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SUMMARY

The photosynthetic capacity of mature leaves increases after several days’ exposure to constant or intermit-

tent episodes of high light (HL) and is manifested primarily as changes in chloroplast physiology. How this

chloroplast-level acclimation to HL is initiated and controlled is unknown. From expanded Arabidopsis

leaves, we determined HL-dependent changes in transcript abundance of 3844 genes in a 0–6 h time-series

transcriptomics experiment. It was hypothesized that among such genes were those that contribute to the

initiation of HL acclimation. By focusing on differentially expressed transcription (co-)factor genes and

applying dynamic statistical modelling to the temporal transcriptomics data, a regulatory network of 47 pre-

dominantly photoreceptor-regulated transcription (co-)factor genes was inferred. The most connected gene

in this network was B-BOX DOMAIN CONTAINING PROTEIN32 (BBX32). Plants overexpressing BBX32 were

strongly impaired in acclimation to HL and displayed perturbed expression of photosynthesis-associated

genes under LL and after exposure to HL. These observations led to demonstrating that as well as regula-

tion of chloroplast-level acclimation by BBX32, CRYPTOCHROME1, LONG HYPOCOTYL5, CONSTITUTIVELY

PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA-105 are important. In addition, the BBX32-centric gene

regulatory network provides a view of the transcriptional control of acclimation in mature leaves distinct

from other photoreceptor-regulated processes, such as seedling photomorphogenesis.

Keywords: photosynthesis, B-Box proteins, acclimation, high light, hydrogen peroxide, Arabidopsis, Baye-

sian dynamic statistical modelling, gene regulatory networks, transcriptomics.

INTRODUCTION

The exposure of plants to increased light intensities can

lead to the development of enhanced photosynthetic

capacity [here defined as high-light (HL) acclimation], is an

important determinant of plant fitness or crop yield, is

under genetic as well as environmental control and

includes changes in the expression of many genes

(Athanasiou et al., 2010; Eberhard et al., 2008; Murchie and

Horton, 1997; Murchie et al., 2005; Oguchi et al., 2003; van

Rooijen et al., 2015; Schottler and Toth, 2014; Vialet-

Chabrand et al., 2017; Walters et al., 1999). In young

expanding leaves, acclimation to HL brings about

increased photosynthetic capacity by eliciting changes in

both leaf morphology, such as altered leaf and vascular
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diameter in minor veins and thickness of the lamina

(Adams et al., 2014; Oguchi et al., 2003; Terashima et al.,

2011; Vialet-Chabrand et al., 2017). This developmental

acclimation includes changes to chloroplast physiology

such as adjustments to the composition of reaction centres

and light harvesting antennae (Drozak and Romanowska,

2006; Murchie and Horton, 1997; Murchie et al., 2005;

Vialet-Chabrand et al., 2017; Walters et al., 1999). In con-

trast, in mature leaves, exposure to sustained or episodic

HL brings about changes primarily in chloroplast physiol-

ogy that raise the light use efficiency of photosynthesis,

which can reflect increased rates of photosynthesis and/or

a decreased number of photosystem II (PSII) reaction cen-

tres and is termed dynamic acclimation (Athanasiou et al.,

2010; Murchie et al., 2005; van Rooijen et al., 2015; Vialet-

Chabrand et al., 2017; Walters et al., 1999).

For both dynamic and developmental acclimation, it is

not known how HL exposure initiates the process at the

level of the chloroplast. However, an important lead is

provided from an early study (Walters et al., 1999). This

was a comparison of Arabidopsis photoreceptor sig-

nalling the photosynthetic capacity of mutants and PSII

efficiency grown under two different light intensities

[photosynthetically active photon flux densities (PPFDs)]

of 100 and 400 µmol m�2 sec�1. From this study, it was

proposed that a PHYTOCHROMEA (PHYA), PHYB, and

CRYPTOCHROME1 (CRY1) photoreceptor driven CONSTI-

TUTIVELY PHOTOMORPHOGENIC/DE-ETIOLATED1/

FUSCA (COP/DET/FUS) regulatory module could transmit

signals from the nucleus to chloroplasts to participate in

establishing increased photosynthetic capacity (Walters

et al., 1999). In support of this, photosynthesis-

associated nuclear genes are among the most enriched

gene classes subject to control from photoreceptors in

de-etiolating seedlings (Chory and Peto, 1990; Ganguly

et al., 2015; Holtan et al., 2011; Li et al., 2015; Pham

et al., 2018; Shikata et al., 2014). Various combinations

of the 11 COP/DET/FUS loci (Lau and Deng, 2012), in

conjunction with other regulatory genes, control the

integration of signals from photoreceptors and are cen-

tral to many plant–light environment interactions includ-

ing seedling photomorphogenesis, the shade avoidance

response, stomatal opening and development, the tim-

ing of flowering and cross-talk between phytohormone

and light signalling (Dong et al., 2014; Huang et al.,

2014; Lau and Deng, 2012; Pham et al., 2018).

