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Abstract
The computer vision community has extensively researched the area of human motion analysis, which primarily focuses on 
pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring 
of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively 
evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation 
that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research 
in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this 
area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilita-
tion and assessment research which are further divided into sub-categories to capture novelties of each research. The review 
discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically 
assessing those abnormalities. Finally, suggestions on the future direction of research are offered.

Keywords Computer vision · Stroke · Physical rehabilitation · Kinect · Patient monitoring · Patient assessment

1 Introduction

Computer vision (CV)-based human motion modelling 
and analysis has been extensively researched by the com-
munity. But, most of the research can be categorised into 
pose estimation [160], human-object interaction [63, 98], 
activity/gesture recognition [31, 65, 113] or human-human 
interaction [53]. However, comparative analysis of human 
motion has received relatively less attention from the com-
munity. Comparative analysis of human motion is necessary 
for application areas like automated rehabilitation and/or 
assessment of stroke, Spinal Cord Injury (SCI), Parkinson’s 
Disease (PD) or patients with other physical impairments. 

Patients recovering from such impairments undergo exten-
sive physical rehabilitation and are assessed by Clinicians 
(physicians, physiotherapists or occupational therapists) 
that require patients to spend time with their carer(s). The 
process is expensive, labour-intensive, time-consuming and 
subject to human error. Statistics show that informal care for 
rehabilitation is the reason behind 27% of the whole treat-
ment cost. In the case of stroke patients, this amounted to 
around 2.42 billion pounds a year in the UK in 2016 [130]. 
Moreover, such assessments may suffer from inaccuracies 
as visual progress reporting scheme is prone to inconsist-
ent perception. Inaccuracies may also arise from the sub-
jectivity of these behavioral and clinical assessments [96]. 
In addition, integration of assessment based on kinematic 
parameters can be more robust and accurate as compared 
to visual assessment by clinicians alone [17]. Body-worn 
sensors or marker-based systems are expensive and can be 
very intrusive to a patient’s day to day activities. Marker-
less vision-based human motion modelling and subsequent 
comparison has the potential to provide home-based, inex-
pensive and unobtrusive monitoring. It also has potential 
applications in sports including, but not limited to, diving 
and figure skating.
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1.1  Scope of this review

This review includes relevant articles from the  last 20 
years that is representative of research in the domain of 
vision-based physical rehabilitation and assessment. We 
have focused on articles where the data captured using CV 
methods has been used for comparative analysis i.e., where 
intelligent processing is involved. The article also includes 
articles on virtual rehabilitation and serious games involving 
vision-based sensors. In virtual rehabilitation although the 
role of CV is largely limited to tracking, we have focused 
on articles having a secondary ‘learning’ objective. Activity 
recognition methods specific to rehabilitation exercises have 
been also included. Research not set in a clinical scenario 
but aimed towards assessment of physical impairments have 
been also covered. Existing research suggest that accurate 
body joint position estimation is vital for vision-based reha-
bilitation and assessment. However, human pose estima-
tion has been extensively researched and covered in several 
surveys and reviews [118, 160]. Similarly, human activity 
recognition also has been widely explored by the CV com-
munity and covered in several surveys [65, 113]. Thus, 
this review does not aim to cover joint position estimation 
or human activity recognition methods. Also, it does not 
include inertial or other non-vision sensor-based research.

2  Domain characteristics

There are many aspects to a vision-based research includ-
ing but not limited to raw data, feature extraction, feature 
representation, feature comparison, statistical and stochastic 
modelling (DL). However, the general flow of a research 
in the domain of vision-based rehabilitation and monitor-
ing can be broadly illustrated by the Fig. 1. The illustra-
tion highlights important characteristics of this domain. It 
includes, a vision-based sensor such as monocular RGB or 
depth camera for sensing the data. A low-level feature such 
as human joint positions. A feature encoding and representa-
tion method such as group of joint positions or combination 
of human kinematic parameters. Then, the encoded features 
are compared through simple graphical and statistical tech-
niques or through intelligent algorithms. Finally, assessment 

is done in the form of kinematic parameter comparisons, 
pose recognition, automated clinical scoring, impairment 
classification and others. Rehabilitation systems usually have 
an exercise program and provide feedback. These character-
istics can be broadly described in three major parts: primary 
data, feature extraction and representation, and feature com-
parison. For application of CV to rehabilitation and assess-
ment of physically impaired persons, we focus on the above 
mentioned aspects. The domain characteristics w.r.t these 
aspects are discussed next.

2.1  Physical impairment data

In many other vision-based human motion modelling appli-
cations including, but not limited to, human pose estima-
tion and activity recognition large-scale datasets are publicly 
available. Thus, collecting data is often outside the scope 
of research. But, for research in the physical impairment 
domain, authors have often collected their own data. Human 
movements are multidimensional and so are its abnormali-
ties. Musculo-skeletal impairments are exhibited differently 
in different patients over a period of time. A multitude of 
factors such as the impairment involved, extent of injury, 
area affected, physiological characteristics and care provided 
lead to hugely varying manifestation of impairments across 
patients. This is in addition to the wide range of motion 
capabilities of human beings. Clinicians have specific tests 
and exercises designed for rehabilitation and assessment of 
different types of motor abnormalities. Therefore, research-
ers are also required to run specific experiment to capture 
data for the assessment of specific musculo-skeletal impair-
ments. Thus, most authors have captured data catering to 
specific situations corresponding to their objective. Due to 
difficulty in accessing patients, ethical issues and other such 
issues, data is difficult to acquire and the datasets are often 
small. Researchers have used alternative strategies such as 
healthy persons acting like patients, use of noise to create 
varied data and others. In this domain, there are a very few 
publicly available datasets (Table 7) and even these are very 
small when compared to datasets available for other CV 
applications areas (e.g., image recognition, human activity 
recognition). In this article, we highlight the target abnor-
mality, area of body affected and the corresponding data 
collected for each article reviewed.

Fig. 1  A very high level illus-
tration of general logical flow 
for a vision based physically 
impaired patient assessment 
system
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2.2  Feature extraction and representation

The ultimate goal of musculo-skeletal patient monitoring is 
to provide an automated assessment. To assess the progress 
in physical rehabilitation in the case of physically impaired 
persons, clinicians rely on physical characteristics such as 
extent of elbow flexion, shoulder abduction, speed of motion 
and others. To determine such characteristics researchers 
have almost exclusively relied on estimation of human body 
joint positions as primary low-level features. For automated 
assessment, it is often required to compare a patient’s execu-
tion of Activities of Daily Living (ADL) or rehabilitation 
exercises with a regular healthy execution. Here also, the 
objective is to compare sequence of joint positions. For nor-
mal activity recognition, researchers use image-based fea-
tures including VLAD [58], Bag of Visual Words (BoVW) 
[109], Dense trajectories [148] and others. These features 
incorporate valuable information such as context, optical 
flow and so on, which are not available when only joint posi-
tions are used as low-level features. So far, researchers have 
mostly used Kinect [161] for obtaining 3D joint positions 
which has its limitations as explained in [152]. Deep Convo-
lutional Neural Networks (DCNN) have been very success-
ful in 2D human pose estimation [20, 50] and more recently, 
these networks are used for 3D pose estimation with much 
higher accuracy [107, 157]. But research in this domain is 
yet to fully explore the DCNN-based pose estimation.

Various kinematic features such as joint angle trajectory, 
relative joint position, speed and acceleration are used for 
establishing the clinical condition of patients. Thus, joint 
position estimations have been encoded in various differ-
ent forms for feature representation. Such encoding often 
comprises of simple human body kinematic features such as 
relative angles, velocities, body centric coordinates and oth-
ers [127, 128]. This is useful when a specific type of impair-
ment is in consideration. For example, for discriminating 
pathological gait, knee angle, step distance and other such 
parameters are considered. Another approach is to quantify 
the difference between patient activity and a perfect template 
consisting of regular healthy activity. For this, researchers 
have used statistical representations such as Hidden Markov 
Model (HMM) [138] or Dynamic Time Warping (DTW) 
[11, 121]. The main aim of feature representation is to select 
and encode joint positions in a manner that improves the dis-
criminatory power of comparative algorithms with regards 
to the given clinical condition.

