
EnSuRe: Energy & Accuracy Aware Fault-tolerant
Scheduling on Real-time Heterogeneous Systems

Sangeet Saha1, Adewale Adetomi2, Xiaojun Zhai1, Server Kasap3, Shoaib Ehsan1, Tughrul Arslan2,1Klaus McDonald-Maier
1Embedded and Intelligent Systems Laboratory, University of Essex, UK

2Ewireless Research Group, School of Engineering, University of Edinburgh, UK
3School of Computing, Electronics and Maths, Coventry University, UK

{1sangeet.saha, 1xzhai, 1sehsan, 1kdm }@essex.ac.uk, {2Adewale.Adetomi, 2T.Arslan}@ed.ac.uk , 3server.kasap@coventry.ac.uk

Abstract—This paper proposes an energy efficient real-time
scheduling strategy called EnSuRe, which (i) executes real-time
tasks on low power consuming primary processors to enhance the
system accuracy by maintaining the deadline and (ii) provides
reliability against a fixed number of transient faults by selectively
executing backup tasks on high power consuming backup pro-
cessor. Simulation results reveal that EnSuRe consumes nearly
25% less energy, compared to existing techniques, while satisfying
the fault tolerance requirements. EnSuRe is also able to achieve
75% system accuracy with 50% system utilisation. Further,
the obtained simulation outcomes are validated on benchmark
tasks via a fault injection framework on Xilinx ZYNQ APSoC
heterogeneous dual core platform.

Index Terms—Heterogeneous processors, Real-time systems,
Fault-tolerant scheduling, Energy efficiency

I. INTRODUCTION

In real-time computing, correctness does not only depend
on the precision of the results, but also on time at which
these are produced. For such critical systems, approximated
results obtained within the deadline are preferable over the
accurate results generated after this deadline. In UAVs, initially
an inaccurate, but acceptable quality image is generated from
the received data. Then, based on the available resources
and energy, the obtained image may be further refined [1].
Utilising approximate computation approaches, a real-time
task consists of a mandatory part, followed by an optional
part [2]. The mandatory part must be executed entirely in
order to produce an acceptable result within a deadline, while
the optional part will be executed for further refinement of
the generated result and to provide a higher accuracy of the
applications executed. However, as the mandatory parts have
timing constraint, provisions must be made against faults. In
order to handle these faults, typically tasks are re-executed on
a backup processor to deliver the correct result [3].

In real-time scheduling, recently the authors in [4], [5],
[6], have studied the combined problem of minimizing en-
ergy consumption while providing fault tolerance guarantees.
However, these studies are limited to either uniprocessor
systems or homogeneous multiprocessors. For heterogeneous
systems, the authors in [3], [7], [8], have employed standby

This work is supported by the UK Engineering and Physical Sciences Re-
search Council through grants EP/R02572X/1, EP/P017487/1 EP/V000462/1
and EP/V034111/1.

sparing and primary/backup techniques to provide energy
aware fault tolerant solutions. However these works consider
hard real-time tasks, not emerging approximation based real-
time tasks. Moreover, all of these studies employ standard
scheduling scheme like Earliest-Deadline- First (EDF) and
Earliest-Deadline-Late (EDL) scheduling policies. The authors
also made a strict assumption that all tasks share a fixed
and common deadline. In modern safety critical systems,
such assumptions are no longer valid, because based upon
their respective criticality, individual tasks must have unique
deadlines. Thus, the proposed techniques may perform poorly
on multiprocessor system, where multiple tasks require to
complete execution requirements within multiple deadlines.

In this paper, given a set of real-time tasks to be executed on
a heterogeneous multiprocessor system, we propose EnSuRe
which i) tolerates total k number of faults within the schedul-
ing window ii) finishes task’s execution within the deadlines
and iii) enhances system accuracy while maintaining energy
efficiency.

II. PROPOSED APPROACH: EnSuRe

We consider a real-time application (A), which consists of
a set of n real-time tasks T = {T1, T2, ..., Tn}. Each task
Ti (1 ≤ i ≤ n) has a mandatory part, with an execution
requirement of Mi to be finished within the deadline, di and
an optional part with an execution requirement of Oi.

A. Schedule generation phase

EnSuRe employs a time-partitioning based [9] scheduling
approach for a set of n real-time tasks A = {T1, T2, . . . , Tn}
on the multiprocessor system. Let us consider the difference
between any two consecutive deadlines (i.e. χth and (χ− 1)

th

task deadline) termed as “time window” and it can be found
as:

TWLχ = dχ − dχ−1 (1)

For each task, the execution rate demand is denoted by its
weight and can be found as: wti = Mi

di
, where Mi denotes the

mandatory execution time and di denotes the deadline. For any
time-window each task will be allowed to be executed for a
certain time span proportional to its weight and these spans

for each individual task will be termed as “workload-quota”
and can be calculated as:

WQuχi = (dwti × TWLχe) ∀Ti ∈ A (2)

Within a time-window, total system-wide capacity can be
calculated as: TWLχ ×mpri, where mpri is the number of
available primary core. For a feasible schedule, this capacity
must be equal or greater than the total workload-quota for
all running tasks, i.e. (

∑n
i=1WQuχi). Thus, the following

condition must be satisfied to obtain a feasible schedule.
n∑
i=1

WQuχi ≤ TWLχ ×mpri (3)

EnSuRe will initiate the task allocation from the first pri-
mary core, as per their workload-quota. However, if the core
is not completely occupied then the available slack ASχj of
the jth primary core for the χth time-window is:

ASχj = TWLχ −
n∑
i=1

WQuχi × θij (4)

where θij equals 1 if Ti has been assigned to jth core;
otherwise θij = 0.

