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Abstract

This thesis develops a framework to uncover the probability of correctness of algorithmic

results. Specifically, this thesis is not concerned with the correctness of these algorithms, but

with the uncertainty of their results arising from existing uncertainty in their inputs. This is

achieved using a Bayesian approach. This framework is then demonstrated using independent

component analysis with electromyographic data.

Blind source separation (BSS) algorithms, such as independent component analysis (ICA),

are often used to solve the inverse problem arising when, for example, attempting to retrieve

the activation patterns of motor units (MUs) from electromyographic (EMG) data.

BSS, or similar algorithms, return a result but do not generally provide any indication on

the quality of that result or certainty one can have in it being the actual original pattern and not

one strongly altered by the noise/errors in the input.

This thesis uses Bayesian inference to extend ICA both to incorporate prior physiological

information, thus making it in effect a semi-blind source separation (SBSS) algorithm, and

to quantify the uncertainties around the values of the sources as estimated by ICA. To this

end, this thesis also presents a way to put a prior on a mixing matrix given a physiological

model as well as a re-parametrisation of orthogonal matrices which is helpful in pre-empting

floating point errors when incorporating this prior of the mixing matrix into an algorithm which

estimates the un-mixing matrix.

In experiments done using EMG data, it is found that the addition of the prior is of benefit

when the input is very noisy or very short in terms of samples or both. The experiments also

show that the information about the certainty can be used as a heuristic for feature extraction

or general quality control provided an appropriate baseline has been determined.
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II

Notation

The following notation conventions will be used throughout this thesis. An example is given each

time after the colon.

• Matrices will be bold uppercase letters: M

• Vectors will be bold lowercase letters: v

• Constant scalars will be uppercase letters: K

• Other scalars will be lowercase letters: k

• Double barred letters denote domains of values: Q

• Slanted letters denote models or particular functions: L

• A circumflex denotes an estimate of the variable: Ŵ

• A tilde denotes a distribution a variable is drawn from: Ỹ

• A caron denotes a variant of a variable such as a test set: X̌

As exceptions, p(...) refers to a probability density function and Π and π refer to a Bayesian

posterior or prior respectively.

Indexing of matrices and vectors will be in square braces after the variable. Indices will be

given in column major order and ranges are indicated with a colon between the beginning and end

which are omitted if the range is from the beginning or to the end. For example: X[k:K, 1]
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1 Introduction

Any real world measurement contains errors. Any model which is a simplification of a real world

process, will, on average, produce results less accurate than its inputs by virtue of its nature as a

simplification. Thus, the results from algorithm processing such measurements and or making use

of simplifying models are, despite being mathematically sound, not necessarily the ‘truth’. They

may be, but one cannot be certain about this.

Aims

This thesis aims to develop a framework to uncover the probability of correctness of algorithmic

results. Specifically, this thesis is not concerned with the correctness of these algorithms, but with

the uncertainty of their results arising from existing uncertainty in their inputs.

There is a large class of algorithms which, given some input value, output some other value

linked through some relation to the input. If the input is free from any errors, such as the ones,

for example, arising when recording real world data, and the model employed to relate between

input and output is completely accurate, then the output can be expected to be free from error with

a probability of one.

If, however, the input or the model employed or both contain inaccuracies, then the probability

that the output is correct must be lower than one. That is because a mere algorithm, and not an

oracle, is used to compute it.

This thesis focuses on the probability that the output of such an algorithm is the actual “truth”

given an unknown amount of uncertainty introduced by the input date and the models employed

inside the algorithm.

This class of algorithms often returns a singular result. In the case of algorithms that employ

some iterative method, the statement still holds true when treating the threshold at which they stop

as a limitation of their capability to model the relation between input and output. That singular

result is generally, within the domain of possible results, the most probable one given the data and

the internal model employed the algorithm.
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Often that result is all that is needed to proceed. More often than not, using it as is will not cause

issues, either because the systems consuming these results are sufficiently tolerant to inaccuracies

in their input, or because the data feed to the algorithm was good enough not to cause the result to

deviate too far from the “truth”.

However, if the latter statement does not hold, then the errors caused may be hard to find as the

algorithm returns exactly that what is expected of it given its current input and model, even when

that output is not the desired “truth”. One way to detect this form of issue is to consider the actual

probability that the result is the correct one.

Of course, the probability of specific result is, in itself, not the full story as it does not capture

the probabilities of all other possible results. For that one needs to know the probability distri-

bution over all results which is often not tractable to compute but there are a number of ways to

approximate such distributions.

Even if such distribution is, approximately, known, it can be hard to interpret it at a glance. If

one, however, reframes this problem in Bayesian terms, then that distribution, assuming a uniform

prior distribution, would then be the Bayesian posterior distribution, then the Bayesian credible

interval becomes available as a tool which can give strong insights to the question’s answer.

Independent component analysis (ICA) is an example of a class of algorithms commonly used

to get the most probable result without regard to how probable it truly is. This thesis aims to

demonstrate how ICA, as an example, can be extended to provide information about the Bayesian

credible interval around its result in addition to the result itself.

For the purpose of this example, ICA will be used to solve the inverse problem encountered

when working with electromyographic (EMG) data. The latter measures the electric signals un-

derlying the activation of muscles. It is used in neural interfaces to, among other things, control

prostheses. It is also employed in medical applications to diagnose certain conditions although, in

this case, the source separation step central to this thesis is not normally employed.

As noted before, it is necessary to define a prior distribution when employing Bayesian meth-

ods. If all that is desired is to unlock the ability to perform analysis with the tools of Bayesian

statistics, the prior may be an uninformative one. Alternatively, it may be informative and, thus,

potentially improve the algorithms results. Thus, the second objective of this thesis is to define an

informative prior for the specific problem stated above and to further extend ICA to make use of
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it. The first objective being the development of the components of the aforementioned framework

to quantify the certainty of algorithmic results given non-perfect input.

Challenges

The primary challenges are those arising from selecting an appropriate model to incorporate prior

physiological knowledge and to select the model parameters and those arising from numerical

instabilities appearing in direct implementations of the model and algorithms.

There is a plethora of existing models for electromyography, as discussed in section 2.2, rang-

ing from simple to complex, computationally light to heavy and for different geometries. However,

the trade-offs between ease of use and realism of results are not necessarily readily apparent for

these models.

Likewise, there have been multiple studies into the electric properties of tissue. However the

exact methodology and thus the results often differ. Even when the methodology is the same, more

often than not, the results, while qualitative similar, are not similar from a raw numeric perspective.

Furthermore, mathematical instabilities due to floating point error arose many times in the

process of the practical work. The main issues of this kind arose when calculating a gradient,

either when the forward pass involved a matrix inverse, particularly when whitening was not used,

or when some of the parameters where discreet integers. The solution to the first is presented

in section 3.5 and the latter was ‘solved’ by avoiding the need for discreet integer parameters

altogether.

Thesis Structure

In this 1st chapter, the aims of this thesis and its challenges are introduced. Then the structure of

the chapters is presented.

Subsequently, a thorough literature review of the relevant topics is given in chapter 2. Any

relevant specific literature and prior work used in this thesis will also be addressed in this chapter.

Neural interfaces, particularly those generally classified as brain computer interfaces are covered

in section 2.1 with the subtopic of electromyography being additionally covered in-depth in sec-

tion 2.2. Section 2.3 presents an overview of the inverse problem which is often encountered when
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working with electromyographic data and brain computer interfaces in general. Finally, section 2.4

covers Bayesian inference and algorithms to estimate a Bayesian posterior, all of which is heavily

used in the experimental section.

Chapter 3 presents the theoretical work undertaken for this thesis and the algorithms devel-

oped. The chapter begins with section 3.1 in which the aims and challenges will be restated in

more technical language. Sections 3.2 and 3.3 quickly cover how the pre-existing algorithms are

used and implemented in the context of the novel algorithms presented later. Section 3.4 describes

a method to derive a Bayesian prior from a physiological model in a way which is mostly inde-

pendent from the actual model used. Then an algorithm to re-parametrise orthogonal matrices

using Householder reflections is presented in section 3.5. This re-parametrisation allows certain

optimisations and avoids mathematical instability in the algorithms from sections 3.3 and 3.6. The

core work of this thesis is then presented in sections 3.6 and 3.7 where the algorithms introduced

from the sections before are combined into an algorithm which allows to formulate a independent

component analysis solution as a full Bayesian posterior. Furthermore, Section 3.7 also presents

ways to leverage the additional information gleaned to make statements both about the quality of

the algorithm output as a whole and about the quality of specific parts of the output.

The practical work is then described in sections 4.1 and 4.2 of chapter 4 in the form of a number

of experiments run using the algorithms and models described in chapter 3. Then section 4.3

presents and discusses the results of the experiments run with synthetic data. This is followed by

section 4.4 which does likewise for real data while contrasting these to the results of the previous

section.

Finally chapter 5 concludes this thesis by summarising the findings from chapter 4 and of the

thesis as a whole. Then, it enumerates possible directions of further research.
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2 Literature Review

As stated in chapter 1, this thesis aims to formulate a general framework to quantify the uncertainty

of results of algorithms given imperfect input and or employing imperfect models. The intent is

to create this framework using Bayesian Inference, covered in section 2.4. The algorithm chosen

as demonstrative example is Independent Component Analysis (ICA) which is used to solve the

so-called inverse problem. Both off which are covered in section 2.3. The data used, in said

demonstration, is electromyographic (EMG) data whose nature and specific challenges are covered

in section 2.2. EMG is one of the technologies used in neural interfaces which are covered in

section 2.1 to give a broader context of possible uses for the work presented in this thesis.

2.1 Neural Interfaces

Aims and Applications

Neural Interfaces record physiological signals originating, directly or indirectly, from the neural

systems and translate them into input for another system. There exist a wide variety of sensor

types for the capture of the brain signals as well as a wide selection of algorithms to process them

depending on what is intended to be achieved.

In terms of aims, neural interfaces can be roughly categorised into a number of categories.

Systems which aim to restore some physical ability that a person lost through some event, e.g

accident, or that a person was born without [1], but that are normally found in a healthy human [2].

Systems which aim to enhance human capabilities beyond their natural potential [3]. Systems

aimed for entertainment purposes [4]. Systems whose purpose is to monitor a persons brain or

similar activity either to aid in neural and or psychological research [5] or to diagnose certain

conditions [6] as well as to help with certain rehabilitation procedures [7].

Neural interfaces which involve computer processing are generally described as brain computer

interfaces (BCI) even when the interface is with a neural system outside of the brain.
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Restore Some of the most common systems aimed at restoring lost functionality are the ones

that allow to control prostheses [8, 9, 10]. In the ideal case a user of a brain-controlled prosthesis

would have as much control over it as over a natural body part. However, technical limitations

currently restrict the degrees of freedom that such prostheses provide to around ten or less, but

devices allowing for significantly more degrees of freedom are in the research stage [11]. Related

research also looks into giving sensory feedback to the user of these prostheses [12, 13]. There

has also been some pioneering work to restore limited vision to people who became blind after

birth [14].

Another type of brain computer interface often encountered in the literature are spelling sys-

tems in which the user selects a series of symbols, e.g. letters or numbers, through certain mental

processes and thus can spell out messages [15] or control a computer mouse pointer [16]. Such

interfaces can be one of the few means that fully locked-in patients can use to communicate with

the outside world [17]. However, some studies on this were criticised as it is quasi impossible to

validate the correctness of the “communications” in some such cases [18].

Enhance While not as popular of an aim, as judged by the number of publications, most of

the research to restore lost functionality also applies to enhancing those capabilities in healthy

humans. For example exoskeletons can help persons with muscular affliction but also help to

increase a person’s strength beyond human standards [19].

Research is also been conducted to enhance various mental capacities [20]. An interesting trial

to enhance the correctness of decision making of a group is presented in [21] where, among other

things, features concerning the users certainty in their own performance were used.

Entertain In the last years, a number of games that are meant to be played via input from neural

interfaces have been developed. The first ones were mostly based on the same approaches as the

aforementioned spellers or motor-imagery [4]. Since then, most techniques generally used for

neural interfaces have been used for such games [22].

Additionally, there exist games which do not use the neural interface for direct control, but to

affect the game state based on the users mental and emotional state [23].
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Research Neural interfaces are used extensively as a research tool. Research into stuttering [24],

tinnitus [25], effects of childhood trauma [26], effects of meditation [27] and the general workings

of the brain [28] represent only some samples of such research.

Diagnosis One of the earliest uses of equipment to observe neural signals was to diagnose vari-

ous conditions and illnesses such as epileptic seizures [29] or chronic pain [30] and it is still used

for these purposes [31, 32].

Current research is often focused on augmenting or even replacing the analysis of the recorded

signals with various machine learning methods [33, 34] or on discovering currently unknown pat-

terns and markers indicating some condition [35, 36].

Rehabilitation In addition to restoring functionality through neural interfaces, it has been found

that the use of such systems while giving visual [7] or haptic [37] feedback helps to retrain and

rebuild damaged neural systems even if a patient, such as a stroke patient, isn’t currently able to

physically move their muscles.

Further to this, the same information, as gleaned from neural interfaces for diagnosis, remains

also of use during any rehabilitation process [38].

General Workflow

The general outline of most BCI systems can be described as a sequence of steps. Note that

only the first and the last step, as described below and shown in figure 2.1, are found in all BCI

applications; all other steps are optional and may be omitted in a given implementation. The

separation into discrete steps here is for exposition only; in a practical implementation, most of

these steps, if implemented at all, may well be combined or ordered differently. Furthermore the

exact methods employed during each step are often dependent upon whether the system is online

or offline. Offline here means that the data was fully recorded before processing starts while online

means that the system is processing the physiological signals in real time as it is recorded.

Recording In the first step, the data is recorded using appropriate equipment. Digitalisation and

some basic filtering may also be applied here. E.g. a band stop filter to mitigate the interference of
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Figure 2.1: The general outline of most BCI systems can be described as a sequence of steps.

the mains supply [39].

