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1 Introduction

The Education Endowment Foundation (EEF) is an independent grant-making charity, which aims

to address the challenge of disadvantage in educational achievement associated with family income

and to help children from all backgrounds achieve academically. Established in 2011 with a £125

million endowment from the Department for Education, the EEF is dedicated to raising the edu-

cational attainment of disadvantaged children in primary and secondary schools in England using

research and evidence in three ways. This is first by identifying and funding promising educational

innovations that address the needs of children facing disadvantage; second by evaluating these in-

novations to extend the evidence on what is educationally effective and what can be made to work

at scale; and third by encouraging schools, governments, charities, and others to apply evidence

and adopt innovations found to be successful.

This paper focuses on the second of these approaches and presents a repeated analysis of eval-

uation results from 17 educational trials (see Table 1) which all reported findings publicly in 2014

–15. All EEF projects are independently evaluated by a number of evaluation teams which are from

universities and independent research organisations. The data from these projects are deposited

in an archive which will become a rich repository of findings from EEF interventions (over 100

have been commissioned so far involving over 650,000 pupils). One goal is to track the longer term

impact of interventions as results from national tests become available where this is possible.

1.1 Rationale for the archive analysis

Andrew Gelman described statistics as “the science of defaults” (in Lin et al., 2014, p. 293), by

which, he meant applied statisticians usually choose (and recommend) their default or preferred

methods to solve problems in a wide range of settings, although these may not always be optimal in

answering project-specific questions. In the EEF reports that are made publicly available, there are

patterns of design and analysis associated with specific evaluation teams. As shown in the tables

that follow, evaluators sometimes applied the same approach to different projects, even when the

research designs and the quality of the data for causal inference varied. This arises, as Gelman

noted, because there are competing philosophies, assumptions, and approaches to statistical analysis

and inference, which makes consensus on the best approach difficult to achieve. This paper explores

the differences these choices make in terms of the outcomes from different methods of analysis for

each trial.

Archive analysis differs from replication studies in that the former does not require the collection

of new data from the same population. Instead, it re-uses the data from original trials to reproduce

the original results and/or answer new research questions. In this paper, our goal is mainly to

answer a new question: how do effect size estimates and their uncertainties vary under different
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project archive label full EEF title evaluation report

1 ffe, ffm Future Foundations Gorard, Siddiqui, and See (2014)
2 sor Switch-on Reading Gorard, See, and Siddiqui (2014)
3 gfw Grammar for Writing D. Torgerson, Torgerson, Mitchell,

et al. (2014)
4 rfr Rhythm for Reading Styles, Clarkson, and Fowler

(2014b)
9 catchn, catcht Catch Up Numeracy Rutt (2014)
10 cbks+, cbks Chatterbooks Styles, Clarkson, and Fowler

(2014a)
13 rp Rapid Phonics King and Kasim (2015)
14 ar Accelerated Reader Gorard et al. (2015a)
15 bp Butterfly Phonics Merrell and Kasim (2015)
16 iwq Improving Writing Quality D. Torgerson, Torgerson,

Ainsworth, et al. (2014)
17 sar Summer Active Reading Maxwell et al. (2014a)
18 text TextNow Maxwell et al. (2014b)
21 uos Units of Sound Sheard et al. (2015)
22 ve Vocabulary Enrichment Styles, Stevens, et al. (2014)
31 fs Fresh Start Gorard et al. (2015b)
32 tfl Talk for Literacy Styles and Bradshaw (2015)
38 mms Mathematics Mastery Secondary Jerrim et al. (2015)

Table 1: Project information. The numbers 1 to 38 are EEF project numbers. We abbreviate full EEF
titles to labels that mark each of the 20 outcomes for this study. The references to the 17 evaluation reports
can also be used to identify evaluation teams.

model and design specifications? Unlike meta-analyses, which usually rely on summary statistics

extracted from secondary sources that do not always report research in consistent and transparent

ways to synthesise evidence, this archive analysis re-evaluates the evidence already found from

EEF trials. In other words, it investigates how sensitive the findings are to design and model

specifications, using full datasets from the aforementioned evaluation projects. It also aims to

explain what causes any variation in impact and to support any subsequent comparison of impact

between the studies examined.

