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Abstract

Object detection is one of the most important tasks involved in intelligent agriculture systems,

especially in pest detection. This paper focuses on a most devastated agricultural disaster: grasshopper

plagues. Grasshopper detection and monitoring is of paramount importance in preventing grasshopper

plagues. This paper proposes a probabilistic faster R-CNN algorithm with stochastic region proposing,

where a probabilistic region proposal network, an image classification network, and an object detection

network are integrated to detect and locate grasshoppers. More specifically, in the proposed framework,

the probabilistic region proposal network considers attributes (e.g. size, shape) of region proposals and

the image classification network identifies the existence of grasshoppers while the object detection

network scores recognition confidence for a region proposal. By integrating these three networks, the

uncertainty can be passed from end to end, and the final confidence is obtained for each region proposal

can be explicitly quantified. To enhance algorithm robustness, a stochastic region proposing algorithm

is developed to screen region proposals rather than using a predetermined threshold. The proposed

algorithm is validated by recently collected grasshopper datasets. The experimental results demonstrate

that the proposed algorithm not only outperforms competing algorithms in terms of average precision

(0.91), average missed rate (0.36), and maximum F1-score (0.9263), but also reduces the false positive

rate of recognising the existence of grasshoppers in an open field.

Index Terms

Object detection; Image recognition; Gaussian mixture models; Region proposal network;

I. INTRODUCTION

Agriculture monitoring systems can play a vital role in preventing pest outbreaks [1]. Pests

bring severe threats to quality and storage of agricultural products, agricultural economy and food
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security [2–4]; for example, the recent outbreak of desert locust in Africa. To prevent pest plagues

and enable effective treatments, real-time information of pests (e.g. types of species, amount,

and distribution) is essential. Currently, pests are usually detected by human beings. Manual

monitoring, however, is labour-intensive and expensive for large farms or grasslands [4]. As

suggested by [5–7], computer vision techniques could provide promising solutions for detecting

pests to achieve pest control. In [5], a support vector machine (SVM) trained by edge features

(histograms of oriented gradients) can efficiently identify aphids achieving a mean identification

rate of 86.81% and an error rate of 8.91%. For precisely identifying thrips, the region indexes

(e.g. the ratio of major diameter to minor diameter) and colour indexes (e.g. RGB channels)

are extracted and then fed into an SVM classifier [6]. The experimental results demonstrate

that the classification error can be less than 2.25%. Compared to conventional image processing

techniques which depend on hand-crafted features, deep learning methods can automatically learn

semantic and deeper features to enhance the performance significantly [8]. In [3], a deep residual

network is trained for pest identification and its accuracy can reach 98.67% for classifying 10

classes. In addition, an improved pyramidal stacked de-noising auto-encoder is proposed in [7],

where the accuracy for moth species identification can achieve 96.9% with pose estimation.

However, most studies on pest identification focus on image classification, where an image

is only classified as a pest or not. Only classifying pests is insufficient for achieving effective

pest control, where the number and locations of pests are also required [9, 10]. This type of

problem could be regarded as a general problem in object detection where not only pests are

detected in an image but also their number, location and distribution could be provided. In recent

years, object detection and recognition have attracted extensive attention due to its significance

in image understanding [11, 12]. In comparison to traditional machine learning methods (e.g. k-

nearest neighbours [13], CART [14], random forest [15], SVM [16], dynamic Bayesian networks

[17]), deep Convolutional Neural Networks (CNNs) can achieve better performance in many

applications, such as traffic lane detection [18], salient object detection [19, 20], scene recognition

[21], and pedestrian detection [22]. This is because deep CNNs are powerful in feature extraction

and representation [23]. Since accurate pest detection also extensively relies on feature extraction

and representation, deep CNNs based methods are used for extracting deep features of pests so as

to realise precise pest detection. However, a pure deep Convolutional learning approach cannot

capture model uncertainty [24–27], besides, convolutional networks may overfit quickly [24]. A

pure deep convolutional learning approach (e.g. faster R-CNN) proposes a region proposal with
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a pre-defined threshold of objectness so the uncertainty of region proposing and the information

of image level is neglected. In addition, a pure deep convolutional neural network uses a fixed

threshold to assess final score for generating results after non-maximum suppression. Such a

manner overlooks to consider the uncertainty of region proposing. As showing in experimental

results of this paper, a pure deep convolutional neural network does not perform very well in

object detection.

𝑳 𝜣 𝒔𝒊
= 𝑮𝑴𝑴 𝝎,𝝁, 𝜮 𝒉𝒊, 𝒘𝒊

𝒑 𝑩 𝜣 = 𝑮𝑴𝑴(𝑯,𝑾|𝝎, 𝝁, 𝜮)

Probabilistic Region Proposal Network

Object Detection Network

CNN

Classification Layer
ROI Pool 

FC Layers Features

Features

Features

Non-Max Suppression

Stochastic Region Proposing

Classification 
Layer

Bounding Box RefinementImage Classification Network

Bounding box 

confidence 

Image 

Confidence

Region Confidence

Fig. 1. The framework of probabilistic faster R-CNN with stochastic region proposing, where red solid rectangle represents the

probabilistic region proposal network module, blue solid rectangle represents image classification network module, and black

dash rectangle represents the object detection network module.

