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Abstract

A multi-objective optimization model for the problem of gesture segmentation is

formulated, and a method of solving the model based on a two-phase estimation

of distribution algorithm is presented. When building the model, the positions

of a series of pixels are taken as the decision variable, and the differences be-

tween the colors of pixels and those of a hand are taken as objective functions.

A method of gesture segmentation based on a two-phase estimation of distri-

bution algorithm is proposed according to the correlation among the positions

of pixels. The method divides the solution of the problem based on evolution-

ary optimization into two phases, and uses different estimation of distribution

algorithms in different phases. In the first phase, the probability model of candi-

dates is formulated by a number of intervals given the fact that the positions of

hand pixels distribute in several intervals. In the second phase, the probability

model of candidates is built through a series of segments since the positions of
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hand pixels further distribute around curves. A series of pixels constituting a

hand region are obtained based on sampling by the above probability models.

The proposed method is applied to 2515 problems of gesture segmentation, and

is compared with the existing methods. The experimental results demonstrate

the effectiveness of the proposed method.

Keywords: Gesture segmentation, Estimation of distribution algorithm,

Two-phase, Probability model, Sampling

1. Introduction

Human-computer interaction is an important way to fulfill complex tasks. In

the process of human-computer interaction, making a computer understand the

behavior of a human is of considerable importance. Among various behaviors,

the behavior based on human gestures expresses rich information. Therefore,5

correctly identifying a human gesture is very helpful for the cooperation of a

human and a computer.

Segmenting a hand region from a background image is a precondition for

correctly identifying a human gesture, which forms the problem of gesture seg-

mentation. Image segmentation is one of the popular methods for solving this10

problem.

A color of a pixel can be expressed by a color space such as YCbCr or RGB.

YCbCr is a representative color space in skin color segmentation [26]. In this

space for skin color, component Y represents luminance, the value of which can

be arbitrary. However, Cb or Cr refers to chrominance with its values obeying15

its own Gaussian distribution. It is further observed that the value of Cb or Cr

of a skin color falls in an interval, and the best Cb or Cr value of a skin color

is 109.38 or 152.02 respectively [9]. As a result, we can select pixels whose Cb

or Cr values are closest to 109.38 or 152.02 from the pixels of a gesture image.

Following that, we then take the selected pixels as the hand pixels, and obtain20

their Cb and Cr values. In this way, we can segment the hand region from the

gesture image. Essentially, selecting the hand pixels whose Cb or Cr values are
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closest to 109.38 or 152.02 is a multi-objective optimization problem. This is

why gesture segmentation can be formulated as a multi-objective optimization

problem.25

The purpose of gesture segmentation is essentially to obtain a hand region

from a gesture image. The existing methods of gesture segmentation are mainly

implemented based on known skin colors. However, the color of a hand region

is actually unknown and the obtained hand region via known skin colors might

be inaccurate. For instance, the Cb or Cr value of the color of the obtained30

hand region is closest to 109.38 or 152.02. But the color may be regarded as

a non-skin color according to known skin colors. Since gesture segmentation is

formulated as a multi-objective optimization problem, we can obtain the hand

region based on its own color. As a result, formulating gesture segmentation

as a multi-objective optimization problem can obtain the hand region, which35

cannot be obtained by the existing methods.

To fulfill the task of image segmentation based on skin colors [7,15], a color

space is first selected, a model of skin colors is then built based on a training

sample set, and employed to distinguish pixels belonging to either skin colors or

not. The distribution of skin colors in the color space is random and previous40

methods of segmenting skin colors have limitations for hand colors with a low

probability of occurrence.

Estimation of Distribution Algorithm (EDA) is a population-based evolu-

tionary algorithm guided by the theory of statistical learning. The algorithm

expresses the distribution of candidates in a search space by a probability model.45

EDA first builds a probability model that reflects the distribution of candidates

by using statistical learning, and then produces a temporary population by

sampling the probability model. Finally, it generates an offspring population by

selecting superior individuals from the united population formed based on the

father population and the temporary population. EDA has been successfully50

applied in various fields [22,39,45].

Building the probability model of candidates is the core of EDA. When build-

ing the probability model, the following two aspects should be investigated, i.e.,
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how to obtain information for building the probability model and how to express

the probability model. For the first, information is the precondition of building55

a probability model, and precise information is helpful to building a reasonable

probability model. The second is the base of generating new candidates by

sampling, and a reasonable probability model is beneficial to the production of

high quality candidates.

In this study, a multi-objective optimization model for the problem of gesture60

segmentation is formulated, and a method of solving the model based on a two-

phase estimation of distribution algorithm is presented. When building the

model, the positions of a series of pixels are taken as the decision variable, and

the differences between the colors of pixels and those of a hand are taken as the

objective functions. A method of gesture segmentation based on the two-phase65

estimation of distribution algorithm is proposed according to the correlation

among the positions of pixels. The method divides the process of solving the

problem based on evolutionary optimization into two phases, and uses different

estimation of distribution algorithms in different phases. In the first phase, the

probability model of candidates is formulated as a number of intervals given70

the fact that the positions of hand pixels distribute in several intervals. In

the second phase, the probability model of candidates is built as a series of

segments since the positions of hand pixels further distribute around curves. A

series of pixels constituting a hand region are obtained based on sampling by

the probability models. Having solved the formulated model, the best pixel set75

for forming a human gesture is obtained.

An evolutionary algorithm has the capability to solve a multi-objective op-

timization problem. The objective values of the multi-objective optimization

problem are obtained by the color values of the pixels, and therefore are not

continuous. As a result, the proposed evolutionary algorithm needs to deal with80

this discrete problem. Since the positions of hand pixels have correlations among

themselves, we can guide the population evolution process to obtain accurate

solutions in a limited time by using the above correlation characteristic. To this

purpose, we propose an EDA to deal with the gesture segmentation problem
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and quickly obtain accurate solutions. In the literature, although the famous85

evolutionary algorithm NSGA-II has been shown to deal with such a multi-

objective optimization problem for gesture segmentation with discrete objective

values, it does not take full advantage of the above correlation characteristic,

and therefore its solutions are inferior to our proposed EDA.

In summary, this paper provides a feasible way to solve the problem of90

gesture segmentation and the following three contributions: (1) building a

multi-objective optimization model for the problem of gesture segmentation,

(2) proposing a two-phase estimation of distribution algorithm based on the

correlation among the positions of hand pixels, and (3) verifying the effective-

ness of the proposed model and algorithm by a series of experiments.95

The remainder of this paper is arranged as follows. Section 2 reviews re-

lated work. A multi-objective optimization model for the problem of gesture

segmentation is built in Section 3. Section 4 proposes a two-phase estimation

of distribution algorithm based on the correlation among the positions of hand

pixels. The applications of the proposed model and algorithm in real-world100

problems of gesture segmentation are provided in Section 5. Finally, Section 6

concludes the whole paper, and points out topics to be further studied.

2. Related work

In this study, we focus on the problem of gesture segmentation, formulate its

multi-objective optimization model, and present a two-phase EDA to solve the105

model. Therefore, work related to this paper includes the following two main

parts: methods of gesture segmentation based on skin colors and evolutionary

algorithms for multi-objective optimization problems.