2.3  Feature comparison

One of the major goals of research in vision-based physical 
rehabilitation and monitoring is to provide an automated 
clinical assessment of a musculo-skeletal patient’s physi-
cal condition. For many CV applications such as object 

detection or activity recognition the objective is well-defined 
(e.g., classification). However, for assessment of patients the 
goal varies widely and often depends on the clinical require-
ments. The requirements vary from statistical analysis to 
methods for automatically establishing clinical scores such 
as Fugl-Meyer Assessment (FMA) [59], Unified PD Rating 
Scale (UPDRS) [103] and others. For some cases simple 
presentation and comparison of joint angle trajectories is 
enough, but for other cases such as automated clinical scor-
ing, advanced comparison algorithms are often required. It 
needs to be emphasized that researchers have mostly relied 
only on joint positions as low-level features. Thus, rich 
vision-based feature representations (e.g., BoVW, MBH) 
that can provide contextual information are not available. 
Therefore, it is essential to develop techniques for compara-
tive analysis of features based only on joint positions. Such 
comparisons can be done in many ways including, but not 
limited to simple graphical analysis, statistical analysis, 
sequence comparison, classification and regression. Meth-
ods such as graphical comparison are often simple and may 
not require large datasets. On the other hand, establishing 
automated clinical scoring requires advanced algorithms and 
large datasets to work reliably. As explained earlier, obtain-
ing large-scale dataset for each type of abnormal motion 
is difficult. Therefore, the main challenge in this area is to 
maximize the applicability of advanced algorithms with 
limited data.

3  Surveys and taxonomies

3.1  Surveys

Table 1 lists surveys and reviews aimed towards vision-
based physical rehabilitation and assessment. Zhou et al. 
[164] surveyed human motion tracking for rehabilitation. It 
focuses mainly on various vision and sensor based tracking 
systems. It further discusses home-based and robot-aided 
rehabilitation systems. The article does not describe algo-
rithms used for comparative evaluation or abnormal activity 
detection.

Webster and Celik [152] reviewed Kinect-based research 
and focused on formulation of rehabilitation exercises for 
monitoring. The authors discuss elderly care and stroke 
rehabilitation methods. Within elderly care, fall detection, 
fall risk reduction and Kinect-based gaming are discussed. 
Articles under stroke rehabilitation are categorised into eval-
uation of Kinect, rehabilitation methods and Kinect gam-
ing. Similarly, Da Gama et al. [40] also reviewed Kinect 
based research. The focus of this review is on formulation 
of rehabilitation experiments, subsequent monitoring of pro-
gress and analysis of various comparison techniques. Most 
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of these techniques rely on basic methods including aver-
age angle flexion, Euclidean distance, mean error, correla-
tion coefficient and others. The authors present taxonomy 
in terms of ‘Evaluative’, ‘Applicability’, ‘Validation’ and 
‘Improvement’ categories. The taxonomy is based on a clini-
cal perspective. Both Webster et al. [152] and Da Gama 
et al. [40] review articles from a clinical perspective where 
clinical progress made by patients is a major focus. Sath-
yanarayana et al. [119] reviewed articles from a CV perspec-
tive and highlighted vision algorithms. Their taxonomy is 
based on clinical application and articles include areas such 
as ADL recognition or fall detection which does not always 
include abnormal or impaired physical motion. Moreover, 
the review does not include articles after 2014.

In the current study, existing research has been reviewed 
from a CV application perspective. We highlight the mus-
culo-skeletal impairment, visual sensor, feature extraction 
and comparison algorithms for each reviewed article. The 
discussion focuses on algorithms used for discriminating 
and assessing physically impaired activity in comparison to 
regular healthy activity.

3.2  Taxonomy

In this article we develop our own taxonomy, which is neces-
sitated due to the lack of reviews in this area from a CV 
application perspective. The review both categorises and 
tabulates the articles for highlighting different aspects. As 
discussed in Sect. 2, it focuses on the following three char-
acteristics: (1) data collection, (2) feature extraction and rep-
resentation, and (3) feature comparison. Thus, the articles 
reviewed are tabulated to address these aspects. The columns 
headed Target and Dataset highlight the kind of impair-
ment, area of body affected and briefly summarises the data 
collected. The columns headed Sensor/Data and Feature 
summarises the types of sensor data, feature extracted from 
the sensor and feature representation or encoding algorithm. 
We have also listed any non-vision hardware used along 
with vision sensors. The last column headed Objective 
summarises the comparison method and the objective from 

the application perspective. Most of the reviews on other 
areas of vision-based research have focused on categorising 
the discussion in terms of algorithms or techniques used. 
Articles reviewed often have common goals such as activity 
recognition, pose estimation and they also use common data-
sets. Thus a readily available and fair comparison between 
the methods used can be drawn. But, due to the wide ranging 
goal of research in the vision-based rehabilitation domain, 
authors have used very different data, features and compari-
son methods. Thus, it is very difficult to categorise each 
research in terms of methods or algorithms used and com-
pare them. Instead, we propose our taxonomy based on end 
user application. However, discussions on each application 
type have been further broken in paragraphs based on simi-
larity of methods used. The Author column in each Table 
also indicates the sub-category an article is placed into. 
Primarily applications are placed into two major categories, 
rehabilitation and assessment. These can be further sub-cat-
egorised as listed below: 

1. Rehabilitation: Automated rehabilitation system 

(a) Virtual rehabilitation
(b) Direct rehabilitation

2. Assessment: Point in time assessment 

(a) Comparison
(b) Categorisation
(c) Scoring

3.2.1  Rehabilitation

In rehabilitation systems, the primary goal is to provide an 
automated home or in clinic system for patients to undergo 
physical therapy, gesture therapy or other rehabilitation exer-
cises. Such a system guides patients to perform their reha-
bilitation tasks. Rehabilitation may be fully automated and/
or clinician mediated. Research in this category normally 
aims to improve the patient’s physical condition. Most of 

Table 1  Existing reviews and surveys on vision-based physical rehabilitation and assessment research

Author References Journal Comments

Zhou et al. 2004 [164] 184 Biomedical Signal Processing and Control Highlights tracking methods
Webster et al. 2014 [152] 96 Journal of Neuroengineering and Rehabilitation Focused on Kinect-based research, elderly 

care and stroke rehabilitation
Hondori et al. 2014 [96] 105 Journal of Medical Engineering Focuses on Kinect-based research and high-

lights impact of Kinect
Da Gama et al. 2015 [40] 66 Games for health journal Focuses on Kinect-based research
Sathyanarayana et al. 2018 [119] 192 Journal of Ambient Intelligence and Humanized 

Computing
Patient monitoring and algorithms

Ahad et al. 2019 [2] 79 CVPR workshop Action understanding for assistive healthcare
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the research in this category is of the type Virtual Reha-
bilitation. In virtual rehabilitation, a patient’s performance 
in a virtual world is assessed rather than directly assessing 
a patient’s physical performance. This includes an avatar 
performing tasks in a virtual world and the use of serious 
games for rehabilitation. Here, subjects are required to per-
form activities in a virtual world through real world move-
ments. In Direct Rehabilitation systems, users are guided 
by a web-based interface to perform rehabilitation exercises, 
while their movements are directly tracked through vision-
based sensor. In this case, physical performance of patient 
is measured instead of their avatar’s performance or their 
ability to complete tasks in a virtual world. Patient assess-
ment may be inbuilt or may require clinicians.

3.2.2  Assessment

In assessment applications, the goal is to provide a point in 
time assessment of a patient’s quality of motion linked to 
one or more body parts. There is no rehabilitation system 
involved. Assessment may be carried out in a clinical or 
non-clinical setting. Assessment application can be further 
categorised into three types and based on the way a user 
would receive the end output. The first type is Compari-
son where a patient’s data (e.g., kinematic parameters) are 
extracted for comparison but there is no decisive automated 
scoring system available. In such applications, there may be 
statistical comparison like Analysis of Variance (ANOVA) 
or simple graphical comparison of kinematics represented by 
trajectories of an ideal vs a patient’s joint angle or position 
in time. Second, we have Categorisation type applications, 
which are more decisive, where the main goal is classifica-
tion. Movements may be classified as correct-incorrect or 
may be classified into a few types of abnormalities. This 
includes both gesture/posture and activity recognition. In the 
third Scoring type applications, a decisive score is attached 
to patient movements to assess their quality of motion. This 
can be clinical scoring such as FMA [59] or author-pro-
posed scoring. The score may be for assessing the quality of 
movement or quantify the differences from an ideal motion. 
Next, we review various articles published in the domain of 
monitoring and rehabilitation of musculo-skeletal patients 
according to the taxonomy developed. We present all the 
articles in tabular format and discuss more relevant articles 
in detail.