Preprocessing The second step consists in the application of one or more advanced preprocess-

ing passes whose aim is to increase the signal to noise ratio, which tends to be low for BCI data,

as much as possible by removing latent noise and by detecting areas of the data which have been

overly corrupted by so-called artefacts [40].

Feature Extraction The third step attempts to reduce the dimensionality of the input by con-

densing the information carried by the data into so-called features. This is often achieved by ex-

tracting statistical properties of the data or transforming the domain of the data, using for example

the Fourier transform [41].

In this step, if running an online algorithm, windowing may be also be applied to the data, i.e

only the last n samples are selected and passed on to the next steps [42].

Feature Selection If the third step does not reduce the data sufficiently, then it is possible to

compute the average usefulness of each feature for the subsequent steps in a fourth step and drop

all but the most useful [43].

Applications In the fifth step the processed data is given to a predictor, which may be a classifier

or a regressor, of some description which attempts to estimate the neural state of the subject [44].

Finally, something is done with the data. What exactly depends, of course, on the purpose of

each BCI system.

Recording Technologies

There are several different technologies to capture the raw signals as produced by the brain or

the efferent nervous system [45]. These technologies can be categorised according to a variety

of features. A major distinction can be made between those technologies considered invasive,
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i.e. they require some form of surgery, and those that do not. Other features distinguishing BCI

technologies are the spatial and temporal resolutions of the recordings as well as the portability

and general user-friendliness of the recording process [46]. Finally, a distinction exist between

those technologies that record brain activity directly, those that record it indirectly and those that

record the peripheral nervous system directly or indirectly as opposed to the central one.

Technology to affect the brain through applied stimulus can also be considered as divided

between invasive and surface applications.

Surface Recording Technologies

One of the most commonly measured phenomenon is the electric potential or, more precisely, its

change over time as the average magnitude is subject to a multitude of unknown factors such as

the nature of the electrodes, their contact with the skin and the concrete composition of the tissue

below them. This varying electric potential is produced by ion gradients propagating along the

nerve cells in the case of electroencephalography (EEG) [47] or along muscle tissue as is the case

in electromyography (EMG) [48].

All cells produce an electric potential between there insides and their outside by selectively

allowing ions to through their surrounding membranes. Some cells, primarily neurons and muscle

fibres, can change the ion concentrations around their membranes rapidly, this is called depo-

larisation, when subject to an electric stimulus such as produced by such a depolarisation event

happening in close proximity. For details on this mechanism see [49, Chapter 21].

EEG is probably the most well known technology due to its, relative to other technologies,

low price, safety and ease of use without a specialised lab [50]. It is still preferable to record in a

shielded laboratory on an immobile patient but it is possible to gather more noisy but still useful

data without those constraints as opposed to other technologies. Moreover, the shielding needed

for recordings of electric potential can be provided by a simple Faraday cage [51].

Recordings are done by placing electrodes in a grid pattern on the scalp, often with the help

of a cap. The grid positions for EEG have been standardised in the so called 20-10 system though

extensions for larger numbers of electrodes do exist [52]. Each electrode is expected to record the

sum of all activity in the brain, mostly of the cortex, in a large radius around it. As a consequence,

EEG exhibits poor spatial resolution as the recoded signals are essentially a mixture of many
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separate underlying sources. Individual neuron activity is too faint for EEG to even register in

a surface electroencephalogram: entire groups of neurons need to activate “together” in a short

time-frame.

One challenge when recording EEG signals is that the skull which has a low conductivity com-

pared to the surrounding tissue is of a somewhat complex non-homogeneous shape; this distorts the

recorded signal. Taking measures of the conductive properties of the skull and scalp into account

has, however, been demonstrated to alleviate this issue to some degree [53].

A similar technology to EEG is electromyography (EMG), here the electrodes are placed on the

skin above the muscle and record the potentials arising from the ion gradients travelling along mus-

cles fibres which are triggered by electric signals originating from motor neurons whose synapses

end at the muscle. These gradients are what causes the muscles to contract. Like EEG, the ob-

served EMG signals are distorted, as discussed further in section 2.2, by the tissue located between

the signal origins and the recording electrodes [54].

There are no properly standardised locations for the placement of electrodes for EMG, but the

number and arrangement of the sensor may also significantly affect the nature of the recording [55].

As a consequence, different EMG datasets often need different algorithms to process them. EMG

will be covered in more depth in section 2.2. An example grid configuration can be found in

figure 4.1.

Both EEG and EMG recordings rely on a reference electrode. There are multiple options for

this: either there is a dedicated electrode whose signal is subtracted from all other electrode signals,

commonly at the top of the head or the earlobes for EEG, or adjacent electrodes are subtracted in

series from each other, this is called single differential, or a spatial filter such as a Laplacian is

applied, or the mean of all electrodes is used as a synthetic reference electrode [56].

Magnetoencephalography (MEG) records the magnetic fields which arise from the currents

measured by EEG. The main benefit of MEG over EEG is a greater spatial accuracy and, thus,

resolution. Additionally, MEG only measures currents in the tangential direction relative to the

sensors and it does not record signals arising from as deep in the brain as EEG, both of these

features could be considered a drawback or a benefit. On the other side, MEG requires very

large equipment thus is not portable. In addition, the materials needed to build and operate MEG

equipment are much more expensive than those needed by EEG or EMG [57].
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Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging

(fMRI) are both technologies used to measure the brain state indirectly by measuring the flow of

blood within the brain. These methods have very good temporal and spatial resolution. However, it

has to be taken into account that the phenomenon measured is only indirectly related to “thinking”

activity and, thus, there is often a significant lag between the recorded signal and the underlying

neural activity [58].

Invasive Recording Technologies

The main benefit of using invasive probes, despite the obvious danger to the patients’ health during

the installation of the sensors, is that they capture the signals close to their sources as opposed to

non-invasive technologies which record the signals with sensors far from the origin of the signals.

As a result invasive technologies provide the best spatial and temporal resolution among all tech-

nologies. In particular, they allow localised recordings while non-invasive methods only record

large areas at once, but, reversely, invasive technologies cannot provide a recording of a large area

unless very many recording elements are used which, evidently, multiplies the health risks [59].

Ethical Considerations

The use of BCI technology raises a number of ethical considerations and related issues [60].

Informed Consent Concerns

Some of its medicinal use cases are those where the ability to give consent, let alone informed

consent, are made difficult by the ailment to be treated, i.e. patients who are fully locked-in cannot

possibly give assent to BCI without the use of BCI, that is, no other technologies which allow them

to give consent are known of at this point; which is a chicken and egg problem.

A related issue of consent arises when the condition to be treated is correlated with cognitive

impairment or if the patients are too young to be considered able to give consent.

Furthermore, particularly for invasive BCI installations, the risk associated with the implan-

tation are not well researched due to lack of samples and, in some cases, lack of consequent

long-term studies of the effects of implantation where such was done.
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The latter problem leads to another issue for invasive BCI research procedures. Namely, the

long term cost of the implantation, as pointed out in [61]. Who pays for the maintenance of the

BCI system after the study is done and the grant associated with it is used up?

Finally, there is the question on whose shoulders the responsibility of the actions of BCI con-

trolled devices or applications lies? The user? The software? Or its authors [62]?

Privacy and Security Concerns

BCI systems are computer systems and, as such, are subjected to all the security concerns that

entails. They can potentially be suborned by malicious software or transmission streams carrying

brain state information could be intercepted. Potential attacks could further include an attacker

taking over control of a prosthesis to do things with it, which ties into the agency and responsibility

issue raised above [63].

Or an attacker could be after private information, and, while BCI by no means can read thoughts

at this point, it still can reveal a number of sensitive data ranging from emotional state to low

entropy information, such as which numbers the individual concentrates on while typing in a pin

code [64].

2.2 Electromyography

Overview

While most brain computer interface technologies focus on gleaning information from the brain,

electromyography is more geared towards observing the somatic nervous system. Of course, the

state of the peripheral somatic system itself is heavily influenced by the central nervous systems’

state. Electromyography records electric potentials within muscles. These potentials are a direct

consequence of signals from the brain arriving via motor neurons. The benefit of this indirect

recording is that the muscles act as natural amplifiers and thus provide a much stronger signal than

the motor neurons themselves.

A thorough review of this topic beyond what is covered in this chapter can be found in [65].
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Origin of the Signal

Electromyography records the electric fields generated during muscle contractions. Each motor

neuron is connected, at so called end-plates, to a few or, depending on type, many muscle fibres.

These connections are generally located close to the centre of the muscle fibre. The contractions

are set off by electric impulses arriving at the end-plates which set off a cascade of ion gradients

which propagate in both directions and which cause the contraction of the part of the muscle fibres

over which they pass as well as the field potentials recorded by electromyography [66].

The recorded values from surface EMG originate thus from many individual points in space

within the body. Each such point or cluster of closely related points tends to emit a signal distinc-

tive, by some measure, of that point. Such points in space will be referred to as sources for the

remainder of this thesis.

Application

it is possible to reconstruct, at least partially, the intended movement of amputated extremities

based on electromyographic information recorded from remaining body parts, e.g. hand move-

ment based on EMG data from the upper arm. Thus EMG is commonly used to allow control of

prostheses [8].

Beyond that, a number of afflictions, such as the aftermath of strokes, can leave a patient

unable to properly move their muscles while still generating sufficient EMG signal to derive their

intent, which can be used to control exoskeletons which can be used for rehabilitation [10]. Of

course EMG driven exoskeletons could also be used by healthy persons as a form of physical

augmentation [19]. EMG data is also used as part of the diagnosis process of a variety of muscular

diseases [33, 30].

Challenges

The recorded values from surface EMG originate from many individual sources inside the body

thus the recorded signals are each a mixture of the signals from many physiological sources.

Furthermore, the number of observations is usually significantly lower than the number of the

sources [67].
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Complicating the situation further, there exist numerous factors which distort the signal be-

tween source and sensors. Moreover, there are usually a significant amount of external noise

factors which often cause the observed signal to have a signal to noise ratio lower than one [68].

Additionally, as noted before, the signal amplitude there is attenuated due to the properties of

the tissue between the signal origin and the recording equipment [54]. If that tissue is inhomoge-

neous, distortion can be expected to occur. It is to note that homogeneity is assumed for simplicity

in the majority of the literature.

In EMG, the attenuation was considered to be mostly governed by the resistive electrical prop-

erty of the tissue, however, this is contested in more recent sources. In particular, the claim is made

that the effects of the properties of capacitance and conductivity are not negligible, as previously

thought, thus they must be taken into account [69]. Furthermore, the observed attenuation is not

invariant to the frequency of the recorded signal [70].

As EMG is what controls the movement of muscles, in most scenarios where the EMG signal

is of interest, the movement and its effects on the recorded signal are to be taken for granted. This

is concerning because the movement of tissues causes the sources of the EMG signal to also move

relative to the recording electrodes which may cause distortions in the recording. An exception

to the above arises if the muscles have been surgically affixed to the bone, which is part of some

amputation techniques [71].

As noted above, what is recorded during EMG is a mixture of signals, not the signal itself

which is the actual information of interest. Thus, one has the problem of how to recover that in-

formation. Problems where the original signal is unknown, but only the result of a transformation,

whose parameters are unknown, is known, are commonly considered a variation of the inverse

problem. The general inverse problem and the algorithms used to recover the source signal from

the observation are covered in section 2.3.

Tissue Properties

The physiological properties of muscle and other body tissues of primary concern to EMG are

those affecting the travel of the electrical potentials along the muscle fibres and how the electric

fields created from these potentials extend to outside the skin where they are recorded.
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Considerable research has been done on this properties within the field of bioelectromagnetics

which is primarily concerned with the interactions between electromagnetic fields and biological

matter. One of its main areas of research being dosimetry which is concerned with how electric

and magnetic fields affect living biological tissue. To make assumptions on said effects without

in-vivo experiments, it is necessary to know the electrical properties of the tissues of interest as

this allows to run experiments in simulations [72].

There are three main tissues, not counting blood, through which an EMG signal will travel

between source and electrode. These are:

• Muscle, which has a high conductivity and thus a high amplitude loss. Note that, in sim-

plified terms, conductivity is a measure of how much free electrons can move around and the

energy used for that movement comes “out” of the amplitude. Furthermore, it is anisotropic [73]

which means that an electric field changes amplitude differently depending on the direction

of the transversal [74]. Various measurement studies have been done, such as [75, 76], but

often come to slightly different results as can be seen in the comparisons found in [77].

• Fat, which has lower conductance than muscle, thus lower loss. As it is above the muscle

layer and thus above all sources, anisotropy is much less an issue as the direction of the

traversal is much more predictable [74].

• Skin, whose various layers have very varied properties which makes it hard to determine

their effects [78].

Muscle has a high conductivity and thus a high amplitude loss. Note that, in simplified terms,

conductivity is a measure of how much free electrons can move around and the energy used for

that movement comes “out” of the amplitude. Furthermore, it is anisotropic [73] which means that

an electric field changes amplitude differently depending on the direction of the transversal [74].

Various measurement studies have been done, such as [75, 76], but often come to slightly different

results as can be seen in the comparisons found in [77].

Fat has lower conductance than muscle, thus lower loss. As it is above the muscle layer and

thus above all sources, anisotropy is much less an issue as the direction of the traversal is much

more predictable [74].
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The various layers of the skin have very varied properties which makes it hard to determine

their effects [78]. In the experiments presented in chapter 4 the values of these properties come

from [79] and, as there, the capacitive effects are ignored to allow for a better comparison of results

in section 4.1.

Further discussion in detail of these properties as pertaining to EMG can also be found in [65].

Motor Units

A motor unit (MU) is the group of nerve-endings which originate from one motor neuron together

with the muscle fibres enervated by these [80]. Ion gradients cascade from the sites of innervation

in one MU along the muscle fibre when triggered by an incoming impulse from the MU’s motor

neuron. These moving gradients give rise to measurable electric potentials, each called a motor

unit action potential (MUAP) [81]. In the remainder of this thesis, what will be meant when talking

about an EMG signal is the waveforms of such MUAPs when recorded over time, unless otherwise

specified.