2.1. Gesture segmentation based on skin colors

Gesture segmentation based on skin colors can generally be divided into the110

following two steps: transforming a color space and modeling skin colors.
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Different color spaces represent different features of a skin color. The dis-

tribution of skin colors is concentrated in a variety of color spaces, and is im-

pacted by luminance. The color spaces that easily distinguish luminance from

chrominance, such as YCbCr and HSV, can be employed to reduce the negative115

influence of luminance [18,29].

In order to build a model of skin colors, a mathematical expression of the skin

colors based on a given sampling data set is formulated. Previous methods of

modeling skin colors can be mainly divided into the following three categories,

restricting the range of the values of each skin color, building the Gaussian120

distribution model of skin colors, and depicting the histogram that reflects the

probability distribution of skin colors.

Restricting the range of the values of each skin color can be done using

relatively simple methods. In reference [7], the values of Cb and Cr of skin

colors are restricted to meet the following conditions: 77 ≤ Cb ≤ 127 and125

133 ≤ Cr ≤ 173. In reference [15], the values of Cb and Cr of skin colors are

in specific ranges related to Y, and a pixel can be taken as a skin pixel if the

values of its HSV vector are in a tri-dimensional space.

The Gaussian distribution model of skin colors includes the case with a

single peak [9,24] and the case with a mixed Gaussian distribution [13,23]. The130

Gaussian distribution model is built based on the fact that the values of skin

colors in a color space are continuous, and obey the Gaussian distribution. Based

on the Gaussian distribution model with a single peak, the similarity between

the color vector of a pixel and that of the best skin color can be calculated. The

model with the mixed Gaussian distribution consists of several models with a135

single peak [23], and can approximate any distribution model in an arbitrary

shape. Compared with the model with a single peak, the mixed counterpart is

a more accurate reflection of the distribution of skin colors.

The probability distribution histogram of skin colors depicts the probabil-

ity of which skin colors emerge in each unit of a color space. To obtain this140

histogram, the probability of which a sampling data set emerges in each unit

is calculated. The methods of seeking pixels of skin colors based on the above
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histogram can be divided into the following two categories, Bayesian classifiers

and regularized query tables [3,8].

In recent years, there have been many research achievements with regard145

to gesture segmentation. In [21], Karishma et al. proposed an algorithm in-

corporating a skin color model and background subtraction that yields robust

output in the presence of drastic illumination changes. In [42], Zhang et al.

presented a hand segmentation method based on the fuzzy C-means clustering

algorithm and the mixed skin-color model. In this method, images handled150

by the mixed skin-color model and the clustering algorithm are processed by

the morphological process and the logic operation. In [43], Zhang et al. pro-

posed a method based on YCbCr and the k-means clustering algorithm for

gesture segmentation. Based on this method, a hand binary image is obtained

by clustering the values of Cb and Cr, and gesture segmentation is fulfilled by155

conducting the morphological process of a hand binary image. In [20], Ju et al.

proposed a modified expectation-maximization algorithm to segment gestures

in the RGB-Depth database. They proposed an approach to refine the edge

of the tracked gesture by applying this algorithm based on Bayesian networks.

The proposed approach has potential to improve the performance of gesture160

recognition. Dawod et al. employed contrast adjustment and motion detection

analysis to obtain the start and the end points of each individual moving gesture

from continuous gestures [10]. Mahmoodi et al. obtained skin regions by using

a fusion feedback mechanism, a modified Bayesian classifier, and ternary-based

human motion detection [27]. Gupta et al. built a system with three robust165

algorithms based on different color spaces for skin classification [17]. Wu et al.

proposed a semi-supervised hierarchical dynamic framework based on a Hidden

Markov Model for gesture segmentation [38].

2.2. Estimation of distribution algorithms

In real-world applications, one often encounters problems with simultane-170

ously optimizing multiple objectives under specific conditions, also known as

multi-objective optimization problems. In a multi-objective optimization prob-
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lem, its objectives often conflict with each other. That is, the improvement of

one objective is at the cost of the deterioration of one or more other objectives.

Therefore, one can obtain a solution set that compromises all the objectives175

of the optimization problem. To tackle multi-objective optimization problem-

s, many scholars have combined evolutionary algorithms with multi-objective

optimization, developed a variety of methods, and formed a popular research

topic, i.e., multi-objective evolutionary optimization.

Rosenberg first employed evolutionary algorithms to solve multi-objective180

optimization problems. Deb et al. proposed a competent evolutionary algorith-

m, NSGA-II [12], for solving multi-objective optimization problems. Later a

variety of efficient multi-objective evolutionary algorithms have been proposed

based on NSGA-II [4,11].

Jin et al. pointed out that using Pareto-based multi-objective optimization is185

a good choice to tackle machine learning problems, particularly due to the great

success of multi-objective evolutionary optimization and other population-based

optimization [19]. Pareto-based multi-objective learning has been successful in

addressing a variety of topics on machine learning, such as feature selection,

clustering, generalization, ensemble, and knowledge extraction. Multi-objective190

learning can gain a deep insight into a problem by analyzing the Pareto front.

An overview on Pareto-based multi-objective learning and case studies to illus-

trate its advantages were provided in [19]. Albukhanajer et al. adopted multi-

objective evolutionary optimization to tackle functions in the Trace Transform

for extracting image features robust to noise and invariant to geometric defor-195

mations such as rotation, scale, and translation (RST) [2]. To this end, they

employed sample images with noise and RST distortion when optimizing the

Trace Transform with multi-objective evolutionary optimization, termed evolu-

tionary Trace Transform with noise (ETTN). Experimental studies demonstrate

that the proposed ETTN is very promising in that it is computationally efficient,200

invariant to RST deformation, robust to noise, and generalizable.

Compared with genetic algorithms based on the micro mode in the search

space, Estimation of Distribution Algorithm is based on the macro counterpart
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in the search space [24,34], and has a stronger capability for exploration and

a more rapid convergence speed [14,40]. Zhang et al. proposed the regularity205

model-based multi-objective estimation of distribution algorithm (RM-MEDA)

[31,41], and employed it to solve continuous multi-objective optimization prob-

lems. This method was developed based on the Karush-Kuhn-Tucker condition.

That is, the Pareto-optimal set of a continuous multi-objective optimization

problem forms a piece-wise continuous (m-1)-dimensional manifold in the ob-210

jective space. Here, m is the number of objectives. At each generation, RM-

MEDA builds a probability model by using the approach of the local principal

component analysis, generates a number of candidates by sampling the mod-

el, and selects solutions with the number of the population size for the next

generation by the non-dominated sorting that was originally used in NSGA-215

II. Previous studies have shown that RM-MEDA is superior to NSGA-II when

solving continuous multi-objective optimization problems with variable linkages.

