency Matrix): This
variant uses the binary adjacency matrix shown in the previous
section (see example: BBPI′12(W )). The degree matrix is
computed, from which a symmetrically normalized adjacency
matrix is obtained. The main motivation behind using the
binary and weighted variants of the adjacency matrix is due to
the fact that GCNB is heavily influenced by outliers whereas
GCNW might be biased by frequency differences between
common connections in the DFG.



Figure 2. Graph Convolutional Network architecture for the event type and timestamp predictor. The value for n in the last layer denotes the number of
classes for the event predictor and 1 for the time predictor.

Table II
ACCURACY FOR NEXT-EVENT PREDICTION AT DIFFERENT STAGES OF A PROCESS (INDICATED BY QUARTILES BASED ON THE NUMBER OF EVENTS AND

QUARTERS BASED ON NORMALISING THE CASE DURATION). STANDARD DEVIATIONS (SD) HAVE BEEN OMITTED AS THEY ARE VERY LOW (< 0.06).

Dataset Model
Accuracy for Event Prediction Overall

accuracyQuartiles based on Events Quarters based on Duration
1 2 3 4 1 2 3 4

Helpdesk

GCNW 0.7288 0.6888 0.7634 0.9419 0.7499 0.5508 0.5940 0.8951 0.7954
GCNB 0.7266 0.6778 0.7475 0.8973 0.7418 0.5410 0.5590 0.8561 0.7731

GCNLB 0.7270 0.6837 0.7729 0.9108 0.7523 0.5492 0.5819 0.8722 0.7863
GCNLW 0.6681 0.6922 0.7665 0.9167 0.7389 0.5508 0.5723 0.8803 0.7830

MLP 0.7297 0.7031 0.8110 0.9642 0.7677 0.6082 0.6446 0.9212 0.8201

BPI’12
(W)

GCNW 0.6964 0.7397 0.8011 0.4303 0.7247 0.8802 0.7869 0.4493 0.6484
GCNB 0.7329 0.7487 0.8039 0.3936 0.7424 0.8819 0.7933 0.4251 0.6473

GCNLB 0.7381 0.7587 0.8111 0.4077 0.7579 0.8961 0.7883 0.4329 0.6569
GCNLW 0.7366 0.7542 0.8050 0.4028 0.7552 0.8827 0.7882 0.4279 0.6525

MLP 0.6554 0.7369 0.8058 0.4792 0.7006 0.8818 0.8001 0.4888 0.6559

Table III
MAE VALUES (IN DAYS) FOR PREDICTING THE TIMESTAMP OF THE NEXT-EVENT AT DIFFERENT STAGES OF A PROCESS (INDICATED BY QUARTILES

BASED ON THE NUMBER OF EVENTS AND QUARTERS BASED ON NORMALISING THE CASE DURATION). SDS OMITTED AS THEY ARE VERY LOW (< 0.2).

Dataset Model
MAE (in days) for Time Prediction Overall

MAE
(days)

Quartiles based on Events Quarters based on Duration
1 2 3 4 1 2 3 4

Helpdesk

GCNW 2.2955 2.8397 4.1637 0.3340 3.6811 6.4332 3.6726 0.1806 2.3346
GCNB 2.2993 2.8577 4.1483 0.3143 3.6958 6.3667 3.4909 0.1768 2.3298

GCNLB 2.2973 2.8474 4.1085 0.3433 3.6744 6.2572 3.5081 0.2020 2.3250
GCNLW 2.2950 2.8470 4.0661 0.3323 3.6651 6.1060 3.2253 0.2195 2.3095

MLP 2.2948 2.9030 4.1969 0.3445 3.5724 5.688 5.0011 0.3572 2.3661

BPI’12
(W)

GCNW 1.0956 1.5503 1.6047 1.1491 1.7064 2.4116 1.7891 0.4943 1.3468
GCNB 1.1134 1.6109 1.6877 1.1449 1.7666 2.5344 1.8986 0.4548 1.3837

GCNLB 1.1114 1.6043 1.6775 1.1359 1.7530 2.5318 1.8997 0.4495 1.3765
GCNLW 1.1069 1.5900 1.6632 1.1437 1.7528 2.4998 1.8530 0.4618 1.3710