The educational interventions included in this analysis all set out to improve educational at-

tainment for school-age pupils and mainly targeted literacy and/or mathematics outcomes, with

some focusing on phonics, vocabulary, grammar or other aspects of literacy, some through summer

school interventions, others in schools as pedagogical interventions, such as those based on develop-

ing mastery or promoting learning through talk or thinking strategies. The samples varied in size

from 178 to 5830 pupils, with numbers of schools (clusters) involved varying from three to 54 (see

Table 2). Full details of the interventions and evaluations can be found in the individual evaluation

reports which are listed in the references.
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study N eval.n n n.t n.c n.sch

Future Foundations (English) 354 310 310 167 143 33
Future Foundations (Maths) 354 306 303 162 141 33
Switch-on Reading 308 308 308 155 153 19
Grammar for Writing 2500 1982 1367 667 700 50
Rhythm for Reading 419 355 355 175 180 6
Catch Up Numeracy (Catch) 318 216 216 108 108 54
Catch Up Numeracy (Time) 318 210 210 102 108 54
Chatterbooks Plus 577 295 303 154 149 12
Chatterbooks 577 304 311 162 149 12
Rapid Phonics 206 174 178 86 92 21
Accelerated Reader 349 339 326 167 159 4
Butterfly Phonics 302 310 302 159 143 6
Improving Writing Quality 920 261 265 144 121 22
Summer Active Reading 182 182 182 93 89 48
TextNow 391 391 391 199 192 54
Units of Sound 427 427 427 225 202 33
Vocabulary Enrichment 626 570 570 282 288 12
Fresh Start 423 419 419 215 204 10
Talk for Literacy 235 213 213 106 107 3
Mathematics Mastery Secondary 7712 5938 5830 3197 2633 44

Table 2: Summary statistics of 20 effect size estimates from 17 EEF projects.
N is the total number of observations in the data we have access to. eval.n is the sample
sizes evaluation teams reported for their analyses. n is the sample sizes used for the
archive analysis, where n.t and n.c are sample sizes for treatment and control groups.
n.sch is the number of schools for each study.

1.2 Effect size and p-value

A key concept in this paper is that of effect size, which, according to Borenstein (2009), is an index

used to quantify the magnitude of relationship between two variables or the difference between

two groups (p. 222). In theory, effect sizes from different studies, regardless of the design, should

measure, approximately at least, the same relationship and be comparable. Like p-values, effect

sizes are scale free (Hedges, 2008, p. 168). The two are certainly related to each other, but they

are not the same – a significant p-value could be a function of a large effect or a small effect in a

study with a large sample size, likewise, a big p-value could reflect a small effect or a large effect

in a small study (Borenstein, 2009, p. 223). Effect size estimates are based on the samples studied,

and the uncertainties surrounding those point estimates give us a range of possible effect sizes for

the corresponding populations. While the calculation of effect size is a mathematical process, its

interpretation involves judgement, and it is of little practical value to say an effect is large or small

without comparing it with others in a specific context (Hedges, 2008, p. 170).
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2 Methods

For better comparison, the 17 projects selected for this study are all Randomised Controlled Trials

(RCTs), though with different specific designs. As Rubin (2008b) noted, RCTs and comparative

observational studies should form a continuum rather than a dichotomy in terms of suitability for

causal inference (p. 810), which means well designed observational studies may be better suited

for causal inference than poorly implemented RCTs with systematic bias and/or serious attrition.

Our focus is on the analytic strategies adopted and the variation in estimates of impact had other

analytic models been adopted.

2.1 Pluralists’ dilemma

As Table 3 indicates, the analytic models evaluators employed differ not only in regression forms

and the number of covariates, variables that are not affected by treatments (Rubin, 2007, p. 33),

but also in their choice of raw or transformed outcomes, which itself can be primary or secondary

(for another description of the phenomenon, see Olken, 2015, p. 62). This diversity in model con-

struction might be problematic for the reasons outlined below.

project methods covariates

1 ∆ t + pret (r) + pret (w) + pret (m) + fsm + sex + sen + eth

2 ∆ t + pret + age + eth + sex + fsm + sen + eal + dosage

3 MLM t + pret + sex + fsm + eal + age, random = ∼ 1| (sch + class)

4 OLS t + pret + sch + sex + fsm + age

9 MLM t + pret, random = ∼ 1| sch
10 RMM t + pret + sex + age + fsm + time*t, random = ∼ 1| (time + sch)

13 MLM t + pret, random = ∼ 1| sch
14 ∆ t + pret + age + fsm + sen + eal + eth

15 MLM t + pret, random = ∼ 1| sch
16 MLM t + pret + sex + eal + fsm + age, random = ∼ 1| (class + sch)

17 MLM t + pret + sex + fsm, random = ∼ 1| sch
18 MLM t + pret + sex + fsm, random = ∼ 1| sch
21 MLM t + pret + phase, random = ∼ 1| sch
22 OLS t + pret + sch + sex + fsm + age

31 ∆ t + pret + age + sex + fsm + eth + sen + eal + dosage

32 OLS t + pret + sch + sex + fsm + age

38 OLS t + pret + sex + fsm + eth

Table 3: Regression models and covariates evaluation teams used in their primary analysis.
When the primary method is ∆, either a post-test only comparison or difference in average gain scores, the
original evaluation team also used multiple regression with the above-listed covariates to check the main
results. As shown above, apart from treatment indicator (t) and pre-test scores (pret), the number and
type of covariates added vary a lot. For instance, Project 1 has three pre-test scores in reading, writing,
and maths. Some have dosage and time effects, whereas others include interaction terms.
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First, as the number of covariates increases, so does the pool of potential models for analysis,

which may encourage successful data dredging, particularly when sample size is small (Humphreys,

Sanchez de la Sierra, & van der Windt, 2013, p. 7). Second, when the outcome is used to identify

significant covariates, the resulting model with those covariates is no longer objective (Rubin, 2008b,

p. 837). That is to say, any “significant” findings after seeing the outcome lack statistical rigour

and should only be considered as “exploratory” to guide further research (Olken, 2015, p. 62).