In multi-objective evolutionary optimization, how to generate new trial so-

lutions has not been well studied. Crossover and mutation are directly used

in most of the current multi-objective evolutionary algorithms. This could be220

one of the major reasons why these algorithms do not perform well on multi-

objective optimization problems with variable linkages. In reference [41], the

regularity property of continuous multi-objective optimization problems was

used as a basis for an estimation of distribution algorithm when dealing with

variable linkages. RM-MEDA models a promising area in the search space225

by a probability model whose centroid is a continuous manifold. Continuous

two-objective evolutionary optimization uses the 1-dimensional local principal

component analysis to build its probability model of several segments.

In reference [45], Zhou et al. suggested combining an EDA with cheap

and expensive local search methods to make use of both individual location230

information and global statistical information. This EDA is used to solve a

continuous single-objective optimization problem. In this EDA, parts of new

solutions are generated by refining a parent solution through a cheap local search

method that does not need any function evaluation, and the rest is sampled from
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a modified univariate histogram probabilistic model. The modified univariate235

histogram probabilistic model is the histogram with variable width, and is based

on the distribution of each component of the optimal solution of the continuous

single-objective optimization problem. An expensive local search method is used

to improve a promising solution found when the population converges.

Other research achievements of EDA have been obtained in recent years.240

Reference [25] proposed a Boltzmann-based EDA for resource scheduling. This

EDA is based on an approximation of the Boltzmann distribution. Such an

approximation method is a tradeoff between solution accuracy and complexity.

Reference [6] introduced a hybrid approach consisting of a variable neighbor-

hood search and a new EDA to deal with the flow-shop scheduling problem.245

This new EDA has the ability to discover promising regions in the search s-

pace. Reference [35] proposed an EDA with stochastic local search to tackle

the uncertain capacitated arc routing problem. In this method, a two phase

stochastic local search procedure is integrated with an EDA to minimize the

maximal total cost over a set of different scenarios. The stochastic local search250

procedure avoids excessive fitness evaluations in the local search. Reference [37]

proposed an EDA-based memetic algorithm for solving the distributed assembly

permutation flow-shop scheduling problem with the purpose of minimizing the

maximal completion time. In this EDA, a novel selective-enhancing sampling

mechanism for generating new solutions by sampling the probability model is255

proposed. The EDA and a local search are incorporated within the memetic

algorithm framework. Reference [36] presented a hybrid Pareto-archived EDA

to solve the mode-identity resource-constrained project scheduling problem with

makespan and resource investment criteria. In this EDA, a Pareto archive is

used to preserve the non-dominated solutions, and another archive is used to260

preserve the solutions for updating the probability model. In addition, a specific

updating mechanism and a sampling mechanism are provided for the probability

model to track the most promising search area.

Zhou et al. presented an EDA to minimize makespan in a no-wait flow-

shop scheduling problem with two batch processing machines [46]. Valdez et265
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al. presented a structure-control design method based on an EDA for simul-

taneously optimizing both the mechanical structure and the control system of

a parallelogram linkage robot [33]. Wan et al. used an EDA to solve a spe-

cial class of nonlinear bilevel programming problems in which the lower level

problem is a convex programming problem for each given upper level decision270

[34]. Muelas et al. presented a comparative study for a distributed univariate

EDA and a multivariate version over a wide set of parameters and problems,

and compared two alternative methods for exchanging information [28]. Sun et

al. presented a multi-cycled sequential memetic computing structure for con-

strained optimization, and applied an EDA to explore the search space until275

convergence at each cycle [32]. Alberto et al. compared several variation op-

erators based on Pareto efficiency, extracted from EDAs, differential evolution,

evolutionary programming, and evolution strategies to determine whether they

increase the performance of the non-Pareto based versions or not [1]. Giagkiozis

et al. created a method based on an EDA with low-order statistics, and gener-280

alized decomposition to solve many-objective optimization problems [16].

3. A multi-objective optimization model for gesture segmentation

A color of a pixel is composed of red, green and blue (RGB), and each of

them has 256 gradations of brightness in image processing. RGB is a basic color

space, and it can be transformed to other color spaces such as YCbCr. The color285

of each pixel in a gesture image can be expressed by Y, Cb and Cr with different

gradations. Luminance and chrominance are separated in YCbCr. A color with

different luminance can be expressed by the color plane, i.e., CbCr. According

to [15], the skin colors with different luminance form a region in the color plane

CbCr, but the shape of that region is uncertain. Due to the randomness of the290

distribution of skin colors, it is impossible to propose a specific expression for

the distribution region of all skin colors in the CbCr plane.

YCbCr is a commonly used color space for segmenting skin colors. According

to [15], the values that have the best match with those of Cb and Cr of skin
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colors are 109.38 and 152.02, respectively. Therefore, one can select a series295

of pixels with the closest values to those of the best skin color from a gesture

image.

To fulfill this task, the following multi-objective optimization model is for-

mulated:

min
−→
F (x) = (f1(x), f2(x)) s. t. x ∈ 2X (1)300

where X is the set of positions of all the pixels in a gesture image, 2X represents

the power set of X, x refers to a number of positions of the selected pixels, with

each being different from the others, and denoted as x = (x1, x2, · · · , xn), xi =

(xi, yi), i = 1, 2, · · · , n. Here, n is the number of the selected pixels. In addition,

xi ∈ [x, x], yi ∈ [y, y] where x is the lower bound of xi, x is the upper bound of305

xi, y is the lower bound of yi, and y is the upper bound of yi.

In addition, f1(x) means the distance between the values of Cb of a set of

pixels and that of the best skin color, whose expression is provided as follows:

f1(x) =

n
∑

i=1

|Cb(xi)−Cb|

n
(2)

where Cb(xi) is the value of Cb of xi, and Cb = 109.38 represents that of the310

best skin color.

f2(x) reflects the distance between the values of Cr of a set of pixels and

that of the best skin color, with its expression as follows:

f2(x) =

n
∑

i=1

|Cr(xi)−Cr|

n
(3)

where Cr(xi) is the value of Cr of xi, and Cr = 152.02 means that of the best315

skin color.

One can obtain a series of pixels by solving (1), and form the ranges of the

values of Cb and Cr of these pixels. If the values of both Cb and Cr of a pixel

lie in the above ranges, the pixel will belong to a hand. In this way, the hand

can be segmented from a specific gesture image.320
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4. The proposed algorithm

4.1. Ideas

In the gesture image, the hand region is a continuous and closed region, and

its size is limited. Therefore, the horizontal coordinate xi and the longitudinal

coordinate yi of the hand pixel xi fall in bounded but unknown intervals respec-325

tively. A normal hand consists of five fingers and one palm where the fingers

and the palm can each bend and rotate. When a finger is straight, its front

or back projection on the plane can be represented by a rectangle. Since the

rectangle’s length is much larger than its width, the finger’s projection can ap-

proximately define a line segment. However, when the finger bends and rotates,330

its projection on the plane will define a curve segment with the hand pixel xi

distributing around the curve segment. Further, when the palm is opened, its

front or back projection on the plane can be similarly represented by several

rectangles, and its projection defines several line segments. In contrast, when

the palm bends and rotates, its projection defines several curve segments with335

the hand pixel xi distributing around several curve segments.

Based on the above analysis, the hand pixel xi has the following two features:

(1) its horizontal coordinate xi and its longitudinal coordinate yi are in bounded

intervals respectively; (2) xi distributes around several curve segments.