MLP 1.0966 1.5224 1.5587 1.1288 1.6529 2.3617 1.7134 0.5276 1.3229

c) GCNLW (GCN with Laplacian Transform of Weighted
Adjacency Matrix): The Laplacian matrix [12] of a graph is
L = D − A, where D is the Degree matrix and the A is
the Adjacency matrix. In this variant, A corresponds to the
weighted adjacency matrix. The Laplacian matrix is then used
for all computations involved within the Graph Convolutional
layer as follows: f(X,A,W ) = σ(D− 1

2 (D −A)D− 1
2XW ).

d) GCNLB (GCN with Laplacian Transform of Binary
Adjacency Matrix): This variant is equivalent to the previous
one, except for the fact that it uses the binary adjacency

matrix instead of the weighted adjacency matrix to compute
the Laplacian matrix.

e) MLP (Multi-Layer Perceptron): : In order to under-
stand if the GCN layer added any significant change to the
performance, we used a variant which had only the three
fully-connected layers (omitting the GCN layer). This model
also serves as baselines for the other architectures compared.
The feature matrix (X) was flattened and given as input to
the fully-connected layers. As in the other variants, Dropout
is used before the last layer. Hence, the dimensions for



the input vector of the MLP was (number of nodes ×
number of features).

G. Measures

Each row is associated with two labels, the next activity
type and the time (in seconds) after which the next event in
that case takes place. As in [23], an additional label is added
to denote the end of a case.

a) Next Activity and Timestamp: The quality of the next
activity is measured in terms of the accuracy of predicting
the correct label. In the case of timestamp prediction, we use
Mean Absolute Error (MAE) calculated in days.

b) Quartiles based on Events: We have evaluated the
performance of each variant at different quartiles. The quartiles
for each case instance have been computed based on the
number of events. For each case instance, its full list of events
are split into four (approximately) equal quartiles, based on
the order the events occurred in that case instance.

c) Quarters based on Unit Length Time: We normalize
the full case duration to unit length time and divide it into
four equidistant intervals, to make a comparison along the
time axis between cases and datasets possible. Thus, each
case instance’s full duration is divided by 4, and the case’s
events are put into the four intervals based on their individual
finishing timestamps. In contrast to the quartiles based on
events above, these temporal quarters divide the true natural
distribution of the process events based on time.

IV. RESULTS OF PREDICTING EVENT TYPES AND TIME AT
DIFFERENT STAGES FOR GCNS AND MLP

We describe per dataset the results for the GCN and MLP
models based on the quartiles over event type and quarters
of the unit length time. Subsequently, we compare the perfor-
mance of the deep-learning architectures CNN, LSTM, GCN,
and GAN with the MLP and classical approaches.

A. Helpdesk Dataset

a) Optimization: Each of the model variants was initially
run with different learning rates for the Adam optimizer. The
learning rate with the best performance was chosen for each
variant. For all the GCN variants, the best performance for the
timestamp predictor was obtained with a learning rate of 0.001.
For the event predictor, GCNLW gave the best performance at
a learning rate of 0.001 and all other GCN variants performed
best at 0.0001. For the MLP model, both the tasks gave best
results at a learning rate of 0.0001. The model corresponding
to the best validation loss is saved for all the model variants,
and then evaluated on the same test set.

b) Results: The accuracy values corresponding to the
event-prediction task achieved in this process is presented in
Table II. The Mean Absolute Error (in days) achieved on a
test set from models saved for the different variants is shown
in Table III. It can be observed from Tables II and III that
the MLP model outperforms all other variants for the event-
prediction task, in all individual quartiles/quarters as well as
for the overall performance. Among all model variants, a

maximum overall accuracy of 82.01% is obtained for the event
predictor by the MLP. The minimum overall MAE of 2.3095
days was achieved by the GCNLW variant.

B. BPI’12 (W) Dataset

a) Optimization: The same optimization procedure as for
the Helpdesk dataset has been used. The timestamp predictor
for all variants gave the best results with a learning rate of
0.0001. It is also the preferred learning rate for the event
predictor in all variants, except GCNB and MLP (where it
is 0.00001). The computation of quartiles over event types is
also the same as before.

b) Results: The accuracy values and MAE values for
the BPI’12 (W) dataset are presented in Tables II and III.
The MLP model outperforms all other variants in the time-
prediction task for most of the scenarios. An overall minimum
MAE of 1.3229 days is achieved. We are able to observe slight
variations when it comes to the results of the event predictor.
The best performance at individual quartiles and quarters
are shown by GCNLB and MLP for different instances. The
highest overall accuracy of 65.69% is achieved by GCNLB .