Second, the effect size for a given predictor depends on what other covariates are also included

in a regression model. If the number of covariates differs, as Nakagawa and Cuthill (2007) argued,

it could be inappropriate to compare effect sizes from those models, because the total variance

“to be explained” (p. 597) is no longer the same. Hedges (2008) also stressed that effect size

estimations that involve statistical controls “depend on what is being controlled” (p. 170), and it

is crucial to note that estimates coming from studies that control for different covariates “may not

be comparable” (p. 170).

Among the models evaluators employed, ∆ is the difference-in-means of either post-test or gain

scores. OLS and MLM represent Ordinary Least Squares and Multilevel Modelling respectively.

RMM in Project 10 refers to Repeated Measures Model in MLwiN. Evaluators for Project 16 em-

ployed a cross-classified MLM to estimate the effect size, because the number of secondary schools

is so small that they had to choose secondary school classes and primary schools to model the ran-

dom effects. Project 38 has schools randomly assigned to treatment arms and the analytic model

is OLS. However, the evaluators adjusted the standard errors using the Huber-White correction.

2.2 Study designs

Depending on treatment assignment mechanism, the 17 projects can be grouped or re-grouped into

three categories, namely, Simple Randomised Trial (SRT), Multi-Site Trial (MST), or Cluster Ran-

domised Trial (CRT). SRT, by definition, is the simplest form of randomisation, where individuals

are randomly assigned to intervention or control group. This design is known for its simplicity,

but often generates imbalanced groups when sample size is small and even in large samples, it can

produce imbalance in key variables (D. J. Torgerson & Torgerson, 2008, pp. 30-31).

Usually, methodological decisions surrounding RCTs are made as a trade-off between internal

and external validities. With individuals randomly assigned to treatment arms within each cluster

or block, MST can help achieve the former without sacrificing the latter, because randomisation is

performed in multiple sites and has standardised protocols for data collection, management, and

analysis. In addition, samples can be more rapidly accrued in MST than in SRT. This enhances

the “timeliness” of scientific evidence needed for decision-making (Weinberger et al., 2001, p. 628,

original emphasis). However, it is worth noting that most EEF trials with pupil-level randomisation

involve multiple schools, meaning they can be classified as MSTs, even though they were described

as simple RCTs. Therefore, the differences between SRT and MST are not always straightforward
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when stratification is not clearly specified in evaluation reports.

In CRT, clusters, such as schools or classes, are randomly allocated to treatment arms. This

design has the potential to avoid contamination that could be epidemic in SRT and MST, but

individuals within the same clusters are usually correlated, which violates the independence as-

sumption of standard statistical methods. Also, the number of clusters is usually small, but cluster

sizes are often large. To achieve balance between treatment arms, strategies such as matching or

stratification in randomisation are often necessary (Hayes & Moulton, 2009, p. 5).

2.3 Analytic models for the archive analysis

While evaluators sought to construct optimal models for their unique evaluation projects, we are

devising an approach that facilitates assessment of impact across all the studies. To balance the two

purposes, we only focus on evaluators’ primary models for the analyses of raw primary outcomes.

When a study has two primary outcomes, we report both.

Regarding covariates, pre-test is envisioned as important in the design of EEF projects as their

main focus is educational improvement, so we include in the models as our predictors only treatment

indicator and pre-test scores. Also, the inclusion of pre-test scores is likely to have “substantial

positive” impact on the estimated precision of point estimates (Rubin, 2008a, p. 1352).

In the original evaluations, one team used gain scores as their dependent variable for most of

their projects, including where pre and post-tests are not comparable. While there is no straight-

forward answer to whether one should subtract pre-test from post-test or use pre-test as a covariate

(Simmons, Nelson, & Simonsohn, 2011, p. 1363) in RCTs, we believe an extra layer of uncertainty

might be introduced when a different distribution is imposed by transforming test results which

are not directly comparable into z-scores so the difference can be found. Paterson and Goldstein

(1991) cautioned against the transformation of data, as they contended, “slight perturbations to

the data or to the model can produce markedly different results” (p. 389). We also hold the view

that analyses involving transformed data (e.g., aggregation or standardisation) for causal inference

“are remote from the social and educational processes that are of interest” (Paterson & Goldstein,

1991, p. 389). For instance, it would be more difficult for the lay public to understand derivatives,

namely, change, gain, or loss, than it is for them to comprehend post-test scores (for a similar

argument, see Wainer, 2009, p. 33). Given that all other teams used post-test results as their

dependent variable and pre-test scores as a covariate, we used the post-ANCOVA model even when

gains were used in a few of the evaluations.