If x is an optimal solution of model (1), each xi in x represents the hand340

pixel, and each component of x meets the following conditions: (1) each xi or

yi is bounded in an interval with a feasible range [x, x] or [y, y], respectively;

(2) each xi = (xi, yi) distributes around a curve segment. In the following, we

firstly build two probability models of the components of a candidate solution

according to the above two conditions, and then propose two sampling meth-345

ods for the above two established probability models. Finally we obtain all

components of the candidate solution.

The distribution of xi or yi in an interval with the feasible range is uneven

and irregular following condition (1). However, if we select the pixel whose xi

and yi are both in their respective intervals, the selected pixel will fall into the350
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hand region, or the rectangular region determined by the hand region. To this

end, we first build one probability model following condition (1) and obtain

candidate solutions by sampling the probability model. After this step, we can

obtain the coordinate ranges of the hand region. Secondly, we build the second

probability model following condition (2), and obtain the candidate solutions355

by sampling the probability model. With this second step, we can eliminate

non-hand pixels from the above rectangular region.

4.2. Algorithm framework

The evolutionary solution process of model (1) can be divided into two phas-

es, which can be solved by two EDAs respectively. In the first phase, based360

on the fact that the position coordinates of the hand pixels distribute in the

intervals, several intervals are built as the probability model of candidate com-

ponents. The probability model of intervals causes the pixels of a population

to locate in the rectangular region determined by the hand coordinate ranges,

which is suitable for the randomly generated initial population. In the second365

phase, several line segments are built as the probability model of candidate

components in order to eliminate non-hand pixels from the rectangular region,

following the fact that the hand pixels distribute around several curve segments.

This second probability model of line segments causes the population’s pixels

to locate in the hand region, and it is suitable for the population which has370

evolved.

In each generation t, after the iteration of the algorithm, the size of the

population P (t) is N . The algorithm works as follows.

Step 1: Set t = 0, and randomly generate an initial population P (0).

Step 2: If the stopping condition is met, go to Step 9.375

Step 3: If t > T , go to Step 6.

Step 4: Build the probability model of candidate component intervals by the

non-dominated solution set of P (t).

Step 5: Sample and obtain a temporary population, Q(t), by the probability

model of intervals, and then go to Step 8.380
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Step 6: Build the probability model of candidate component segments by

the non-dominated solution set of P (t).

Step 7: Sample and obtain a temporary population, Q(t), by the probability

model of segments.

Step 8: Select individuals and obtain the offspring population, P (t+1), from385

P (t)∪Q(t) by the fast non-dominated sorting [12]. Set t = t+1, and go to Step

2.

Step 9: Return the non-dominated solutions of P (t) and end the algorithm.

4.3. The probability model of candidate component intervals

We use the fast non-dominated sorting [12] to select all the non-dominated390

solutions of P (t). According to condition (1), each xi or yi of an optimal so-

lution of model (1) falls into an interval, i.e., [a1, aM−1) or [b1, bM−1), respec-

tively. The distribution of xi or yi is uneven and irregular in [a1, aM−1) or

[b1, bM−1). In order to express the distribution of xi or yi more accurately, we

divide [a1, aM−1) or [b1, bM−1) into M − 2 small intervals with the same width,395

i.e., [am−1, am) or [bm−1, bm),m = 2, 3, · · · ,M − 1. Therefore, the distribution

of xi or yi is more even in each of these intervals. Following the above, we can

use a histogram to express the distribution of xi or yi.

The distribution probability of xi or yi in [x, a1) or [y, b1) is 0. However, the

distribution probability of xi or yi in each interval, [am−1, am) or [bm−1, bm),m =400

2, 3, · · · ,M − 1 is not 0, and all the M − 2 intervals are different from each oth-

er in general. Note that the distribution probability of xi or yi in [aM−1, x]

or [bM−1, y] is 0. As a result, the distribution of xi is regular, and can be

represented by M intervals among which the first and the M -th intervals are

[x, a1) and [aM−1, x], respectively, and the m-th (m = 2, 3, · · · ,M − 1) interval405

is [am−1, am). Similarly, the distribution of yi can also be represented by M

intervals among which the first and the M -th intervals are [y, b1) and [bM−1, y],

respectively, and the m-th (m = 2, 3, · · · ,M − 1) interval is [bm−1, bm).

For each of the non-coincident pixels of the optimal solution set of model

(1), the distribution of its xi or yi can also be expressed by a histogram. Thus,
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based on each of the non-coincident pixels of the optimal solution set of the

current population, P (t), we can employ the histogram with variable width [45]

to build theM intervals of its xi or yi. Following above, we can obtain the min-

imal and the sub-minimal values of xi, i.e., x
1
min, x

2
min, and the maximal and the

sub-maximal values of xi, i.e., x
1
max, x

2
max. Similarly, we can obtain the minimal

and the sub-minimal values of yi, i.e., y
1
min, y

2
min, and the maximal and the sub-

maximal values of yi, i.e., y
1
max, y

2
max. With x1min, x

2
min, x

1
max, x

2
max known, we

can obtain M intervals of xi, i.e., [x, a1), [a1, a2), · · · , [am−1, am), · · · , [aM−1, x].

Similarly, we can obtainM intervals of yi, i.e., [y, b1), [b1, b2), · · · , [bm−1, bm), · · · , [bM−1, y].

In the above intervals,

a1 = max
{

x1min − 0.5(x2min − x1min), x
}

,

aM−1 = min
{

x1max + 0.5(x1max − x2max), x
}

,

b1 = max
{

y1min − 0.5(y2min − y1min), y
}

,

bM−1 = min
{

y1max + 0.5(y1max − y2max), y
}

.

Each interval between the second and the (M − 1)-th interval of xi or yi has

the same width, i.e.,

am − am−1 =
1

M − 2
(aM−1 − a1)

or

bm − bm−1 =
1

M − 2
(bM−1 − b1), (m = 2, 3, · · · ,M − 1).

The width of either the first or the M -th interval changes with P (t), while

the width of each of the rest intervals changes with the width of either the first410

or the M -th interval. If a1 = x or aM−1 = x, the width of the first or the M -th

interval of [x, x] is 0. Similarly, if b1 = y or bM−1 = y, the width of the first or

the M -th interval of [y, y] is 0.

For each of the non-coincident pixels of the optimal solution set of the

current population, P (t), the number of its xi or yi falling into the m-th
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(m = 2, 3, · · · ,M − 1) interval is denoted as Aq,m, q = x or y. We further

define

Bq,m = Aq,m + 1, if m = 2, 3, · · · ,M − 1;Bq,m = 0.1, if m = 1,M.

In case the width of either the first or the M -th interval of the feasible range is

0, its Bq,m is 0.415

Following the above, the probability of candidate component xi or yi from

the m-th interval is defined as

P ′
q,m =

Bq,m

M
∑

m=1
Bq,m

.