The establishment of acclimation can take up to 6 days

(Athanasiou et al., 2010) and before this, plants must deal

with HL by dissipating excitation energy to minimize irre-

versible photoinhibition. Photoinhibition is caused by

oxidative damage to the photosynthetic apparatus

brought about by increased production of singlet oxygen

(1O2;Mullineaux et al., 2018; Ramel et al., 2013; Trianta-

phyllid�es et al., 2008). Prevention of photoinhibition is

achieved by a combination of non-photochemical and

photochemical quenching (NPQ and PQ respectively;

Baker, 2008; Eberhard et al., 2008; Ruban and Belgio,

2014). All leaves have an extant capability to dissipate

excitation energy, which is augmented under HL by local-

ized and systemic induction of further photo-protective

NPQ and/or PQ (Eberhard et al., 2008; Galvez-Valdivieso

et al., 2009; Karpinski et al., 1999; Li et al., 2009; Long

et al., 1994; Ruban and Belgio, 2014; Suorsa et al., 2012).

NPQ is the resonance transfer of excitation energy to xan-

thophyll carotenoids from excited chlorophylls and its

subsequent thermal dissipation (Baker, 2008; Li et al.,

2000). PQ is the dissipation of excitation energy by con-

sumption of reducing equivalents by a range of metabolic

processes including enhanced photosynthetic capacity,

but is also associated with increased foliar levels of

hydrogen peroxide (H2O2) and the superoxide anion (Bad-

ger et al., 2000; D�ıaz et al., 2007; Driever and Baker, 2010;

Eberhard et al., 2008; Heyno et al., 2014; Kangasj€arvi

et al., 2012; Lawson et al., 2014; Long et al., 1994; Mulli-

neaux et al., 2018; Schiebe, 2004; Schiebe and Dietz, 2012;

Streb et al., 2005; Wingler et al., 2000).

In this study, we hypothesized that in the first hours of

exposure of fully expanded leaves to HL, processes are ini-

tiated that eventually lead, several days later, to acclima-

tion manifested as increased photosynthetic capacity. This

hypothesis of an early initiation of HL acclimation pro-

cesses was an extension of an earlier proposal regarding

the temporal order of events leading to protection against

oxidative stress-induced photoinhibition and the restruc-

turing of light harvesting antennae and PSI/PSII reaction

centres (Eberhard et al., 2008). We set out to test this

hypothesis by identifying genes that would have a role in

both determining immediate responses to HL and the

capacity to acclimate.

RESULTS

Gene Ontology analysis of time-series transcriptomics of

HL-exposed leaves provides insights into the initiation of

acclimation

The starting point for this study was the development of a

HL time-series transcriptomics experiment. Our plan was

to subject groups of time-resolved differentially expressed

genes (DEGs) to Variational Bayesian State Space Model-

ling (VBSSM; see Experimental procedures), which

requires highly resolved time-series data (Beal et al.,

2005; Bechtold et al., 2016; Penfold and Buchanan-

Wollaston, 2014; Penfold and Wild, 2011). Therefore, we

opted for 30-min sampling over a 6 h HL period beginning

1 h after subjective dawn. We chose this time period

because it spans the initiation of both the short-term and

long-term acclimation to HL proposed by Eberhard et al.

(2008).
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Full transcriptome profiles using CATMA microarrays

(Sclep et al., 2007) were obtained from leaf 7 of HL-

exposed plants along with parallel LL controls. Leaf 7 from

35 days post-germination (dpg) plants was chosen

because under our growth conditions (see Experimental

procedures) this leaf had ceased expansion, although the

rosette continued to increase in area and biomass (Bech-

told et al., 2016). Microarray analysis of variance (MAANOVA;

Wu et al., 2003; see Experimental procedures) was used to

extract expression values from each probe for every treat-

ment for each technical and biological replicate. To deter-

mine DEGs that showed a significant difference between

HL-exposed leaves and the LL controls over all or part of

the time period, a Gaussian process two-sample test

(GP2S; Stegle et al., 2010) was applied and 4069 probes

were selected with a Bayes factor score >10, which corre-

sponded to 3844 DEGs (Data S1). The full dataset is depos-

ited with Gene Expression Omnibus (GEO; GSE78251).

To obtain further insight into the overall response to HL

at the molecular level, hierarchical co-cluster analysis of

the 3844 DEGs was carried out using SPLINECLUSTER (Heard

et al., 2005). We reasoned that groups of DEGs that display

similar temporal patterns of expression could be co-

regulated and clustering would be useful in identifying

groups of genes for dynamic modelling. Based on compar-

ing temporal gene expression patterns in both the HL-

exposed and control LL leaves, the 3844 DEGs were

divided into 43 temporal clusters (Figure 1a; Data S1). The

outcome of this co-clustering was differential transcript

abundance between LL and HL conditions superimposed

on a range of temporal expression trends across 6 h of the

diel. Plotted examples showing a range of temporal and

differential expression in six clusters can be viewed in Fig-

ure S1.

The clusters are ordered such that 1–13 show general

transcript abundance to be lower in HL versus LL samples
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Figure 1. Temporal patterns of gene expression in

LL- and HL-exposed leaf 7.

(a) Visual output of co-clustered expression values

by SPLINECLUSTER. This was done for the 3844 genes

already identified as differentially expressed in high

light (HL) versus low light (LL) over the time of the

experiment (see Results and Data S1). The values

range from log2 2.5 (red) to –log2 2.0 (green). The

43 temporal clusters can be counted in the accom-

panying dendrogram. Time points are shown on

the y-axes for the HL and LL gene expression.