Having specified the outcome and control variables, we applied some of the common analytic

models used by EEF evaluators to each of the 17 datasets. These models are difference-in-means of

post-test results only (δ), classical linear (OLS), and multi-level models (MLM). For MLMs, we use

only within and total variances, because effect sizes based on between-cluster variance are much

larger than those derived from the other two sources of variation (Hedges, 2007, p. 345). Since
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there are concerns about the validity of standard errors, as reflected in the four missing confidence

intervals from an evaluation team in Figures 2 and 3, we also compare, using the equations in Hedges

(2007), results from frequentist MLM based on standard errors to their Bayesian counterparts with

vague priors, which are the same, thus comparable, across the studies examined. In the next section,

we detail the equation or logic for each of the above-mentioned models.

2.3.1 Difference-in-Means (δ)

To calculate Hedges’ g for the difference-in-means model, which does not control for any pre-test

imbalance in the archive analysis, we first find the raw mean difference Ȳt− Ȳc, where Ȳt and Ȳc are

the sample means of post-test scores for the intervention and control groups. We let St and Sc be

the sample standard deviations, and nt and nc their sample sizes. We assume the two populations

share a common variance and calculate the pooled variance as:

S2
pooled =

(nt − 1)S2
t + (nc − 1)S2

c

nt + nc − 2
.

Knowing the above information allows us to calculate Cohen’s d,

d =
Ȳt − Ȳc√
S2
pooled

, (1)

and its variance,

Vd =
nt + nc
ntnc

+
d2

2(nt + nc)
. (2)

We then convert Cohen’s d into Hedges’ g using the following corrector (see Borenstein, 2009,

p. 226):

J(df) = 1− 3

4df − 1
,

where df is the degrees of freedom used to estimate the pooled standard deviation, so that

g = J(df)d, (3)

and its variance

Vg = [J(df)]2Vd. (4)

Note that since the multiplicative correction factor J(df) approaches one as sample size increases,

Hedges’ g, Cohen’s d, and their variances converge for moderate to large sample sizes. This is

supported empirically in Figure 1. As such, we report g only from all the models considered and

for all the studies included.
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Figure 1: Effect size estimates in Hedges’ g, Cohen’s d, and Glass’ ∆. As shown in the plot,
there is almost no difference in the results from the three metrics. Note the larger the effect estimates,
the darker the colors.

2.3.2 Ordinary Least Squares (OLS)

Like δ, the classical linear regression is appropriate when clustering of data is absent and sample

sizes per school are equal. Unlike δ, the OLS used in this study controls for pre-test scores. The

model’s functional form is rather straightforward, as reflected in the equation below (Ames, 2013,
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p. 597):

Yi = β0 + β1Ti + β2preti + εi,

where Yi is post-test results for individual pupils. Ti is treatment indicator with a value of 0 for

control or 1 for intervention in a two-arm trial, and preti is pre-test scores. εi ∼ N(0, σ2) is the

residual component of the model. The estimated effect size in Cohen’s d for the OLS model is

calculated as below:
β1√
σ2
. (5)

The equations used to convert d to g and to calculate the variance remain the same as those defined

for δ.

2.3.3 Frequentist Multi-Level Modelling (MLM)

As in the OLS defined above, both frequentist and Bayesian MLMs in the study account for pre-

test imbalance. But when average pupil attainment varies considerably from school to school or

there are unequal samples per school, MLMs are necessary to estimate the weighted average across

schools as well as the variances that occur across pupils (level 1) and schools (level 2) (Peugh, 2010,

pp. 88-89). At level one, the frequentist MLM is built as:

Yij = β0j + β1jTij + β2jpretij + rij ,

the continuous outcome variable Yij represents post-test result of student i in school j, where

j = 1, 2, · · · ,M and i = 1, 2, · · · , nj . M is the number of schools, nj is the number of pupils per

school, and rij ∼ N(0, σ2) captures individual pupil differences in post-test results around their

school means. Tij and pretij are the reported treatment status and pre-test score for student i in

school j.

At level two, the model is constructed as:

β0j = γ00 + u0j , β1j = γ10, and β2j = γ20,

where school average, β0j , is a function of the grand-mean in post-test, γ00, plus school-level

residuals around that grand-mean, which are modelled as u0j ∼ N(0, σ2Sch). The three level two

equations assume average attainment varies across schools, but consider average treatment and

pre-test effects constant or fixed at γ10 and γ20 respectively, hence the absence of u1j and u2j .