For each of the non-coincident pixels of the optimal solution set of P (t), its

xi distributes in one of the M intervals, i.e.,

[x, a1), [a1, a2), · · · , [am−1, am), · · · , [aM−1, x]

by probability P ′
x,m while its yi distributes in one of the M intervals, i.e.,

[y, b1), [b1, b2), · · · , [bm−1, bm), · · · , [bM−1, y]

by probability P ′
y,m. As a result, we can obtain xi of the hand pixels by sam-

pling [x, a1), [a1, a2), · · · , [am−1, am), · · · , [aM−1, x] with probability P ′
x,m, and

yi of the hand pixels by sampling [y, b1), [b1, b2), · · · , [bm−1, bm), · · · , [bM−1, y]

with probability P ′
y,m. Finally, the aboveM intervals of xi or yi are the proba-

bility model for generating candidate components, and we call it the probability420

model of candidate component intervals.

Note that the value of M is mainly determined by the size of the hand

region. If the value of M is small the accuracy of the probability model will be

low, which is not beneficial to the evolution of the population. Otherwise, the

computational complexity of the evolution will be high.425

4.4. Sampling based on intervals

By sampling the probability model of candidate component intervals in the

decision space, a candidate solution can be obtained. Candidate component xi
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or yi should meet the following conditions: (1) the probability of generating xi

or yi based on the m-th (m = 1, 2, · · · ,M) interval is P ′
x,m or P ′

y,m, and (2)430

the distribution of xi or yi is even in the m-th interval. In addition, each pixel

of a candidate is different from that of the others based on the definition of x

in model (1).

We initially set x = φ, and use the following steps to generate candidate x

that meets the above conditions.435

Step 1: Select the m-th interval from M intervals with the probability of

P ′
x,m. If m = 1 or M , the m-th interval is [x, a1) or [aM−1, x]. If m =

2, 3, · · · ,M−1, them-th interval is [am−1, am). Generate a xi by evenly sampling

in the m-th interval.

Step 2: Select the m-th interval from M intervals with the probability440

of P ′
y,m. If m = 1 or M , the m-th interval is [y, b1) or [bM−1, y]. If m =

2, 3, · · · ,M − 1, the m-th interval is [bm−1, bm). Generate a yi by even sampling

in the m-th interval.

Step 3: If xi = (xi, yi) /∈ x, set x = x ∪ {xi}.

Step 4: If |x| = n, end the algorithm. Otherwise, go to Step 1.445

The above steps are the process of obtaining a candidate by sampling. We

execute the above process N times, and obtain N candidates. In this way, a

temporary population Q(t) can be obtained and its size will be N .

The histogram with variable width is used to build an EDA to solve a con-

tinuous single-objective optimization problem [45]. In model (1), the values450

of each decision component are continuous, but the values of each objective

component are discrete. As a result, model (1) is a discrete multi-objective

optimization problem. Each component of the optimal solution of a continuous

single-objective optimization problem is in an interval, which also applies to

each optimal solution of model (1). Therefore, we can also use the histogram455

with variable width to build an EDA to solve model (1). In the probability

model of candidate component intervals, the number of the intervals of compo-

nents of each optimal solution is two, i.e., [a1, aM−1) and [b1, bM−1). Instead, in

the probability model of candidate components in reference [45], the number of
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the intervals of components of the optimal solution equals the number of com-460

ponents. The rest of the probability model of candidate component intervals is

the same as that in [45]. Furthermore, apart from the fact that in our sampling

method of candidate components, each pixel of a candidate is different from the

others, the rest of our sampling method is the same as that in [45].

4.5. The probability model of candidate component segments465

After several iterations, many xi of the population enter or approach the

hand region. At each generation after T iterations, we build the probability

model of candidate component segments based on the non-dominated solution

set of P (t), and obtain a temporary population Q(t), until the population ends

the evolution.470

For xi of the population at generation T +1, its xi distributes in the range of

xi of the hand region, and its yi distributes in the range of yi of the hand region.

That is, xi distributes in a rectangular region determined by the hand region.

However, xi might distribute out of the hand region. According to condition (2)

in section 4.1, all the hand pixels distribute around several curves. Following475

[41], a curve can be approximated by one or more segments. That is, all xi of

an optimal solution of model (1) distribute around several segments. Since all

the non-coincident pixels of the optimal solution set of model (1) distribute in

the hand region, and therefore distribute around several segments, we can use

the 1-dimensional local principal component analysis algorithm [41] to build the480

probability model of candidate component segments.

We use the fast non-dominated sorting [12] to select all the non-dominated

solutions of P (t). We divide all the non-coincident xi of the non-dominated solu-

tion set of P (t) into L categories, with each corresponding to one segment. The

L segments are denoted as l1, l2, · · · , lL, and the sets of the pixels distributing485

around the line segments are denoted as C1, C2, · · · , CL, respectively.

We employ the 1-dimensional local principal component analysis algorithm

[41] to obtain C1, C2, · · · , CL of all the non-coincident xi in the non-dominated

solution set of P (t). The pixels are thereafter clustered into several categories,
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and the algorithm works as follows.490

Step 1: Randomly select L pixels, i.e., xi1 , xi2 , · · · , xiL , from all the non-

coincident xi of the non-dominated solution set of P (t); and generate L lines,

i.e., l1, l2, · · · , lL, based on the L pixels, with each passing through one pixel.

Step 2: Cluster all the non-coincident xi of the non-dominated solution set

of P (t) into L categories, i.e., C1, C2, · · · , CL, based on the distance between

each xi and each of the L lines, with Cj , j = 1, 2, · · · , L, being

Cj = {xi|D(xi, lj) ≤ D(xi, lk), ∀k 6= j, k ∈ {1, 2, · · · , L }}.

where D(xi, lj) is the distance between xi and lj .

Step 3: Let the mean value and the covariance of the pixel positions of Cj

be cj and Vj , respectively, which are given as follows.

cj =
1

|Cj |

∑

xi∈Cj

xi,

Vj =
1

|Cj | − 1

∑

xi∈Cj

(xi − cj)(x
i − cj)

T
.

where |Cj | is the number of pixels in Cj . Further lj has the following expression

lj =
{

l ∈ R2|l = cj + θuj , θ ∈ R
}

where uj is the feature vector corresponding to the largest eigenvalue of Vj .495

Step 4: If Cj , j = 1, 2, · · · , L, does not change, end the algorithm; otherwise,

go to Step 2.

With the above algorithm, we can obtain the pixels of the hand by sampling

around l1, l2, · · · , lL. Second, we consider the relationship between lj and Cj to

obtain the pixels of the hand. The projection of xi in Cj on lj is denoted as xil.

According to [41], we define the following parameter, di, based on the difference

vector between cj and xil:

di =
(

xi − cj
)T
uj

According to the expression of di, the absolute value of di is equal to the distance

between xil and cj . Further, we obtain the minimal and the maximal values of di
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for each pixel in Cj , i.e., dj and dj , respectively. So the projection of each pixel

in Cj on lj is on segment ϕj . According to [41], ϕj has the following expression

ϕj = cj + θuj , dj ≤ θ ≤ dj .