In order to capture and pass the uncertainty in entire object detection pipeline so as to further

improve the performance, this paper proposes a probabilistic faster R-CNN with stochastic

region proposing algorithm to detect and locate objects accurately. Our proposed algorithm

mainly consists of three modules: probabilistic region proposal network, image classification

network, and object detection network. The probabilistic region proposal network is used to
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score goodness and objectness of bounding boxes; the image classification network is to enhance

the classification accuracy at image level (object recognition) and reduce the false positive rate

at object level (object detection), where goodness is to represent how well a bounding box is to

capture a object and objectness is to identify whether a object exists within the bounding box;

the object detection network is to obtain object level confidence score. In this study, we focus on

detecting grasshoppers in preventing grasshopper plagues [28]. However, the proposed method

could be transferred to other remote sensing applications such as weed detection [29], crop yield

estimation [30], animal/wildlife monitoring (e.g. sheep/cow detection and counting) [31], forest

management [32], and other pest detection applications (e.g. aphids or moths detection). Recently

collected grasshopper datasets are adopted to evaluate the developed algorithms. Several baseline

algorithms are also tested for comparison, which include aggregate channel features (ACF) [33],

region-based Convolutional neural network (R-CNN) and its variations [34], fast R-CNN and

its variations [35], faster R-CNN and its variations [36]. Comparative results demonstrate that

the proposed algorithm substantially improves the performance at both image level and object

level. This is because the proposed algorithm can pass the uncertainty from end to end, where

the existence of object, the goodness of a region proposal, and the objectness of the proposed

region proposal are represented in a probabilistic way. The uncertainty of object existence in

image classification network is passed to region proposal network, which identifies the goodness

of the region proposal. Then, the uncertainty of object existence and the goodness of region

proposals is combined with the uncertainty of the objectness of the pixels within the bounding

box for generating the final confidence score of the given object candidates. More precisely, the

contributions of this paper are summarised as follows.

(i) A probabilistic region proposal network is proposed, which determines the confidence of

a region proposal by considering both attributes (e.g. size and shape) and recognition

score. Consequently, the uncertainty of a region proposal (goodness) can be measured in a

probabilistic way and such uncertainty can be passed to the rest parts of object detection

pipeline.

(ii) An image classification network is introduced into the proposed algorithm to reduce the

errors in object recognition so that the errors of object detection can also be decreased;

(iii) The proposed algorithm integrates probabilistic region proposal network, image classifi-

cation network, and object detection network together, which models and captures the
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uncertainty of the entire object detection pipeline. Therefore, the final confidences are

obtained for all possible region proposals to improve the performance of object detection.

(iv) To enhance the robustness, a stochastic region proposing algorithm is developed, which

proposes bounding boxes in a stochastic way, rather than using a predetermined threshold.

The reminder of this paper is organised as follows. First, the overall framework of the proposed

algorithm is illustrated in Section II, where the key components of the proposed algorithm are

also introduced. Section III presents the probabilistic region proposal network while the image

classification network is detailed in Section IV.Section V describes the object detection network

and the stochastic region proposing algorithm, followed by experimental results discussion in

Section VII. Section VIII concludes this paper along with future work.

II. PROBABILISTIC FASTER R-CNN WITH STOCHASTIC REGION PROPOSING

It is difficult to provide well-enough performance for locating objects and counting the number

of objects accuracy by using existing methods [33–36] due to the failure of managing the

uncertainty of the entire object detection pipeline. To tackle these issues and achieve satisfying

object detection and recognition performance in remote sensing applications, we propose a

probabilistic faster R-CNN with stochastic region proposing. This algorithm is composed of three

modules. The first module is probabilistic region proposal network for generating confidences

of region proposals. The second module is an image classification network which identifies the

existence of objects within an image. The third module is to train a fast R-CNN detector using

transfer learning with fine-tuning. Moreover, the duplicate region proposals are removed by non-

maximum suppression [37]. The overall framework of the proposed algorithm is presented in

Fig. 1. More specific explanations of the three modules and their responsibilities are provided

as follows.

In the first module, the proposed probabilistic region proposal network is utilised to gener-

ate confidence scores of region proposals. The probabilistic region proposal network not only

considers objectness scores of the box-classification layer, but also takes the size and shape of

regions into account. Such a design improves the accuracy of recognising an object from the

background.

In the second module, an image classification network is trained to identify the existence

of objects at the image level. Since it is hard to generate sufficient data for learning from

scratch, the image classification network is trained by transfer learning with fine-tuning. The
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image classification network provides confidence ranging from 0 to 1. The confidence is used to

identify the probability that the image includes at least one object. This image level confidence

can affect the confidence of region proposal at the object level.

In the third module, an object detection network is adopted with stochastic region proposing.

Firstly, the object detection network is to classify potential regions into objects or background

based on the corresponding confidence scores of each class. These confidence scores combine

with the uncertainty of the probabilistic region proposal network and the image classification

network to generate the final confidence score for each potential region. Secondly, the proposed

stochastic region proposing algorithm suggests regions stochastically according to the final

confidence score of each region. Such a design can efficiently remove incorrect regions and

enhance the robustness. Then, the final confidence scores of retained regions are used in non-

maximum suppression to eliminate the duplicate detections for the same object.

Different from faster R-CNN which proposes a region proposal with a pre-defined threshold of

objectness so the uncertainty of region proposing and the information of image level is neglected,

our proposed probabilistic faster R-CNN passes uncertainty from end to end so that the final

confidence of a region proposal p(Gij|bij, rij, Oi, Ii) integrates the uncertainty of the probabilistic

region proposal network, the image classification network, and the object detection network for

improving the object detection performance, where Gij is the priori of interested object (e.g. pest,

sheep, tree) for j-th region proposal in i-th image. rij and bij represent j-th region proposal and

j-th bounding box in i-th image, respectively. Oi and Ii denote the interested object existence

of object detection network and image classification network for i-th image. Thereby, Equation

(1) can be derived by using chain rule.

p(Gij|rij, bij, Oi, Ii) =
p(rij, bij|Gij, Oi, Ii)p(Gij|Oi, Ii)

p(rij|bij, Oi, Ii)p(bij|Oi, Ii)
(1)

Because the confidence of region proposal rij and bounding box bij in i-th image is indepen-

dent of interested object existence (Oi and Ii). The right hand of Equation (1) can be simplified

to
p(rij, bij|Gij, Oi, Ii)p(Gij|Oi, Ii)

p(rij|bij, Oi, Ii)p(bij|Oi, Ii)

=
p(rij, bij|Gij)p(Gij|Oi, Ii)

p(rij|bij)p(bij)

(2)
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Moreover, the confidence of region proposal rij is conditionally independent of the shape of the

bounding box bij given Gij . Hence, Equation (2) reduces to

p(rij|Gij)p(bij|Gij)p(Gij|Oi, Ii)

p(rij)p(bij)
. (3)

According to Bayesian theorem [38], Equation (3) can be written as

p(rij|Gij)p(bij|Gij)p(Gij|Oi, Ii)

p(rij)p(bij)
=
p(Gij|rij)p(Gij|bij)

p2(Gij)

p(Gij, Oi, Ii)

p(Oi, Ii)
(4)

where p(Gij|rij) is the confidence that j-th region proposal in i-th image is a interested object,

which comes from object detection network. p(Gij|bij) is the confidence that region proposal rij

is a correct bounding box, which is determined by the probabilistic region proposal network.