Substituting level two equations into level one results in a MLM that simultaneously estimates

the weighted effect of intervention across schools as well as the different sources of variability. The

combined model is

Yij = γ00 + γ10Tij + γ20pretij + rij + u0j . (6)
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Where γ10 is the estimated mean difference in intervention effect between the intervention and

control schools in a CRT, Tij is a dummy variable coded as 1 for pupils in the intervention schools

and 0 for pupils in the control schools, and u0j ∼ N(0, σ2Sch) captures the variation between

schools. rij and u0j are assumed to be independent and respectively capture within and between

school variances.

Effect size estimation under the MLM depends on which source of variation is used. Using

within-school variance, it can be estimated as:

dW =
γ10√
σ2
.

However, effect size based on within-school variance may be inflated if there is substantial het-

erogeneity between schools. Assuming equal sample size per school, effect size and Intra-Cluster

Correlation (ICC) based on total variance can be calculated as:

dT = γ10√
σ2+σ2

Sch
and ICC =

σ2
Sch

σ2+σ2
Sch

.

ICC measures how much pupil attainment variation occurs at school level. In other words, ICC is

the proportion of student attainment variation that can be explained by school differences in their

average attainment scores (Peugh, 2010, p. 89). Unlike in CRT, MST has an additional source of

variability due to intervention by school interaction. Its effect size and ICC can be calculated as:

dT = γ10√
σ2+σ2

Sch+σ
2
Sch∗Trt

and ICC =
σ2
Sch+σ

2
Sch∗Trt

σ2+σ2
Sch+σ

2
Sch∗Trt

.

Where σ2Sch∗Trt captures the variability of the intervention effects across schools. Hedges (2007,

p. 350) provides a detailed discussion of frequentist effect size calculation for multi-level models,

particularly how to calculate the associated standard errors.

2.3.4 Bayesian Multi-Level Modelling

Unlike the frequentist MLM, where the parameters of interest are treated as fixed unknowns, the

Bayesian MLM regards them as random variables. To estimate them, we use vague priors and

employ an approach as described in Wang, Rutledge, and Gianola (1993). To differentiate the

frequentist and Bayesian MLMs, we use slightly different notations to represent the fixed effects of

{β0, β1, β2} and the random intercept bj .

First, a Scale-Inverse-χ2 distribution, p(σ2) ∝ (σ2)−1, was specified as prior to compute within-

school or residual variance, which has the following full conditional posterior distribution:

p(σ2|β, σ2Sch, b, y) ∝ Scale-Inverse-χ2(N,S2
e ),
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where

S2
e =

∑M
j=1

∑nj
i=1(yij−β0−β1Tij−β2pretij−bj)

N
and N =

∑M
j=1 nj .

The same distribution, p(σ2Sch) ∝ (σ2Sch)−1, was then used as prior to simulate between-school

variance, for which the full conditional posterior distribution is as follows:

p(σ2Sch|β, σ2, b, y) ∝ Scale-Inverse-χ2(M,S2
bj

),

where

S2
bj

=
∑M

j=1 b
2
j

M ,

and M is the number of clusters.

The prior for the fixed effects, β = {β0, β1, β2}, is independently and identically distributed as

N(0, 1000). The joint posterior distribution of the fixed effects is

p(β|σ2, σ2Sch, b, y) ∝ N(β̃, (X ′X)−1σ2),

with

β̃ = (X ′X)−1X ′(y − b),

where X is the design matrix for the fixed effects.

The prior for the random effect of schools in the MLM is given as bj ∼ N(0, σ2Sch). The random

effect has the following posterior distribution:

p(bj |σ2, σ2Sch, β, bj′ , y) ∝ N

(
b̃j ,

(
nj +

σ2

σ2Sch

)−1
σ2

)
,

with

b̃j =

(
n2j +

njσ
2

σ2Sch

)−1 nj′∑
i=1,j′ 6=j

yij′ − β0 − β1Tij′ − β2pretij′ − bj′

 ,

where j′ 6= j means excluding the corresponding data for school j when the posterior sample for

the random effect of school j is drawn.

Using Gibbs sampler, we generate posterior distributions for the parameters by iteratively sam-

pling from their respective full conditional distributions. We also monitor the effect size at each

iteration and calculate the posterior point estimate and the credible intervals after discarding the

burn-in part (see Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012, for an introduction to the

algorithm).