All the non-coincident pixels of the non-dominated solution set of P (t) dis-

tribute around ϕ1, ϕ2, ..., ϕL. We obtain the pixels of the hand by sampling

ϕ1, ϕ2, ..., ϕL. They form the probability model of the components of x.500

We lengthen ϕ1, ϕ2, ..., ϕL to expand the search scope of the probability

model, and obtain the probability model, ψj , j = 1, 2, · · · , L, as follows.

ψj = cj + θ′uj , dj − 0.25
(

dj − dj

)

≤ θ′ ≤ dj + 0.25
(

dj − dj

)

.

We call it the probability model of candidate component segments.

The value of L is mainly determined by the size of the hand region. If the

value is small the accuracy of the probability model will be low, which is not

beneficial to the evolution of the population. Otherwise, the computational

complexity of the evolution will be high.505

4.6. Sampling based on segments

We can obtain a candidate, x, by sampling the probability model, ψj . Com-

ponent xi, i = 1, 2, · · · , n of the candidate should meet the following conditions:

(1) the probability of generating xi by ψj , is equal to the ratio of the number

of pixels in Cj to the total number of pixels, (2) xi distributes evenly in the510

direction of ψj , and (3) xi distributes around ψj . In addition, the pixels of

different candidates are different from each other, according to the definition of

x in model (1).

We set x = φ. According to |Cj |, the probability of generating a pixel by

ψj is pj =
|Cj |

L
∑

k=1

|Ck|

, j = 1, 2, · · · , L. In addition, we can also obtain the second515

largest eigenvalue of Vj , i.e., λj , which reflects the deviation between the pixels

in Cj and their centers.

We employ the following steps to generate candidate x which meets the

above conditions.
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Step 1: Select ψj from L segments with the probability of pj .520

Step 2: Generate point (x′i, y
′
i) by evenly sampling ψj . Obtain the distur-

bance of (x′i, y
′
i), i.e., (∆x

′
i,∆y

′
i), by Gaussian sampling (the sampling variance

is λj). So x
i = (x′i +∆x′i, y

′
i +∆y′i) is the obtained pixel by sampling ψj .

Step 3: If xi is beyond the allowed scope, regenerate xi by the boundary

value of the scope.525

Step 4: If xi /∈ x, set x = x ∪ {xi}.

Step 5: If |x| = n, end the algorithm; otherwise, go to Step 1.

The above steps are the process of obtaining a candidate by sampling. We

execute the above process N times and obtain N candidates. Thus, a temporary

population, Q(t), is obtained and its size is N .530

The 1-dimensional local principal component analysis is used to build an

EDA to solve a continuous two-objective optimization problem [41]. Model (1)

is a discrete multi-objective optimization problem. All optimal solutions of a

continuous bi-objective optimization problem are around several segments, and

all pixels of each optimal solution of model (1) are also around several segments.535

Therefore, we will use the 1-dimensional local principal component analysis to

build an EDA to solve model (1). The probability model of candidate component

segments is built for each component of a candidate whereas the probability

model of candidates in reference [41] is built for each candidate. The rest of

the probability model of candidate component segments is the same as that in540

[41]. Apart from in our sampling method of pixels, each pixel of a candidate is

different from the others, the rest of our sampling method of pixels is the same

as that in [41].

4.7. Selection

The population at the t-th generation is P (t), and the temporary population545

obtained by the above method is Q(t). In order to produce the offspring popula-

tion, i.e., P (t+1), we first combine P (t) and Q(t). Then, we obtain the offspring

population based on the fast non-dominated sorting selection [12]. Interested

22



readers are suggested to refer to [12] for details of the fast non-dominated sorting

selection.550

5. Experiments

In this section, the effectiveness of the proposed model and algorithm is ver-

ified by a series of experiments. The problems to be verified are first proposed.

Following that, the hand images used in the experiments and the compared al-

gorithms are provided. Next, the performance index for the comparison among555

algorithms is given. Having described the experimental process, the experimen-

tal results are presented and analyzed.

5.1. Problems to be verified

The following questions should be answered to demonstrate the effectiveness

of the model and algorithm proposed in this paper.560

(1) Can the proposed method select hand pixels from a gesture image? We

investigate this by processing actual gesture images with approximate skin-color

regions.

(2) Is the proposed algorithm better than the compared algorithms? We

compare the proposed algorithm with three state-of-the-art algorithms, and565

demonstrate the effectiveness of the proposed algorithm by showing that it has

a higher accuracy rate.

5.2. Benchmark gesture images

In this paper, we use gesture images from the standard American Sign Lan-

guage image database [5] to conduct the experiments. The image database570

contains 2515 gesture images of five people in various light conditions. Thus,

the gesture images are representative.

We sort the gesture images by their file names, and use their serial numbers to

rename them. In this way, their file names are changed from hand1-0-bot-seg-1-

cropped.png, hand1-0-bot-seg-2-cropped.png, · · · , hand5-z-dif-seg-5-cropped.png575

into 1.png, 2.png, · · · , 2515.png.
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Gesture images 133.png, 1024.png, 1838.png, 2063.png, and 2506.png from

5 people are shown in Fig. 1 (1) - (5) in order.

Fig. 1. Gesture images.580

5.3. Three compared algorithms

We compare EDA of candidate component intervals, EDA of candidate com-

ponent segments, and NSGA-II [12] with our proposed EDA.

Firstly, EDA of candidate component intervals works as follows.

Step 1: Set t = 0, and randomly generate an initial population P (0).585

Step 2: If the stopping condition is met, go to Step 6.

Step 3: Build the probability model of candidate component intervals by the

non-dominated solution set of P (t).

Step 4: Sample and obtain a temporary population, Q(t), by the probability

model of intervals.590

Step 5: Select individuals and obtain the offspring population, P (t+1), from

P (t)∪Q(t) by the fast non-dominated sorting [12]. Set t = t+1, and go to Step

2.

Step 6: Return the non-dominated solutions of P (t) and end the algorithm.

Note that the above algorithm only employs candidate component intervals595

to generate the temporary population, Q(t), which is different from that of our

proposed EDA. Besides the above difference, the rest of the above algorithm is

the same as the proposed EDA.

Secondly, EDA of candidate component segments works as follows.

Step 1: Set t = 0, and randomly generate an initial population P (0).600

Step 2: If the stopping condition is met, go to Step 6.
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Step 3: Build the probability model of candidate component segments by

the non-dominated solution set of P (t).

Step 4: Sample and obtain a temporary population, Q(t), by the probability

model of segments.605

Step 5: Select individuals and obtain the offspring population, P (t+1), from

P (t)∪Q(t) by the fast non-dominated sorting [12]. Set t = t+1, and go to Step

2.

Step 6: Return the non-dominated solutions of P (t) and end the algorithm.

Note that the above algorithm only employs candidate component segments610

to generate the temporary population, Q(t), which is different from that of our

proposed EDA. Apart from the above difference, the rest is the same as our

proposed EDA.

Thirdly, NSGA-II utilizes the crossover and mutation operators to obtain a

temporary population, Q. Since the feasible range [x, x] or [y, y] of the decision615

component xi or yi of model (1) is a continuous interval, the crossover and

mutation operators of NSGA-II can be employed to solve model (1). In addition,

both NSGA-II and the proposed EDA utilize the fast non-dominated sorting

selection to obtain the offspring population, P (t + 1), from P (t) and Q(t).