In order to fully use the confidence of image classification p(Gij|Ii), Equation (4) is expressed

as

p(Gij|rij)p(Gij|bij)
p2(Gij)

p(Gij, Oi, Ii)

p(Oi, Ii)
=

1

p2(Gij)
p(Gij|rij)p(Gij|bij)

p(Oi|Gij, Ii)

p(Oi|Ii)
p(Gij|Ii) (5)

where p(Gij|Ii) is the confidence having interested object(s) within i-th image, which comes

from image classification network. Oi is the determination of interested object existence from

the object detection network, where O+
i and O−i representing having or not having interested

object(s) within i-th image. Gij is the truth of interested object existence. p(Oi|Gij, Ii) is the

probability distribution of the interested object existence recognised by object detection network

when given the result of image level classification Ii. Moreover, p(Gij|Ii) is the probability

distribution of the interested objects when given the result of image level classification Ii.

With regard to Equation (1)-(5), the final confidence of a region proposal can be defined as

p(Gij|rij, bij, Oi, Ii) =

p(Oi|Gij, Ii)

p2(Gij)
p(Gij|rij)p(Gij|bij)

p(Gij|Ii)
p(Oi|Ii)

,
(6)

where p(Gij) is the priori probability of interested object detection. p(Gi|Ii) can be obtained by

the statistics of results, which comes from the training set. However, it is difficult to directly

obtain the values of p(Gij) and p(Oi|Gi, Ii). To tackle this issue, p(Oi|Gi, Ii)/p
2(Gij) is regarded

as a hyperparameter.

III. PROBABILISTIC REGION PROPOSAL NETWORK

Probabilistic region proposal network assesses confidences of potential region proposals by

considering both objectness scores and attributes of region proposals (e.g. the size and shape
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of the bounding boxes). Inspired by [39], Gaussian mixture models are introduced to assess

the attributes of region proposals. Probabilistic region proposal network includes three key

components: region proposal network, Gaussian mixture models, and probabilistic inference.

The mechanism of the probabilistic region proposal network is displayed in Fig. 2

GMM Distribution of regions

Probabilistic Inference

Region Proposal Network

𝒌width

𝒌 Height

Likelihood

4𝑘 coordinates 2𝑘 scores

256-d

Regression 

layer
Classification 

layer

Intermediate layer

Confidence Scores

Fig. 2. Mechanism of the proposed Probabilistic Region Proposal Network.

A. Region Proposal Network

The region proposal network proposes a set of rectangular object proposals for an inputted

image. This process is carried out by a fully convolutional network and a small network. The

small network slides over the convolutional feature map with a fixed-size window [35]. The

features of each sliding window are fed into a box-regression layer and a box-classification

layer, where the box-regression layer generates a rectangular object proposal while the box-

classification layer determines with or without an object. For more details, please refer to [36].
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B. Gaussian Mixture Models

The inputs of Gaussian mixture models (GMM) should be defined before constructing GMM.

According to manually labelled bounding boxes, we can determine the goodness of a bounding

box based on the height and width of the manually labelled bounding boxes. The height and

width are inputs of GMM. After given the height and width of bounding boxes, we can obtain

the probability density function (PDF) via GMM. The GMM is a weighted sum of M component

Gaussian densities as follows:

p(B|Θ) =
M∑
i=1

wig(B|µi,Σi) =
M∑
i=1

wig(H,W |µi,Σ) (7)

where B is a D-dimensional matrix. Each row of B is a data sample. Here, X is a two-

dimensional matrix. These two dimensions represent the height (H) and width (W ) of bounding

boxes (B = {H,W}). M is the number of Gaussian components, wi is the mixture weight for

i-th Gaussian component, and g(B|µi,Σi) is the density function of i-th Gaussian component.

The density of each component is a two-variate Gaussian function of the following form:

p(B|µi,Σi) =
1√
2π
e−

1
2

(B−µi)T Σ−1
i (B−µi) (8)

where µi is the mean vector. In this paper, the mean vector includes the means of height and

width for bounding boxes. Σi is a covariance matrix of height and width. Moreover, the mixture

weight wi satisfies the following constraint
M∑
i=1

wi = 1 (9)

Consequently, the complete GMM is parametrised by the mean vectors, covariance matrices,

and mixture weights of all component densities, which are collectively represented by the

notation.

Θ = wi, µi,Σi, i = 1, . . . ,M. (10)

There are two issues involved in establishing GMM: determining the optimal component num-

ber and deriving best matching between a generated model and its training data through parameter

optimisation. In this paper, the optimal component number is determined by Akaike’s Information

Criterion (AIC) [40] and Bayesian Information Criterion (BIC) [41]. For more details, please refer

to Section VII-A. Meanwhile, the parameters Θ in Equation (10) are optimised by expectation-

maximisation (EM) algorithm [39] and the initialisation of parameters is implemented by k-means

++ clustering algorithm [42]. Subsequently, the likelihood of GMM can be maximised. The main

steps of optimising GMM are summarised in Algorithm 1.
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Algorithm 1 Gaussian Mixture Models with Optimisation
Require: Given component number k, k ∈ {1, 2, . . . , N}, initial mixture parameters Θ(0), and

convergence threshold ε;

1: Initialisation: Θ(t) = Θ(0)