These MUAPs propagate primarily along the length of a muscle fibre. This happens at a speed

of approximate around 4m
s

to 8m
s

, although outliers do exist. The exact values depend heavily on

the composition of the muscle which in turn is a function of a given subjects lifestyle [82, 83]. If

sampling EMG data at around 16kHz, this results in an approximate move of the source between

0.25mm per sample to 0.5mm per sample.

Furthermore, MUAPs are not point processes. Their amplitude over time follows a distinct gen-

eral shape akin to a hat as shown in figure 2.2. The duration of this waveform roughly measured—

as where to start and end is not standardised—was around 15ms in one particular experiment [84].

This would put the duration of one such MUAP at around 240 samples long at a sampling rate of

16kHz. Note that the waveform of one MUAP is also commonly refereed to as a spike.

Multiplying the approximate speed of propagation and the approximate duration results in the

assumption that the tail of a MUAP is around 9cm away from its head; this is subject to the accu-

racy of the data derived from the literature as presented in the previous paragraphs. Nevertheless,

it can be assumed thus that a given MUAP can be recorded across a large area at any given point

in time albeit during different phases of the spike shape.
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Figure 2.2: Approximate MUAP shape over time.

Recording Hardware

If the recording electrode or electrodes are inserted into the muscle itself, one talks of invasive

EMG. As touched upon before, the benefits of invasive EMG is the high signal to noise ratio of the

signal and the low distortion of the signal due to the small distance between the sources and the

electrode. The disadvantage is that invasive EMG, while less dangerous than other invasive BCI

technologies, still causes minor damage to the body [85].

Given the above considerations, invasive EMG is useful to investigate a single motor unit MU

at a time as each motor unit’s MUAPs can be separated with relative ease from other MU’s [86].

However, for the same reason, invasive EMG can only give information about a small region and,

thus, unless a great many electrodes are used simultaneously—which would multiply the health

risks—cannot be used to gain a general image of the activity across a whole muscle.

The non-invasive form of EMG recording is known as surface EMG. If only one electrode

is used then what is recorded is essentially the average activity of all MUs in the vicinity of the

electrode and it is impossible to separate the individual MUAPs [87].

Given the limitations of single channel surface EMG, nowadays, EMG is often recorded using

arrays of electrodes rather then a single one. This is referred to as HD-EMG. The additional and

partly redundant information of such a setup helps to mitigate some of the drawbacks due to it
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being a non-invasive recording technique. In particular, it is possible to attempt to separate distinct

MUAPs from each other [88, 89]. This will be addressed further in section 2.3.

Mixture Models

Numerous models for EMG can be found in the literature. Their main differences are, firstly,

whether they are derived analytically or based on finite element models and, secondly, the close-

ness of their models to reality. The latter being a function of the geometry of their models and of

how many distinct tissue layers they simulate.

While these models can be used to determine the electric potentials at any point in the vol-

ume conductor, the information sought in the context of this thesis is how a potential at a source

manifests at the location of a recording electrode as this mapping determines the mixing matrix

described in section 2.3.

Assuming that the contributions of different sources are cumulative but independent, then mod-

elsM, such as presented later in this section, can map the relative locations of sources and elec-

trodes to a mixing matrix M given parameters Θ. These parameters are derived according to the

electric properties of a volume conductor which is parametrised to approximate the muscle, fat and

skin tissue located between the presumed locations of the sources and the electrodes.

M =M(Θ) (2.1)

Each element of the resulting mixing matrix M represents the contribution that one source makes

to the value of one electrode. The row i of M is composed by the contributions of each source to

the value of the ith electrode. The column j of M represents the total of contributions to the values

of all electrodes made by the jth source. More precisely, the element of M at row i and column j

represents the contribution of jth source to the value of the ith electrode. The rationale behind this

will be covered in section 2.3.

Analytical Modelling

Analytical models are those that can be expressed in closed form; concretely, that means that given

an analytical modelM and some input parameters Θ—which here include the values of the sources

and the locations of both sources and electrodes—then the value ofM(Θ) can be calculated per
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hand or with a computer without having to resort to approximations or iterative algorithms such as

gradient descent based machine learning.

The most basic approach would be to assume that each source would give contribution equal

to its value to each electrode:

M[i, j] = 1 (2.2)

Evidently, while a valid mixing matrix could be derived from such a model, this would be very

far from the truth as it can be assumed with certainty that the contributions of a given source to

different electrodes differ according to some factor:

M[i, j] = 1 ·A[i, j] (2.3)

where A[i, j] is the coefficient describing both how the contributions of the j source to the ith

electrode differ compared to its contributions to other electrodes and how the contribution received

by ith electrode from the jth source differ from the contributions it receives from all other sources.

Assuming a purely homogeneous volume conductor, the contributions of any source to any

electrode should depend purely on the distance between their locations and a fixed attenuation

factor α [90]:

Mi,j = 1 · e−α||υj−χi|| (2.4)

where υj and χi are the locations of the ith source and jth electrode respectively, and α is a constant

derived from the electric properties of the volume conductor:

α = ω

√
µ′ε′

2

(√
1 +

(σeff

ωε′
)2 − 1

)
(2.5)

where µ′ and ε′ are the real parts of the magnetic permeability and electric permittivity respectively,

and where ω is the assumed angular frequency of the electric current, and where σeff is the effective

conductivity. Furthermore, it is to note that, in the absence of any magnetic field of significance,

which is the normal case, µ′ = µ0, where µ0 is the know constant of vacuum permeability [72].

However, the model described above still indicates a significantly lower amount of attenuation

compared to the prediction from very detailed models such as [55]. Taking into account the border

conditions between different tissue types improves the results from the model compared to what is

expected. The equations to do so can be found in [72].
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A range of analytical models can be found in the literature. These range from very simple

models assuming an infinite volume of muscle [91] to models with cylindrical geometry comprised

of multiple layers for each distinct tissue. A one-layer model can be found in [92], a two-layer

extension of that in [93] and finally a three-layer version is described in [94]. A variant of this

using a three-layer planar models can be found in [95, 96]. These models all present a different

trade-off between precision and complexity. [95] is used in the practical part of this thesis due to

being not overly complex to implement while still remaining relatively close to reality.

Finite Element Modelling

Analytical models which try to be very close to reality can become very complex. Thus, the ap-

proach of Finite Element Modelling (FEM) is used in those cases. In the context of modelling

EMG, FEM splits the entire volume conductor into many small connected cells with simple ge-

ometries. Then it is attempted to find by iteration a solution to the equations given above, or

similar ones depending on the setup, for each such cell. The equations are much simpler for each

cell as opposed to the whole volume conductor as each cell can be mostly treated as homogenous.

However, the large number of cells makes FEM still a very computationally expensive method and

thus not suited for the work underdone in this thesis. A general introduction to FEM can be found

in [97] and two examples of FEM models for EMG can be found in [98] and [55].

2.3 The Inverse Problem

Problem Description

The problem where multiple sources are observed in a mixed manner at multiple points is the

base problem dealt with by blind source separation (BSS) algorithms. Assuming that the mixture

process is linear, then the problem may be described with the following equations:

X = MY (2.6)

Y = WX (2.7)
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where Y is a matrix containing the sources and X is a matrix containing the observations where

the number of columns of X and Y is the number of samples in the data. Note that the equations

remain valid even with only one sample where X and Y would be column vectors.

M is the matrix describing how those sources are mixed and W is its inverse, that is M−1.

Note that the above equations don’t take into account the noise inherent to any real recordings and

imply that neither W nor M are singular, i.e. they are invertible.

The aim of BSS algorithms is to estimate M directly or indirectly by estimating its inverse W.

A multitude of algorithms have been developed in the last decades. They differ by the assumptions

on the properties, such as independence, Gaussianity, sparsity or non-negativity, of the data they

attempt to exploit [99]. Those algorithms that employ situation specific information beyond the

heuristics listed above are generally classified as semi-blind source separation (SBSS).

Spatial Convolution A descriptive example for the inverse problem is a room full of talking

people and a series of microphones. What is recorded at each microphone at each moment is a

mixture of all voices at that moment. With voices from people further from that microphone being

more faint than those originating from a closer location. In other words, it is a convolution over

the spatial domain centred on the microphone given some convolution matrix with the inputs being

the voices of the people.

If one would have the recordings of all microphones and wanted a transcript of what each

person said, then one needs to reverse that convolution. To do so, is to solve the inverse problem.

The above example can be easily transferred into the domain of BCI. For EEG and EMG for

instance, one needs just to replace the microphones with the respective electrodes and the people

with MUs or neuron clusters respectively, with the signal to recover being their respective action

potentials [100]. The latter is what is attempted in the experiments described in chapter 4.

Temporal Convolution The equations 2.6 and 2.7 imply that the mixture model is instantaneous

and, thus, the temporal domain is of no consequence. However, this is, in all real world cases, a

simplification of reality because information can never travel faster than light [101]. Thus, signals

emitted at one point in time from two different sources don’t arrive at the same time at the point of

observation unless the sources are exactly equal in distance from the point of observation.
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Assuming all sources emit a signal at the same time. Then let the maximum lag L be the

difference in time between the first detection of any of these signals at any electrode and the last

detection of any of these signals at any electrode. Then the mixture process of sources Y to

observations X could be described by:

Xt =
L∑
l=0

MlYt−l (2.8)

If L would be 0 because the maximum difference is much less than the sampling period, then the

above equation simplifies to those of an instantaneous mixture.

However, this representation is not very practical. In [102] a model is proposed where lagged

versions of the observations, both past and future, are “added” to the observations. The benefit of

not only considering how the sources relate to the observed mixture at one given moment in time,

but also how the sources affect the mixture at points in the past and future is to essentially increase

the number of observations by treating past and future observations as separate observations. As

the number of sources which, mathematically, can be identified is proportional to the number of

observations, having more observations allows more sources to be identified from a given mixture.

A different approach is taken in [103] where, iteratively, the observations in X are shifted based

on correlation between channels recoded at adjacent electrodes, then one source is recovered and,

subsequently, removed from the observations before starting the next iteration.

Another aspect concerning the temporal dimension is that time series often have specific tem-

poral structures, such as the one shown in figure 2.2, which can be exploited to guide the separation

process by SBSS algorithms [99, ch.19].

Over and under-determined cases

If there are more sources than observations then the problem is under-determined. In this case it

is not mathematically possible to recover all sources and the sources recovered by an algorithm

might still be mixtures of multiple sources [104].

If, on the other hand, there are more observations than sources, then the problem is over-

determined. Generally this only means that more information is available than mathematical

necessary which is a “good thing”. However, some algorithms—e.g. symmetric ICA, see sec-

tion 3.2—don’t deal well with this if the number of sources is unknown [104].
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In practise, such as with the EMG data used in chapter 4, it can happen that the problem is

technically under-determined but the data is so noisy that only an amount of sources less than the

number of observations can be recovered. Such scenario was found by the author to behave like

the over-determined case for all practical purposes.

Spike Detection

One form of BSS algorithms for EMG observations are those that attempt to extract MUAP traces

by seeking evidence for the characteristic “spike” pattern of MUAPs.

Template Matching

One way to separate the sources from the observed mixture is to find as many as possible templates

of what the signal looks like based on spikes which were not strongly distorted by the mixture pro-

cess. Then one iterates over the data and when a match is found, it is recoded and the matched

template is subtracted from the mixture. This is repeated until no other matches are found. The re-

maining signal is being assumed to be part of the background noise [105]. Note that this algorithm

could be considered to be a SBSS algorithm as it makes use of knowledge about the general shape

of such spikes.

Principal and Independent Component Analysis

The following algorithms are related mathematically and conceptually. Principal component anal-

ysis (PCA) could be understood as a precursor to independent component analysis (ICA) although

it has use cases outside of BSS too. Whitening is a required preprocessing step for ICA which can,

among other ways, be derived from PCA.

Principal Component Analysis

In PCA, a dataset is transferred to a new orthogonal basis such that a maximum of variance infor-

mation is contained in the first n features of the transformed dataset where n can be any number

smaller or equal to the number of features in the dataset. This is achieved through decorrelation,

i.e. making the covariance matrix zero in all non diagonal elements [106].
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For the PCA algorithm to work, the assumption that any noise is i.i.d and more Gaussian

than the data of interest must hold true and, ideally, the noise should have a covariance matrix of

identity [106].

Let X be a centred data matrix with n rows and m columns:

Σ~eΣeΣ
′
~e = Σ =

XX′

m− 1
(2.9)

where Σ is the covariance matrix of X and Σe is the diagonal matrix containing the eigenvalues

of Σ ordered by descending order of magnitude and Σ~e the corresponding eigenvectors stacked

column-wise:

XPCA = Σ′~eX (2.10)

Whitening

The whitening transform, sphering in some literature, is a combination of decorrelation and vari-

ance rescaling such that the covariance matrix of the data becomes the identity matrix.

There are infinite potential whitening matrices for any given dataset as any arbitrary rotation

or reflection of whitened data results in whitened data. Thus, the whitening matrix is only defined

up to an multiplicative orthogonal matrix.

There are five common algorithms to derive a whitening matrix, each with their own effects on

X when applied to it [107].

Let Σ, Σ~e and Σe be as defined above, let C be the corresponding correlation matrix, V be the

diagonal variance matrix, and C~e and Ce be to C as Σ~e and Σe are to Σ:

Σ = V
1
2 CV

1
2 (2.11)

Given that notation the equations of these algorithms are:

• Wpca is a direct extension of PCA and retains its utility in regards to ease of dimensionality

reduction:

Wpca = Σ
− 1

2
e Σ′~e (2.12)

• Wzca (Zero Phase Component) minimises the cross-covariance between the whitened and

original data:

Wzca = Σ~eWpca = Σ−
1
2 (2.13)
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• Wpca cor is as Wpca except in regards to C:

Wpca cor = C
− 1

2
e C′~eV

− 1
2 (2.14)

• Wzca cor is as Wzca except in regards to C:

Wzca cor = C−
1
2 V−

1
2 (2.15)

• Wchol does not optimise any particular property of the whitened data but tends to be in-

between any of the previous options of whitening matrices in regards to any of the specified

properties:

LL′ = Σ−1 (2.16)

Wchol = L′ (2.17)

where LL′ is the result of a Cholesky decomposition. Note that

ĽĽ′ = Σ (2.18)

Mchol = Ľ′ (2.19)

where Mchol is the inverse of Wchol. This permits to use this form of the decomposition

without explicitly calculating the inverse of Σ.