V. RESULTS OF COMPARING DEEP-LEARNING VARIANTS
OF CNN, LSTM, GCN, AND GAN

We compare the performance of the different deep-learning
variants of CNN, LSTM, GCN, and GAN with the MLP
and classical approaches. As mentioned in Section II, the
task of event prediction and the timestamp prediction has
been explored in various other works as well, using other
techniques. Table IV compiles the best results reported in other
works and compares them with the results obtained from our
GCNs as documented in Section IV.

The values for the GAN by Taymouri et al. [25] have
been obtained after rerunning the original code with necessary
changes to make it comparable with the other results. This
was necessary since the original paper by Taymouri et al. [25]
reported only weighted average measures over different case
lengths (k values). Also, their train-test split ratio was 80:20
and changed to 66:33 as in the other and our models [23,
20]. The source code from the model introduced by Lin et
al. [15] was not available online. Hence, their results have
been included in Table IV as a separate block. For the classical
process-mining model reported by Van der Aalst et al. [28], we
have used the values obtained from the experiments conducted
by Tax et al. [23] on the current datasets.

It can be observed from Table IV that all the model variants
introduced in this work perform well in comparison to previous
models for the time-prediction task. For the event-prediction
task, we have mixed results. On the Helpdesk dataset, all the
GCN model variants outperform two LSTM models [23, 5]
and the CNN model [20], but fail to outperform the improved
LSTM model introduced by Lin et al. [15]. Our models
perform poorly on the BPI’12 (W) dataset for event prediction.
Regarding the GAN+LSTM [25], the results show that it is
generally a strong performer. But it has to be noted that the
training procedure is fundamentally different from the other



Table IV
COMPARISON OF THE DIFFERENT MODELS WITH OTHER REPORTED RESULTS ON THE SAME BENCHMARK DATASETS

Model
Accuracy for

Event Prediction
MAE (in days) for

Time Prediction
Helpdesk BPI’12 (W) Helpdesk BPI’12 (W)

CNN [20] 0.7393 0.7817 N/A N/A
LSTM (Evermann et al.) [9] N/A 0.623 N/A N/A
LSTM (Camargo et al.) [5] 0.789 0.778 N/A N/A
LSTM (Tax et al.) [23] 0.7123 0.7600 3.75 1.56
GCNW 0.7954 0.6484 2.3346 1.3468
GCNB 0.7731 0.6473 2.3298 1.3837
GCNLB 0.7863 0.6569 2.3250 1.3765
GCNLW 0.7830 0.6525 2.3095 1.3710
MLP 0.8201 0.6559 2.3661 1.3229
Breuker et al. [4] N/A 0.719 N/A N/A
WMP Van der Aalst et al. [28] N/A N/A 5.67 1.91
GAN+LSTM [25] (k = 2) a 0.8668 0.7535 1.6434 1.4004
GAN+LSTM [25] (k = 4) a 0.8657 0.8009 1.1505 1.1611
GAN+LSTM [25] (k = 6) a 0.8976 0.8298 0.8864 0.9390
GAN+LSTM [25] (k = 16) a N/A 0.9019 N/A 0.4274
GAN+LSTM [25] (k = 30) a N/A 0.9290 N/A 0.3399
LSTM (Lin et al.) [15] b 0.916 N/A N/A N/A

a) Our reruns of the code adapted to fit the evaluation strategy of the CNN, LSTM, GCN,
and MLP for fair comparison. Note, models are based on a specific k value, i. e., they only
predict cases of length k + 1 or longer.
b) Code was not available. Thus the number cannot be independently confirmed.

models due to the use of the parameter k. This parameter
denotes that subsequences of the processes of length k are
used for training, and k + 1, k + 2 etc. are used for testing.
Thus, the result for, e. g., k = 30 on the BPI12 (W) dataset
only considers few process cases of length 31 or more.