4  Virtual rehabilitation

The objective in virtual reality and serious games-based 
rehabilitation application is to provide a set of virtual tasks 
that will require the user to perform therapeutic gestures, 

rehabilitative or cognitive exercises (Table 2). The move-
ment of the user in the real world is tracked through devices 
like Kinect, or other sensors that can accurately reproduce 
a user’s movement in the virtual world, often through an 
avatar. In virtual rehabilitation systems the role of CV is 
largely limited to tracking. In this survey, we have focused 
on works with secondary objectives related to CV such as 
gesture, pose recognition or simple graphical comparison of 
trajectories of the concerned body joint angle. The discus-
sion is split into non-skeleton, skeleton-based and automated 
assessment systems.

4.1  Non‑skeleton based

Virtual rehabilitation existed before skeleton tracking 
became feasible. Early research in this area used indirect 
methods for tracking human limb movements such as colour 
detection, object detection and others. In 2008, Sucar et al. 
[132] used skin colour to track hands for gesture therapy. 
Colour markers-based skeleton tracking has been used as 
a cheap alternative to inertial sensor tracking. Sucar et al. 
[133], developed rehabilitation system for hand movement 
of stroke patients. A total of 42 patients went through the 
rehabilitation program. A green ball attached to a hand grip-
per is used for tracking as shown in Fig. 2. Participants are 
required to move their arm through a simulated environment. 
Stroke patients often compensate reduced hand movement 
through the trunk. This trunk compensation is observed 
through face tracking. Face detection and tracking is imple-
mented using Haar Cascade classifiers [147]. Authors have 
also attempted to use their own skeleton tracking algorithms 
for rehabilitation in virtual reality [101].

Non-skeleton based methods are inherently limited in 
ability due to lack of joint positions. Mostly, such methods 
are able to track single body-part such as an arm [132]. This 
can be sometimes compensated by using vision-based fea-
ture extraction methods such as body tracking from silhou-
ette [83, 100]. In Natarajan et al. [100], depth information 
has been used in a RANSAC-based plane fitting method 
to discriminate the subject plane from background. This, 
combined with morphological operations enabled the users 
to select the human silhouette. In virtual rehabilitation, since 
most of the assessment is done to achieve the objective of 
completing the game, there is little scope for further statis-
tical or other algorithmic comparison. However, to tackle 
complex decision processes, algorithms such as Partially 
Observable Markov’s Decision Process (POMDP) can be 
applied as in Aviles et al. [7].

4.2  Skeleton‑based

With the introduction of Microsoft Kinect in 2010, skel-
eton tracking became feasible and readily accessible. Chang 
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et al. [25] used Kinect to measure joint position and angle 
trajectories in their proposed game for shoulder rehabilita-
tion. Each participant was required to perform 6 different 
shoulder exercises which were quantified as correct or wrong 
by OpenNI middleware. The authors also compared Kinect 
skeletal data with OptiTrack for establishing the ground 
truth. Fern et al. [52] used several common exercises of hip, 
knees and shoulders in the form of a serious game called 
rehabtimals. Joint rotation data over time was used to cal-
culate kinematic metrics such as Range of Motion (ROM), 
Mean Error (ME) and Mean Error Relative (MER) in ROM. 
Da Gama et al. [39] used joint angles calculated from Kinect 
skeleton data to detect correct exercise posture. A total of 3 
physiotherapists, 4 adults and 3 elderly subjects were used 
to evaluate the prototype. The system was able to recognize 
the correct movements 100% of the time under controlled 
conditions.

Here, most authors have used their own small datasets and 
thus, it is difficult to ascertain their generalisability. Owing 
to availability of skeleton positions, kinematic parameters 
have been used for performing statistical comparisons like 
ANOVA analysis. Small datasets are not sufficient for the 
application of Deep Learning (DL) algorithms but other 
algorithms such as HMM, DTW could have been used for 
comparing temporal sequences. Joint angle comparison is 
good for posture recognition. However, time sequence com-
parison algorithms are essential for comparing joint angle 
and/or joint position trajectories.

4.3  Automated assessment

Some virtual rehabilitation systems also have an integrated 
automated assessment. Adams et al. [1] proposed to assess 
upper limb motor function through practice of ADL in vir-
tual reality. Motor function metrics, such as duration, nor-
malized speed, Movement Arrest Period Ratio (MAPR) 
obtained from skeletal tracking via Kinect were used to 
calculate Wolf Motor Function Test (WMFT) [154]. This 
score was co-related to the proposed Virtual Occupational 
Therapy Assistant (VOTA) metrics and it was found that 
the proposed metrics can be used to assess a patient’s ability 
to perform ADL. With their affected arm, 14 hemiparetic 
stroke patients were asked to participate in a virtual meal 
preparation activity. The results indicated satisfactory cor-
relation between proposed VOTA metrics and the standard 
WMFT metrics. VRehab [8] used Long Short-Term Mem-
ory (LSTM) networks for estimating the degree of patient 
impairment. For evaluation, 20 healthy subjects were filmed 
using Kinect and Leap Motion Controller (LMC). Kinect 
was used to provide joint positions, angles and speeds as fea-
tures while LMC provided pinch strength, average speed of 
fingertips. Three different LSTM networks were trained for 
regressing impairment scores for three different exercises. 
The trial included five patients who were scored by the sys-
tem and 5 physiotherapists. The proposed system provided 
score was shown to be very close to the average score by 
physiotherapists.

Fig. 2  An example of virtual 
rehabilitation where perfor-
mance in the virtual world is 
considered for assessment. 
Here, the hand is tracked 
indirectly through the green ball 
[133]
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5  Direct rehabilitation systems

In direct rehabilitation systems, there is usually an exercise 
regimen prescribed for patients and the purpose is to demon-
strate their functional improvement. Patients may be guided 
through a web-based interface for performing tasks similar 
to virtual rehabilitation type applications. However, unlike 
virtual rehabilitation, a subject’s physical performance in the 
physical world is considered for further assessment or feed-
back. The discussion can be split into two parts: First, where 
CV sensor is exclusively used to obtain primary data and 
second, where non-vision systems such as assistive robots 
are used (Table 3).

5.1  Pure vision‑based

Ghali et al. [57] used object detection techniques for track-
ing hand movement. A camera was placed above a kitchen 
platform and movement and orientation of objects was used 
as a measure to track the hand movement. Sequence of hand 
movement is used to determine whether an activity such 
as ‘making coffee’ is successfully completed. Kinect does 
not track finger joint positions. Zariffa et al. [159] used Hu 
invariant and contour signature extracted from background 
subtraction as features for classification of hand grip varia-
tions. Two cameras, one for top view and one for side view, 
were used to film 10 subjects against a standard background. 
Several types of grips fundamental to ADL such as lateral 
key grip were filmed. KNN was employed for classification.

The Kinect SDK provides advanced information such as 
kinematics and gesture recognition. Authors have used this 
to count the number of times correct posture was attained as 
a measure of rehabilitation progress [26, 27, 67]. Lin et al. 
[89] used 10 standing and 18 seated Tai-Chi regimen as 
rehabilitation exercises. Rehabilitation poses of two patients 
were compared to a perfect execution of Tai-Chi, for meas-
uring progress over time. Patients were rehabilitated and 
monitored in two phases. First, with physiotherapists and 
then with video and Kinect. Posture attained by patients 
were compared through ME with target posture and subse-
quently graded. Feedback was provided to the user as shown 
in Fig. 3. Each time the system’s assessment was compared 
to that of a physiotherapist for validation.

Su et al. [131] proposed a fully independent Kinect Ena-
bled Home Rehabilitation (KEHR) system. The system 
provided four functions, (1) rehabilitation management 
software system, (2) reference exercises, (3) recording exer-
cises performed at home using Kinect and (4) evaluation 
of performance. Performance was compared through DTW 
and Fuzzy Logic. Four different subjects were asked to per-
form different types of shoulder rehabilitation exercises in a 

controlled environment. Assessment was provided in form 
of messages like “right hand: good”, “left hand: bad”, “too 
slow” etc. Physicians and the KEHR system agreed 80% of 
the time.