In addition, we introduce the concept of Minimum Expected Effect Size (MEES) by calcu-

lating the probability for a specified effect size (φ) given the the data. Mathematically, MEES can

be expressed as:
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p(φ|σ2, σ2Sch, β, b, y) =
|dT ≥ φ|
|dT |

,

where |dT ≥ φ| is the number of posterior samples of dT that is at least as extreme as a pre-specified

effect size (φ) and |dT | is the length of the Markov Chain Monte Carlo (MCMC) simulation (Gelfand

& Smith, 1990) after discarding the burn-in part. The Bayesian estimation as described above was

implemented as part of the eefAnalytic package in R.

3 Results

As shown in Table 4, most point estimates of effect size match well across the different models,

except where the outcome variable is different (e.g., fs), or the ICC is high (e.g., catcht), or the

number of clusters is small (e.g., rfr), and/or there were serious problems in implementation or

evaluation such as attrition (e.g., bp). Also, the majority of the studies do not show any change

of sign in the point estimates, which is an indication of “Type S” error (when the sign changes

according to the methods, see Gelman, Hill, & Yajima, 2012, p. 194). In three cases (ffm, cbks+,

and fs) where the sign does change, the difference in the first two is too small to be meaningful,

and the third occurs mainly due to the choice of outcome, where the evaluators reported an effect

size based on gain scores, whereas we selected a post-test comparison, as all other evaluation teams

did.

It is worth noting that point estimates from δ are most likely to differ from regression-based

estimates, when the research design is CRT (e.g., iwq) or MST (e.g., catchn) and the number of

schools is small (e.g., tfl). This is not surprising, because δ ignores the clustering structure of

the data and assumes pupils are independent from one another, even when they come from the

same schools, which may differ in average attainment or other characteristics. Point estimates

based on within-cluster variances of MLMs are either equal to or greater than those derived from

total-variances, the latter occurs when trials are either MST or CRT and their ICCs are high (e.g.,

catcht). However, the difference in effect size estimates based on within and total variances of the

MLM is smaller than that in those derived from δ and MLM, suggesting model misspecification

might lead to greater biases. When ICCs are low, point estimates from OLS and MLMs are almost

identical, as in sor, rp, ar and a few others where ICC is zero. The next section looks in more

detail at the forest plots of effect estimates by project.

3.1 Forest plot: picturing estimation and its uncertainties

To understand the forest plots, we suggest readers first check for any change in sign of the point

estimates before examining any difference in magnitude. Where there is a sign change, it is useful

to assess how meaningful that change is. As we can see in Figure 2, there are two sign changes in

ffm and cbks+. However, the differences are too small to warrant any further investigation. What

12



Z. Xiao, A. Kasim, S. Higgins Same Difference?

study eval δ ols wth tt bs.wth bs.tt n n.sch icc lock type

ffe 0.17 0.19 0.18 0.19 0.14 0.19 0.14 310 33 0.44 2 mst
ffm 0.00 0.01 -0.02 -0.05 -0.04 -0.04 -0.04 303 33 0.13 2 mst
sor 0.24 0.24 0.27 0.27 0.27 0.27 0.27 308 19 0.00 3 srt
gfw 0.10 0.11 0.07 0.10 0.09 0.10 0.08 1367 50 0.23 3 crt
rfr 0.03 0.12 0.04 0.04 0.03 0.03 0.03 355 6 0.18 3 srt
catchn 0.21 0.09 0.27 0.31 0.28 0.30 0.28 216 54 0.12 3 mst
catcht 0.27 0.29 0.32 0.40 0.32 0.40 0.32 210 54 0.36 2 mst
cbks+ -0.01 0.03 0.03 0.04 0.04 0.04 0.04 303 12 0.09 3 srt
cbks -0.14 -0.07 -0.07 -0.08 -0.08 -0.08 -0.07 311 12 0.06 3 srt
rp -0.05 -0.09 -0.05 -0.05 -0.05 -0.05 -0.05 178 21 0.00 3 srt
ar 0.24 0.25 0.31 0.33 0.32 0.31 0.31 326 4 0.00 3 mst
bp 0.43 0.32 0.48 0.49 0.47 0.48 0.48 302 6 0.00 0 mst
iwq 0.74 0.59 0.68 0.81 0.67 0.81 0.68 265 22 0.29 2 crt
sar 0.13 0.12 0.13 0.14 0.14 0.14 0.14 182 48 0.11 3 srt
text -0.06 -0.01 -0.06 -0.07 -0.07 -0.07 -0.07 391 54 0.19 3 mst
uos -0.08 -0.09 -0.02 -0.04 -0.04 -0.04 -0.04 427 33 0.10 1 mst
ve 0.01 0.04 0.08 0.08 0.08 0.08 0.08 570 12 0.00 4 mst
fs 0.24 -0.20 0.08 0.08 0.07 0.07 0.07 419 10 0.01 3 mst
tfl 0.20 0.35 0.24 0.25 0.25 0.24 0.24 213 3 0.00 4 mst
mms 0.06 0.08 0.08 0.08 0.08 0.09 0.08 5830 44 0.07 4 crt