However, the method of generating the temporary population, Q(t), in NSGA-620

II is different from the proposed EDA.

All the above three algorithms can solve model (1), and all employ the fast

non-dominated sorting selection to obtain the offspring population, P (t + 1).

As a result, we can demonstrate the effectiveness of our proposed EDA by

comparing it with these three algorithms.625

Although the proposed EDA consists of two stages and all the above com-

pared algorithms have only one stage, we have a unified baseline during com-

parison. Since the computational complexity of an evolutionary algorithm is

mainly determined by the evaluations of individuals, which is equal to the pop-

ulation size multiplied by the number of generations, we should guarantee that630

each compared algorithm and the proposed one have the same evaluations of

individuals when comparing. To fulfill this task, we set the population sizes of
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all the algorithms to be the same. Additionally, the maximal number of gener-

ations of the proposed EDA, which is the sum of the number of generations in

the first stage and that in the second stage, is equal to that of each compared635

algorithm. In this way, the comparison of the four algorithms is guaranteed to

be reasonable and fair.

5.4. The performance index

We use the proposed method to process a gesture image, and obtain the

optimal solution set and the corresponding pixels. Based on the ranges of Cb640

and Cr values of the above pixels, we can obtain the ranges of Cb and Cr values

of the hand region of the gesture image, and segment the hand region from

the gesture image. If the pixel set of the optimal solution set contains non-

hand pixels, the obtained range of Cb or Cr values of the hand region will be

inaccurate, and therefore the hand region cannot be segmented. As a result,645

whether the pixel set of the optimal solution set contains non-hand pixels or

not is crucial when evaluating the capability of the proposed algorithm.

We solve model (1) of a gesture image once and select the pixels of the

optimal solutions. Each selected pixel has its Cb and Cr values, and its CbCr

vector is a point in the CbCr plane. All the above points in the CbCr plane650

form a set of CbCr vectors, and each CbCr vector expresses the Cb and Cr

values of a selected pixel of the optimal solutions. If the selected pixels are the

majority of pixels in the hand region, the set of CbCr vectors of the optimal

solutions is said to be similar to that of the hand region in the gesture image.

The CbCr vectors of the hand region are different from those of the rest of the655

gesture image, and therefore we can segment the hand region from the image

by its CbCr vectors. Following the above, we can fulfill gesture segmentation

by the Cb and Cr values of the selected pixels.

We run the proposed EDA once for solving the model and obtain a set of

Pareto optimal solutions. Following that, we obtain the pixels contained by660

the above Pareto optimal solutions. If each obtained pixel is a hand pixel, the

set of Pareto optimal solutions is regarded as correct, otherwise, it is incorrect.
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Similarly, we can judge the correctness of the set of Pareto optimal solutions

obtained by NSGA-II. Therefore, we can compare the two sets of Pareto optimal

solutions according to whether they are correct or not. If both are correct, or665

neither is correct, we think that they have no difference. If only one is correct,

we consider the correct one as superior, and the other as inferior.

Due to the randomness of evolutionary algorithms, the pixels of the optimal

solution set obtained by the proposed method might contain non-hand pixels. To

overcome this, we utilize the proposed algorithm to independently solve model670

(1) several times, and obtain several optimal solution sets. If only a minority

of the optimal solution sets contain non-hand pixels, we can take pixels with

more times of repeated selection as the hand pixels, and eliminate the non-hand

pixels. Therefore, whether there are a minority of sets which contain non-hand

pixels among the optimal solution sets is of importance. Furthermore, we can675

obtain the ratio of the number of the optimal solution sets which do not contain

non-hand pixels to the total number of optimal solution sets, and define it as the

accuracy rate. According to the above analysis, the accuracy rate can be taken

as the performance index of evaluating the capability of the proposed algorithm.

We use each of the three compared algorithms to independently solve model680

(1) several times, and obtain several optimal solution sets. Their accuracy rates

can also be taken as the performance indexes of evaluating the capability of the

three compared algorithms. Thus, we can demonstrate the effectiveness of the

proposed algorithm by comparing these accuracy rates.

We run one of the above four algorithms once to solve model (1) and obtain685

a set of optimal solutions. If the obtained optimal solutions are the true optimal

solutions of model (1), their pixels are in the hand region. Due to the random-

ness of these algorithms, we run each one several times and obtain several sets

of optimal solutions. A pixel can be selected several times by the above sets,

and the pixel with more selections has a lower error in general. Therefore we690

should further select the pixels with more selections from the selected pixels as

the hand pixels. If all the selected pixels of the above sets are hand pixels, we

need to further select them. If only a part of selected pixels are hand pixels, it
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is difficult to further select hand pixels and remove non-hand pixels according

to the selections of each pixel. This is because once a non-hand pixel is further695

selected, there will be a non-hand region in the obtained region, and therefore

the obtained hand region is inaccurate. As a result, we define the accuracy rate

of the optimal solution sets to evaluate them. The accuracy rate can be used

to evaluate the method of gesture segmentation and compare the above four

algorithms.700

5.5. The experimental process

We fill the outside part of each hand region of the image database with a

background image to study the accuracy rate of the proposed algorithm. The

values of Cb and Cr of each background image are 60 and 210, respectively,

which approach those of Cb and Cr of a skin color. The size of each gesture705

image is 800×800, and the hand region is in the middle of the image with a

filled background around it.

For the proposed method, we first preprocess the gesture image, and obtain

the values of Cb and Cr of each pixel. Following that, we build model (1).

Finally, we use the two-phase EDA to solve model (1), and obtain one or more710

non-dominated solutions.

The decision space of model (1) is composed of all the pixels of the gesture

image. The number of coordinates of the selected pixels is the dimension of the

decision variable. If the dimension is too large, both the computation complex-

ity and the time consumption for solving the model will increase. Therefore,715

it is necessary to compress the gesture images. By sampling the pixels at each

interval of 8 rows and 8 columns, we can reduce the size of each gesture image.

The size of each compressed gesture image is 100×100. We express each com-

pressed gesture image with YCbCr, and obtain the values of Cb and Cr of each

pixel.720

According to model (1), the decision variable should represent several pixels.

Thus, a vector of 100 dimensions is utilized as the decision variable in the

following experiments, with decision variable x representing 50 pixels. We can
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obtain their values of Cb and Cr, and obtain their f1(x) and f2(x).

Considering the efficiency of evolutionary computation, the population size725

is 50, the maximal number of generations is 100, M = 12, L = 10, and T = 50.

Due to the randomness of the optimal solution set, we independently run each

algorithm 20 times, and obtain 20 optimal solution sets, that is, 20 pixel sets.

We compare each of the 20 pixel sets with that of the actual hand pixels to

obtain the number of optimal solution sets not containing non-hand pixels, and730

calculate the accuracy rates of 20 runs.

The environment configuration in the experiments is Intel Core i3-3240

(3.40GHz CPU, 1.85GB RAM).