5.2  Multi‑modal

In multi-modal applications, CV sensors (e.g, Kinect) are 
combined with other assistive technologies including, but 
not limited to, assistive robots and electrical stimulation. 
Normally, the patients using the rehabilitation systems are 
guided via visual animation or clinicians. Galeano [56] 
used Functional Electro-Stimulation (FES) for assistance 
while providing visual feedback through posturography 
on skeletal data. Frisoli et al. [55] introduced a gaze inde-
pendent, wearable Brain-Computer Interface (BCI) driven 
robotic exo-skeleton for upper limb rehabilitation in stroke 
patients. The first objective was to select real world objects 
by estimating eye-gaze through a vision-based eye track-
ing system. Speeded Up Robust Features (SURF) [14] was 
used for object matching and Lucas-Kanade tracking algo-
rithm [91] was applied to track objects using depth data 
from Kinect. The second objective was to assist patient 
arm movement for moving real world objects. To achieve 
this, a signal from the BCI was fed to a Support Vector 
Machines (SVM) classifier to ascertain if the  subject 
intended to move his or her arm. Then, the signal was 
used to actuate robotic-arm. Devanne et al. [42] proposed 
a humanoid robot guidance system for rehabilitation from 
lower back pain. A Gaussian Process Based Latent Vari-
able Model (GP-LVM) has been used to model exercise 
movements from a clinician. It then models the clinician’s 
activity according to patient morphology to guide the reha-
bilitating patient.

In [26, 27, 67], the goal is to count correct postures by 
calculating the joint angles. This fails to tell us how close 
the patient is to getting the posture correct. A slightly bet-
ter way is to compare joint angle trajectories as in Excell 
et al. [49] or grading of error through ME as done by Lin 
et al. [88]. To judge if an exercise is executed correctly 
it is also essential to qualify the starting posture as cor-
rect [15], which is not the case in approaches mentioned 
above. These approaches are mostly primitive and lack 
analysis of the whole temporal sequence. Later approaches 
have taken advantage of time-sequence comparison algo-
rithms such as DTW or variants of it like Open-ended 
DTW (OE-DTW) [121]. These have been combined with 
various grading methods for better understanding of 
a patient’s state. Clinicians mostly use their experience 
to judge a patient’s state without taking into account kin-
ematic parameters. Therefore, it may be beneficial to use 
kinematic parameters as training data and use clinician’s 
score as labels to build a model that can present a true 
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representative of clinicians. In automated rehabilitation, it 
is not always feasible to be guided via a screen interface. 
In such scenarios, other assistive technologies like BCI 
and human motion imitating robots are very useful [51]. 
For assistive robots, it is important to work according to a 
patient’s morphology as demonstrated by Devanne et al. 
[42]. The authors also show us very good implementation 
of the latent model needed to transfer low dimensional 
latent space to high dimensional robot space through the 
probabilistic model GP-LVM.

6  Comparison

Table 4 summarises articles presenting comparative analy-
sis of kinematic data obtained from vision sensors. In such 
systems, there is no rehabilitation program designed for 
patients. These articles are more important with regards 
to CV rather than clinical objectives. Authors have drawn 
comparison ranging from simple graphical visualisation, 
statistical techniques to more advanced Machine Learning 
(ML) algorithms. This discussion is split into three parts. 
First part discusses articles where kinematic data is directly 
used for comparison. Graphical and statistical comparison 
highlight differences between patient and healthy subjects’ 
parameters. Second, applications where ML algorithms has 
been used for modelling kinematic data. The third part dis-
cusses use of DL algorithms for comparative analysis of 
patient motion.

6.1  Kinematics‑based modelling

In this type of application, research directly use kinematic 
data for comparison. Before the  introduction of Kinect, 
authors have used other computer vision algorithms to 
extract skeleton. Leu et al. [83] used two cameras for filming 
20 subjects against a standard background. Human silhouette 
was extracted through background subtraction and image 
segmentation. This data was compared to a standard stick 

figure model for extracting skeleton. For accuracy, the algo-
rithm was tested against standard sensor-based marker. Sim-
ple graphical comparison showed visible difference between 
knee angle trajectories of regular and irregular gait. Natara-
jan et al. [100] also used their own tracking algorithm while 
introducing Reha@Home. The authors argued that detection 
on lower extremity joints in Kinect is not accurate enough. 
Reha@Home used depth information in combination with 
morphological operations to extract human silhouette. Four 
different subjects with varying conditions such as multiple 
sclerosis, were tested in a hospital setting both before and 
after treatment. The parameters for gait analysis are hip 
angle, knee angle, left and right foot step length and stride 
length. Performance of the system was evaluated through 
comparison with data from electrogoniometer. Graphical 
trajectories of gait parameters showed visible difference 
between the healthy subjects and patients.

The Toronto Rehab Stroke Pose Dataset (TRSP) [44] pre-
sents 3D joint positions consisting of upper arm movements 
for both stroke patients and healthy subjects. Kinect was 
used for tracking joint positions of 10 healthy subjects and 
10 stroke survivors having restricted arm movements. Two 
experts were recruited to annotate the dataset. The dataset 
was labelled into 3 different compensatory movements and 
one normal movement. Area Under Curve (AUC) values 
obtained from joint angle trajectory showed substantial 
measurable difference between regular healthy and physi-
cally impaired patients’ examples.

Graphical and/or statistical comparison has also been 
used in situations where patients lack any specific impair-
ment. Spasojevic et al. [128] used four different body move-
ments and measurements, for discriminating PD patients 
from healthy subjects. Gait, Shoulder Abduction Adduction 
(SAA), Shoulder Flexion Extension (SFE) and Hand Bound-
ary Movements (HBM) were considered for body move-
ments. Speed, rigidity, ROM and symmetry ratio were used 
as measurement criteria. These were combined to create a 
Movement Performance Indicator (MPI) vector of size 9. 
For example, only speed and rigidity was considered for gait 
movement. Experiments were conducted on 12 PD patients 

Fig. 3  An instance of a direct 
rehabilitation systems where a 
patient’s performance is directly 
assessed through joint posi-
tion tracking. In [89], Tai-Chi 
exercise pose is compared to a 
standard pose and feedback is 
provided
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of stage 1, 2 and 3. Subjects were filmed from the front at 
a distance of 1.5 m. Ground truth was provided by physi-
otherapist. Graphical and statistical comparison based on 
kinematic parameters showed visible differences between 
patients and healthy subjects. Also, four ML classifiers 
SVM, K-Nearest Neighbour (KNN) and Multi-Layer Per-
cepteron (MLP) were used for classification, among which 
SVM and MLP performed better. In 2017, Spasojevic et al. 
[127] added 16 more MPIs to the system described above. 
Data from finger tracking through sensory glove was used 
for 15 MPIs representing finger flexion, extension, tap-
ping and hand rotation. For gait, another MPI was added 
making a vector of total 25 MPIs. Graphical comparison 
as illustrated in Fig. 4 showed visible differences between 
PD and healthy subjects. SVM, MLP and KNN were used 
to classify PD patient stages and healthy subjects. In this 
article, although ML algorithms have been used for classifi-
cation, the research presents elaborate statistical comparison 
directly based on kinematic parameters.

6.2  Statistical modelling

Instead of directly comparing kinematic data, authors have 
also used ML algorithms for modelling human movement, 
which is subsequently compared statistically or graphically. 
Tao et al. [138] used HMM modelling, for online quality of 
motion assessment of gait on stairs, walking on flat surface, 
sitting and standing. For discriminating skeleton sequences 
using HMM, entire sequences has to be fed to a model. This 
was not possible in the case of online assessment and thus, 
a variable window approach [99] was adapted to address the 
problem. Four different HMM models were used to extract 
features from skeleton data to classify abnormalities using 
SVM.

Wang et al. [150] devised a series of exercises for mus-
culo-skeletal patients targeting PD patients. Activities 
include walking, walking with counting and sit to stand. 
Again, skeleton information was obtained through Kinect 
placed in front of the patient and on top of the table. Step 
size, postural swing level, arm swing level, stepping time 
were used as criteria to asses a patient’s mobility level. The 
paper proposed a Temporal Alignment Spatial Summarisa-
tion (TASS) algorithm to isolate repetitive skeletal move-
ments from video stream through Skeletal Action Unit. The 
SAU extracted clinically important kinematic parameters 
like arm swing level and stepping time for evaluation. This 
method was evaluated against the standard MSR-Action3D 
[86] action recognition dataset. For clinical validation, a 
single PD patient and a healthy subject were asked to per-
form walking and sit-to-stand experiment. Data from both 
the experiments showed difference between the PD patient 
and the healthy subject.K
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Antunes et al. [6] framed the assessment problem as feed-
back to be provided to a skeleton sequence to better match a 
standard execution sequence template. The system has been 
evaluated on three publicly available datasets. The first, 
ModifyAction used pairs of actions from UTKinect [156] 
and MSR-Action3D [86] dataset. The second dataset was 
SPHERE-Walking2015 [104] which contained normal walk-
ing and simulated stroke patient walking. The third dataset, 
called Weight&Balance was introduced in this paper and it 
presented simulated data of stroke affected arm mobility. 
Data normalization was used for spatial alignment and DTW 
was used for temporal alignment. The importance of this 
research resides in the feedback mechanism that was pro-
vided at each instant for better execution of human action.