(b) Number of HL/LL differentially expressed (DE)

probes first appearing at each time point.
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and/or display a downward pattern over the diel (Fig-

ure 1a; e.g. clusters 3 and 13 in Figure S1). This pattern

changes progressively with increasing degree of expres-

sion being higher in HL than LL but against a descending

diel pattern in clusters 14–20 (Figure 1a; e.g. cluster 18 in

Figure S1), followed by transient but progressively increas-

ingly greater differential transcript levels in HL samples

compared with LL in clusters 21–26 (Figure 1a; e.g. cluster

23 in Figure S1) to progressively sustained periods of

higher expression in HL compared with LL from clusters 27

to 43 against a background of level or increasing transcript

levels across the diel (Figure 1a; e.g. clusters 33 and 43 in

Figure S1).

To gain a better view of the timings of differential

expression in response to HL, the DEGs from the time-local

GP2S (Data S1) were used to identify intervals of differen-

tial expression as described by Windram et al. (2012). A

histogram of the time of first differential expression (HL

compared with LL) is shown in Figure 1(b) and indicated

that the response to HL was rapid with >700 genes becom-

ing differentially expressed by 1 h into the HL time course.

Nevertheless, it was also clear that changes in transcript

abundance were being initiated for significant numbers of

genes up to 4 h HL. In summary, the response of the leaf 7

transcriptome to HL entails changed expression in

response to the stimulus, with changes occurring across

the time of the experiment against a backdrop of complex

changes in transcript abundance across 6 h of an 8-h pho-

toperiod.

Gene Ontology (GO) analysis showed that clusters 22,

23, and 25 were highly enriched for generic abiotic stress-

defensive genes (P ≤ 0.1, Bonferroni corrected; Data S2). In

contrast, some of the other clusters displayed a different

set of GO function enrichments (Data S2). These multiple

enriched sets were consistent with a readjustment to cellu-

lar metabolism. For example, in clusters 39 and 41–43 with

generally higher expression in HL compared with LL, there

was over-representation of genes associated with amino

acid and protein synthesis respectively. Among the clus-

ters showing a lowered expression in HL compared with

LL, there was enrichment for genes associated with cell

wall metabolism (callose deposition, cell wall thickening

cluster 1), phenylpropanoid and glucosinolate metabolism

(clusters 1 and 10 respectively), basal resistance to infec-

tion (cluster 3), and chromatin re-modelling (cluster 10).

Assessing the effect of a temperature increase

accompanying HL exposure

The HL exposure raised leaf temperature by 5°C within

5 min of exposure that remained at this level for the

remainder of the experiment (Gorecka et al., 2014). To

determine the effect of this raised temperature (and the

accompanying change in vapour pressure deficit) on the

wider leaf transcriptome, a microarray analysis was carried

out on plants exposed to HL for 30 min, or 27°C under LL

for 30 min (LL/27°C) compared with LL/22°C control plants.

There were 609 DEGs [1.5-fold change; false discovery rate

(FDR) <0.05] that responded to HL and/or LL/27°C (Data S3;

see also GSE87755 and GSE87756). Of these DEGs, 73

responded to the temperature increase alone (Data S3) but

were not removed from the time-series data.

Two recent transcriptomics studies in Arabidopsis were

also relevant to assessing the impact of temperature rises

on foliar HL responses (Balfag�on et al., 2019; Huang et al.,

2019). HL time-series DEGs in clusters 3–7, 9, 12, 14, 16, 30,
31, 36, and 39–43 (Figure 1a; Data S1) showed significant

overlaps (P < 0.00001; Hypergeometric Distribution Test)

with DEGs from Arabidopsis plants exposed to 7-h

600 µmol m�2 sec�1 HL (from a growth PPFD of

50 µmol m�2 sec�1), which caused an increased leaf tem-

perature of approximately 4°C (Data S4; Balfag�on et al.,

2019). In contrast, in the same study inclusion of a heat

stress (42°C from growth at 23°C) as well as HL, substan-

tially lowered the number and altered the pattern of over-

lap with the temporal clusters (Data S4; clusters 14–16, 19,
21, 22, 25, 26, 30, and 42). Elimination of a heat stress com-

ponent in a HL experiment was achieved on 7-day-old

seedlings exposed to 1200 µmol m�2 sec�1 (from a growth

PPFD of 60 µmol m�2 sec�1) for up to 72 h (Huang et al.,

2019). In this study, ≤6 h HL exposure resulted in signifi-

cant overlaps (P < 0.00001) with only four DEG clusters (4,

5, 9, and 19; Data S4). In contrast, using a pooled dataset

of all HL DEGs throughout the 72-h experiment (Huang

et al., 2019), 31 of 43 clusters displayed significant overlap

with them (Data S4).

In conclusion, the elevated irradiance was the major

environmental factor contributing to changes in transcript

abundance. The 4–5°C temperature rise in fully expanded

leaves accompanying the HL did not cause irreversible

photoinhibition (Balfag�on et al., 2019; Huang et al., 2019).

Induction of acclimation by repeated exposure to HL

To test our interpretation of the HL time-series data, we

determined if HL acclimation could be induced by expos-

ing a plant every day to 4 h HL (see Experimental proce-

dures). This period of HL exposure was chosen as most

differential expression had been initiated by this time (Fig-

ure 1b). Other than being shortened to 4 h, the environ-

mental conditions were the same as for the time-series

transcriptomics experiment (see Experimental procedures).