5.6. Experimental results and analysis

Each of the hand regions of the image database has a green edge, with its735

values of Cr less than 124, and therefore is removed from each hand region. In

this way, we can obtain 2515 accurate hand regions. We fill the accurate hand

regions with background images. Having removed green edges from the hand

regions shown in Fig. 1 and filled them with background images, we obtain Fig.

2(1)-(5). The values of Cb and Cr of each pixel of Fig. 2(1)-(5) are shown in740

(1)-(5) of Fig. 2(a) and 2(b) in order.

Fig. 2 (a) (1)-(5) show the distribution of Cb values of Fig. 2 (1)-(5) in

order. Fig. 2 (b) (1)-(5) show the distribution of Cr values of Fig. 2 (1)-(5) in

order. In each image of Fig. 2 (a) (1)-(5), each vertical coordinate represents the

number of rows of a pixel in each matrix image of Fig. 2 (1)-(5); each horizontal745

coordinate means the number of columns of a pixel in each matrix image of Fig.

2 (1)-(5). They are similar to each vertical or horizontal coordinate in each

image of Fig. 2 (b) (1)-(5). There is a color bar in the right of each image of

Fig. 2 (a) (1)-(5). The color bar refers to the Cb value of each pixel in each

image of Fig. 2(1)-(5). The color in the bar changes from dark red to dark blue750

when its Cb value changes from large to small. They are similar to the color

bar in each image of Fig. 2 (b) (1)-(5), except that the color bar represents the

Cr values.
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Fig. 2(a). Distribution of Cb values.755

Fig. 2(b). Distribution of Cr values.

We run the proposed algorithm 20 times for each of the 2515 preprocessed

images, and obtain 20 optimal pixel sets. The obtained pixel sets of Fig. 2

(1) are shown in Fig. 3 (1). In Fig. 3 (1), the figures from left to right in760

order in the first row are the results obtained from the 1st to the 5th run. The

ones from left to right in order in the second row are the results obtained from
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the 6th to the 10th run, and similarly for the others. By using the proposed

method, we can also obtain the pixel sets of Fig. 2 (2)-(5) shown in Fig. 3

(2)-(5) respectively.765

The 20 images in Fig. 3 (1) show 20 optimal pixel sets obtained from Fig. 2

(1). They are similar to Fig. 3 (2)-(5), except that the pixel sets are obtained

from Fig. 2 (2)-(5) in order. In each image of Fig. 3 (1), each red dot means

the pixel obtained from Fig. 2 (1). The vertical coordinate of the above red dot

represents its number of rows in the matrix of Fig. 2 (1), and the horizontal770

coordinate of the above red dot refers to its number of columns in the matrix

of Fig. 2 (1). They are similar to the red dot in each image of Fig. 3 (2)-(5).

Fig. 3(1). The pixel sets of Fig. 2 (1) obtained by the proposed method.
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775

Fig. 3(2). The pixel sets of Fig. 2 (2) obtained by the proposed method.

Fig. 3(3). The pixel sets of Fig. 2 (3) obtained by the proposed method.
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Fig. 3(4). The pixel sets of Fig. 2 (4) obtained by the proposed method.780

Fig. 3(5). The pixel sets of Fig. 2 (5) obtained by the proposed method.

The 5 accuracy rates of Fig. 2(1)-(5) obtained by the proposed algorithm

are all 100%. The accuracy rates of the 2515 preprocessed images obtained

by the proposed algorithm are shown in Fig. 4(1), and their average value is785

92.24%. This indicates that the proposed algorithm can accurately select hand
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pixels from a gesture image. In addition, the proposed method spends 3-4s in

processing an image.

We apply each of the three compared algorithms to each of the 2515 prepro-

cessed images 20 times, and obtain 20 optimal pixel sets. For each compared790

algorithm, the same parameter settings are adopted, that is, the population size

is 50, and the maximal number of generations is 100. In addition, the same

environment configuration is adopted. Based on these, we obtain the accura-

cy rate of each run. Furthermore, in EDA of candidate component intervals,

M = 12. In EDA of candidate component segments, L = 10. In NSGA-II, the795

crossover and mutation probabilities are 0.9 and 0.1, respectively. In addition,

both the crossover and the mutation distribution indexes are 0.2. The 2515

accuracy rates of EDA of candidate component intervals are shown in Fig. 4(2),

and their average value is 25.11%. The 2515 accuracy rates of EDA of candidate

component segments are shown in Fig. 4(3), and their average value is 7.55%.800

All the 2515 accuracy rates of NSGA-II are 0. This indicates that the proposed

algorithm exceeds the three compared counterparts.

Fig. 4. The accuracy rates of different algorithms.

Fig. 4(1) shows the accuracy rates of the 2515 gesture images obtained by805

the proposed algorithm. In this figure, the horizontal coordinate, image, is the

file name of each gesture image, and the vertical coordinate, accuracy, is the

accuracy rate of the gesture image. Fig. 4(2) and 4(3) show the accuracy rates

obtained by EDA of candidate component intervals and EDA of candidate com-

ponent segments, respectively, and their coordinates have the same meanings as810

those of Fig. 4(1).
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The proposed algorithm employs candidate component intervals and candi-

date component segments to build the probability models and to generate the

temporary population. This is in accordance with the correlation among the

positions of hand pixels, whereas EDA of candidate component intervals only815

causes pixels of the temporary population to distribute in a rectangular region,

and EDA of candidate component segments only causes pixels of the temporary

population to distribute around several line segments. As a result, neither of

them is in accordance with the correlation among the positions of hand pixels,

and they are inferior to our proposed method. NSGA-II does not take advantage820

of the correlation among the positions of hand pixels to generate a temporary

population, and therefore is inferior compared with our method.

From the above experimental results and analysis, we can obtain the fol-

lowing conclusions: the proposed method can select hand pixels from a gesture

image with a high accuracy rate, and exceeds the other. Thus, both the pro-825

posed model and algorithm are effective.

6. Conclusions

We have formulated a multi-objective optimization model for the problem

of gesture segmentation, and presented a method of solving the above model

based on a two-phase estimation of distribution algorithm. When building the830

model, we take the positions of a series of pixels as the decision variable, and

the differences between the colors of pixels and those of a hand as the objective

functions. The proposed method of gesture segmentation based on a two-phase

estimation of distribution algorithm is based on the correlation among the po-

sitions of pixels. The method divides the process of solving the problem based835

on evolutionary optimization into two phases, and adopts different estimation

of distribution algorithms in different phases. In the first phase, we formulate

the probability model of candidates as a number of intervals given the fact that

the positions of hand pixels distribute in several intervals. In the second phase,

we build the probability model of candidates as a series of segments since the840
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positions of hand pixels further distribute around curves. We obtain a series of

hand pixels based on sampling by the above probability models. The experi-

mental results of actual gesture images demonstrate that the proposed method

can select hand pixels from a gesture image and exceeds the three compared

algorithms.845

It should be pointed out that, due to the randomness of experimental results

of the proposed method, the accuracy of the proposed algorithm should be

further improved. It is of necessity to study appropriate methods to improve

the accuracy of selecting pixels.
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