Table 4: Headline effect sizes from evaluation teams (eval) and other analytic models employed
in this study. Note that wth and bs.wth are effect size estimates derived from within-cluster variances
of the frequentist and Bayesian MLMs. tt and bs.tt are estimates based on their total variances. lock

refers to the number of padlocks awarded to a project. For convenience of comparison, we reproduce here
n and n.sch, which represent pupil and school numbers used in the analytic models. icc is intra-cluster
correlation. type indicates the type of experimental design.

is worth noting is the point estimate of 0.09 from δ for catchn, which is up to 0.22 lower than the

estimates from other models. The point estimates based on total variances of the MLMs are the

same, but smaller than those derived from within variances. In catcht, which has an ICC as high

as 0.36, the within variance based estimates are much higher than those from other models, and

their intervals wider than others’ too.

Second, we suggest checking if the intervals are of similar width and whether they contain the

vertical zero line or not. Again in Figure 2, plots for projects such as ffe, gfw, and rfr have intervals

that deviate considerably in length, which signalls that there are greater uncertainties associated

with some estimators and that the choice of analytic models matters. Conventionally speaking,

when an interval contains zero, it indicates that an intervention is not statistically significant.

When some intervals contain zero and others do not in a given study, the inconsistency might lead

to different conclusions for different evaluators. So identifying such inconsistencies is another way

of reading the plot. As shown in Figure 2, the interval produced by δ in gfw is [0, 0.21], whereas

all others contain zero. In catchn, four intervals contain zero, but three do not. The divergence is

13
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Figure 2: Forest plot of estimated effect sizes and their 95% confidence or credible intervals
for the first ten outcomes. Note that, for this plot and others that follow, Where confidence
intervals were not reported, the upper and lower bounds are set at the point estimate for comparison.

greater than that in gfw, suggesting the choice in analytic models for catchn is again important.

In Figure 3, fs immediately draws attention, because the point estimate that the evaluators

reported is not only different in sign, but also in magnitude. This difference mainly arises from the

fact that post-test results are used as the outcome variable in this study, whereas the evaluators
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transformed both pre and post-test scores into z-scores first and then calculated gains for the groups

to estimate the effect. However, the evaluators did examine post-test results and reported in the

text of their report, an estimated effect size of −0.19, which is similar to the one from δ for the

archive analysis. Other analytic models in this study use pre-test scores as a covariate, and they

produce almost identical results at 0.08. The discordance in results again demonstrates that both

the choice of outcome variable and the selection of covariates make important differences in point

estimates as well as estimation uncertainties.

For ar in Figure 3, the frequentist MLM produces intervals that are not consistent with those

from other models. Project bp shows much smaller point estimates from δ than those from other

models. The ICC is 0, point estimates are similar for all models other than δ, but their intervals

differ remarkably. However, the intervention and evaluation encountered some serious problems

such as attrition and was not regarded as a secure finding.

Also worth noting in the plot is mms, which has a sample of 5830 pupils in 44 schools. The

ICC is low and the evaluation was regarded as secure (awarded four out of five padlocks). It turns

out that all models produce similar point estimates and quite narrow intervals. Since the study is a

CRT, the results also show that models that do not reflect the research design, namely, δ and OLS,

would be prone to false positives. Estimate from δ in tfl also produces a statistically significant

result when other models suggest otherwise. The project is a SRT and has an ICC of zero, the

results from δ and OLS should not be of serious concern, particularly when the number of schools

is three. The statistically significant result from δ thus shows that failing to control for pre-test

scores has an impact on the point estimate of effect which jeopardises the comparability of the

effect sizes computed from the models under examination.

The combined information in Figures 2 and 3 illustrates that the most conservative, or the the

widest, intervals are frequentist MLM’s within and total variance bands, particularly when ICCs

are high and the number of clusters is small. Bayesian MLM produces the shortest of all intervals.

When the intervals from δ and OLS are short, we might attribute it to their inability to take into

account between-school variances, which over-inflates the level of certainty associated with them.

However, when interval bounds from MLMs are narrow, they increase our confidence in estimation,

because the models have accounted for all sources of variation and controlled for exactly the same

covariates.

3.2 Minimum expected effect sizes based on three sources of variation

Figure 4 presents the estimated probabilities of observing effect sizes that are at least as extreme as

the specified ones on the x-axis. The calculations are based on Bayesian MLM using three sources

of variation. As we can see, effect sizes based on between-cluster variances are usually greater than

those derived from within and total variances. When ICCs are zero, which means the schools do

not account for any variation in outcomes, it is not meaningful to talk about between-variance

15



Z. Xiao, A. Kasim, S. Higgins Same Difference?

based effect sizes, so the lines that represent them reduce to a flat one. When ICCs are non-zero,

the greater the ICCs, the more they differentiate within and total-variance based effect sizes. It

is therefore important to choose which effect size to report when between-school variances are

large. As demonstrated in the plots, total-variance based effect sizes are the most conservative, and

those based on within-variances either converge with the total ones or stay between the total and

between curves. It seems that, when ICC is below 0.2, there is not much difference in within and

total-variance based effect size estimations. However, when ICC is bigger than 0.2, the difference

becomes more observable and important to consider.