According to our strategy, this available slack will be used
for the execution of optional portion of tasks so that the system
accuracy can be enhanced. In order to allocate the optional
portion of tasks within a time-window, we have defined a
factor called “Urgency Factor (UF)”, the urgency factor (UFi)
of task Ti can thus be defined as:

UFi = di − tslack (5)

where tslack denotes the time instant where the slack time
starts within a time-window.

B. Fault handling phase

After scheduling, EnSuRe creates a list called “backup”
in non-increasing order of MHP

i , where MHP
i denotes the

execution length of mandatory part of Ti on high performance
backup core. As EnSuRe needs to handle only k number of
faults, it reserves an execution slot on HP for possible backup
task execution. We termed this slot as “BES (Backup Execution
Slot)”. Then EnSuRe decides when to activate this “BES” slot
inside a time-window. Thus, the “BST (Backup Start Time)”
is calculated. If a the task is executed with zero error, then
the result is committed. This in turn, removes the task from
the backup list. Hence, as soon as a primary task completes
successfully, the size of the“BES” slots on the HP core reduces
dynamically. Algorithm 1 shows the pseudocode of EnSuRe .

III. EXPERIMENTS AN ANALYSIS

A. Performance Metrics

Normalized Energy Consumption (NEC) and Normalized
Achieved Accuracy (NAA) have been used for evaluation.
NAA is the ratio between total executed optional portion and
total available optional portions for all tasks.

The ranges of the mandatory portion Mi and the optional
portion Oi are obtained from [2]. The weights (wti = Mi

di
) of

Algorithm 1: EnSuRe
Input: Temporal parameters of tasks ∈ A and

time-windows;
Output: Generate fault-tolerant schedule
for each time-window do

/***** For primary core(s), Schedule generation
*********/

For each task, calculate workload-quota using
Equation 2;

if Equation 3 is satisfied then
while A 6= NULL do

Execute task Ti in the primary core(s) as per
workload-quota;

Remove Ti from A if workload-quota
completes;

Calculate available slack (AS) using Equation 4 for
each core;

Calculate UFj for each task Ti using Equation 5;
Store the UF values in ascending order in set U ;
while ASχ 6= NULL OR U 6= NULL do

Execute optional portion of Ti ∈ U ;
/***** For backup core, fault handling *********/
If Tasks are schedulable then
Create backup list in non-increasing order of MHP

i ;
for first k tasks in backup do do

BES = BES + MHP
i ;

BST= TWLη - BES;
Reserve BES unit of slots on HP from BST instant;

the tasks are generated from normal distribution with standard
deviation σwt = 0.1 and the mean values i.e. µwt = 0.1,
µwt = 0.2. Having the tasks weights, the total workload of
the system (SysWL) can be obtained by adding the weights of
all tasks. Hence, the system utilisation (Sysuti) can be defined
as:

Sysuti =
SysWL

mpri
× 100% (6)

B. Results and Analysis

1) Evaluating the impact of k: Figure 1(a) exhibits how
energy consumption varies with increasing number of faults.
As per the trends in Figure 1(a), it can be concluded that
the higher the number of faults, the higher is the energy
consumption for EnSuRe. However, SlowerP [7] consumes
a fixed energy consumption. This behavior of SlowerP can
be argued by the fact that irrespective number of faults, this
strategy keeps a backup space for all tasks. In contrast, for
EnSuRe as k increases the BES also increases which in turn
increases overall power consumption.

2) Evaluating the impact of utilisation: Figure 1(b) shows
how the energy consumption varies with respect to varying
system utilisation. The number of faults set as k = 4. It may
be observed from Figure 1(b) that with the increasing system
utilisation, the energy consumption also increases for both
EnSuRe and SlowerP. We have further compared EnSuRe with
two existing strategies “LTF” and “TBLS” as proposed in [10].
“LTF” and “TBLS” gives higher priority to the tasks with
higher execution length thus, in order to maintain deadline,
the HP core is also used for primary execution which leads

 0

 10

 20

 30

 40

 50

 60

 70

K=2 K=3 K=4 K=5

N
E

C
 (

%
)

Ensure
Slowerp

(a) Impact of number of faults

 0

 10

 20

 30

 40

 50

 60

 70

Sysuti=40% Sysuti=50% Sysuti=60% Sysuti=70% Sysuti=80% Sysuti=90%

N
E

C
 (

%
)

Ensure
Slowerp
LTF
TBLS

(b) Impact of system-utilisation

 30

 40

 50

 60

 70

 80

Sysuti=50 Sysuti=60 Sysuti=70 Sysuti=80

N
A

A
 (

%
)

µ
ωτ

 = 0.1
µ

ωτ
=0.2

(c) NAA (%) varying µwt

Fig. 1: Performance of EnSuRe

Fig. 2: The ZYNQ test-bed

to high energy consumption. It can be observed that in case
of highest system utilisation (Sysuti=90%), EnSuRe consume
25% less energy than “TBLS”.