Independent Component Analysis

One of the most common BSS algorithms is ICA which uses the central limit theorem to separate

sources by attempting to minimise the Gaussianity of the sources because a mixture is always more

Gaussian than its sources [108].

However, there are other qualities instead of Gaussianity which can be used as measure if it

can be assumed that the sources exhibit this distinct quality strongly [99].

One such quality is sparsity. If it is known that the signals from the sources are very sparse,

that is zero most of the time, then, this property can be used instead of entropy as a measure to be

maximised inside the ICA setup [109].

Another possible measure is the non-negativity of the original factors, that is the sources are

assumed to be non-negative which can be said to often model real world data well [110].
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Pre-Whitening Most ICA algorithms converge only slowly, if at all, if the given input is not

centred and white, i.e. the mean of each row is 0 and XX′ = I. To sidestep this issue, X is

generally first centred and then premultiplied by a whitening matrix W0 before applying ICA. The

result of ICA then is a matrix W1 from which the actual un-mixing matrix W can be recovered

through the simple relation: W = W1W0. The centring could also be undone after un-mixing but

this is neither commonly done nor necessarily a sensible thing to do.

The sources estimated by ICA are always uncorrelated in addition to having their indepen-

dence, by some measure, maximised [111]. Thus:

W1W0XX′W′
0W

′
1 = I (2.20)

and since by the definition of the whitening transform

W0XX′W′
0 = I (2.21)

W1 must be an orthogonal matrix as

W1IW
′
1 = I (2.22)

Maximum Likelihood ICA If X is a S by T matrix, then the mathematical equation for maxi-

mum likelihood ICA is [104]:

L(W|X) =
T∏
t

S∏
s

p(W[s, :]X[:, t])||W|| (2.23)

p(x) = 1− tanh(x)2 (2.24)

where t indexes the samples in time and s is an index for the rows of W which themselves produce

the sth source in Y. ||W|| is the absolute determinant of W. The function p given here can be any

measure of non-Gaussianity, the one given here is merely one of the most commonly used. The

ICA solution of W is that which is the most likely, i.e. it maximises the above likelihood function.

FastICA FastICA, as the name implies is, often, one of the fastest ICA algorithms to find W1.

There are two general categories of this algorithm: the deflationary ones which estimate one row of

W1 after the other and the symmetric ones which estimate all rows of W1 simultaneously [112].

The symmetric kind estimates all rows of W1 simultaneously, which, theoretically, minimises

the error in W1 due to the noise in X but it does not give the sources in any particular order [113]
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and has been observed by the author to exhibit very bad performance if the number of actual

sources is less than the number of sources sought for.

On the other hand, the deflation-based ICA algorithms estimate one source after the other

which prevents issues if there are less sources than rows in W1. However, estimation errors

accumulate for each estimated source and can become significant for the last sources to be es-

timated [113]. If the number of actual source equals the number of sources sought for, deflation

based ICA thus tends to perform worse but it is much more robust when the number of actual

sources is less than the number of sources sought for as all the “error” would accumulate in the

final sources which are only “noise” anyway.

As the errors in deflation-based ICA stem mostly from the errors in the already estimated

sources, the order in which they are found can play a significant role in determining the quality of

the complete output. However, that order is defined by the value by which W1 was initialised to,

which, in the standard ICA algorithm, is done randomly. In reloaded ICA, the ideal order is first

estimated from a W̌1 itself estimated through any appropriate algorithm, and then ICA is run with

an accordingly permuted version of W̌1 as input [114, 115]. Note that this makes the algorithm

more robust towards noise but still does not account for it like most ICA algorithms.

Blind VS Semi-Blind Source Separation

BSS algorithms traditionally attempt to minimise the amount of prior information needed to suc-

cessfully separate mixtures. Prior information in BSS algorithms is thus usually limited to the

assumptions inherent in the algorithms themselves as described above. However, there are situa-

tions where the use of more prior information is useful or even necessary for the accuracy of the

decomposition. Thus, several semi-blind source separation algorithms have been developed [99,

ch.19].

A well-known example of SBSS algorithms are those based on Bayesian theories which will be

covered more in section 2.4. If using this approach for SBSS, there is a well-defined mathematical

way to introduce prior knowledge into the equation through the appropriately named prior π. The

posterior Π can be considered an improved version of our prior knowledge as it takes into account

the observed values. In particular, if more observations would become available, it is possible to
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use the old posterior as the prior for the current iteration [99, ch.16].

Work attempting to use prior information for SBSS of BCI data has been done to some extent

using combinations of EEG and MEG [109, 116, 117]. However, for EMG, while significant

work has been done to create models based on physiological information, those models are mostly

presented as a means to validate other algorithms, which do not use prior information themselves

but rather are being used for source separation themselves [65]. An exception to this can be found

in [118], [119] and [120], however, only a limited amount of prior information was used there.

From the same author is [121] where the prior information is used in classification not separation.

Another paper of interest is [122] where the possible utility of subject specific information for the

algorithm is discussed in the conclusion.

Independent component analysis has also been embedded into Bayesian frameworks in the

past while working with EMG data. However, no physiological information was used to deter-

mine the prior nor was any in-depth analysis of the posterior or posterior predictive distributions

performed [123].

2.4 Bayesian Inference

Bayes theorem [124], which is at the core of all Bayesian algorithms, describes the relationship

between the conditional probabilities p(Θ|Ξ) and p(Ξ|Θ) as:

p(Θ|Ξ)p(Ξ) = p(Ξ|Θ)p(Θ) (2.25)

which is also often put into this form:

p(Θ|Ξ) =
p(Ξ|Θ)p(Θ)

p(Ξ)
(2.26)

When used in Bayesian inference, Θ is the set of parameters to be estimated and Ξ the data which

carries (new) information about Θ. As a rule in Bayesian statistics, the data Ξ is considered fixed

and the parameters Θ to be random variables [125].

The probability density function p(Θ) is known as the prior π, which is the distribution of Θ

according to what is known before the new information in Ξ is considered. Analogously p(Θ|Ξ)

is known as the posterior Π which is the distribution of Θ according to what is known after the
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new information in Ξ is considered. p(Ξ|Θ) represents the likelihood L that Θ is the truth given

the Ξ. Note that p(Ξ|Θ) = L(Θ|Ξ), i.e. the arguments are “flipped”. The distribution p(Ξ)

is often unknown and not easily computable, including through marginalisation, and thus, as it

is essentially a constant since Ξ is constant, often dropped. This leaves the following general

formula:

Π(Θ|Ξ) ∝ L(Θ|Ξ)π(Θ) (2.27)

The posterior Π is a probability distribution over the whole domain of Θ. If only the value of Π

at the mode of this distribution, usually called the maximum a posteriori (MAP), is required then

this can be formulated as an optimisation problem:

MAP(Θ|Ξ) = arg max
Θ

Π(Θ|Ξ) (2.28)

or

arg max
Θ

Π(Θ|Ξ) ∼ L(Θ|Ξ) · π(Θ) (2.29)

The later can often be solved with “simple” gradient descent based algorithms instead of the prob-

abilistic algorithms needed to compute an estimate of Π. Both types of algorithm will be covered

below.

Gradient Descent

In many applications it becomes desirable to maximise or minimise certain properties. In mathe-

matical notation this optimising problems are written as:

arg max
Θ

F(Θ) (2.30)

for maximisation and

arg min
Θ

F(Θ) (2.31)

for minimisation respectively where F is a scalar valued function with input arguments Θ.

If the function of interest G is scalar valued and the desired property does coincide with G’s

minima or maxima, then G can be used directly as F , else a so-called loss function which has

the desired properties can generally be interposed, i.e. the F(Θ) from the above equations would

actually be F(G(Θ)).
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Gradient descent algorithms operate by calculating the first derivative or partial derivatives if

Θ is not scalar and calculate from this the gradient ∆, that is the direction in which Θ would need

to change for F(Θ) to increase. That is

F(Θ) < F(Θ + η∆) (2.32)

is assumed to hold provided the learning rate η is sufficiently small. This small change of Θ done

iteratively until the magnitude of ∆ falls below a threshold, is, in essence, the complete core of

gradient descent.

The choice of η and how to change it after each iteration is the primary difference between

gradient descent algorithms and still a field of active research. An overview of current algorithms

can be found in [126].

Probabilistic Algorithms

There often do not exist close form solutions for Bayesian posteriors. Various algorithms to sample

from or to estimate Π have been developed despite this. They are presented below in descending

order of accuracy, which is also their descending order of computational complexity.

Markov Chain Monte Carlo

MCMC, which arises out of the combination of Markov chains and Monte Carlo sampling method,

is a somewhat computational expensive but otherwise conceptually simple and stable method.

It is a family of algorithms which create Markov chains whose elements distribution converges

to a given stationary distribution irrespective of the initial value of the chain provided it is suffi-

ciently large [127].

Markov Chain A Markov process is characterised by the property that the current state of the

modelled process depends only on the immediately preceding state; otherwise formulated, the next

state only depends on the current state. Any prior states are considered uncorrelated or represented

fully through the current state already. The transition between two states is described by a so-called

Markov kernel. In simple words, the kernel is a function which takes the current state as parameter
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and returns the next state. This kernel function may be either deterministic or probabilistic as

required by the modelled process [128].

A special case are hidden Markov processes, also referred to as the latent Markov model, where

a hidden state follows the Markov process, but one can’t observe said state directly. What can be

observed is a variable whose value depends on the value of the current hidden state according to a

known mathematical relationship [129]. A simple visual representation for this is:

x1 → · · · → xn

⇓ ⇓ ⇓

y1 · · · yn

where x1 through xn represents the values of a unobserved Markov process with a kernel function

→ and yi represents the observed values of xi according to a transfer function ⇓.

Monte Carlo The Monte Carlo sampling method refers to the random sampling from one or

many distributions followed by deterministic processing. Its use derives from the fact that it is often

much simpler to simulate many singular instances of a complex system and to draw conclusions

from that sample than it is to describe the expected output of a complex system given only a

description of the system itself [130].

MCMC uses Monte Carlo sampling to determine the next state of a Markov chain such that, on

average, after many samples, the chain becomes distributed like the sought posterior distribution.

Variants The classical variant of MCMC is Metropolis Hastings [131]. Here, for each step, if

the current state is x, a random new state y is proposed and accepted with probability

p(x→ y) = min

(
1,

Π∗(y)

Π∗(x)

)
(2.33)

where Π∗ is the, possibly unnormalised, posterior in the case of Bayesian inference. If the move

to y is not accepted then the old state x is chosen as the new state.

Hamiltonian Monte Carlo (HMC) is a modern variant of MCMC which uses gradient infor-

mation in conjunction with the namesake Hamiltonian equations [132] to more efficiently sample

from the full posterior domain than the random walk employed by Metropolis Hastings. Even

a basic description of the concrete method employed in HMC is too large to include here; an

introduction can be found in [133].
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Variational Bayes

Variational Bayes (VB) is an algorithm to produce an approximation of the posterior. In VB

each parameter in Θ is assigned to a parametrised probability distribution family. In a com-

mon approach, called mean field, independence between each parameter is assumed. Then the

parameters of these distributions are found by some method, iteratively or simultaneously, such

that the Kullback-Leibler divergence between the resulting distribution and the posterior is min-

imised [134].

Laplace Approximation

Laplace’s method is an algorithm to evaluate integrals by approximation. Provided the maximum

a posteriori has been estimated with sufficient accuracy, then the mathematics of that method can

be used to find the moments of a normal distribution centred on the MAP. Those moments can be

used to derive a reasonable approximation of the posterior [135].

Predictive Distributions

A predictive distribution in the Bayesian context is the distribution of unobserved values Ξ̌ given

observed values Ξ where the distribution of Ξ̌ depends on Θ. As Θ is drawn from a distribution

itself, the predictive distribution, to take into account Θ’s distribution, is first calculated by treating

Θ as variable and then subsequently Θ is marginalised out.

The posterior predictive distribution is calculated as:

p(Ξ̌|Ξ) =

∫
p(Ξ̌|Θ,Ξ)Π(Θ|Ξ) dΘ (2.34)

The prior predictive distribution is calculated as:

p(Ξ̌|Ξ) =

∫
p(Ξ̌|Θ,Ξ)π(Θ) dΘ (2.35)
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2.5 Summary

This chapter reviewed the topic of neural interfaces and its subtopic of electromyography. Usage

of EMG data often stipulates that an inverse problem is to be solved. Namely what the underlying

MUAP signals are given the mixture recorded at the electrodes. The inverse problem in general

and the independent component analysis algorithm in particular have been covered in section 2.3

of this chapter. Then this chapter ended with a review of Bayesian inference, which will be used

in the next chapter to provide a framework to analyse the certainty of the out put of ICA. This

framework will then be applied to EMG data in chapter 4.
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3 Bayesian Extension to ICA

This chapter will describe extensions made, as part of the work towards this thesis, to the inde-

pendent component analysis (ICA) algorithm and procedures developed to that end. The main ex-

tensions lie in incorporating prior knowledge and providing a measure of quality using a Bayesian

framework. Unless explicitly stated otherwise, it can be assumed that everything presented in this

chapter is original work or refers to observations made by the author himself in the course of the

practical work for this thesis.

3.1 Overview

All algorithms will be presented in the context of the inverse problem posed by electromyographic

recordings. However nothing about them, except the specific physiological model employed, is

strictly specific to EMG, i.e. the algorithms and methods employed here ought to be adaptable to

any instance of the inverse problem with very little work.