4 Discussion and Conclusion

As we have shown, point estimates of effect are similar from across the models in well-powered

studies without serious implementation problems. That is to say, if randomisation is well performed

and sample size large enough, point estimates tend to remain stable across the models. This is

because the distributions of a multitude of covariates, either observed or not, are usually, but

not guaranteed, to be similar. However, the standard errors would vary from model to model, and

become smaller and smaller as more and more covariates are adjusted for (Rubin, 2007, p. 32). This

is reflected in the shorter confidence intervals we often see in evaluation reports, because evaluators

normally control for other covariates than pre-test scores and treatment indication. Nevertheless,

when ICC is high, sample size is small, and serious attrition is reported, both point estimates and

the precision of estimation can vary when different analytic models are used.

Although covariates are important for improved estimates of precision (Rubin, 2008a, p. 1353),

adding them to analytic models would reduce some of the total variances “to be explained” (Nak-

agawa & Cuthill, 2007, p. 597) in well-implemented experiments. So for the comparability of EEF

trials, we think future evaluations should only use the pre-test scores and the group status as pre-

dictors, except where there are clear reasons otherwise, such as when randomisation is stratified

on other covariates than pre-test when these should also be included in the analysis. Of critical

importance, we suggest outcome variables be pre-specified and analytic models reflect study de-

signs and the nested structure of educational data, otherwise, we cannot rule out the possibility

that some statistically significant effects are misleading and that some point estimates result from

“blind luck” (Rubin, 2008b, p. 818).

Since MLMs take into account all sources of variation, outcome estimates from this approach

provide more confidence in the estimation of effect. In particular, we think evaluators should use

total variance of MLMs to estimate effect sizes, because those derived from between and within

variances can be biased, particularly when ICC is high. For higher precision in estimation, Bayesian

MLMs with vague priors are recommended.

The models we have tested, except for δ, might be sensitive to non-linearities of the relationship

between the outcome variable and covariates. If the differences in intervention group means are too
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large, or their variance ratios too great, linear models might be unreliable (Rubin, 2007, pp. 30-31).

Given the purpose of the archive analysis, we did not investigate this sensitivity problem. If the

analytic models are indeed very sensitive to non-linearity, this limitation would be a good example

that, “All models are wrong, but some are useful” (Box, 2013, p. xii). In any case, it implies that,

as Rubin put it, “Running regression is no substitute for careful thinking” (2008b, p. 816) in design.

We also argue for pre-specified analysis plans, to prevent data dredging. Without such a plan,

it is all too easy for “researcher degrees of freedom” to grow to such a level that “it is unacceptably

easy” to produce “statistically significant” results that are “consistent with any hypothesis” (Sim-

mons et al., 2011, p. 1359, original emphasis; see also Olken, 2015, p. 67). It is not surprising that

many psychology findings could not be replicated in a recent study featured in the journal Science

(Open Science Collaboration, 2015). In education, similar problems might exist as well, although

they are beyond the scope of this investigation.

Even when analysis plans are pre-specified, the data that arrives at an analyst’s computer may

not be the raw data, and the persons who pre-process the data are not always the ones who

analyse it. Consequently, the model an evaluator eventually chooses, however statistically sound,

has already been simplified (as Meng described in Lin et al., 2014, p. 545). In the EEF-funded

projects, the samples we have access to in the archive sometimes vary from the ones used and

reported by the evaluators for their primary analyses (see Table 2). In some projects, the difference

was so great that archive analysis as described above would not have been possible without the

support from original evaluation teams.

Diversity in analytic models of educational trials poses challenges at two levels at least. First

to the EEF which seeks to assess the impact of the interventions they have funded and decide

which ones are worth scaling up or investigating further. If estimates of impact from different

models are not comparable, it is hard to tell what has really worked and what might be effective at

scale to address the needs of disadvantaged children in primary and secondary schools in England.

Second to the aggregation of impact in meta-analysis, which depends on the comparability of the

effect sizes which are synthesised. This paper shows that there are limits to the precision which

is achievable in a pooled estimate which may be related to the analytic choices of the included

studies. In particular, the clustered nature of educational data is not always taken into account.

This may both inflate estimates, and imply greater precision than is warranted.
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Figure 3: Forest plot of estimated effect sizes and their 95% confidence or credible intervals
for the second ten outcomes.
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Figure 4: Minimum expected effect sizes based on within, between, and total variances
for nine representative projects.
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