2: for k = 1 : N do

3: for t = 1 : +∞ do

4: E-step: Compute the posteriori probability

5: γ̂ik = p(zi = k|bi,Θ(t)) = wig(xi|µk,Σk)∑M
j=1 wjg(xi|µj ,Σj)

6: M-step: Maximisation of the likelihood

7: ŵk = 1
n

∑n
i=1 γ̂ik, µ̂k =

∑n
i=1 γ̂ikxi∑n
i=1 γ̂ik

8: Σ̂k =
∑n

i=1 γ̂ik(xi−µ̂k)T (xi−µ̂k)∑n
i=1 γ̂ik

9: Θ(t) = {ŵk, µ̂k, Σ̂k}

10: if L(B|Θ(t))− (B|Θ(t−1)) ≤ ε then

11: Set mixture parameters Θ = Θ(t)

12: Calculate AIC(k) and BIC(k) of GMM(k)

13: if AIC(k) & BIC(k) < AIC(k∗) & BIC(k∗) then

14: Set optimal component number k∗ = k

Ensure: obtained the optimal parameters for k∗ and Θ

C. Probabilistic Inference

After obtaining GMM for establishing the relationship between the attributes of region pro-

posals and the likelihood of a correct bounding box in Section III-B, the likelihood of a given

region proposal can be computed by

L(Θ|bij) = p(Θ|bij) =
M∑
z=1

wzg(µz,Σz|hij, wij) (11)

where bij is a new region proposal. To improve robustness of the probabilistic inference, instead

of determining region proposals using a specific threshold of likelihood, Sigmoid function is

introduced to normalise likelihood with in [0, 1] which can return the probability of the proposed

region being a correct bounding box. In this paper, Sigmoid function is defined as

Sig(t) =
1

1 + e−t
=

1

1 + e−α(Lij−Lmin)
(12)
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where Lij is the likelihood for a given a new bounding box bij and Lmin is the minimum

likelihood as a positive bounding box in the training set. Moreover, α is a factor to tune the

sensitivity. Following [43], it is set as 1 for achieving harmonic results.

It follows from Equations (11) and (12) that the confidence p(Gij|bij) of the region proposal

rij being a correct bounding box can be given by

p(Gij |bij) =

[
1 + exp

(
αLmin − α

M∑
z=1

wzg(µz,Σz|hij , wij)
)]−1

(13)

IV. IMAGE CLASSIFICATION NETWORK

Different from faster R-CNN, the CNN in probabilistic faster R-CNN does not only share

weights of convolutional layers with the region proposal network but also executes the image

classification to determine the existence of grasshoppers in an image. The image classification is

also achieved by a CNN, which shares the same weights of convolutional layers with the region

proposal network and the object detection network. The image classification network returns

the confidence whether grasshoppers exist in the image, which is represented by p(Gij|Ii) in

Equation (6).

Due to such a design, classification results from the image level can affect the confidences

of the region proposals at the object level. For instance, regions have a lower probability to

be proposed when an image is classified to be a low confidence of having grasshoppers. Oi

is the determination of grasshopper existence from the object detection network, where O+
i

and O−i represent for positive and negative recognition results in i-th image respectively. The

conditional probability of p(Oi|Ii) can be calculated by Table I, where t is a specific threshold.

In addition, hyperparameter p(Oi|Gi, Ii)/p
2(Gij) is optimised by a common heuristic approach

[39], where the search range and interval for optimising the hyperparameter are [0.001, 10] and

0.001, respectively.

TABLE I

SUMMARY OF CONDITIONAL PROBABILITIES

Truth/Image Grasshopper Non-Grasshopper

p(Oi|Ii)

Grasshopper p(O+
i |Ii ≥ t) p(O+

i |Ii < t)

Non-Grasshopper p(O−
i |Ii ≥ t) p(O−

i |Ii < t)
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V. OBJECT DETECTION NETWORK WITH STOCHASTIC REGION PROPOSING

In this paper, a fast R-CNN is used as the object detection network due to its excellent

performance on computational efficiency [35, 36]. The confidence of the existing of a grasshopper

in each region proposal is identified by the fast R-CNN, which is represented by p(Gij|rij). The

priori probability p(Gij) and the conditional joint probability of p(Oi|Gij, Ii) are difficult to

calculate directly. Hence, their combination p(Oi|Gi, Ii)/p
2(Gij) is treated as a hyperparameter

which is optimised during the training phase. As mentioned in Section III and Section IV,

p(Gij|bij) and p(Gij|Ii) can be obtained from the probabilistic region proposal network and

the image classification network. Moreover, the method to calculate p(Oi|Ii) is provided in

Section IV. From the above, the final confidence of a region proposal p(Gij|rij, bij, Oi, Ii) can

be computed by Equation (6).

Algorithm 2 Stochastic Region Proposing Algorithm
Require: obtained the region proposal rij and the image i, i ∈ {1, 2, . . . , I} and j ∈

{1, 2, . . . , R};

1: for i = 1 : I do

2: for j = 1 : R do

3: Set final confidence p(Gij|rij, bij, Oi, Ii) = p

4: Randomly generate a number n, n ∈ [0, 1]

5: if n ≤ p then

6: Set rs = {rs−1, rij}

Ensure: selected region proposals rs

To improve the robustness and make full use of probabilistic information, a stochastic region

proposing algorithm is developed to generate region proposals with its pseudocode in Algorithm

2. It removes incorrect region proposals and then non-maximum suppression is introduced to

merge the nearby detections of the same grasshopper according to the final confidence scores

of the retained region proposals.