Aims

The ultimate practical use of every algorithm, or set of algorithms, tackling the inverse problem is

to recover the signal Y which was transformed by some mixing process M into the observations

X. It is assumed that this is a linear mixing process, thus this corresponds to finding that processes

inverse W.

Let Y be represented by a Sy by T matrix where each of the Sy rows represents a source,

which in the case of EMG data is a trace of a MU activation pattern, and where T is the number of

samples over time. Similarly, let X be represented by a Sx by T matrix where each row represents

an observation, one row per electrode in the case of HDsEMG. Then the matrix W, known as un-

mixing matrix, is a Sx by Sy rectangular matrix and M, the mixing matrix, is a Sy by Sx matrix.

For mathematical convenience Sy is often given the same value as Sx, thus making W a square

matrix which allows M to be a straightforward matrix inverse of W.
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In the noiseless case, these values relate to each other through these simple equations:

X = MY (3.1)

Y = WX (3.2)

Independent Component Analysis aims to find an estimate Ŵ such that each source in the

reconstructed Ŷ takes on certain properties as discussed in section 2.3. It however neither reports

on its own accuracy nor can it be guided by any information except those aforementioned domain-

independent properties.

The goals of the here presented extension are to make the overall algorithm produce a measure

on its accuracy which does not depend on the user manually inspecting Ŷ and to improve the

results of the algorithm by injecting prior knowledge, based on anatomy and electrophysiology,

about M and thus W.

While these two goals are independent to each other per se, they can be achieved simulta-

neously by embedding ICA, specifically its maximum likelihood formulation, into a Bayesian

framework. Thus they will be covered together here.

Challenges

There are two main challenges.

Firstly all ICA algorithms suffer from an ambiguity of scale and order of the sources estimated

through them. The scale ambiguity is mitigated in the maximum likelihood formulation through

normalisation such that the standard deviation of all estimated sources is 1. The permutation

ambiguity can be resolved by defining some ordering criteria. Such reordering is however not

amenable for integration into gradient descent methods.

Secondly it is reasonably simple to define a prior on M but much harder to define it directly

on its inverse W. All attempts, made pursuant this thesis, to define the prior directly on W were

unsuccessful, though further research might find a way. As a consequence, in the following, the

prior is defined on M which implies an inverse of the parameter to be optimised which can lead

to mathematical instabilities. This can be addressed by noting that W may be split into W1 and

W0, where W0 is constant given X and W1 mathematically ought to be an orthogonal matrix
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whose inverse thus simply is its transpose. However, while some ICA algorithms such as FastICA

ensure the orthogonality of W1 after each update step by renormalising it, the here used maximum

likelihood formulation does not usually enforce this. Thus, to use iterative algorithms, such as

gradient descent or Markov Chain based sampling algorithms, the W1 part of W needs to be

re-parametrised such that the orthogonal quality of W1 is preserved after each step.

Methods

Figure 3.1: Overview of the framework presented in chapter 3. Circles denote variables and
squares denote computations or algorithms. Note that some implementation details have been
omitted for overall clarity.

To begin, estimates Ŵ and Ŷ are computed from X using reloaded FastICA [115] as described

in section 3.2. Presuming that all formulations of ICA give the same result, assuming the same

measure of independence is used, then Ŵ should be equivalent, up to permutation, to the maxi-

mum likelihood solution of ICA and under the assumption of a flat prior even to the maximum a

posteriori solution. Let the latter concept be refereed as ŴL in the following.
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Then a gradient descent algorithm is used as described in section 3.6 to find the maximum a

posteriori (MAP) solution ŴΠ with an informative prior as described in section 3.4 and a maxi-

mum likelihood function as described in section 3.3. This is sped up significantly by using ŴL as

a starting point under the assumption that it is very close to one of the global maxima.

The full posterior distributions for both ŴL and ŴΠ is then estimated as described in sec-

tion 3.7. With estimates of these posterior distribution, the posterior and maximum likelihood

predictive distributions of Y are estimated. As the estimated predictive distributions are still sub-

ject to the scaling ambiguity of ICA, a signal to noise ratio of each source can be calculated as a

last step as also described in section 3.7.

3.2 Finding W1

Data of high definition electromyography recorded from S electrodes, not considering grounds,

consists of S time-series of T samples each. Let such data be X and let Y be the unmixed sources,

which are approximately the MUAP trains. Both can be represented as matrices of S rows and

T columns. This assumes a number of unmixed sources equal to the number of observations. In

practice, a number of sources in Y will be false sources containing only or mostly noise.

X and Y are assumed to be linear mixtures of each other. Assuming that noise can be ignored,

then it follows from the equation of the inverse problem in section 2.3 that if the un-mixing matrix

W or its inverse the mixing matrix M is known, then, Y can be fully recovered from X. See also

equations 3.1 and 3.2.

W can be decomposed into two parts:

W = W1W0 (3.3)

similarly for M:

M = M0M1 (3.4)

where M0 and M1 are also the inverses of W0 and W1 respectively. This only holds if these

matrices are square, which is the primary reason the number of unmixed sources is taken to be

equal to the number of observations.
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The spilt of W is usually performed because most algorithms have significantly better conver-

gence characteristics when searching for W1 given a pre-whitened X0 calculated as:

X0 = W0X (3.5)

This split will be, however, of further use in section 3.6.

Let W0 be a whitening matrix of X. That is a matrix such that

cov(W0X) = I (3.6)

then there are infinitely many possible W0 as

cov(QW0X) = I (3.7)

holds true for all Q ∈ Q. Multiple algorithms to derive W0 from X are presented in section 2.3. As

the choice of W0 is not particularly important for independent component analysis the Cholesky

method is chosen here for its simplicity and relative numerical stability.

As discussed in section 2.3, all versions of independent component analysis return sources

which are uncorrelated, thus the covariance matrix of the estimated Y is diagonal and the covari-

ance matrix is the identity matrix in effect because the variances are usually normalised to 1 as

ICA cannot recover scale.

It follows thus that W itself is expected to be a whitening matrix and W1 thus must be an

orthogonal matrix if W0 is a whitening matrix.

With FastICA

If no prior information is to be taken into account, then the FastICA family of algorithms, discussed

in section 2.3, is one of the fastest ways to estimate Ŵ1 given W0. Convergence when using W

and X directly however is very slow, and has been observed by the author to fail outright.

Symmetric FastICA returns the sources in an arbitrary order subject to the random initialisation

of Ŵ1. And the quality of the estimate Ŷ tends to fare badly in the presence of noise if there are

less actually recoverable sources than the mathematical maximum as implied by the rank of W,

i.e. the number of rows in X. Since the number of recoverable sources in X can not be expected
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to be known a priory but is expected to be regularly less than the rank of W, this is troublesome,

because it makes the symmetric approach not suitable for situation described here.

The basic deflatory FastICA algorithm also does not order sources in a deterministic manner

like the symmetric algorithm. However, it is robust against cases where there are less recoverable

sources than rows in X as it recovers the sources sequentially.

Reloaded FastICA, as described in [115], is an extension to deflatory FastICA which explicitly

orders the sources according to a source dependent metric. This does not guarantee the same

ordering when for example the algorithm is applied to different parts, or the same part preprocessed

differently, of a dataset, but, as long as it can be assumed that the same sources are recovered, it

can be assumed that the ordering is at least very similar. This is the algorithm which was employed

in the experiments described in chapter 4.

Source Matching

As stated, Independent Component Analysis returns the found sources in an arbitrary order which

is generally not predictable or comparable between different inputs and sources may have their

sign flipped, i.e. are multiplied element-wise by minus one. More formally, ICA only finds,

approximately, PM′
1 where P is any signed permutation matrix.

If source estimates of the same data have been found through different ICA algorithms or with

different parameters, or a ground truth is know because synthetic data was used, then one of the

estimates needs to be reordered to match the other, that is the differences between the unknown Ps

introduced by the ICA algorithm need to be found.

To do this an heuristic must be chosen which signals how likely two estimated sources represent

the same source. Good but simple candidates for this are the absolute covariance or the absolute

correlation. The absolute value is needed as the sources may be flipped. Taking the square of these

would also be a possibility.

The values of that heuristic can be combined into a matrix H. To match the sources, a per-

mutation matrix P̌ needs to be found such that the trace of P̌H is maximised. In the case where

a ground truth is matched, this P̌ is the transpose of P thus cancelling each other fully out, as

permutation matrices are orthogonal matrices. This can be treated as an instance of the stable mar-
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riage problem [136] for which the Gale–Shapley algorithm [137] is an ideal solution in the sense

that it returns an ordering where it is not possible to improve the result for one source through

further swapping without decreasing the result for another.

Once P̌ has been found, possible sign inversions of the matched sources can be corrected

by flipping the sign of the appropriate element of P̌ where the correlation between two matched

sources is negative.

As a note, this P̌ can be directly applied to an estimate of W without changing the validity or

quality of that W as it only changes the ordering and the sign of the sources, both of which ICA is

invariant to.

3.3 Maximum Likelihood ICA

It is possible to formulate ICA as a maximum likelihood problem. The naive likelihood equation

for a S by T dataset X as presented in section 2.3 is

L(W|X) =
T∏
t

S∏
s

(1− tanh(W[s, :]X[:, t])2)||W|| (3.8)

The maximum likelihood estimate ŴL could then be found by utilising a gradient descent

optimiser such as Nesterov-accelerated adaptive moment estimation (NADAM) [138].

Performance of the above in a gradient descent algorithm would however be poor. To have

a performant implementation X needs to be pre-whitened and it is generally faster to compute

everything in the log domain. As noted before, W0 is Wchol as presented in section 2.3.

To avoid awkwardness of notation, the following rule will be observed in the equations below:

On the left hand side the mathematical parameters for which the function is defined are used. On

the right hand side the decomposed or composed forms as would be passed in an actual implemen-

tation are used. Mainly W is W1W0 and X0 is W0X.

With whitening the equation becomes

L(W|X) =
T∏
t

S∏
s

(1− tanh(W1[s, :]W0X[:, t])2) · ||W1|| · ||W0|| (3.9)

which in the log domain is

logL(W|X) =
T∑
t

(
S∑
s

log(1− tanh(W1[s, :]W0X[:, t])2)

)
+log ||W1||+log ||W0|| (3.10)
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considering only the part within the inner sum for now with the input to tanh considered to be one

variable x

log(1− tanh(x)2) (3.11)

then expand tanh

log

(
1− (ex − e−x)2

(ex + e−x)2

)
(3.12)

lift the 1 into the numerator and expand all terms in the numerator

log

(
e2x + 2exe−x + e−2x − e2x + 2exe−x − e−2x

(ex + e−x)2

)
(3.13)

cancel out terms

log

(
2exe−x + 2exe−x

(ex + e−x)2

)
(3.14)

exe−x is always one

log

(
4

(ex + e−x)2

)
(3.15)

propagate the log

log(4)− 2 log(ex + e−x) (3.16)

ex + e−x is equal to 2 cosh(x)

log(4)− 2 log(2 cosh(x)) (3.17)

expand and cancel terms a last time

−2 log(cosh(x)) (3.18)

and emplace into the log-likelihood

logL(W|X) = T (log ||W1||+ log ||W0||)− 2
T∑
t

S∑
s

log cosh(W1X0[s, t]) (3.19)

When implementing the above, both log ||W0|| and X0 can be precomputed using M0 instead

of W0 to avoid the inversion of M0 needed to find W0, which is the last step of the algorithm

employed to find W0. Similarly W1X0 would be computed once and the whole term inside the

sum vectorised. Additionally log ||W1|| is always zero provided the orthogonality constraint on

W1 is maintained as described in section 3.6.
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3.4 Prior Model

In this section it is discussed how to derive a prior distribution of the mixing matrix M given some

physiological modelM.

Prior Information

It is possible, a priory, to make assumptions about a number of physiological properties as dis-

cussed in section 2.2. Primarily these are: the electric properties of the materials of the volume

conductor which are the muscle including its anisotropy, the subcutaneous fat layer and the skin;

the thickness of the latter two; and of the locations of MUAPs within the muscle.

For the purposes of the generation of a prior discussed here, only the relative position of a

source, which is approximately a MUAP, to a recording electrode will be of relevance. Let x

denote the direction parallel to the muscle fibres, y the direction orthogonal to x while remaining

parallel to the surface and z the depth which is then orthogonal to both x and y. For simplicity

of parametrisation, z shall be the depth inside the actual muscle only, with the total depth being

zt = z + S + F where S and F are the thickness of the skin and the subcutaneous fat layer

respectively. These values are illustrated in figure 3.2.

The conductivities for skin, subcutaneous fat and muscle shall be denoted as σS , σF and σM

respectively. As the conductance of muscle differs along the fibre direction respective to across the

fibre direction, a ratio of anisotropy A is also defined.

The following values, taken from [79], will be used for these parameters:

• σS = 4.55× 10−4 S
m

• σF = 3.79× 10−2 S
m

• σM = 2.46× 10−1 S
m

• A = 5

• S = 5× 10−4m

• F = 2.5× 10−3m
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Figure 3.2: A diagram of a planar volume conductor with a skin, fat and muscle layer. On the left
the axes are overlaid and on the right the lengths along the z axis are illustrated.

These are fixed values instead of distributions, as would more accurately describe our state of

knowledge, because the computational cost would increase significantly in that case.

As discussed in section 2.2, effects of the tissue’s capacitance may be, and is here, assumed

to be negligible. Also as discussed in that section, these values are reported with highly variable

values. Thus the concrete values above are quoted here for reproducibility purposes only.

Prior Distribution Generation

Each column of M describes the contribution of one source to the observations at all electrodes.

One can thus, as electric fields are not assumed to interfere with each other, assume that each

column of M is i.i.d. provided that the locations of all sources can be assumed to be also distributed

i.i.d. according to some distribution S̃. This assumption makes the prior distribution of M fully

definable by a prior distribution of its columns.

Given a volume conductor with a skin thickness of S and a fat layer thickness of F and the

electric properties as defined above, letM be a model which predicts the amplitude β recorded at

an electrode if there is an active motor unit action potential located at an offset (x, y, S + F + z)
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of it with a signal amplitude α.