Baptista et al. [11] also saw the problem as essentially 
finding the difference between two skeleton sequences. This 
allowed them to use the publicly available UTKinect [156] 
dataset to address the problem without specifically using 
patient or simulated patient data. The authors used Sub-
Sequence DTW (SS-DTW) [97] and TCD [33] algorithms 
to match user action to a specific template and provide feed-
back highlighting deviations from normal execution.

6.3  Introduction of stochastic methods

The area of vision-based rehabilitation and monitoring 
has not seen extensive application of DL methods. This is 
mainly due to a lack of large scale datasets needed to train 
DL networks. In 2015, Leightley et al. [82] presented the 
Kinect 3D Active (K3D) dataset which captured motions 
based on common clinical assessments used to determine 
altered patient movements. Fifty four subjects aged 18 to 81 
were asked to perform 13 clinical tests including balance, 
open and closed eyes, jump, chair stand and others. Owing to 
the diverse age related conditions the subjects’ movements 
varied widely for any given activity. Several algorithms were 
used for action classification out of which SVM and Artifi-
cial Neural Network (ANN) achieved the best accuracy. To 

assess clinical condition the activities were further analysed 
in terms of average time taken to complete an action.

In the absence of a large-scale publicly available data-
set, simulating or generating data has been also considered. 
Vakanski et al. [144] trained their Mixture Density Neu-
ral Network (MDNN) on the standard action recognition 
UTD-MHAD dataset [28], to model human movement for 
each action. Mean log-likelihoods of observed sequences 
were used as the performance metric for evaluating the con-
sistency of a subject’s performance. Then, random noise 
was imparted to generate deviations from standard action 
and these deviations were measured. The proposed model 
was programmed to be usable with skeleton data captured 
through Kinect.

The articles presented above propose exclusive assess-
ment type application and often do not include any reha-
bilitation method. They have used more robust approach for 
assessment in the sense that authors have compared more 
kinematic parameters, used more advanced statistical analy-
sis and have used bigger datasets. For example, in rehabili-
tation type applications, many authors have chosen simple 
joint angle or joint angle trajectory comparison [49, 67]. 
In general, authors have used better statistical comparison 
including Linear Discriminant Analysis (LDA) [127, 128], 
TCD [11], likelihood [104, 144], ANOVA [77]. In com-
parison type applications, we also see the implementation 
of more robust kinematic parameters such as 25 different 
MPIs in [127, 128], normalized sequences [64], temporally 
aligned sequences [6]. As a result, such applications are able 
to carry out more complex comparison including gait analy-
sis and compensatory movements, as opposed to simple ges-
ture or posture recognition of a single or few joints. We also 
observe the introduction of publicly available datasets which 
paves the way for competitive evaluation of the proposed 
models [11, 104, 138]. However, statistical comparison does 
not provide a decisive scoring or classification of a patient’s 
condition. The next two sections discuss applications that 
can classify or grade patient’s quality of motion.

Fig. 4  Graphical comparison of patients and healthy subjects through kinematic parameters and joint angle trajectories [127]



 B. Debnath et al.

1 3

7  Categorisation

In this section, we review articles where the primary goal of 
the research is to categorise a patient activity into discrete 
categories including, but not limited to, correct/incorrect 
posture and good/bad movement. In contrast to compara-
tive analysis, articles reviewed in this section are more deci-
sive in terms of providing patient assessment. Technically, 
most of the articles in this section have the goal of posture 
or action recognition where discrimination is done between 
improper and proper execution of activities. But, it also 
includes disease severity classifications, determination of 
a patient’s cognitive abilities and so on. The discussion is 
split into two parts: (1) hand-crafted or rule-based and (2) 
statistical algorithms based (Table 5).

7.1  Rule‑based

In some cases, final posture is important and simple hand-
crafted algorithms are sufficient for correct posture recog-
nition. Metcalf et al. [95] used depth frames for measuring 
hand (finger) kinematics. A Kinect device was placed 80 
cm above a table where subjects were filmed. Binary image 
of the palm was extracted from depth and RGB data. Palm 
contour was then fitted to a geometrical kinematic model 
to determine joint angles. Based on the sequence of joint 
key-points (finger tip, finger spaces), a grip classification 
algorithm was developed. Gonzalez-Ortega et al. [62] used 
computer vision for assessment of patients’ cognitive motor 
abilities. Here, the goal was to see whether a patient can 
understand verbal instructions and perform simple motor 
tasks. A group of 10 subjects was used to provide healthy 
reference while three subjects with frontal lobe injury and 
two with dementia were used for rehabilitation using the 
proposed system. The subjects were asked to perform 14 dif-
ferent type of movements such as “touch right eye with right 
hand” in a controlled environment. Facial expression was 
detected by combining skeleton data and depth image from 
Kinect with AdaBoost-based face detector. Eyes and nose 
were detected using HK classification [16], which is based 
on curvature obtained from depth image. In psycho-motor 
exercises, the final posture is important to judge whether 
the subject understood the instructions. The proximity of 
3D hand position to eyes, ear and nose helped in determin-
ing successful exercise execution. The result provided by 
the system was compared with physicians and the overall 
successful monitoring rate was 96.2%. Leightley et al. [80] 
used the K3D dataset [82] for automated human mobil-
ity analysis. K-means clustering was used to create clini-
cally relevant joint groups for each action. The joint groups 
containing relevant joint trajectories were classified for 

recognizing the action. Discrimination between well-per-
formed and poorly performed action was done on the basis 
of the standard deviation method proposed in Baumgartner 
et al. [13].

7.2  Statistical and stochastic algorithms‑based

Researchers have extensively used advanced Machine 
learning (ML) algorithms for categorisation type sys-
tems. Taati et al. [136] developed an interactive system 
where subjects interacted with robots for posture correc-
tion. Again, skeleton data was obtained from a Kinect 
device placed 90 cm behind, and 60 cm above, the subject. 
Seven healthy subjects were asked to simulate a series 
of compensated mobility movements. Such movements 
include shoulder hike, trunk rotation compensation, lean 
forward and slouch postures. For posture classification, 
a combined HMM and SVM-based algorithm was used. 
An active learning strategy, which used a combination of 
manual and automatic labelling, was employed to label 
the data for classification. The overall accuracy was 86%. 
Palma et al. [105] presented a method for detecting devia-
tions from normal movements using HMM and Multiple-
Dimension DTW (MD-DTW) [140]. The authors created 
a dataset of 10 different upper and lower limb movements 
such as hip abduction, elbow flexion and so on with 14 
healthy subjects. Then, a cohort of 10 subjects were asked 
to perform the same movements incorrectly with specified 
errors. For analysis, the activities were divided into two 
parts: (1) The limb moved away from the body and (2) the 
limb moved towards body. HMM was found to be more 
accurate for detecting error in movements when compared 
to MD-DTW.

In recent times, Generative Adversarial Networks 
(GANs) have been used to generate synthetic data includ-
ing, but not limited to, human faces and human poses. 
Li et al. [84] used the UI-PMRD dataset [145] to gener-
ate a synthetic dataset of incorrect human activities. Four 
different GANs models were trained, which included two 
Deep Convolutional GANs (DCGAN), a Wasserstein GAN 
and a Recurrent GAN. A 1D Convolutional Neural Net-
work (CNN) was trained as discriminator with the GANs 
and a soft-metric based on absolute differences was used 
for evaluating the performance of GANs. Modelling or 
replicating kinematic data through GAN is a major contri-
bution of this article, although it aims to classify physical 
movements.