The daily HL regime brought about a stepwise increase in

the operating efficiency of PSII (Fq0/Fm0; Baker, 2008) of

fully expanded leaves (Figure 2a; Data S5). By day 5, the

PSII operating efficiency had increased substantially (e.g.

78% at 800 µmol m�2 sec�1 actinic PPFD; Figure 2b; see

also Figure 4b). This pattern was followed by equivalent

changes in Fv0/Fm0 and Fq0/Fv0 (Figure S2a; Data S5). Fv0/
Fm0 indicates the maximum operating efficiency of PSII at

© 2021 The Authors.
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a given PPFD and a rise in this parameter indicates a

decline in NPQ (Baker, 2008). Fq0/Fv0 is the PSII efficiency

factor and it is mathematically identical to the coefficient

for PQ (qp) and indicates increased capacity to drive elec-

tron transport (Baker, 2008). LL-grown plants of the same

age as the plants subjected to five daily HL treatments did

not show these changes in chlorophyll fluorescence (CF)

parameters (Figure S2b; Data S5).

The first exposure to HL (day 1) did not result in irre-

versible photoinhibition (Figure S3a) or significant tissue

damage (Figure S3b). This was confirmed in the HL time-

series data, which used the same PPFDs, in which steady

levels of transcripts for genes considered to be markers for

H2O2 (APX2 and FER1; Ball et al., 2004; Gadjev et al., 2006)

rose but those associated with 1O2-induced signalling

(AAA-ATPase and BAP1; Ramel et al., 2013) remained

unchanged or declined (Figure S3c). The changes in

expression of these marker genes indicated the HL treat-

ment used in the time-series transcriptomics experiments,

also did not elicit photodamage and provided conditions

that could promote HL acclimation.

The increased operating efficiency of PSII (Fq0/Fm0 and

Fq0/Fv0) after the 5-day HL treatment (Figure 2a; Figure S2a;

Data S5) could have reflected enhanced photosynthetic

capacity. To test this possibility, gas-exchange measure-

ments for photosynthesis were carried out (see

Figure 2. Induction of acclimation by repeated daily exposure to high light (HL).

(a) Plants were exposed daily to 4 h HL and Fq0/Fm0 determined for mature leaves. After the HL, plants were dark adapted and imaged under increasing actinic

photosynthetically active photon flux densities (PPFDs) from 200 to 1400 µmol m�2 sec�1 in 200 µmol m�2 sec�1 increments every 5 min. Data were collected

as chlorophyll fluorescence images and processed digitally to collect values from mature leaves. Plants were treated in this way daily for 5 days: day 1 (blue),

day 2 (red), day 3 (olive green), day 4 (purple), and day 5 (light blue). Data (mean � SE) correspond to 38 plants at 24–28 days post-germination (dpg) over six

experiments, and the asterisks show differences in chlorophyll fluorescence parameters between days 1 and 5 were significant (P ≤ 0.001; ANOVA and Tukey

HSD). Full statistical data comparing all days of HL exposure are provided in Data S5.

(b) Daily changes in Fq0/Fm0 plotted from the data in A and Data S5 (right panel). Fq0/Fm0 values are from the same plants over the daily HL exposures showing

the increase in photosystem II (PSII) operating efficiency at 800 µmol m�2 sec�1 PPFD actinic light over the 5 days of the experiments.

(c) Photosynthesis plotted as CO2 assimilation rate (A) as a function of actinic PPFD in mature leaf 7 (mean � SE; n = 8 plants for each treatment; 49 dpg). Mea-

surements were taken the day after 1 (dashed lines) and 5 days (solid lines) of daily 4 h HL exposures (blue lines) along with the low light (LL) control plants

(red lines) not subjected to this treatment.

(d) Photosynthesis plotted as CO2 assimilation rate (A) as function of leaf internal CO2 concentration (Ci) in mature leaf 7 (mean � SE; n = 8 plants for each treat-

ment; 49 dpg). Measurements were taken the day after 5 days of daily 4 h HL exposures (blue line) along with the LL control (red line). A was determined by

infra-red gas analysis (see Experimental procedures). Asterisks indicate significant differences (P < 0.02; covariant T and two-tailed F tests) between LL- and HL-

exposed plants.

© 2021 The Authors.
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Experimental procedures). The same experiment was

repeated and, in the photoperiod following the last HL

treatment, measurements were taken of CO2 assimilation

rates (A) over a range of light intensities in fully expanded

leaf 7 of these plants (Bechtold et al., 2016). This showed

that the light-saturated photosynthetic rate (Asat) was sig-

nificantly greater (P < 0.001) by 64% compared with the LL

control plants (Figure 2c). In contrast, after a single 4 h HL

exposure, followed by photosynthesis measurements in

the next photoperiod, no increase in Asat was observed

(Figure 2c). In a separate series of experiments, the mea-

surement of A over a range of internal leaf CO2 concentra-

tions (Ci) also showed that the maximal CO2-saturated rate

of photosynthesis (Amax) increased by 31% (P < 0.002) after

five daily HL exposures (Figure 2d). This confirmed that

repeated HL exposures did not solely affect stomatal beha-

viour but brought about an increase in foliar photosyn-

thetic capacity. The changes in CF parameters by day 5 of

HL treatments observed in the previous experiments (Fig-

ure 2a) occurred also in larger older leaves that were

required for gas exchange measurements (Figure S2c; see

Experimental procedures).