Then, given an electrode grid configuration, a column of a mixing matrix can be estimated for

any given MUAP location within the muscle. Essentially the mixing matrix for one source located

at (x, y, S + F + z) ∼ S̃ is a column vector m with values derived as

m[i] =M(|x− xχi
|, |y − yχi

|, S + F + z) (3.20)

where xχi
and yχi

are the grid coordinates of the ith electrode along the same axes as used by the

model.

Using the above equation with many sample locations allows to calculate a sufficient amount

of samples of columns of M that a distribution for such a column can be fitted over them. And as

discussed above, the prior distribution of a mixing matrix of rank n is merely the combination of

n i.i.d. columns whose values are such distributed.

Implementation Considerations

The mathematics of modelling the dynamics of the electric fields involved become much more

tractable in the frequency domain as opposed to the spatial domain. As a consequence many

models, including the model in [95] used for this thesis, involve a Fourier transform over the x–y

plane for any given depth z.

It would consume significant computational power to recompute this for each sample MUAP

location. This can be avoided by pre-computing a number of layers and then interpolating between

them for each given sample MUAP location. Due to radial symmetries, only the volume between

0 + S + F and Z + S + F on the z axis, 0 and Y on the y axis, 0 and X on the x axis, needs

to be precomputed, where Y and X are the furthest a MUAP location is assumed to be from an

electrode on the x and y axes respectively. This optimisation can be made as negative offsets in

the x and y axis result in the same values as if they would be positive due to the aforementioned

symmetries.

The model defined in [95] has a singularity at x = 0, y = 0 before the Fourier transform step. It

is possible to attempt to impute it but even small errors can cause negative values after the Fourier

transform, which is not possible as it is safe to assume that the lowest possible amount of signal,

emitted from a source located at infinity, would be 0.
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To resolve this, it was chosen to simply set the problematic value to 0 and to address the

missing 0 Hz signal at the end by normalising the values. For this normalisation it is assumed that

the furthest point (X, Y, S+F +Z) gives no detectable signal any more, that is, it has a value of 0,

and that the closest point (0, 0, S+F ) would have a perceived signal strength of 1. This is achieved

by an element wise subtraction of the value at (X, Y, S + F + Z) followed by an element-wise

division of the value then found at (0, 0, S + F ).

Furthermore, the precomputed model represents a discrete three dimensional grid in its con-

tained volume, not the full volume. Provided the step size between grid points is small enough, this

can be overcome by applying an interpolation algorithm. Cubic interpolation was found to cause

artefacts, in particular overshooting values if the sample source was located near an electrode in

the x and y axes, while no such issues where detected with plain trilinear interpolation. The latter

was thus used in the experiments described in chapter 4.

3.5 Orthogonal Matrix Reparametrisation

Orthogonal matrices have a number of particular properties. For a full description see [139]. The

important properties in the context of this thesis are: that they are square matrices composed of

orthonormal (i.e. orthogonal and with unit length) rows and columns, and that their inverse is also

their transpose.

The property of orthogonality is expected of some parameters in certain algorithms. For ex-

ample, the W1 returned from ICA algorithms is always expected to be orthogonal if the data

was whitened with some W0. In FastICA, this is enforced by normalising W1 after each step.

However, it is difficult to enforce other constraints on W1 for, among others, this reason.

In the extended ICA algorithm described below in section 3.6, a prior probability is put on

M, that is M0M1. As M0 is constant for a given dataset, it is very desirable for W1 to remain

orthogonal at each step beyond the desire to stay within the original constraints of ICA because it

makes the needed inversion of W1 into M1 significantly less troublesome in terms of numerical

stability and computational speed.

It is not possible for probabilistic software to directly sample from the space of orthogonal

matrices nor could gradient descent algorithms preserve this constraint on the parameters to be
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updated. Thus, if such frameworks or algorithms are employed while a orthogonally constraint

must be satisfied, then the variable must be re-parametrised such that any parameter value in the

new space corresponds to a valid orthogonal matrix. Such a reparametrisation from an orthogonal

matrix Q to a safe to update triangular matrix T is described here.

Orthogonal matrices of rank n are a representation of the orthogonal group, which is a symme-

try group, see [140] for a primer on such groups. One of the properties of symmetry groups is that

the multiplication of any two of its members returns another member of that group, possibly one

of the members multiplied if the other one is the identity, i.e. an identity matrix. Thus there exists

an infinite amount of possible decompositions for every orthogonal matrix.

The salient point is that there are always a number of ways to decompose an orthogonal matrix

into simpler ones, which can be themselves described in a more compact way. For example, each

orthogonal matrix of rank n can be decomposed into at most n
n−1

Givens rotation matrices plus

one matrix determining the determinant. Each Givens matrix can be represented by a scalar value

between 0 and 2π radians and an axis implied by its position in the decomposition.

The angular values described in the approach given above are amenable to gradient descent

provided the value is interpreted modulo 2π. Nevertheless, the approach is not of use when the

distribution of the parameter is desired as that distribution could be split awkwardly around the

discontinuity around 2π which would cause a number of mathematical and convergence issues.

This could be alleviated by manually rotating the range of the angle, but this would likely cause its

own issues.

Another way to decompose an orthogonal matrix is to decompose it into Householder matrices

which themselves can be represented as vectors of a length equal to the rank of the matrix.

The space of these vectors also contains a discontinuity at all vectors which are representable

as α · e1 where α ∈ R+ and e1 is a unit vector parallel to the first axis of a Cartesian coordinate

system. However, this discontinuity does not risk splitting the mass of a probability thus it can be

mostly ignored for most intends and purposes. Furthermore, the space contains a singularity at the

zero vector which is also negligible as it can be arranged to have a probability of zero.
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Derivation

Let QK be the domain of all orthogonal matrices of rankK and let TK be the domain of sets {tk}K1

of K vectors tk of lengths 1 through K where each ||tk|| > 0. Note that elements of Tk can also

be represented as rank k lower triangular matrices which is reflected below in the notation T used

for elements of Tk.

If using this algorithm to randomly generate matrices from Q or using it in a stochastic frame-

work or gradient descent, then it needs to be imposed that for all t its magnitude ||tk|| ∼ D,

where D is a univariate continuous distribution with support R+, to ensure that all tk are sampled

uniformly in the radial domain. The author suggests to use the Gamma distribution with shape pa-

rameter φ+ 1 and scale parameter 1
φ

where φ is the golden ratio, i.e. mean and standard deviation

of one. A mean of one is desirable as when transforming from Q into T all ||t|| are of length one.

Furthermore, this distribution has a density of zero for zero vectors which are invalid t values.

As the re-parametrisation is easier to understand from TK to QK , this direction is presented

first. For each vector t ∈ T ∈ TK calculate a unit vector w through division by its magnitude

w =
t

||t||
(3.21)

Then map w smoothly to a v which is guaranteed to be on one specific half of the unit hypersphere

v =
w − e1

||w − e1||
(3.22)

where e1 is a constant unit vector with 1 in the first dimension. This is equivalent to letting v be the

reflection plane of w which reflects w through the origin. Note that there is one singularity here

which is removable in the two dimensional case but becomes non-removable in higher dimensions.

This singularity occurs when w is e1. This singularity occupies a part of the domain of permutation

matrices. As the singularity ought to not cause issues when traversing it during gradient updates

due to its limits symmetries and occupies only one “line” independent of the dimensionality of

w, thus zero density, in the parameter space it should be safe to ignore it. In the context of a

computer algorithm, to avoid exceptions being thrown, treating v as e1 when w is e1 will still give

a consistent and unique result in the next step. Alternatively treating v as a zero vector is simpler

to implement, but the determinant and, thus, type of the resulting Q is negated.
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From each v construct a householder matrix P

Pk = I− 2 · vkv′k (3.23)

Then extend each such P to be of rank K by pre-pending 1 on the diagonal and 0 elsewhere then

construct a rank K Q by taking the product over all P

QK =
1∏

k=K

IK + IK [:, k:K] · (Pk − Ik) · IK [k:K, :] (3.24)

This Q ∈ QK is uniquely defined for each T ∈ TK .

In the inverse direction, it is possible to recover up to the vs found in equation 3.21 from which

a valid T can be formed

wk = Qk[:, 1] (3.25)

Find the Householder matrix Pk as in equations 3.22 through 3.23 and then calculate

Qk−1 = (PkQk)[2:, 2:] (3.26)

and repeat this steps until k becomes 1.

Note that each such calculated wk is a unit vector.

Notes

The resulting Q is a rotation matrix, whose determinant is always +1, if its rank K is odd and

t1 is positive or if K is even and t1 is negative. Otherwise, Q is a rotoreflection matrix, whose

determinant is always −1. This follows from the algorithm as t1
||t1|| = Q1 and each subsequent

increase of rank is done through a householder reflection. The initial 1 by 1 matrix −1 is a 1D

reflection and 1 a rotation of 0 deg and two reflections negate each other. Thus if it is desirable to

restrict a Q to either only rotation or only rotoreflections, one can do so by fixing t1 to 1 or −1

respectively depending on the rank of Q.

Implementation

There are a number of optimisations which can be performed while implementing this algorithm.

Firstly Q can be initialised as an identity matrix of rank K and updated in place. Secondly trans-

forming tk to Pk can be folded into updating Q in a way which omits multiple of the intermediary
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steps.

Q = IK (3.27)

For each t ∈ T ∈ TK

nt = ||t|| (3.28)

if t[1] 6= nt

t[1] −= nt (3.29)

Q[k:K, k:K] +=
tt′Q[k:K, k:K]

ntt[1]
(3.30)

else, premultiply Q by a diagonal matrix of all 1 except the bottom most which is -1.

After the loop Q’s value is the desired output of the algorithm. If the algorithm is to be used in

a stochastic framework or for gradient descent, then a penalty p can be accumulated easily within

the loop by splicing the following operation into each iteration

p += logpdfD(nt) (3.31)

with p initialised to 0 at the beginning. p can then at the end be combined with the loss or log

posterior as appropriate for the algorithm used.

Note that this implementation will threat any t of length zero, which are not valid ts and have

a density of zero in the proposed penalty D gamma distribution, the same as e1.

Parts of the implementation of the inverse direction can be similarly simplified.

For k ∈ {K, ..., 1} if k 6= 1 do

tk = Qk[:, 1] (3.32)

if tk[1] 6= 1 do the following steps

t = tk (3.33)

t[1] −= 1 (3.34)

Qk −=
tt′Qk

1− tk[1]
(3.35)

Qk−1 = Qk[2:, 2:] (3.36)

Q to T to Q always round-trips up to floating point error. T to Q to T only does so up to the

scale of each t and all zero vector t are replaced with a e1 vector.
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3.6 Maximum A Posteriori ICA

To inject prior information into ICA, using a Bayesian framework, a likelihood function L as

described in section 3.3 for the ICA part and a prior π need to be defined as per the common

Bayesian equation:

Π(W|X) ∝ L(W; X)π(W) (3.37)

and in the computationally efficient log domain:

log Π(W|X) = logL(W; X) + log π(W) + c (3.38)

where c is the log of the proportionality constant before the transform.

It is however very difficult to determine a meaningful prior distribution of W thus a prior on

each column of its inverse M is used instead. The procedure to derive said prior distribution NM

on each column of M is described earlier in section 3.4. Given that distribution, the log-prior of

M is

log π(M) = 2||M||+
S∑
s

log pNM(M[:, s]) (3.39)

the factor before the sum accounts for the prior being on M and not on W. Without enforcing W1

to be orthogonal the posterior would then be

log Π(W|X) = logL(W1; X0) + log π(M0W
−1
1 ) + c (3.40)

which contains an inverse prone to cause numerical instabilities during gradient descent.

Provided the orthogonality constraint on W1 is maintained the posterior becomes

log Π(W|X) = logL(W1; X0) + log π(M0W
′
1) + c (3.41)

which is much less prone to numerical issues. Using the re-parametrisation defined in section 3.5

on W1 gives this loss function:

loss(T|X0) = −
(
log Π(TtoQW1

(T)|X0) + TtoQpenalty(T)
)

(3.42)

which can be optimised by any gradient descent algorithm although those that are able to adjust

learning rates for each value in T independently are likely to give better results as the importance

of elements in T is unlikely to be evenly distributed.
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3.7 Full Posterior

If the penalty term described in section 3.5 is added, then the above log-posterior function can

be used in a stochastic framework, such as Stan (see appendix D), to acquire samples from the

posterior distribution from which an approximation of the full posterior can be derived. Both

Markov Chain Monte Carlo and Variational Bayes methods are feasible on modern hardware if

only a few experiments are planned, but the time requirements can get onerous if many separate

experiments are executed.

Instead, the Laplace approximation [125] can be used if the trade-off between accuracy and

time is considered acceptable. To calculate the Laplace approximation W̃ of the full-posterior,

first the maximum a posteriori Ŵ must be estimated using equation 3.42, then, after taking the

Hessians Ĥs of the loss function with regards to each row ŵs of Ŵ, where s is the row index, the

approximation is:

Σ̂s = (−Ĥs)
−1

µ̂s = ŵs

(3.43)

The sought W̃ is the combination of all such estimated Σ̂s and µ̂s for all s, that is for each sample t

in each row in W:

ws |X ∼ N (Ŵ[t, :], Σ̂s) (3.44)

It is worth of note that the estimated Σ̂s may be underestimated due to effects of the autocorrelation

in Y and thus X as common in time-series data. This can be alleviated by downsampling X in

the time dimension; however, care needs to be taken as ICA becomes unreliable if the frequency

content of the sought signals approaches too close, to the Nyquist frequency. Please see section 4.2

for the downsampling parameters used in the experiments run as part of this thesis.

3.8 Predictive Distributions

Given EMG observations X̌ assumed to be generated by some unknown sources Y through a

mixing process Ŵ as estimated from X which may or may not also be X̌, the posterior predictive

distribution of Ỹ can be calculated as follows:

Ỹ[s, t] |X, X̌ ∼ N (Ŵ[s, :]X̌[:, t], X̌[:, t]′Σ̂tX̌[:, t]) (3.45)



52

In particular, the mean and standard deviation of the sth source at the tth sample of the signal

distribution Ỹ can be found as:

µst = Ŵ[s, :]X̌[:, t]

σst =

√
X̌[:, t]′Σ̂fX̌[:, t].