In categorisation type applications, authors have used 
techniques ranging from very basic rule-based classifi-
cation to state-of-the-art GANs. Authors [62, 95], have 
used hand-crafted algorithms to classify a patient’s stages 
which are very specific conditions whereas in Leightley 
et al. [80], simple standard deviation was used to classify a 
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patient’s state. It is very difficult to ascertain the generalis-
ability of these applications in the abesence of comparison 
through publicly available datasets. Authors have exten-
sively used ML algorithms such as SVM in categorisation 
type applications [136, 163]. As primary data, authors 
have mostly used only skeleton data, with exception of 
Metcalf et al. [95], who have used depth data only. Some 
authors have relied on kinematic parameters as extracted 
features [70, 71, 81, 105]. However, others have introduced 
statistical techniques for feature extraction. For example, 
Junet al. [69] used PCA (Principal Component Analysis) 
reduced kinematics and Zhi et al. [163] used noise reduced 
kinematics. Then, these features have been used for clas-
sification through standard algorithms such as SVM, CNN 
and LSTM. Use of classification algorithms have enabled 
authors to grade a patient’s state rather than presenting a 
simple visual, graphical or statistical comparison.

8  Scoring

In this section, we review articles which aim to provide 
automated assessment of a patient’s state. This includes 
both clinical (e.g., FMA, UPDRS) and author proposed 
(non-clinical) scoring. For musculo-skeletal diseases, 
there are often a  multitude of factors that describe a 
patient’s state or condition. Simple movements such as 
hip abduction or individual exercises may be classified 
into correct or incorrect. But, to describe a patient’s state, 
clinicians often use standard scoring systems including 
FMA, UPDRS and others. Scoring may be discrete or con-
tinuous. In technical terms, authors have used both clas-
sification and regression for scoring. This discussion can 
be split into two parts: (1) author proposed and (2) clinical 
scoring (Table 6).

8.1  Author proposed scoring

PReSenS, developed by Cuellar et al. [38] is a rehabilita-
tion exercise systems where physiotherapists can remotely 
upload exercise templates to be followed by patients at 
home. A complete exercise program was developed con-
sisting of two major types of exercises, posture holding 
and motion. Posture was compared to a single exercise 
template whereas motion was compared by the time series 
matching algorithm DTW. Features such as joint angle and 
joint rotation was used with DTW for action comparison. 
For experiment, data from 10 healthy participants were 
collected. They were asked to do diagnostic exercises, 
such as arms up, arm extension and flexion, leg-up, fla-
menco and cross arm. These exercises are widely used in 

physical therapy . All motion signals were summarised 
using Piece-Wise Aggregation Approximation for scoring 
the performance.

Khan et al. [73] used a rapid finger tapping test for clini-
cal evaluation of PD patients. A total of 387 video footage 
were used from patients with advanced PD. Severity was 
rated by physiotherapist on a scale of 0 to 3. A group of 84 
healthy subjects were clinically evaluated in the same way. 
Subjects were asked to tap their hands besides their face 
and above their shoulders. For assessment, first the region 
of interest was selected as rectangles beside the face. Face 
detection was achieved by Haar Cascade classifier [147] 
and motion-template gradient algorithm [18] was used to 
detect hand movements. Kinematic parameters for calcu-
lating UPDRS features were extracted and classified using 
SVM.

A major limitation of many assessment systems is that 
they require users to sit in front of a camera and perform 
exercises. It may be difficult for musculo-skeletal patients 
to operate the system and perform exercises in a highly 
constrained setting. Compliance may be poor in such cases 
for actual patients. Venugopalan et al. [146] proposed a 
rehabilitation system for traumatic brain injury where 
patients can be monitored in real time. In the experiments, 
two Kinect cameras and a near infra-red motion sensor 
were used to film patients at home. Real-time patient data 
from the system was compared with data from observation 
in clinical setting to compute similarity scores. The score 
was calculated through template matching based on DTW. 
For evaluation, 16 videos were captured which covered six 
different movements that were performed by four different 
volunteers.

Liao et al. [87] proposed a log-likelihood based perfor-
mance metric to train their DL framework for assessment 
of rehabilitation exercises. Low level skeleton data was 
represented through a deep Auto Encoder (AE) network to 
initially train a Gaussian mixture model for calculating log-
likelihood. Using the UI-PRMD dataset [145], the authors 
then trained and compared the performances of CNN, RNN 
and Hierarchical Neural Network (HNN) [45], where the 
log-likelihood based performance metric was used as a label 
to regress the network for predicting deviations from normal 
actions (Fig. 5).

8.2  Clinical scoring

The ultimate goal of any assessment system is to assess the 
state of a patient in terms of clinical scoring. This is a very 
difficult task considering the multitude of factors involved 
in assessment. Eichler et al. [47] proposed a two Kinect 
camera based system for automated FMA. The two cameras 
were placed at a 45 degree angle with respect to the sub-
ject. Temporal synchronization was done through a network 
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time protocol server. From Kinect skeleton data, kinematic 
features relevant to FMA were calculated. The features 
included sequence time length, minimum and maximum of 
each measure, average variance of each measure, difference 
between start and end values of each sequence, variation of 
average speed and acceleration of each measure. SVM was 
used for classification. A cohort of 22 participants took part, 
including 12 stroke and 10 healthy subjects. The proposed 
system is able to successfully predict scores for the two 
standard motions “Salute” and “Hand lift”. An ideal auto-
mated FMA system would be able to assess the full range 
of impairments in both upper and lower extremity (Fig. 6).

Performance of patients also varies from time to time 
during the day. Following the Abnormal Involuntary Move-
ment Scale (AIMS) protocol, Dyshel et al. [46] recorded 
9 PD patients with varying severity of Levodopa-Induced 
Dyskinesia (LID). The subjects performed two motor tasks 
normally used for UPDRS assessment. After motion seg-
mentation and noise reduction, discriminative features 
are extracted. For each joint motion, chunks are extracted 
and put into distributions represented by two 30-bin his-
tograms. One histogram represents normal and the other 
represents dyskinetic state. Earth Mover Distance (EMD) 
is calculated and 10 motion chunks representing the highest 

discrimination were selected. Each 10 dimensional vector 
was then reduced to a single number using one of the three 
methods: average motion length, average motion speed, dis-
tribution of quantized motion lengths. Soft-margin SVM-
based algorithm was used to calculate AIMS score.

Since the introduction of DeepPose [142] in 2014, CNN-
based human pose estimation has achieved very high accu-
racy. Li et al. [85] used the well-known Convolutional Pose 
Machines (CPM) [153] for extracting skeleton data for ana-
lysing LID. Levodopa is used to treat PD but its prolonged 
use causes motor complications (Dyskinesia). The study 
involved creating a publicly available dataset involving 9 
participants having LID. The skeleton data extracted using 
CPM was used to generate 15 kinematic features. These fea-
tures helped to score the participants based on the UPDRS.

In above-mentioned articles, authors have relied mostly 
on skeleton data obtained from Kinect, with the exception of 
Li et al. [85] who have used CNN for pose extraction from 
RGB data. Authors have not combined RGB and skeleton 
data, which may result in improve accuracy. Mostly authors 
have used kinematic parameters directly as primary features. 
In Cuellar et al. [38] and Ciabattoni et al. [36] quaternion-
based pose distances has been used as primary features. 
Quaternions can help in catpuring rotation in 3D and is 

Fig. 5  An example of categorisation type system. Group of joints are used as encoded features for SVM. Patients are classified as mobile or 
immobile [80]
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better than the normally used Euclidean distance. Liao et al. 
[87] have used Auto-encoders for dimensionality reduction 
of skeleton sequences. In most applications we have seen 
little application of dimensionality reduction techniques 
applied to kinematic data. On applications requiring continu-
ous score Support Vector Regression (SVR) and LSTM has 
been used. In order to measure a similarity score, temporal 
sequence matching algorithms such as HMM and DTW have 
been used. In applications requiring discrete scoring such as 
UPDRS, SVM has been mainly used. It remains to be seen 
how modern DL algorithms would perform classification 
in such cases where large-scale datasets are not available.

9  Datasets

Table 7 summarises publicly available datasets that are cap-
tured through vision-based methods. SPHERE is a series 
of datasets that presents normal and physically impaired 
movements for walking, walking-up stairs and sit to stand 
movements. Vakanski et al. [145] introduced the UI-PRMD 
dataset consisting of 10 different physical activities com-
monly performed in physical rehabilitation or therapy sce-
narios. The dataset provides skeleton data obtained through 
Kinect along with joint angles. Mean Square Error (MSE) on 
joint angles has been used by authors to calculate variability 
between each subject, which has also provided a benchmark 
for establishing incorrect movements. Unlike other areas of 
CV, most of the research is based on relatively small datasets 
which are not available publicly.