VI. IMPLEMENTATION AND PERFORMANCE METRICS

Implementation and performance metrics are discussed in this section. All experiments are

evaluated by a natural field grasshopper dataset, which is described in Section VI-A. To quanti-

tatively evaluate the performance at both image level and object level, a number of widely used

May 18, 2021 DRAFT



NEUROCOMPUTING 13

metrics are adopted, including intersection-over-minimum (IoM ) [9], miss rate, false positives

per image (FFPI) [33], precision, recall, specificity, accuracy and Fβ-score as defined in Section

VI-B. ACF algorithm is implemented by a CPU (Core i7 at 2.50 GHz with 16 GB of RAM),

which is a non-deep object detection algorithm. The remaining algorithms are deep learning

object detection methods, which are implemented by a GPU (GeForce RTX 2080). In addition,

the parameter settings of ACF is referred to [10], where the number of stages is 6 and negative

samples factor is 4. The parameter settings of deep learning based methods are provided as

follows: the optimiser is stochastic gradient descent with momentum (SGDM), MaxEpochs is

20, and InitialLearnRate is 1× e−3.

A. Grasshopper Detection and Recognition Dataset

1) Data Acquisition: RGB colour images were obtained from an outdoor test field at Lough-

borough University, Leicestershire, UK. The image dataset is collected by the Leica dual camera

(2MP, CMOS) mounted at the right above each cell of the test field and under natural light

conditions. The date acquisition of cage and open field datasets are conducted in the same way.

The only difference is that grasshoppers are within a cage or an open field. Imaging in an outdoor

environment under different weather condition is important for training a robust model that is

applicable to a wide range of weather conditions. Images were captured at 60 cm distance right

above the test field.

2) Dataset Construction: The collected images are randomly divided into two sets: the training

set (60%) and validation set (40%) for both cage and open field datasets. For each set, we

calculate the number of images with or without grasshoppers, the total number of grasshoppers,

and the number of grasshoppers per image in corresponding sets. Table II provides specific

statistics of the glass cage dataset and the open field dataset including the training, validation,

and entire sets, respectively.

B. Evaluation Metrics

The performance of the grasshopper detection can be evaluated by correct detections (true

positive), miss detections (false negative), and false positive. A miss detection is determined

based on the manually labelled region. When the algorithm proposes a region (bounding box)

and does not have a manually labelled region corresponding with it, this is called by a miss

detection and the proposed region is recognised as a false negative. In this paper, we evaluate the
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TABLE II

SUMMARY OF GRASSHOPPER DATASETS

Glass Cage Grasshopper Dataset

Dataset Total # # images with grasshoppers # images without grasshopper # grasshoppers Avg. # grasshoppers per image

Total 857 316 541 5010 5.84

Training 514 189 325 2970 5.78

Validation 343 127 216 2040 5.95

Open Field Grasshopper Dataset

Dataset Total # # images with grasshoppers # images without grasshopper # grasshoppers Avg. # grasshoppers per image

Total 3412 1712 1700 20544 6.02

Training 2047 1037 1010 12444 6.08

Validation 1365 675 690 2040 5.93

performance at both object level and image level. At the object level evaluation, we focus on the

performance of detecting individual grasshoppers. At the image level evaluation, we focus on

the performance of identifying whether grasshoppers are within the image or not. To determine

a correct detection, we compute the intersection-over-minimum (IoM ) between the detection

and its corresponding manually labelled bounding box. The definition of IoM is given by

IoM(Adt, Agt) =
area(Adt ∩ Agt)
min(Adt, Agt)

(14)

where Adt is the area of a detected bounding box and Agt is the area of a ground truth bounding

box. IoM is the intersection between the detected bounding box and ground truth bounding box

over the minimum area of the detected bounding box and ground truth bounding box. We consider

a correct detection if IoM ≥ 0.5. Otherwise, the detection is identified as a false detection. In

this paper, we use IoM rather than intersection-over-union (IoU ). This is because IoU performs

better when the ground truth rectangles are more nearly square and IoM performs better when the

ground truth rectangles are more nearly tall or wide rectangles [9]. In the grasshopper detection,

ground truth rectangles are always tall or wide rectangles rather than squares [9].

1) Object Level Evaluation: To evaluate the performance at object level, five threshold-

dependent measures are used including miss rate, false positives per image (FFPI), precision,

recall, and Fβ score. The definitions of these five metrics are given as follows:

MissRate =
dm
dg
, FFPI =

fp
n

(15)

where dm is the number of miss detections of grasshoppers and dg is the total number of

grasshoppers. fp is the number of false positives and n is the total number of images. In this case,
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fp represents the number of miss detected grasshoppers (The proposed regions are background,

but detected as grasshoppers).

Precision =
tp

tp + fp
, Recall =

tp
tp + fn

(16)

where tp is the number of true positives and fn is the number of false negatives. In this case,

tp represents the number of correct detected grasshoppers and fn represents false detected

grasshoppers (The proposed regions are grasshoppers, but they are detected as background).

Therefore, the sum of tp and fp is the total number of detected grasshoppers (Prediction). The

sum of tp and fp is the total number of grasshoppers (Ground Truth).

Moreover, Fβ is introduced which considers precision and recall simultaneously, where β is

the parameter for adjusting the importance of precision and recall. When β exceeds one, it means

that precision is more important. Otherwise, recall is more important. In this paper, precision

and recall are both significant for detecting grasshoppers so we use F1-score by setting β = 1

which applies the same weight to precision and recall [39]. The definition of Fβ is provided as

follows.

Fβ = (1 + β2)× Precision×Recall
(β2 × Precision) +Recall

(17)

In practice, we receive different precisions and recalls according to different thresholds. It

results in different F1-scores. Here, the maximum value of F1-scores is used to assess the

object level performance. In addition, Precision vs. recall curve measures the trade-off between

precision and recall. The area under the Precision-Recall curve is called average precision, which

summarises the weighted increase in precision with each change in recall of different thresholds.

The definition of average precision (AP) is given by

AP =
n∑
i=1

(Ri −Ri−1)Pi (18)

where Pi and Ri are the precision and recall at the i-th threshold and n is the total number of

thresholds. Therefore, AP is a single number for indicating the object detection performance

with varying thresholds.