In summary, increased Asat and Amax after 5 days of

repeated HL exposure (Figure 2c,d) was accompanied by a

highly significant increase in Fq0/Fm0 (Figure 2a; Fig-

ure S2c; P < 0.0001, ANOVA and Tukey HSD; Data S5). There-

fore, a substantial (>40%; typically using the median

800 µmol m�2 sec�1 actinic PPFD value) change in Fq0/Fm0

between days 1 and 5 of repeated HL was subsequently

used as a more convenient image-based measurement of

the establishment of increased photosynthetic capacity,

which was taken as indicative of HL acclimation.

Dynamic statistical modelling infers a BBX32-centric HL

gene regulatory network

The HL time-series data were used to infer gene regulatory

networks (GRNs) using VBSSM (Beal et al., 2005; Penfold

and Wild, 2011). We chose VBSSM because it has been

demonstrated to infer known GRNs from temporal gene

expression data and to infer novel GRNs whose highly

connected genes (nodes) have subsequently been shown

experimentally to have a novel and important function

(Beal et al., 2005; Bechtold et al., 2016; Breeze et al., 2011;

Penfold and Buchanan-Wollaston, 2014; Penfold and Wild,

2011; Windram and Denby, 2015). However, due to the lim-

ited number of time points, we opted to infer networks for

about 100 genes or probes to avoid overfitting by con-

straining network size (Allahverdiyeva et al., 2015; Beal

et al., 2005; Bechtold et al., 2016; Windram and Denby,

2015). To accommodate this limitation, we focused on DEG

coding for transcription regulatory genes such as transcrip-

tion (co-)factors (TFs). We reasoned that regulatory net-

works composed of such genes would control the

expression of a wide network of genes and by inferring

GRNs this would allow us to identify and focus on the

most connected of them, often termed hub genes (Albihlal

et al., 2018; Windram and Denby, 2015). Consequently, we

reasoned that such regulatory genes would control the

expression, directly and indirectly, of a sufficiently large

number of genes to influence whole leaf HL responses and

acclimation phenotypes. Therefore, the intention was to

screen highly connected candidate regulatory hub genes

directly for their impact upon HL acclimation measured as

changes in photosynthetic efficiency.

It was estimated that there were 371 HL DEGs coding for

TFs or (co-)TFs (Data S6). To narrow our selection further,

comparisons were made between the 43 HL temporal clus-

ters (Figure 1a; Data S1) and 14 publicly available tran-

scriptomics datasets or meta-analyses of such data for HL

treatments or mutants perturbed in chloroplast-to-nucleus

and reactive oxygen species-mediated signalling (Data S4).

On a cluster-by-cluster basis, the highest number of signifi-

cant (P < 0.00001) overlaps in clusters 1, 2, 3, 5, 6, 9, 10, 14,

16, 17, and 27 were encountered with phyA/phyB DEGs

(Data S4; Shikata et al., 2014). This observation suggested

that photoreceptor-mediated regulation of HL-responsive

genes was highly represented in the time-series transcrip-

tomics dataset. Therefore, we examined whether

photoreceptor-regulated (co-)TF genes (Dong et al., 2014;

Shikata et al., 2014) were also over-represented in the HL

dataset. This was the case with 91 photoreceptor- and

light-regulated (co-)TF DEGs identified irrespective of

which temporal cluster they were drawn from (P = 1.4E-06;

Hypergeometric Distribution Test, Data S6). The HL time-

series expression data from these 91 genes were used to

infer networks with VBSSM.

The first inferred network for HL revealed LATE ELON-

GATED HYPOCOTYL (LHY) as the most highly connected

gene (Figure S4a). However, mutant lhy-21 plants were not

perturbed in HL acclimation (Figure S4b). Therefore, the

VBSSM modelling was reiterated but omitted the LHY

expression data. This inferred a 47 node-HL network cen-

tred on BBX32 (Figure 3). The transcript levels of the 12

most connected nodes (≥3 edges) across the time series,

under LL and HL conditions, is shown in Figure S5 and

shows the diversity of expression patterns derived from

the temporal clusters (Data S1; Figure 1a,b).

BBX32 is a negative regulator of photosynthetic capacity

and HL acclimation

Acclimation was tested in two independent BBX32 overex-

pressing (BBX32-OE) genotypes (BBX32-10 and BBX32-12)

and a T-DNA insertion mutant (bbx32-1; see Experimental

procedures and Holtan et al., 2011). BBX32-OE plants

showed some inhibition of Fq0/Fm0 after day 1 of HL (Data

S7) but a highly significant impairment of the increase in

PSII operating efficiency at the end of the 5-day serial HL

exposure indicative of an inhibition of HL acclimation

© 2021 The Authors.
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(Figure 4a; Data S7). In contrast, bbx32-1 plants showed a

weak but significant accelerated acclimation phenotype

(Figure 4b; Data S7). We define an accelerated acclimation

phenotype as a significant enhancement of PSII operating

efficiency over one or more days in the 5-day serial HL

treatment. The strong negative impact of BBX32 overex-

pression on acclimation was confirmed subsequently by

showing a significant inhibition of photosynthetic capacity

(Asat) after the 5 days of daily 4 h HL (Figure 4c).