10  Discussion

In this section, the methods used in articles reviewed are 
discussed in terms of their usage, drawbacks and disadvan-
tages. Research in this area is very different from objec-
tives like activity recognition where the common goal is to 
explore machine learning and pattern recognition techniques 
to recognise various activities. Also, often the datasets used 
to evaluate the models are the same and thus a direct com-
parison between the various methods employed by authors 
is useful. However, due to the widely varying goals, datasets 
used and types of physical impairments, such comparison 
in this domain is difficult. Instead, for the benefit of read-
ers, we chose to compare the general techniques and algo-
rithms employed to achieve the goals. Following Sect. 2, we 
split the discussion into data, feature encoding and feature 
comparison.
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Fig. 6  An illustration of scoring type systems. Extracted features 
from a  patient are compared to a pre-trained HSMM for automated 
clinical scoring [22]. Total score reflects the overall score of the 

whole body whereas local score includes features that assist clinicians 
to localise movement errors. PatA: Patient A

Table 7  Publicly available datasets that include physically impaired patient motion

Author Impairment Details Sensor/Data

SPHERE-Staircase2014 [104] Walking-up stairs 48 sequences, 12 subjects, normal 
and abnormal gait

Kinect/ Open NI skeleton

SPHERE-Walking2015 [138] Walking 40 sequences, 10 subjects, normal 
and abnormal gait

Kinect/ Kinect SDK, OpenNI SDK 
skeleton

SPHERE-SitStand2015 [138] Sit to stand 109 sequences, 10 individuals, 
restricted knee, hip, freezing

Kinect/ Kinect SDK, OpenNI SDK 
skeleton

TRSP [44] Stroke, compensatory movement 10 healthy, 10 stroke 4 compensa-
tory movements

Kinect, Haptic robot/ Kinect SDK 
skeleton

Parkinson’s pose estimation [85] PD, LID, UPDRS assessment tasks 526 sequence, PD, LID patients, 4 
UPDRS assessment tasks

RGB Camera/ CPM [153] skeleton

UI-PRMD [145] General rehabilitation exercises 10 subjects, 10 exercises, 10 
repetitions

Kinect Vicon/ Kinect SDK skeleton

KIMORE Dataset [23] Stroke, PD, back pain exercises 44 healthy, 34 patient subjects, 5 
exercises 5 repetitions

Kinect/ RGB, depth, skeleton

AHA-3D Dataset [5] Senior lower body fitness 11 young, 10 elderly subjects, 4 
exercises

Kinect/ RGB, depth, skeleton
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10.1  Physical impairment data

In articles discussed in this review, authors have mostly 
used Kinect-based skeleton data. The main advantage is 
that Kinect provides RGB videos, depth videos and 3D joint 
positions as well as posture through a very cheap and easy to 
use hardware/software system. Thus, authors from domains 
other than CV can take advantage of it. However, Kinect sys-
tem is not very accurate [152] and today’s DL-based solution 
outperforms the Kinect system both in-terms of 2D [20, 50] 
and 3D pose estimation [107, 157]. Due to the lack of direct 
comparison, it is difficult to gauge the scope of improvement 
in the articles reviewed with DL-based methods instead of 
Kinect. Unlike other areas of CV application such as activ-
ity recognition, authors have not used RGB or depth data in 
combination with skeleton information. RGB data lacks the 
precise joint positions whereas skeleton data lacks informa-
tion such as optical flow, curves, edges and others. Modern 
neural networks are very good at learning such information. 
Combining skeleton data with RGB information guides the 
DL model to focus on RGB features on the human body. 
This has lead to increased accuracy in activity recognition 
models [12, 143] and thus, research in this domain can also 
benefit from the same. Authors have also used colour-based 
tracking, including tracking the hand while holding a col-
oured ball and skin colour tracking. These methods were 
in use before the introduction of Kinect, but some of them 
are still in use today. They have several limitations such as 
tracking only one part of body and are subject to noise, back-
ground interference. It also needs to be noted that Kinect is 
no longer in production and researchers will need to switch 
to other devices such the Orbec Astra [37]. Authors [37], 
discuss the interchangeability and accuracy of Orbec Astra 
and the Kinect device. So it is worth taking the time and 
effort to switch to new devices and techniques. Authors 
have also used other non-vision based devices such as BCI, 
LMC which when used with vision-based devices expand 
the domain of physical rehabilitation to other areas such as 
BCI to support physical rehabilitation [55].

10.2  Feature encoding

Table 8 highlights the various feature encoding methods 
used by authors. It also outlines their drawbacks and suggests 
alternatives. Many authors have used skeleton trajectories or 
kinematic parameters derived from these trajectories directly 
as features for comparison. While such parameters are useful 
for purposes such as posture recognition and joint mobility 
determination, these are highly specific to the physical impair-
ment and thus are not generalisable and may suffer from over-
fitting. Instead of encoding kinematic parameters, the rela-
tionship between parameters such as performance metrics, 

distances, pairwise relations and others, can be used for encod-
ing. Although these methods can produce better results, they 
also suffer from the same drawbacks such as an inability to 
learn, over-fitting and so on. A better alternative would be to 
learn from the data instead of comparing kinematic parameters 
numerically or graphically. Thus, more recently authors have 
used techniques including, but not limited to, DTW, HMM 
and TASS to build temporal models that can help to discrimi-
nate differences between patient and ideal pose sequences. 
Authors have also attempted to encode features from RGB 
videos for goals such as activity recognition. Feature encoding 
techniques include, Hu moments, colour-based segmentation, 
motion template gradients and so on. Mostly, these are pixel-
based techniques which suffer from noise interference and do 
not work in the case of blurry images. Modern alternatives 
include the use of generalised local feature descriptors such 
as Scale-Invariant Feature Transform (SIFT), SURF, Oriented 
FAST and rotated BRIEF (ORB) or image descriptors such 
as Bag of Words (BoW), Histogram of Oriented Gradients 
(HoG) and others. Modern techniques also involve DL-based 
algorithms for semantic segmentation [9] which have pro-
duced state-of-the-art results but, again, these require large-
scale datasets. In the absence of large datasets, using GANs for 
modelling artificial patient data can be very useful as shown 
by Vakanski [84]. There are many variants of GANs, each of 
which have their own domain of applicability and limitations. 
In Im et al. [68], the authors present a quantitative comparisons 
of various GAN types. Instead of manually selecting joints 
for recognizing abnormal motions [80] one can use attention-
mechanism [94] to learn the importance of joints for a par-
ticular impairment.

10.3  Feature comparison

In Table 9, various feature encoding methods used by authors 
are highlighted along with drawbacks and possible alterna-
tives. Most basic methods used by researchers are simple 
numerical and graphical comparisons of skeleton trajectories, 
joint angles or other kinematic parameters. The results are hard 
to generalise beyond the examples presented and may lack sta-
tistical significance. A better alternative would be to use some 
statistical tests such as ANOVA analysis, Chi-squared tests etc. 
Graph trajectories can be compared with methods such as KL-
divergence which could provide statistically significant results. 
In general, authors have used temporal sequence comparison 
algorithms like HMM, DTW, LSTM and their variants such as 
HSMM (Hidden Semi-Markov Model) MD-DTW, Incremen-
tal DTW (I-DTW), SS-DTW and others. Note that these algo-
rithms can be used for sequence encoding as well as sequence 
comparison. Some authors have used classification algorithms 
such as K-means, SVM to compare encoded sequence gener-
ated by HMM or DTW. The same could also be done with 
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techniques such as Conditional Random Fields (CRF) and 
Bayesian networks. Other techniques involve the use of gen-
erative models such as Restricted Boltzmann Machine (RBM), 

Gaussian RBM (GRBM), Semi-Naive Bayes (SNB) for clas-
sification. These have largely been replaced by DL-based 
algorithms such as DCNN, LSTM and TCN. To compensate 

Table 8  A summary of feature encoding methods used, their drawbacks and alternatives that can be used

Method Usage Drawbacks Alternatives

Colour trajectory Track body part through coloured 
object

Limited skeleton tracking, prone 
to background interference

Skeleton tracking

Skeleton trajectory Tracking body parts Do not quantify physical charac-
teristics

Kinematic parameters

Kinematic parameters Indicates physical ability Very specific to type of 
impairment(s)

None

Contour signature Mark hand boundaries for grip 
classification

Cannot handle noisy, blurry 
images

DL based segmentation [9]

Hu invariant Image boundary descriptor for 
grip classification

Cannot handle noisy, blurry 
images

DL based segmentation [9]

AUC For comparing kinematic trajec-
tories

AUC can be same for different 
curves

Statistical analyses, KL divergence

Performance metrics (ME, MER, 
RMSE, N-RMSE)