Similar to miss rate and FPPI , miss rate vs. FPPI curve measures the performance under

certain tolerances specified by the number of false positives. Such curve is called average miss

rate, which is computed by nine FFPI rates evenly spaced in log-space in the range 10−2 to

100 [44].
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2) Image Level Evaluation: To access the performance of image level, five metrics are selected

including sensitivity, specificity, precision, and Fβ score. Sensitivity is defined as the same

as recall. However, at the image level, sensitivity is the number of correctly identified true

grasshopper images over the total number of true grasshopper images. The specificity is defined

as follows:

Specificity =
tn

tn + fp
(19)

where tn are the true negatives. Here, tn represents the number of correctly identified no

grasshopper images. The sum of tn and fp is the total number images without grasshopper.

At image level, precision is the number of correctly identified true grasshopper images over the

total number of images which are identified with grasshopper(s) inside. The setting of Fβ follows

the suggestion in Section VI-B1, where β = 1. Because image level evaluation is formulated as

an image classification problem, confusion matrices are also provided.

VII. EXPERIMENTAL EVALUATION

In this section, experimental evaluation is conducted on the proposed algorithm for grasshopper

detection. In the training phase, the component number of GMM is optimised by Akaike’s

information criterion and Bayesian information criterion, which is investigated in Section VII-A.

To quantitatively evaluate the performance of image level and object level, different metrics

are used including intersection-over-minimum (IoM ) [9], miss rate, false positives per image

(FFPI) [33], precision, recall, specificity, accuracy and Fβ-score. The performance of the

proposed algorithm is compared against other algorithms in Section VII-B.

A. Tuning Gaussian Mixture Models

It is usually challenging to tune the component number k∗ for GMM for a specific applica-

tion. In order to derive “optimal” k∗, Akaike’s Information Criterion (AIC) [40] and Bayesian

Information Criterion (BIC) [41] are both introduced which are effective measures for assessing

the quality of mixture models. According to Akaike’s theory and Bayesian theory, the most

appropriate model has the smallest AIC value and BIC value. The definition of AIC and BIC

are provided by Equation (20) and Equation (21) respectively.

AIC = n× log
(

det(
1

n

n∑
i=1

ε(t, θ̂i)
T ε(t, θ̂)

)
+ 2np

+N × (log(2π) + 1)

(20)
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BIC = n× log
(

det(
1

n

n∑
i=1

ε(t, θ̂i)
T ε(t, θ̂)

)
+np × log(n) +N × (log(2π) + 1)

(21)

where n is the number of data samples. ε(t) is a 1-by-ny vector of prediction errors, where ny is

the number of model outputs. θi is the estimated parameters for i-th data sample with parameter

number of np. For a given number of components, the corresponding values of AIC and BIC

can be computed. The values of AIC and BIC with different component numbers ranging from

2 to 7 are calculated in Table III. It can be seen that the “optimal” components number of GMM

is 6 since both AIC and BIC reach the minimum values.

TABLE III

SUMMARY OF GRASSHOPPER DATASET

Component No. AIC(×104) BIC(×104)

2 4.5247 4.5301

3 4.4515 4.4599

4 4.4179 4.4293

5 4.3939 4.4083

6 4.3241 4.3415

7 4.3451 4.3655

B. Performance of Grasshopper Detection and Recognition

In this section, the performance is evaluated at region proposal level, image level, object level

and their combination. Deep neural networks require a large amount of labelled data to train

from scratch. However, collecting sufficient data and manually labelling these data might be

infeasible in many cases like grasshopper detection and recognition. A promising alternative is

transfer learning with fine-tuning. In this paper, transfer learning is used both in object detection

and image classification and the parameters of transferred neural networks are fine-tuned. At

object level, a faster R-CNN object detection network is trained. It is difficult to determine

the number of layers to be transferred for grasshopper detection. Here, we attempt to make

full use of the low-level features from a pre-trained deep neural network, where the features are

generated from convolutional layers. Alexnet [45] is used as a pre-trained deep neural network for

conducting transfer learning and fine-tuning. Subsequently, fully connected layer(s) are replaced

and the new obtained network is trained with grasshopper data again for the sake of fine-tuning.
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(a) Region proposal network (glass cage dataset) (b) Probabilistic region proposal network (glass cage

dataset)

(c) Region proposal network (open field dataset) (d) Probabilistic region proposal network (open field

dataset)

Fig. 3. Advantages of probabilistic region proposal network and image classification network (ICN). Blue dash circles in (a)

show the results of region proposal network and red dash circles in (b) show the results of probabilistic region proposal network

on glass cage dataset; Blue dash circles in (c) show the results of region proposal network and red dash circles in (d) show

the results of probabilistic region proposal network on open filed dataset. We can see that some incorrect region proposals are

removed with using ICN showing in red cycles compared to without using ICN showing in blue cycles.

We compared the results of transferring all fully connected (AFC) layers and only last fully

connected (LFC) layer. More details are provided in Section. V.B.2. At image level, we conduct

transfer learning and fine-tuning for the pre-trained network following the suggestions from [46].

1) Incorrect Region Proposals Removal: The proposed probabilistic region proposal network

not only considers the category (grasshopper or background) of proposed regions, but also

takes the goodness of the proposed bounding boxes into account. The latter is estimated by

the likelihood of the GMM. Such a design helps remove incorrect proposals by stochastic region
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proposing. As illustrated by the comparison between Fig. 3(a), Fig. 3(c) and Fig. 3(b) and

Fig. 3(d), some incorrect region proposals are removed by considering the attributes of region

proposals, which is highlighted by red dash circles compared to blue dash circles.

2) Object Level Performance: To evaluate the performance of the proposed algorithm at object

level, several algorithms are implemented and compared in grasshopper detection and recognition,

which includes ACF [33], R-CNN with transferring last or all fully connected layer(s) [34], faster

R-CNN with transferring last or all fully connected layer(s) [36], our proposed faster R-CNN

with bounding box constraints (BBC), and our proposed probabilistic faster R-CNN. Because

this section focuses on object level performance evaluation, probabilistic faster R-CNN does not

integrate with image classification network (ICN). The comparative results in terms of average

precision (AP), average miss rate (AMR) and maximum F1-score are summarised in Table IV

and V.