(3.46)

A visual representation of such a Ỹ can be found in figure 4.3.

The maximum likelihood predictive distribution can be analogously calculated through a “pos-

terior” of W with a flat prior respectively instead of W̃.

As the standard deviation is sensitive to the ambiguous scaling produced by ICA, a normalised

score which can be understood as a signal to noise ratio of the posterior predictive distribution is

calculated for each source s in Ỹ:

SNR[s] =

∑
tµ

2[s, t]∑
t σ

2[s, t]
(3.47)

SNR here is calculated as the ratio of the total power of µs, which stands in as an approximation

of the true signal, and the total power of the deviations from that signal.

Note that this signal to noise ratio is an abstract proxy of the certainty of the sources, its value

is not directly related to the ratio of “true signal” and “noise” of the unmixed sources. At the limit,

this SNR becomes∞ in the case of absolute certainty with σ = 0, and 0 in the case of absolute

uncertainty with σ =∞.

3.9 Summary

This chapter presented a framework to calculate the predictive posterior distribution of signals

estimated using independent component analysis as well as an approach to analyse the latter to

assign a quantitative descriptor of the certainty one can have in these results. Also described

was an approach to estimate a prior probability function for mixture matrices based on a forward

model. As the variable in ICA is the un-mixing matrix rather than the mixing matrix, this chap-

ter also demonstrated how to handle the inversion during the calculation without suffering from

catastrophic floating-point errors by introducing a reparametrisation of orthogonal matrices which

allowed that inverse to become a simple transpose while calculating the prior probability.



53

4 Experimental Results

This chapter will briefly present the prior used, some real and synthetic EMG datasets. Then it

will continue to describe and discuss the results of applying the algorithms defined in the previous

chapter to them.

The results from the synthetic data are presented first. They are used to establish a baseline

as to what to expect given certain qualities in a given dataset. Then, the results of the real EMG

datasets are used to demonstrate that the expectations created by the synthetic data hold in the real

world.

4.1 Generated Prior

The recording electrode grid is assumed to be a 9 by 9 square with the distance between the centre

of each electrode being equal to 5mm. This is based on the actual electrodes used to gather the

data.

MUAPs are assumed to be uniformly distributed parallel to the skin in an area defined by the

outermost electrodes. The depth of them is assumed to be normally distributed with a mean of

3.68 mm below the fat layer and a standard deviation of 1.56 mm. A graphical presentation of this

setup is found in figure 4.1.

To prevent MUAP locations within the fat layer, the depth distribution is approximated by

sampling zN ∼ N and then applying the following transformation:
√
|20 · zN |, which returns a

depth value in millimetre with approximately the above described distribution. This approximation

is arbitrary, but is not expected to affect the results noticeably, particularly since the choice of the

underlying MUAP distribution is already based on an educated guess rather than the result of hard

evidence.

Given the model as described in section 2.2 and the above MUAP location distributions, any

number of sample rows of the mixing matrix can be generated. For the synthetic datasets described

below, one mixing matrix was generated by stacking 81, as there are also 81 electrodes, randomly

generated rows. For the prior to be used to find the respective posterior distributions, 10000000
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Figure 4.1: This figure shows a to-scale model of the layers and electrode configuration as assumed
when calculating a prior on M in section 4.1. The white dots represent MUs but their number was
adjusted to show more clearly their distribution inside the muscle.

column vectors were randomly generated and then a multivariate normal was fitted over these

column vector samples. This amount of samples was imposed by the limitations of the hardware

used to perform the calculations. Less samples would also have been most likely sufficient.

Model Comparison

Figure 4.2 shows a comparison to the result from the cylindrical finite element model in [79].

Particularly, this figure is setup to match figure 11 there, which shows the normalised signal value

at an electrode given a specific angular displacement from the emitting source. As expected,

there is some difference, both because the large difference in model complexity and because of

the transform needed to compare a planar and a cylindrical model. The author considers this

agreement to be sufficient given those circumstances to deem the implemented model valid.
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Figure 4.2: This graph is setup to allow comparison with figure 11 in [79]. To this end, the values
from that graphs x axis have been transformed such as they would have been approximately in a
planar geometry.

4.2 Experimental Setup

Synthetic Datasets

As an approximation, the shape of real MUAPs can be considered similar to that of a Mexican hat

wavelet which itself can be approximated as the difference of two Gaussians. From such spike

templates synthetic MUAP trains can be generated given a spike interval. These intervals between

the spikes were chosen to be lognormally distributed. The simulated sampling frequency was 2048

Hz with a length of 10240 samples, i.e 5 seconds, to match the real datasets.

As it is expected that in the estimated Y of a real dataset only some “sources” represent MUAP

traces with the rest being background noise from MUs located too deep to recognise, multiple

datasets were generated with a variable number of generated MUAP traces. Specifically, each

generated synthetic Y contains 81 “sources” of which 9, 18, 27, 36, 45, 54, 63, 72 or 81 are

generated MUAP traces with the remaining “sources” being filled with Gaussian noise to model

the background signals of MUs located too deep to result in recognisable MUAP traces.

The synthetic observation X is calculated for each synthetic Y by multiplying that Y with a

mixing matrix M sampled from a physiological model as described above.
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The observation noise found in real datasets was then simulated through an even mixture of

Gaussian and Laplacian noise which was added to X after mixing. Multiple noise magnitudes were

added to observe the effects of different signal to noise ratios of the observations. In particular, the

following magnitudes of noise relative to the magnitude of the data were added: 0.5, 0.75, 1, 1.25,

1.5, 2, 3, 4, 5, 6, 8.

Both the ranges for the amounts of real sources and amounts of noise where determined by

preliminary experiments. For other datasets, the interesting areas of the parameter space may lie

elsewhere.

DeTOP Datasets

As real data, this paper uses the datasets from [141], where the electrodes are affixed to the forearm

while the subjects performed various hand movements as described in [142], which is an extensive

collection of EMG recordings. They are at a 2048 Hz sampling frequency. The datasets contain

9-times-14 observation channels but only the top 9-times-9 square of these are used here.

There are generally periods of inactivity at the beginning and end of each of the DeTOP

datasets. Thus, from each dataset, the continuous block of 10240 samples (that is 5 seconds),

with the highest mean absolute magnitude, was assumed to be the block of most interest. The

validity of that selection, i.e. that the selection is not caused by artefacts, was inspected visually

for each dataset used.

Pre-processing

A number of preparatory steps are common to both the synthetic and real data.

EMG data is highly correlated in the time dimension, particularly at high sampling rates, i.e

the 2048 Hz the used date is in. To alleviate this concern, each dataset was downsampled to 512

Hz using a digital filter, that is to 2560 samples each dataset.

Each of these smaller datasets was then further split into a training and a test set. That is, only

one part, the training part, is used to derive a posterior distribution, the remaining testing part is

only used during analysis at the end. This allows to ward against false conclusions due to potential

over-fitting. As the effect of different training set sizes is of interest, the experiment was rerun
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with a number of different training set sizes. The different sizes for a training set where: 512,

770, 1024, 1280, 1536, 1792, 2048. The training data is always the centremost while the test set is

composed on the data remaining before and after the training data.

There may be a small amount of information leakage between the test and training parts of

each dataset at the borders between them, however, this is deemed negligible as there are only a

few affected samples which may be correlated, particularly as the downsampling already intends

to minimise any correlation between adjacent samples. In addition to this, it should be kept in

mind that the noise is most likely of identical nature in both the training and test parts of a given

dataset.

4.3 Examination of Results From Synthetic Datasets

As noted before, the experiment has been run over all the DeTOP datasets. The results from each

run have been found on visual inspection to be very similar, across all of them, to the subset shown

in this section.

Posterior Predictive Distribution

Each source in Y has its own posterior predictive distribution, but due to ICA scaling ambiguity,

they are not directly comparable. To compare them, one needs to calculate a measure which is not

sensitive to the scaling such as signal to noise ratio discussed in previous chapters or to rescale

them based on some heuristic. The latter can be useful to allow manual qualitative comparison of

the same source retrieved from differently parametrised executions of ICA.

As discussed in section 4.2, an experiment was run using synthetic data using different levels of

noise of the observations, different amounts of samples and either a informative or non-informative

prior.

To match the estimated sources to the ground truth in figures 4.3, 4.5 and 4.6 the Gale–Shapley

algorithm was used with absolute correlation as heuristic described in section 2.3, then, for fig-

ure 4.3, the chosen sources had their magnitude normalised to the magnitude of the spike of interest

in the ground truth.
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Figure 4.3: The bold black line is the truth as determined by correlation matching, the solid lines
are the estimated signal means and the dashed lines represent each time one standard deviation
above and below the mean. The red source has been recovered from an observation with low
SNR without using prior information. The blue source has been recovered from an observation
with low SNR while using prior information. The orange source has been recovered from an
observation with high SNR without using prior information. The cyan source has been recovered
from an observation with high SNR while using prior information. All sources have been rescaled
to match the magnitude of the ground truth as ICA does not recover scale information.

Figure 4.3 shows an illustrative example of the differences between the posterior predictive

distributions of one source as resulting from different experiment parameters. As can be seen

in the figure, the level of noise of the input observations has a large effect independent of the

informativeness of the prior, while an informative prior only visibly improves the result in the case

where the observation is noisy. This pattern of the quality of the result and of the effect of the prior

given the observations signal to noise level is consistent across datasets and measurements.

Effect of the Prior

Taking the difference between the SNR, averaged over all features, between runs with an infor-

mative prior and runs without gives further objective evidence to that subjective assessment. As

visualised in figure 4.4, The average SNR is always positively affected by an informative prior but

much more so when there are few input samples or high observation noise or both. It is to note
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Figure 4.4: This heat map shows the increase of SNR of the recovered signal given observation
SNR and training data samples averaged over all sources and time points.

that a doubling of the observation noise has a much more significant effect on the usefulness of an

informative prior than a halving of the samples in the input observations.

The effect of an informative prior does not seem always homogeneous over all features. If

looking at the correlation between the estimated features and the ground truth, there often isn’t a

visible difference when using an informative prior and when not which does not lie well within

the general variance observed within these results. Where it differs, however, it principally does

as seen in figure 4.5 where, for the sources with the highest correlation, the informative prior is

deleterious, but beneficial for the less well recovered sources and no difference exists for white

noise pseudo-sources.

Figure 4.6 shows the full correlation matrices. The seemingly high correlation with the pure

noise sources 28 and later is the result of correlation with noise in-between the MUAP events,

when only taking the correlation for the parts where there are MUAP events, then the contrast

between high and low correlation in the matrices is much higher.

While it is hard to draw objective conclusions from figure 4.6, it can be qualitatively observed

that adding an informative prior decreases SNR at the sources with the most SNR but increases

SNR for all other non-noise sources. This would be in line with the expectation one would have
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Figure 4.5: The diagonals of the correlation matrices between the ground truth and the estimates
with and without an informative prior. There are 27 actual sources in the ground truth, the rest
is white noise simulating the background noise. Both experiments were run using 512 training
samples per source and noise of equal magnitude to the observation was added to the observation
after mixing.

Figure 4.6: The correlation matrices between the ground truth and the estimates with and without
an informative prior. There are 27 actual sources in the ground truth, the rest is white noise
simulating the background noise. Both experiments were run using 512 training samples per source
and noise of equal magnitude to the observation was added to the observation after mixing.

if it is assumed that adding a prior reduces variance at the cost of adding bias which is the usual

effect of adding a prior.

For comparison, figure 4.7 shows the same data before the sources were matched. As it is

expected, they not ordered in any consistent form and of little use in this way.
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Figure 4.7: The same data as in figure 4.6 but before sorting the sources.

Signal to Noise Ratios

Figure 4.8: Signal to noise ratios for all estimated sources ordered by SNR estimated for various
sample sizes from a very noisy synthetic observation dataset. The solid lines were calculated with
a prior, the dashed ones without. The calculation was made using the same data as was used to
estimate W.

Figures 4.8 to 4.11 show the found signal to noise ratios by source for a range of training sample

sizes both with and without informative prior. Figures 4.10 and 4.11 are the SNR calculated on the

testing part of the dataset while figures 4.8 and 4.9 are based on the training data itself. Similarly,

figures 4.8 and 4.10 are calculated with noisy training observations while figures 4.9 and 4.11 are

based on training data with very little noise.

As noted before, an informative prior has clearly a much more pronounced effect when there
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Figure 4.9: Signal to noise ratios for all estimated sources ordered by SNR estimated for various
sample sizes from a synthetic observation dataset with only little added noise. The solid lines were
calculated with a prior, the dashed ones without. The calculation was made using the same data as
was used to estimate W.

Figure 4.10: Signal to noise ratios for all estimated sources ordered by SNR estimated for various
sample sizes from a very noisy synthetic observation dataset. The solid lines were calculated with
a prior, the dashed ones without. The calculation was made using data separate from that used to
estimate W.

is a large amount of noise in the input data.

As ICA cannot differentiate actual sources from noise sources, it is not particularly surprising

that the figures indicate that there is a higher SNR for noise sources when using a large training

set than for actual sources when using few training samples. Thus, this SNR cannot be directly

compared when the parameters of an experiment differ too much. However, it can be compared
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Figure 4.11: Signal to noise ratios for all estimated sources ordered by SNR estimated for various
sample sizes from a synthetic observation dataset with only very little added noise. The solid
lines were calculated with a prior, the dashed ones without. The calculation was made using data
separate from that used to estimate W.

between source estimates of the same run as is clearly visible in figure 4.9. The sources before

the sharp drop, slightly before source 30 for each configuration in that figure, have been visually

confirmed to be the unmixed actual sources, although only partially in some cases, while the ones

after the drop are mostly noise sources or very poorly unmixed sources depending on the other

parameters. Similar transitions can be found in figure 4.8 and figure 4.10 around the third sources

and around the roughly before the tenth sources in figure 4.11.