Encoding patient sequence error 
w.r.t standard template

Over-fitting, difficult to generalize Learnable encoding methods

Log likelihood Probabilistic encoding of skeleton 
sequence

Specific formula needed for 
calculate likelihood, non trivial 
estimation

KL-divergence, Cross Entropy

SURF Encodes local RGB features Less accurate than SIFT although 
faster, clutterd keypoints

SIFT, ORB

Depth maps Body part segmentation, skeleton 
detection

Missing colour, texture, skeleton 
information

Use with RGB and skeleton data

GP-LVM Dimensionality reduction of skel-
eton sequence

Assumes independent distribu-
tions, needs strong prior

PCA, LDA, Autoencoders

Gaussian mixture model Encoding skeleton sequence for 
performance metric

Expensive for high dimensional 
data, need to set number of 
clusters

Spectral clustering, Manifold 
learning

Gauss Laguerre transform (GLT) Encoding video squence in GLT 
domain

Needs manual marking to select 
area for transform

SIFT, SURF, ORB etc. for keypoint 
descriptors

Human body sillhoute Human body segmentation Cannot handle noisy, blurry 
images

DL based semantic segmentation 
[9]

Pairwise skeleton trajectory Enables relative trajectory encod-
ing

Overftting, cannot learn the 
general trend

Learnable encoding methods

K-means clustering Encoding kinematic parameters No of clusters needs to be manu-
ally set

GMM

Distances (Manhattan, Euclidean) Encoding patient sequence dis-
tance wrt standard template

Overftting, cannot learn the 
general trend

Learnable encoding methods

PCA reduced sequence Dimensionality reduction of skel-
eton sequence

Mean and covariance does not 
always describe distribution

LDA, autoencoder

Colour segmentation Track body part through coloured 
object

prone to background noise, inter-
ference

DL based semantic segmentation 
[9]

GAN generated sequences Generation of artificial data hard to train and converge Different types of GANs [68]
Quaternion sequences Represent orientation and rotation 

of skeleton sequence in 3D
Contains only rotation but no scal-

ing and translation
Affine transformation matrices

Motion template gradient Human motion encoding, through 
successive frame sillhoute

Pixel based approaches prone to 
background noise

Optical flow based approaches, 
graph-cut algorithm

Autoencoder Dimensionality reduction of 
sequence

Requires more data, not gener-
ally used for dimensionality 
reduction

PCA, LDA

LDA Dimensionality reduction of skel-
eton sequence

Needs labelled data, lot of tunable 
parameters

PCA, Autoencoders
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for a lack of datasets, one can also look at learning from sin-
gle images [155]. When comparing sequential data with DL, 
LSTM is the most popular type of architecture that has been 
used. But, recently, Temporal Convolutional Networks (TCN) 
[78] and Ordinary Differential Equation (ODE) networks [29] 
have shown very competitive results and these two architec-
tures are being actively pursued by researchers. DCNNs have 
been almost exclusively used for processing image and video 
data but researchers are now exploring the use of capsule net-
works [117] for the same.

11  Conclusion

In this review, we have collected summarised and analysed 
major computer vision-based research in the area of reha-
bilitation and assessment of patients having physical impair-
ments. In this article, we present our own taxonomy. To the 
best of our knowledge, this is the only article to date that 
has covered the latest advances in this application area, and 
presented them from a CV application point of view. It par-
ticularly focuses on comparison and assessment of abnor-
mal human motions. This is especially significant due to the 
wide-ranging and hugely varying manifestations of abnor-
mal or impaired human movements. We have seen simple 
graphical comparison of joint angle trajectories to applica-
tion of complex algorithms such as GANs. The absence of 
image, video-based, DL algorithms is quite contrasting to 
other areas such as pose estimation and action/activity rec-
ognition where DL algorithms have been almost exclusively 
used. This could be down to unavailability of large-scale 
datasets. Also, in this domain, most articles are exclusively 
focused on the use of skeletal information as raw data. This 
means low-level image/video features and high-level con-
textual cues (e.g. body-objects interaction) are not a part of 
the intelligent processing. Movement information deduced 
from skeleton information is sparse in nature, whilst image-
based dense optical flow form video information is richer 
in contextual information. Thus, research in this domain 
may benefit from meaningful combination of skeleton and 
spatio-temporal information linked to video data. In the case 
of scoring type applications, DL-based scoring may not be 
easy to adapt as it’s often more complicated for patients and 
clinicians to understand. More recently, researchers have 
attempted to fit existing scoring methods while training DL-
based models. CV will play a significant role in rehabilita-
tion and assessment, which is a sub-field of health and social 
care. But owing to several factors such as difficulty in obtain-
ing patient data, ethical issues and so on, this area is yet to 
be extensively explored by the CV community. We conclude 
the discussion with recommendation for future research:

Datasets The lack of DL-based methods compared to 
other applications of CV could be due to the unavailability 

of large-scale publicly available datasets demonstrating 
physically impaired patients’ activities. The publicly avail-
able datasets mentioned in Table 7 are relatively small as 
compared to modern datasets targeting DL. For example, 
the NTU-RGB dataset [123] targeted towards DL-based 
activity recognition contains 60K samples and is much 
larger than the datasets presented in Table 7. Therefore, 
research in this domain needs publicly available large-
scale datasets to take advantage of modern DL methods. 
Although datasets are indispensable, the problem can be 
mitigated to a certain extent by using GANs. Data Aug-
mentation GAN (DAGAN) has been purpose-built for aug-
menting data [4]. It is based on conditional GAN and is 
capable of generating unseen within-class data samples. 
This is different to traditional data augmentation tech-
niques, where images/videos are rotated or translated to 
augment the data. Likewise, balancing GANs can be used 
to mitigate class imbalance problems [93]. In the absence 
of real data, authors have recently created fully synthetic 
data from GANs. For example, Li et al. [84] generated 
synthetic data for incorrect human activity from four dif-
ferent types of GANs. Frid-Avar et al. [54] used GAN to 
create synthetic data for liver-lesion classification. Besides 
GAN, single-shot or few-shots learning has the potential 
to learn from a small amount of data [135]. These are 
often presented as Siamese networks to discriminate or 
tell deviations from the reference sample [34]. In Chung 
et al. [34], the authors used a two-stream convolutional 
Siamese network for person re-identification. A simi-
lar approach could be adapted for assessing physically 
impaired persons where deviation from regular healthy 
activity could be measured through a single-shot or few-
shot learning.

Statistically significant results Simple graphical or 
numerical comparison of skeleton-trajectory is not suit-
able to produce statistically significant results. In such 
cases, authors can use statistical tests including, but not 
limited to, ANOVA and Chi-Square. However, such sta-
tistical approaches are model-less. These approaches lack 
generalisation and are not scalable. Moreover, they are 
often inferior to the model-based techniques. Venugopa-
lan et al. (2013) and Liao et al. (2019) show that model-
based approaches such as DTW, Gaussian Mixture Model 
(GMM) log-likelihood works better than non-model 
approaches such as Euclidean distance, Mahalanobis dis-
tance and Cross-Correlation. Thus, instead of directly 
comparing kinematic parameters we recommend model-
ling the data with algorithms including, but not limited 
to, HMM, DTW and TASS. Moreover, a combination of 
classification/regression algorithms such as SVM, Random 
Forest (RF) are even better than modelling the data alone. 
Taati et  al. [136] model the data using HMM and use 
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SVM to classify the data and show that the combination 
of HMM and SVM works better than using SVM alone.

Modern DL techniques Researchers in this domain have 
begun to use DL-based techniques such as CNNs and 
LSTMs. However, authors have used very basic and obso-
lete architectures that fail to demonstrate the true potential 
of these algorithms. CNNs used by Zhi et al. [163] and 
Leightley et al. [81] are very basic in nature. Their rec-
ommendation is to use modern pre-trained CNN architec-
tures including, but not limited to, EfficientNets [137] and 
NasNet [110]. Authors have introduced TCN [74, 78] as 
an effective and faster alternative to LSTMs. TCN-based 
networks are suitable for human activity recognition as 
demonstrated by Kim et al. [74]. Similarly, ODENets [29] 
are being extensively researched for processing of tem-
poral information. DL is a rapidly evolving field and the 
introduction of better and efficient techniques is a regular 
occurrence. For example, Graph Neural Networks first 
introduced in Kipf et al. [75] has been extensively used 
by authors for recent state-of-the-art activity recognition 
models [124] and authors in this domain can potentially 
benefit from the same.
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