TABLE IV

COMPARISON OF OBJECT LEVEL ON GLASS CAGE DATASET

Algorithm Average Precision

(AP)

Average Miss Rate

(AMR)

Max F1-score

ACF 0.39 0.85 0.4784

R-CNN + Transfer AFC 0.53 0.60 0.6725

R-CNN + Transfer LFC 0.50 0.58 0.6474

Faster R-CNN + Transfer AFC 0.52 0.78 0.5558

Faster R-CNN + Transfer LFC 0.77 0.58 0.7990

Ours (Faster R-CNN + Transfer LFC + BBC) 0.78 0.56 0.7979

Ours (Probabilistic Faster R-CNN + Transfer

LFC + SRP without ICN)

0.79 0.55 0.8059

The following observations can be made from Table IV and V : (1) Regarding AP, AMR

and F1-score, the proposed algorithm outperforms other algorithms, which achieves an AP of

0.88, an AMR of 0.46, and a F1 score of 0.9157 on the open field dataset. Compared to (Faster

R-CNN + Transfer LFC), our proposed algorithm (Probabilistic Faster R-CNN + Transfer LFC

+ SRP) can improve the AP from 0.82 to 0.88 (an improvement of 7.3%) and reduce ARM from

0.59 to 0.46 (an improvement of 22.0%). (2) Compared to ACF, all deep learning algorithms

are much better in terms of AP, AMR, and F1-score, especially for the proposed algorithm.

(3) Adding constraints of bounding boxes (e.g. height and width) can improve AP from 0.82

to 0.87 and reduce AMR from 0.59 to 0.51. However, integrating uncertainty from end to end
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TABLE V

COMPARISON OF OBJECT LEVEL ON OPEN FIELD DATASET

Algorithm Average Precision

(AP)

Average Miss Rate

(AMR)

Max F1-score

ACF 0.49 0.89 0.5712

Faster R-CNN + Transfer LFC 0.82 0.59 0.8394

Ours (Faster R-CNN + Transfer LFC + BBC) 0.87 0.51 0.8796

Ours (Probabilistic Faster R-CNN + Transfer

LFC + SRP without ICN)

0.88 0.46 0.9157

(Probabilistic Faster R-CNN + Transfer LFC + SRP) is a more efficient method which has better

performance with regard to AP, AMR, and F1-score compared with adding constraints (Faster

R-CNN + Transfer LFC + BBC). (4) According to our experiment setting, the convolutional

layers and first several fully connected layers of pre-trained neural network can be directly used

for feature extraction without reinitialization. Transferring last fully connected layer provides

better results than transferring all fully connected layers.

3) Image Level Performance: In contrast to the evaluation of object level, image level evalua-

tion is to assess the performance of correctly recognising grasshopper(s) containing in an image.

In this section, the proposed algorithm with an image classification network is also implemented

and compared with the algorithms assessed in Section VII-B2. The comparative results are

summarised in Table VI and VII based on precision, recall, specificity, accuracy and F1-score.

Two key observations can be drawn from Table VI and VII: (1) The proposed algorithm

with image classification network provides the best performance with regard to all image level

evaluation performance. More specifically, our proposed algorithm can achieves an accuracy of

90.2%, a F1 score of 0.9095, and a specificity of 80.6% in an open filed. Despite ACF yields

a surprising good performance for the cage dataset, its performance significantly decreases for

the open field. Compared to the ACF performance in the open field, our proposed algorithm

improves 11.8% on accuracy, 30.4% on specificity, and 8.7% on F1-score due to the powerful

feature extraction property of deep CNNs [47]. (2) Compared to object detection purely using

deep learning, ACF is more capable of correctly recognising grasshoppers contained in an image

due to handcraft features of ACF performing well in object recognition (image level). However,

it cannot locate the positions of grasshopper well within an image because conventional methods

(e.g. slide windows) underperform in proposing fine region of interests (RoI) compared to region
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proposal network which is a learning-based region proposal method. (3) It is evident that the

ICN significantly improve the object detection performance at the image level. The reason is that

pure deep convolutional neural networks for object detection focus on local information with

neglecting the information from entire image, which lead to underperform our proposed method

with ICN taking image level information into account through a image classification network.

TABLE VI

PERFORMANCE COMPARISON AT IMAGE LEVEL ON GLASS CAGE DATASET

Algorithm Precision Recall Specificity Accuracy F1-score

ACF 98.4% 100% 99.1% 99.4% 0.9919

R-CNN + Transfer AFC 61.4% 100% 63.1% 76.7% 0.7608

R-CNN + Transfer LFC 76.5% 100% 82.0% 88.7% 0.8669

Faster R-CNN + Transfer AFC 57.2% 100% 56.2% 72.4% 0.7277

Faster R-CNN + Transfer LFC 60.5% 100% 61.6% 75.8% 0.7539

Ours (Faster R-CNN + Transfer LFC + BBC) 60.5% 100% 61.8% 75.9% 0.7539

Ours (Probabilistic Faster R-CNN + Transfer LFC + SRP) 60.5% 100% 61.8% 75.9% 0.7539

Ours (Probabilistic Faster R-CNN + Transfer LFC + SRP + ICN) 99.2% 100% 99.5% 99.7% 0.9960

TABLE VII

PERFORMANCE COMPARISON AT IMAGE LEVEL ON OPEN FILED DATASET

Algorithm Precision Recall Specificity Accuracy F1-score

ACF 71.9% 100% 61.8% 80.7% 0.8365

Faster R-CNN + Transfer LFC 51.1% 100% 6.5% 52.7% 0.6764

Ours (Faster R-CNN + Transfer LFC + BBC) 51.1% 100% 6.5% 52.7% 0.6764

Ours (Probabilistic Faster R-CNN + Transfer LFC + SRP) 52.0% 100% 9.7% 54.4% 0.6842

Ours (Probabilistic Faster R-CNN + Transfer LFC + SRP + ICN) 83.4% 100% 80.6% 90.2% 0.9095