Transcriptomics provides a partial verification of the

BBX32 HL TF network

To explore further the connections depicted in the network

model (Figure 3), massively parallel RNA sequencing

(RNA-seq) was carried out (see Experimental procedures;

GEO; GSE158898) to profile the foliar transcriptome of fully

expanded leaves of Col-0 and BBX32-OE plants exposed to

3.5-h HL in comparison with LL controls. From these data,

Figure 3. Inferred high light (HL) gene regulatory network centred on BBX32.

The network shown was generated from the time-series expression data for HL differentially expressed genes. Differentially expressed genes code for transcrip-

tion (co-)factors that are also light- and/or PHYA/PHYB-regulated in de-etiolating seedlings. The network was generated using VBSSM (threshold z-score = 2.33;

see Experimental procedures) and initially visualized using CYTOSCAPE (v3.3.2; Shannon et al., 2003) but redrawn manually to improve clarity. The network shown

is from the second iteration of the modelling, which omitted expression data for LHY (First iteration; Figure S4a). Genes depicted in rectangular nodes were

responsive to BBX32 overexpression in HL- and/or low light (LL)-exposed leaves by showing significantly (Padj < 0.05; negative binomial distribution probability

model and Benjamini–Hochberg correction) higher (+) or lower (+) transcript abundance than Col-0 (see Figure 5; Data S8). Locus codes for the network genes

can be found in Experimental procedures.
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the transcript levels of 25 of 47 constituent genes in the

inferred network were significantly altered by constitutive

BBX32 overexpression compared with Col-0 plants in LL

and/or HL (Figure 5; Data S8), partly validating the GRN.

Transcriptome of BBX32OE plants links initial responses

to HL with dynamic acclimation

The impaired ability of BBX32-OE plants to photosynthe-

size (Figure 4a,c; Data S7) prompted an analysis of the

RNA-seq data on the impact of BBX32 overexpression on

the transcript levels of photosynthesis-associated genes

(PhAGs). There was a clear influence of BBX32 overexpres-

sion under LL and HL on the transcript levels of a range of

transcripts coding for LH Antenna proteins, Calvin–Benson
cycle enzymes, and components of photosynthetic electron

transport, PSI and PSII (Figure 6a; Data S8). We concluded

that these and other transcripts affected in BBX32-OE

plants might reflect their perturbed photosynthetic physiol-

ogy. The establishment of dynamic acclimation (see

Introduction) requires the expression of GLUCOSE-6-

PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (GPT2; see

Discussion; Athanasiou et al., 2010). HL differential GPT2

transcript levels were evident (Figure 6b,c) placing it in

temporal cluster 30 (Data S1). In addition, this change in

GPT2 transcript levels was strongly inhibited in BBX32-OE

plants exposed to 3.5-h HL (Figure 6c).

This disruption of PhAG transcript levels led us to exam-

ine the impact of BBX32 overexpression on other cellular

processes. Of the 2903 genes whose transcript levels were

HL responsive (P < 0.05; ≥ 2-fold differentially expressed;

Data S9), BBX32 overexpression perturbed the transcript

levels of 32% and 15% of them in LL and HL conditions

respectively (Figure 7a; Data S9). The HL/LL Col-0 DEGs

were enriched for 35 GO BP terms and 26 of them were

significantly over-represented in the BBX32-OE/Col-0 LL

and BBX32-OE/Col-0 HL DEGs (Data S10). These shared GO

groups all describe responses to various abiotic and biotic

stresses or response to endogenous stimuli such as

Figure 4. Acclimation in BBX32 overexpression and bbx32-1 plants.

Fq0/Fm0 values determined from images of ≥4 mature leaves from eight plants (24–28 days post-germination) over two experiments (means � SE), which had

first been exposed to 4 h high light (HL) each day for 5 consecutive days (see Experimental procedures and legend for Figure 2). Chlorophyll fluorescence

parameter values were collected at a range of actinic photosynthetically active photon flux densities (PPFDs) (as indicated) at the end of each daily HL exposure.

(a) Fq0/Fm0 values at day 1 (black lines) and day 5 (red lines) for mutant or overexpression plants (dashed line) and Col-0 (solid line) of the HL treatments for

BBX32-10 and BBX32-12. Asterisks indicate difference between mutant genotype and Col-0 at day 5 (P < 0.01; ANOVA and Tukey HSD).

(b) Daily Fq0/Fm0 values at 800 µmol m�2 sec�1 PPFD actinic light of bbx32-1 compared with Col-0 showing differences that were significant (P < 0.01) only

between days 2 and 4.

(c) Photosynthesis plotted as CO2 assimilation rate (A) as a function of incident PPFD in mature leaf 7 of low light-grown BBX32-10 (green line) and BBX32-12

(red line) compared with Col-0 (blue line) plants after 5 days of daily 4 h HL (see Experimental procedures). Data are the mean � SE; n = 4 for each genotype at

49 days post-germination; Asterisk indicates significant differences (P < 0.02; covariant T and two-tailed F tests) between Col-0 and BBX32-10 and BBX32-12 at a

given PPFD. Leaf A, as a function of PPFD, was determined by infra-red gas analysis (see Experimental procedures).
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salicylic acid or H2O2. This analysis indicates that BBX32

influences a wide range of cellular responses to stress,

which includes regulation of genes associated with basal

immunity to infection.