4.4 Examination of Results From Real Datasets

The results from the real datasets generally seem to support the deductions made from examining

the results of the synthetic data experiment. For each of the below described results, the estimated

source traces were visually inspected to confirm if their “unmixing” quality was as expected from

their SNR.

Figures 4.12, 4.13, 4.14 and 4.15 represent good examples of datasets where only a few sources

were unmixed well with a lot of sources which were essentially noise. The stark contrast between

runs with many training samples and runs with few training samples is an artefact due to this

dataset containing generally very sparse data and thus there genuinely were less sources to un-mix
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in the smaller training sets.
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Figure 4.12: Signal to noise ratios for all estimated sources ordered by SNR estimated for various
sample sizes from a observation dataset containing real EMG. The solid lines were calculated
with a prior, the dashed ones without. The calculation was made using the same data that used to
estimate W.
The well unmixed sources correspond to the much stronger slope at the sources before source 10.

Figure 4.13: Signal to noise ratios for all estimated sources ordered by SNR estimated for various
sample sizes from a observation dataset containing real EMG. The solid lines were calculated with
a prior, the dashed ones without. The calculation was made using data separate from that used to
estimate W.
The well unmixed sources correspond to the much stronger slope at the sources before source 10.

Figures 4.16, 4.17, Figures 4.18 and 4.19 are an example of cases where there are a few good

estimate sources and many of mediocre quality. By mediocre quality is to be understood that the
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Figure 4.14: See figure 4.12 for a general description.
The well unmixed sources correspond to the much stronger slope at the sources before source 10
for runs with 1280 training samples or more.
The runs with less training samples only contain one or two visibly unmixed sources on the other
hand.

Figure 4.15: See figure 4.13 for a general description.
The same pattern as in figure 4.14 can be observed here, if in a more extreme fashion.

spikes are recognisable if one is looking for them, but without knowing a priory the nature of

the data this traces would be mistaken for noise. Also, particularly visible here is that the test

data produces much more pronounced differences between real and noise sources than the training

data.

Figures 4.20 and 4.21 serve as contrasting example to the above figures. None of the sources

is unmixed well which results in no visible transition at the low numbered sources in the training
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Figure 4.16: See figure 4.12 for a general description.
The slope at the very beginning corresponds to well unmixed sources. The plateau afterwards
corresponds to ‘mediocre’ sources with steadily degrading un-mix quality. Where the slope accel-
erates downwards again, towards the end, the sources have become unrecognisable noise.

Figure 4.17: See figure 4.13 for a general description.
Same pattern as in figure 4.16 but the beginning is more pronounced.

data figure. The few mediocre sources are again more visible in the testing data figure then in the

training data figure.
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Figure 4.18: See figure 4.12 for a general description.
Same pattern as in figure 4.16.

Figure 4.19: See figure 4.13 for a general description.
Same pattern as in figure 4.17
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Figure 4.20: See figure 4.12 for a general description.
No strong slope can be observed at the beginning. Either the first 60 or so sources are un-mixed
well, which is unlikely given the results of the other datasets, or no well un-mixed sources exists.

Figure 4.21: See figure 4.13 for a general description.
A few sources stand here out at the beginning in contrast to figure 4.20. Visual inspection showed
that these correspond to mediocre un-mixed sources.
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5 Conclusion

Summary

This thesis presented a framework which allows to run independent component analysis within a

Bayesian framework with any desired prior on the mixing or un-mixing matrix. The prior designed

in this thesis was concretely put on each column of the mixing matrix; however, this is an imple-

mentation detail that was employed to solve the specific inverse problem posed by EMG which

was solved in this thesis. A prior on all of the mixing matrix or the un-mixing matrix directly can

be used as easily within this framework.

As implied in the above, a prior for each column of the mixing matrix was derived. This was

done by using a physiological EMG model to sample many possible columns of possible mixing

matrices and then fitting a multivariate normal over these samples.

Furthermore, a reparametrisation of orthogonal matrices was developed which, together with

pre-whitening, allowed to constrain the to-be-estimated un-mixing matrix to be always orthogonal.

This was done to combat numerical instabilities due to floating point errors which arose due to the

prior not being on the to-be-estimated un-mixing matrix but rather on the mixing matrix which

is its inverse. The developed reparametrisation turned that problematic inverse into a much more

benign transpose, thus negating the issue.

Finally, as ICA’s invariance to scale and source ordering makes it difficulty to compare be-

tween results derived from different datasets or parameters or even between each estimated source,

a method was presented to extract a measure from the posterior predictive distribution of the esti-

mated MUAP traces, which allows comparison despite the drawbacks of ICA.

The above theoretical work was then verified using both synthetic and real EMG data. The

results of which demonstrated the possible benefits from adding an informative prior, which was

expected given similar prior work, and, of more importance for this thesis, as distinctly more novel,

that analysing the Bayesian credible interval, or a measure thereof, allows to quantify which results

are “bad” and which are “good”.

The addition of a prior is visibly beneficial in situations where the input is very noisy or very
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short in terms of samples and even more so where both of these conditions coincide. As to the

measure of quality, it cannot yet completely replace qualitative inspection when testing or tuning a

“new” algorithm, but it certainly can be used to automate feature selection and to give a consistent

measure of quality provided either “good” and “bad” outputs are distinct enough or an appropriate

baseline to compare to has been determined for the experiment or application.

In conclusion, this thesis presents a method to quantify the uncertainty of the results of certain

algorithms due to errors or other limitations of the input data as well as due to inaccuracies of

any real-world modelling that these algorithms may do. Furthermore, it demonstrates that this

measure contains useful actionable information. Parallel to that, this thesis provides a detailed

Bayesian framework together with a prior based on physiological information to run ICA on EMG

data which was used to demonstrate the above.

Applicability beyond EMG

Any form of dataset, for which independent component analysis is an appropriate form of process-

ing, should be directly usable with the framework presented in this thesis provided an appropriate

prior is used. An non-informative prior is evidently always usable. If the use of an informative

prior is desired, then, provided a forward model is known, that model can be used in the same way

as the EMG forward model used in this thesis to estimate a prior.

Different variants of ICA or other algorithms used for source separation should also be usable

provided that a maximum likelihood formulation of these exist.

Further Research

Despite measures taken to improve the computational performance, the algorithm as presented

does not run fast enough to be used online, each run of the experiment took a few minutes, except

maybe for small sample sizes with a low amount of channels on a very performant machine. Inte-

gration of the prior directly, if possible, into FastICA similarly to [143] may result in a significant

speed-up for that part of the here presented work. Regarding the quality measures, there is less

remaining room for further direct optimisation. However, it would directly benefit from improve-

ments to the implementations of auto-differentiation and probabilistic programming used in this
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thesis via software libraries, see appendix D, all of which are seeing steady improvement at this

time.

The model used to generate the prior for the experiments was fairly simple as the ratio of added

complexity to benefit would have been unlikely to be favourable as far as the desired results where

concerned. Nevertheless, as a future project, it may be worthwhile to implement a wider range

of models and use the algorithms developed in this thesis to compare their performance to each

other. In a similar vein, the “tanh” non-linearity used here within ICA is only one of many and an

objective comparison between them may be of use.

Furthermore, the algorithms presented in chapter 3 can be applied to almost any inverse prob-

lem provided an appropriate prior can be put on W directly or indirectly through M. This includes

these problems arising from most other types of electrophysiological data but completely different

fields of science may include problems where at the least the parts in sections 3.6, 3.7 and 3.8 can

be applied.

Non-stationarity of EMG

One thing time constraints did not permit to look into was extending the algorithms of this thesis

such that they can take account for non-stationarities in the signal. The non-stationarities in elec-

tromyography arise from a variety of sources: the recording electrodes are not glued or otherwise

affixed to the skin and, thus, can drift along it. The skin, fat and muscle layers do move and deform

independently during movement, thus, even if the recording electrodes remain fixed with regard to

the skin, they would not remain stationary relative to the muscle and thus the motor units. Finally

the motor unit action potentials themselves travel over time through the muscle.

The reason this movement between the locations of the motor unit action potentials and the

recording electrodes is problematic follows from the fact that it is exactly their relative positions to

each other within the volume conductor which determine the value of the mixing matrix and thus

of the to-be-estimated un-mixing matrix. Thus, the end result of this is that the true un-mixing

matrix can vary significantly over time and what is estimated, when assuming electromyographic

signals to be stationary, is actually an unprincipled average over time over the ”true“ un-mixing

matrices. The magnitude of distortion this issue causes depends heavily on the length of the data

and the circumstances in which it was recorded.
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This can be mitigated by using samples from shorter time windows, but, evidently, there is a

direct trade-off between the amount of samples and the quality of results as can be seen well in the

results presented in chapter 4.

A possibly better way would be to still use as much observation data as possible but to estimate

a series of un-mixing matrices. The expected high autocorrelation between these matrices could

then have been used in that case to find a way to pass information in a principled way forward and

backward in time. This would have been a larger undertaking as doing so even in general is still

an open research question.
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Appendices

A Conference Paper

The topic of this thesis has been partially covered in a conference paper entitled

Approximate Credibility Intervals for Independent Component Analysis

by Olivier Thill and Luca Citi published in

Converging Clinical and Engineering Research on Neurorehabilitation IV, Proceedings of the 5th

International Conference on Neurorehabilitation (ICNR2020), October 13–16, 2020

DOI: 10.1007/978-3-030-70316-5
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C Symbol Glossary

This list is sorted alphabetically with Greek letters sorted according to their English names. If two

meanings are given, then the symbol is used differently in separate section.

• A: Ratio of anisotropy of muscle. Here specifically the difference between the electrical

conductivities parallel and orthogonal to the muscle fibres.

• A: Matrix of coefficients describing how source signals amplitudes are mapped to electrode

observations.

• α: A constant controlling the attenuation of a signal as it travels away from its origin or a

variable used to scale another value.

• C: A correlation matrix.
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• c: The log of an unknown proportionality constant.

• χ: Location of an EMG electrode.

• ∆: The direction in which a variable needs to change to maximise a function.

• e: Euler’s number.

• e1: A unit vector parallel to the first Cartesian axis.

• ε′: The electric permittivity.

• η: A learning rate for gradient descent, It controls how much the variable to be optimised

changes each iteration.

• F : The thickness of the subcutaneous fat layer.

• F : A scalar function to be minimised or maximised.

• G: A function to be minimised or maximised or a gamma distribution parametrised with

shape 1+φ and scale 1
φ

where φ is the golden ratio, which has a mean and standard deviation

of 1.

• H: A matrix representing a Hessian or containing values of a similarity heuristic between

two sets of vectors.

• I: The identity matrix.

• i: Electrode Index.

• j: Source Index.

• K: A matrix rank, particularly the highest rank of multiple matrices with ascending ranks.

• k: A rank index; 1 ≤ k ≤ K.

• L: Constant denoting the highest expected lag in samples.

• L: Triangular Matrix emitted by a Cholesky decomposition.

• L: A Likelihood function. A probability density function for all intends and purposes.
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• M: Inverse of W. Describes a linear mixing process.

• M0: Inverse of W0.

• M1: Inverse and transpose of W1.

• M: A model predicting the value of M given some parameters.

• m: A column of M.

• µ′: The magnetic permeability.

• µ0: The constant of vacuum permeability.

• N : The normal distribution.

• n: An index or a number of objects.

• ω: Angular frequency of electric current.

• P̌: Either a permutation or Householder matrix.

• Π: Bayesian Posterior. A probability density function.

• Π∗: Unnormalised form of Π.

• π: Bayesian Prior. A probability density function.

• Q: An orthogonal matrix.

• Qk: The domain of rank k orthogonal matrices.

• R+: The domain of positive real numbers. Explicitly exclusive 0.

• S: The number of sources, MUs in the context of EMG.

• S: A distribution of MU locations inside the muscle.

• Σ: A covariance matrix.

• s: The thickness of the skin layer or a source index; 1 ≤ s ≤ S.
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• σeff: The effective electrical conductivity.

• σF : Electrical conductivity of fat.

• σS: Electrical conductivity of skin.

• σM : Electrical conductivity of muscle along the fibre direction.

• T : The number of samples.

• T: An element of T.

• Tk: The domain of the reparametrisation of Qk. May be represented as rank n lower trian-

gular matrices where each column is a unit vector or as a set of these vectors.

• Θ: The sum of parameters to be estimated.

• t: Sample index; 1 ≤ t ≤ T .

• t: An element of T.

• υ: Location of a MUAP.

• v: A unit vector created by rescaling a w.

• V: A diagonal matrix of variances.

• W: The un-mixing matrix of dataset X.

• W0: A whitening matrix of X.

• W1: ICA solution of dataset X. An orthogonal matrix.

• w: A vector, arising from sampling such that their angles are distributed uniformly.

• X: Maximum value of x which is modelled.

• X: A matrix with s rows, each being an observation over time, and t columns, each being a

moment in time.

• X0: A whitened X; X0 = W0X.
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• Ξ: Data which carries information about Θ. This refers to the concept, concrete instances

are referred to as the matrix X.

• x: The distance along an axis parallel to the skin surface orthogonal to the axis of y.

• Y : Maximum value of y which is modelled.

• Y: A matrix with s rows, each being an estimated source over time, and t columns, each

being a moment in time.

• y: The distance along an axis parallel to the skin surface orthogonal to the axis of x.

• Z: Maximum value of z which is modelled.

• z: The distance along an axis orthogonal to the skin surface pointing downwards starting

from the surface of the muscle.

• zt: Total depth; zt = z + S + F .

D External Resources

The code for this thesis was written in the Julia programming language (julialang.org). Important

software libraries used were: Stan (mc-stan.org), Flux (github.com/FluxML/Flux.jl) and Turing

(github.com/TuringLang/Turing.jl). This of course is not an exhaustive list but covers those li-

braries from which ready made mathematical algorithms where used. As stated before, the real-

world datasets used were from the DeTOP repository [141].