4) Object Level Performance Enhanced by Image Level Classification: An image classification

network not only provides an accurate predictions of containing grasshopper(s) at image level

classification, but also enhances the average precision while reducing average miss rate at object

level. To quantitatively prove this argument, faster R-CNN, the proposed algorithm without an

ICN and the proposed algorithm with an ICN are compared. The experimental results indicate

that the proposed algorithm with an ICN has the best performance with AP of 0.91, AMR of

0.36, max F1-score of 0.9263, which is displayed in Table VIII. Moreover, from Table VI and

VII, we can see that the false positives can be reduced by using an ICN.
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TABLE VIII

PERFORMANCE WITH USING IMAGE CLASSIFICATION NETWORK ON DATASETS

Algorithm Average Precision (AP) Average Miss Rate (AMR) Max F1-score

Glass Cage Grasshopper Dataset

Faster R-CNN + Transfer LFC 0.77 0.58 0.7990

Ours (Faster R-CNN + Transfer LFC + BBC) 0.78 0.56 0.7979

Ours (Probabilistic Faster R-CNN + Transfer LFC +

SRP)

0.79 0.55 0.8059

Ours (Probabilistic Faster R-CNN + Transfer LFC

+ SRP + ICN)

0.81 0.49 0.8367

Open Field Grasshopper Dataset

Faster R-CNN + Transfer LFC 0.82 0.59 0.8394

Ours (Faster R-CNN + Transfer LFC + BBC) 0.87 0.51 0.8796

Ours (Probabilistic Faster R-CNN + SRP + Transfer

LFC)

0.88 0.46 0.9157

Ours (Probabilistic Faster R-CNN + Transfer LFC

+ SRP + ICN)

0.91 0.36 0.9263

5) Computation time: In grasshopper detection, testing time is more important than training

time particularly when the information is required for real-time variable rate treatment. We can

see that our proposed algorithm (Probabilistic Faster R-CNN + Transfer LFC + SRP) outperforms

others in testing time as shown in Table IX. This is because our proposed algorithm (Probabilistic

Faster R-CNN + Transfer LFC + SRP) removes incorrect region proposals by considering the

attributes (e.g. size and shape) and less region proposals are involved in executing Non-Maximum

Suppression (NMS) compared to faster R-CNN. Such a design helps to reduce the computation

load so our proposed algorithm (Probabilistic Faster R-CNN + Transfer LFC + SRP) outperforms

others in testing time even though our algorithm looks more complicated. For training time,

our proposed algorithm (Probabilistic Faster R-CNN + Transfer LFC + SRP) takes a little bit

more time than faster R-CNN because it needs to train a GMM to model the attributes of

region proposals. When our proposed algorithm (Probabilistic Faster R-CNN + Transfer LFC +

SRP) is combined with image classification network (ICN), its performance (e.g. AP, AMR, and

accuracy) is further improved with external computation load to train the ICN.

May 18, 2021 DRAFT



NEUROCOMPUTING 23

TABLE IX

COMPARISON OF COMPUTATION LOAD

Algorithm Training Time (second) Testing Time (second per image)

Faster R-CNN + Transfer LFC 1.3153× 103 0.1141

Ours (Probabilistic Faster R-CNN + Transfer LFC + SRP) 1.3527× 103 0.1098

Ours (Probabilistic Faster R-CNN + Transfer LFC + SRP + ICN) 1.4096× 103 0.1610

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a probabilistic faster R-CNN with stochastic region proposing, where the

uncertainty of grasshopper(s) detection is passed from end to end. In the proposed algorithm,

three networks are trained including: a probabilistic region proposal network, an image clas-

sification network, and an object detection network. The probabilistic region proposal network

tunes the probability of proposing regions with the help of GMM, which improves the average

precision whilst reducing the average miss rate as shown in experimental results of this paper.

The image classification network returns the probability that grasshoppers are contained in an

image, which performs well on image classification. The object detection network provides the

confidence scores for each region proposal. The uncertainty of these three networks is fused by

Bayesian probabilistic inference to derive final confidence scores for region proposals. Eventually,

a proposed stochastic region proposing algorithm generates region proposals according to the

final confidence scores, which is more robust compared to deriving region proposals by using a

predetermined threshold.

The proposed algorithm is evaluated by using recently collected grasshopper datasets of

different densities and under different light conditions. Both at object level and image level, the

proposed algorithm achieves the best performance among all compared algorithms in an open

filed. At object level, the proposed algorithm outperforms other algorithms in terms of average

precision (0.91), average miss rate (0.36), and maximum F1-score (0.9263). At image level, the

proposed algorithm can extensively reduce the false positive rate for determining the existence of

grasshoppers. The proposed method is also applicable to other remote sensing applications such

as weed detection [29], crop yield estimation [30], animal/wildlife monitoring (e.g. sheep/cow

detection and counting) [31], forest management [32] and other pest detection applications.

This paper mainly focuses on detecting grasshoppers with an RGB image and initially demon-

strating its feasibility by using recently collected grasshopper datasets. There is still a room for
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further development. For example, the proposed algorithm and architecture may be transferred to

other remote sensing applications such as forest resource monitoring and plant disease manage-

ment. The challenge is that these applications prefer to use a multispectral or hyperspectral cam-

era rather than an RGB camera. Therefore, how to adapt the proposed algorithm on multispectral

or hyperspectral image data will be the next work. As illustrated by experimental results in this

paper, the proposed algorithm also can alleviate the problem caused by the lack of suitable loss

function. For specific applications, it may be difficult to integrate prior information and human

expert knowledge into a cost function. Moreover, it is challenging to tune parameters and to

obtain global optimisation when embedding many terms into a cost function. Such a manner

causes difficulty in balancing the terms of cost function, even leads to overfitting. Taking this into

account, we design the proposed probabilitic model that allows us to embed prior knowledge,

such as shape prior, objectness, global information (object recognition for image level), and

object detection (object level) into the process pipeline so that they can integrate with deep

learning features to improve the performance.
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