The DEGs from BBX32-OE HL- and LL-treated plants

were also compared with the 3844 time-series HL DEGs

(Figure 7b; Data S1 and S11). Although the number of

overlapping genes was lower (Figure 7b), 256 BBX32-OE

HL DEGs again confirmed enrichment for a range of GO

terms that describe generic responses to environmental

stress (Figure 7c; Data S11). However, the 408 BBX32-OE

LL DEGs also differentially expressed in the HL time-series

Figure 5. Partial validation of the BBX32-centric inferred gene regulatory network.

Expression of 25 of the 47 transcription factor genes in the inferred network showing the effect of BBX32 overexpression. All the genes displayed significant dif-

ferences (Padj < 0.05; negative binomial distribution probability model and Benjamini–Hochberg corrected) in transcript abundance in four replicate BBX32 over-

expression plants compared with four Col-0 both under low light (LL; suffix ‘a’) and/or high light (HL; suffix ‘b’) conditions. Data are mean FPKM (n = 4 � SE)

from four plants per genotype and treatment. Tabulated FPKM data for these genes can be found in Data S8. Colour codes are brown and dark blue for Col-0

and BBX32-10 plants in LL respectively, salmon pink and light blue are Col-0 and BBX32-10 plants in HL. Cluster number for each gene is shown on each graph.

© 2021 The Authors.
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Figure 6. Transcript levels of photosynthesis-associated genes in BBX32-OE plants are perturbed.

(a) Transcript abundance as FPKM values from the fully expanded leaves of 4 Col-0 or BBX32-10 plants exposed to 3.5 h high light (HL) or low light (LL) control.

Data are means � SE (n = 4). Photosynthesis-associated genes are those defined on the KEGG database (https://www.kegg.jp/dbget-bin/www_bget?pathway+a

th00195). Transcripts of photosynthesis-associated genes shown are those that displayed a >1.8-fold greater or a >2-fold lesser abundance in Col-0 HL compared

with Col-0 LL (Padj < 0.05; P value from negative binomial distribution model; Benjamini–Hochberg corrected). Suffixes ‘a’–‘c’ refer to Padj < 0.05 for: ‘a’ BBX32-

10 HL/BBX32-10 LL; ‘b’ BBX32-10 LL/Col-0 LL; ‘c’ BBX32-10 HL/Col-0 HL. These data are in Data S8.

(b) Expression of GPT2 in 0–6 h HL and LL. Log2-transformed fluorescence values (mean � SE; n = 4) were normalized with respect to the same values at the

zero-time point and are shown for the HL (red line) and LL (black line) data. Asterisks denote significant difference between LL and HL (P ≤ 0.05; ANOVA; Data S1)

at each time point.

(c) GPT2 expression in BBX32-10 and Col-0 plants (n = 4 � SE; Padj as in a) exposed to HL and LL.
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Figure 7. Comparisons of genes affected by BBX32 overexpression (OE) with high light (HL) differentially expressed genes (DEGs) in Col-0.

(a) Venn diagram of overlapping DEGs between Col-0 and BBX32-OE plants under low light (LL) and HL conditions compared with DEGs responsive in Col-0 to

3.5 h HL and generated by RNA-sequencing. Relevant three groups of DEGs can be found in Data S9.

(b) Venn diagram as in (a) except the BBX32-OE DEGs were compared with the 3844 time-series HL DEGs in Data S1, which were derived from microarray-

based transcriptomics data (see Results and Experimental procedures). DEGs in the overlapping segments are listed in Data S10.

(c) Top enriched Biological Process GO Terms from genes shared between the 3844 HL time-series DEGs and the 256 BBX32-OE HL/Col-0 HL DEGs (top panel)

and 408 BBX32-OE LL/Col-0 LL DEGs (bottom panel) respectively. FDR, false discovery rate.
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dataset, also revealed significant enrichment (FDR <0.05) of
a range of additional functions (Figure 7c; Data S11)

including glucosinolate and glycosinolate metabolism

(GO:0019760, GO:0050896, GO:006143, GO:0019757,

GO:0016144, GO:0019761, GO:0019758), cell wall thicken-

ing (GO:0052543, GO:0052386), and callose deposition

(GO:0052543, GO:0052545). Downregulation of these

groups of genes in the HL time-series data (Data S1 and

S2) may reflect a redistribution of resources towards HL

acclimation and away from basal immunity (see above and

Discussion). The observations also reinforce that BBX32

influences immediate responses before or during a single

exposure to HL.

CRY1 and HY5 control of photosynthetic efficiency and

acclimation

BBX32 has been proposed to be a negative regulator of the

integration of light signals from phytochromes (PHYs) and

cryptochromes (CRYs) during photomorphogenesis (Gan-

gappa and Botto, 2014; Holtan et al., 2011). BBX32-OE

seedlings display long hypocotyls in the light phenocopy-

ing photoreceptor mutants and mutations in LONG HYPO-

COTYL5 (HY5; Holtan et al., 2011). Notably, HY5 is a

member of the BBX32-centric GRN (Figures 3 and 5) and

along with CRY1, has also been implicated in influencing

the expression of HL-inducible gene expression (Chen

et al., 2013; Kleine et al., 2007; Shaikhali et al., 2012). Fur-

thermore, PHYA-, PHYB-, and CRY1-mediated signalling

was proposed to regulate photosynthetic capacity in plants

grown in a range of PPFDs (Walters et al., 1999; see Intro-

duction). These considerations prompted us to test HL

acclimation in photoreceptor-defective and hy5 mutants.