From Figure 1(c), EnSuRe is able to achieve 75% accuracy
when Sysuti is 50%. However, as the utilisation increases the
slack in primary core(s) decreases and thus, NAA decreases
with the increase in Sysuti. It has to be noted that for a Sysuti,
if the µwt varies from 0.1 to 0.2, the NAA remains comparable.

IV. HARDWARE IMPLEMENTATION

A. Architectural Setup

We have implemented EnSuRe on a heterogeneous system
on a Xilinx Zynq-7000 All-Programmable SoC [11], with Arm
Cortex-A9 CPU in the Processing System (PS) side, which
serves as the HP core; and FPGA fabric in the Programmable
Logic (PL) side, which is used to implement the LP core and
other system components. Figure 2 represents the proposed
architecture. The host PC executes the EnSuRe algorithm.

B. Fault Injection and Detection Framework

The fault injection framework needed to confirm the in-
tegrity of the TMR MicroBlaze Subsystem relies on the
TMR Inject IP core. Fault injection is actually carried out by
injecting a different instruction at a certain instruction address
of one of the three processors. This causes a mismatch among

the processors and such mismatch is detected by a TMR
comparator. The framework is shown in Figure 3.

Fig. 3: Fault injection and detection

C. Energy consumption

We have created synthetic tasks from MiBench bench-
mark [2]. The execution times for HP core and LP core are
measured for ARM core (freq: 650 MHz) and MicroBlaze core
(freq: 100 MHz). We have evaluated the EnSuRe by injecting
(k = 3) faults.The average scheduling length is taken as 30000
ms and we executed the simulations 5 times by injecting the
faults at arbitrary positions in the scheduling length. The final
value is calculated from the average of these obtained values.
Table I shows the energy consumption of EnSuRe and SlowerP
for the entire scheduling length.

TABLE I: Enrgy Consumption in Joule

Avg. number of tasks EnSuRe SlowerP
8 7.83 11.26
12 9.68 14.57
16 13.58 17.84

V. CONCLUSION

EnSuRe schedule tasks on primary core such that tasks could
meet their deadlines and accuracy can be enhanced. However,
the backup core is intelligently used for energy efficiency and
fault tolerance. As per the obtained simulation behavior, it can
be argued that EnSuRe can be employed for energy efficient
operation and the simulation outcomes are further validated on
ZYNQ APSoC heterogeneous systems with benchmark tasks.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[2] L. Mo, A. Kritikakou, and O. Sentieys, “Approximation-aware task
deployment on asymmetric multicore processors,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 1513–1518.

[3] Y. Guo, D. Zhu, H. Aydin, J.-J. Han, and L. T. Yang, “Exploiting
primary/backup mechanism for energy efficiency in dependable real-
time systems,” Journal of Systems Architecture, vol. 78, pp. 68–80, 2017.

[4] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management
of energy-aware real-time systems through task replication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 3, pp.
813–825, 2016.

[5] M. Fan, Q. Han, and X. Yang, “Energy minimization for on-line real-
time scheduling with reliability awareness,” Journal of Systems and
Software, vol. 127, pp. 168–176, 2017.

[6] B. Zhao, H. Aydin, and D. Zhu, “Energy management under general
task-level reliability constraints,” in 2012 IEEE 18th Real Time and
Embedded Technology and Applications Symposium. IEEE, 2012, pp.
285–294.

[7] A. Roy, H. Aydin, and D. Zhu, “Energy-aware standby-sparing on het-
erogeneous multicore systems,” in 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2017, pp. 1–6.

[8] P. P. Nair, R. Devaraj, and A. Sarkar, “Fest: Fault-tolerant energy-
aware scheduling on two-core heterogeneous platform,” in 2018 8th
International Symposium on Embedded Computing and System Design
(ISED). IEEE, 2018, pp. 63–68.

[9] S. Saha, X. Zhai, S. Ehsan, S. Majeed, and K. McDonald-Maier, “Rasa:
Reliability-aware scheduling approach for fpga-based resilient embedded
systems in extreme environments,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 2021.

[10] A. Roy, H. Aydin, and D. Zhu, “Energy-efficient fault tolerance for
real-time tasks with precedence constraints on heterogeneous multicore
systems,” in 2019 Tenth International Green and Sustainable Computing
Conference (IGSC). IEEE, 2019, pp. 1–8.

[11] L. Crockett, D. Northcote, C. Ramsay, F. Robinson, and R. Stewart, Ex-
ploring Zynq MPSoC: With PYNQ and Machine Learning Applications,
2019.