VI. DISCUSSION

Our experiments show that a simple MLP is able to outper-
form other sophisticated architectures such as the LSTMs and
CNN. But it is also to be noted that MLP does not emerge as
the best performer in all of the experiments. Some possible
factors that might have resulted in this performance could
be an improved feature vector representation or the fact that
the number of classes in the event-prediction task is not that
high (9+1 classes for Helpdesk dataset and 6+1 classes for the
BPI’12 (W) dataset). Thus, the simple MLP models were able
to effectively learn the correlations between input features and
the target labels.

Regarding our analysis at different quartiles based on the
number of events and quarters based on unit-length time show
that automated process-prediction results vary at different
stages of a business process. For example, with the Helpdesk
dataset, the accuracy of event prediction continuously im-
proves over the quartiles based on events. However, for the
BPI’12 (W) dataset, it surprisingly improves only until the
3rd quartile, when it suddenly drops in the last quartile. A
similar observation can be made for MAE over both quartiles

based on events and quarters based on duration. Here, the
scores continuously increase (MAE gets worse), until they
drop in the last quartile. Quartiles over events and quarters
over unit length time truly model two different things. Quarters
better reflect the performance in a unit length progression
over time, but can be negatively influenced by a skewed
event distribution. At the same time, quartiles have an equal
distribution. Future experiments would need to be conducted to
explain this varying behaviour between datasets and measures.

A potential risk to the validity of these results can be from
one of the assumptions we had used during the pre-processing
stage. Where there were recurring events of the same type
in a case, we only included that event type’s most-recent
occurrence. Particularly in the BPI’12 (W) dataset, there are
cases where the same event occurs many times. To understand
how our assumption might have affected the results, the same
experiments were performed on a different version of the
BPI’12(W) dataset, which had reduced instances of an event
following itself [23]. But the results obtained were very similar
to the original dataset.

Comparing the different models has been in general very
difficult, due to different train-test split ratios and different
training procedures. Following [23, 20], we have used 2/3rd of
the data for training and 1/3rd for testing, while preserving the
chronological nature of the data. Other works like [4, 5] have
also used a ratio that is comparable to ours, namely 70:30 for



training and testing. Only the GAN model [25] had originally
used a 80:20 split and the work carried out by Lin et al. [15]
have split the data in a 7:2:1 ratio. Since the GAN code is
available, we adapted it to the same train-test split and rerun
it with 25 epochs, as stated in the paper, for different values
of k. The code for the LSTM by Lin et al. is not available,
as also noted by Taymouri et al. [25], and thus cannot be
independently confirmed. However, this study includes three
other strong LSTM models, which are directly comparable.

A key difference of the GAN model is its training proce-
dure, which involves windows of different case-lengths (the k
values), whereas our training procedure does not differentiate
between different case lengths. For example, the GAN model
with k = 30 is trained on subsequences of processes of
a length of 30 in the BPI12 (W) dataset. For testing, only
the remaining few process cases of length 31, 32 etc. are
used. Thus, the GAN results [25] cannot be compared
directly to any of the other models, which are designed to
make predictions on any lengths of cases, but are reported in
Table IV for completeness.

The major impact of this work lies in the observation that
there is no silver-bullet method when it comes to business-
process prediction. It can be observed that MLP is a strong
baseline and in many cases outperforms complex neural net-
works like the LSTM, GCN, and CNN. However, interestingly,
there are cases where the MLP performs comparably poor,
such as predicting the activity type in the BPI2 (W) dataset.
There have been other works which report similar behaviour
of an MLP baseline for classification tasks [11, 10, 17]. Thus,
interesting future work is to understand why MLPs perform
well on certain datasets, outperforming strong models, while
their performance is low for other datasets. Also, it would
be interesting to look into other variations in representing the
feature vector.

VII. CONCLUSIONS

Our experiments show that MLP is a strong baseline for
the task of event prediction and time prediction in business
processes. However, overall the MLP is not a clear best per-
forming model. Furthermore, the detailed analyses at different
quartiles based on the number of events and quarters based on
unit length time show that automated process-prediction results
vary at different stages of a business process. Hence, care must
be taken while evaluating and applying business-process pre-
diction models. The source code for this work is available at:
https://github.com/ishwarvenugopal/GCN-ProcessPrediction
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