No significant impact of PHYA or PHYB on acclimation

was observed (Figure S6a,b). In contrast, cry1 mutants

almost completely failed to undergo any acclimation (Fig-

ure 8a,b), whereas cry2-1 was not impaired (Figure S6c).

One of the cry1 mutants shown (cry1-M32; Figure 8b)

arose serendipitously from a screening of T-DNA insertion

mutants in genes coding for 7-transmembrane proteins

that had been postulated to be implicated in HL-mediated

G protein signalling (Galvez-Valdivieso et al., 2009; Gor-

ecka et al., 2014). However, the one mutant recovered from

this screening, was shown subsequently to be deficient in

HL acclimation due to a disabling second site mutation in

CRY1 (see Experimental procedures). As the defective

acclimation phenotype was identified before knowing the

identity of the causal mutation, we took this to be forward

genetic evidence of the importance of CRY1 in setting PSII

operating efficiency in mature leaves.

The light environment used to grow plants for this study

and subject to HL was enriched for blue wavelengths (Fig-

ure S7; see Discussion). Therefore, we considered the pos-

sibility that a role for PHYs in dynamic acclimation could

be obscured, favouring a predominance of CRY1 under our

growth conditions. To test this notion, a mutant harbour-

ing a constitutively active form of PHYB, phyBY276H (YHB)

in a Col-0 background (Jones et al., 2015) was tested for

HL acclimation (Figure 8c). This mutant exhibited a higher

PSII operating efficiency than Col-0 after 1 day of HL expo-

sure consistent with an accelerated acclimation phenotype.

Mutants defective in HY5 function were strongly

impaired in HL acclimation (Figure 8d,e) consistent with

being a member both of a BBX32-centric GRN (Figures 3

and 5, Data S8).

COP1, PIF, and SPA genes regulate photosynthetic

efficiency and HL acclimation

In both photomorphogenesis and shade avoidance

responses, the transduction of signals from photoreceptors

is mediated via one or more DET/COP/FUS regulatory com-

plexes (Lau and Deng, 2012), which act as platforms for the

post-translational control of the levels of HY5 and the inte-

gration into the signalling of TFs, PHYTOCHROME INTER-

ACTING FACTORS (PIFs), and regulatory proteins,

SUPPRESSOR OF PHYA-105 (SPA) (Dong et al., 2014; Gan-

gappa and Botto, 2016; Hardtke et al., 2000; Hoecker, 2017;

Huang et al., 2014; Lau and Deng, 2012; Lau et al., 2019;

Lian et al., 2011; Pham et al., 2018; Toledo-Ortiz et al.,

2003). In the VBSSM-inferred GRN, PIF4, PIF7, and SPA1

were predicted to have a regulatory connection to BBX32

(Figures 3 and 5).

Cop1-4 plants, despite a severely dwarfed shoot mor-

phology (Figure 9a; Deng and Quail, 1992; Gangappa and

Kumar, 2018), displayed an accelerated acclimation pheno-

type (Figure 9b) such as the HL response of YHB plants

(Figure 8c). In contrast, despite a similar dwarf shoot mor-

phology (Figure 9a), det1-1 displayed no defect in HL accli-

mation (Figure 9d). This suggests that the HL acclimation

response of chloroplasts is independent of shoot size and

that these two traits are not coupled. Furthermore, spa1/

spa2/spa3 (spa1,2,3) plants also displayed accelerated HL

acclimation (Figure 9c). Therefore, it was concluded that

one or more type of the COP1/SPA complex (Hoecker,

2017; Huang et al., 2014) are negative regulators of HL

acclimation and that DET1 plays no role in this process.

There is a high degree of redundancy among the PIF

family and therefore a quadruple null mutant of PIF1, 3, 4,

and 5 (hereafter called pifq; Leivar et al., 2008) was tested

and shown to display significant inhibition of HL acclima-

tion (Figure 9e). In contrast, the HL acclimation of a single

mutant allele of PIF4 (pif4-2) was normal (Figure S6d).

DISCUSSION

Time-series HL transcriptomics data indicate the initiation

of acclimation processes

The exposure to a 7.5-fold increase in PPFD (HL) presents

both a threat and an opportunity to the plants in this study.

© 2021 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2021), doi: 10.1111/tpj.15384

12 Ruben Alvarez-Fernandez et al.



Figure 8. High light (HL) acclimation of photoreceptor and HY5 mutants.

Plots show the photosystem II operating efficiencies (Fq0/Fm0) determined from chlorophyll fluorescence images of ≥4 mature leaves from eight plants over two

experiments (means � SE). Plants had been exposed to 4 h HL each day for 5 consecutive days (see Experimental procedures and legend of Figure 2). Chloro-

phyll fluorescence parameter values were collected at a range of actinic photosynthetically active photon flux densities (PPFDs) at the end of days 1 and 5 of HL.

Fq0/Fm0 values at day 1 (black lines) and day 5 (red lines) for mutant plants (dashed line) and Col-0 (solid line) of the HL treatments for (a) cry1-304, (b) cry1-M32,

(c) YHB, (d) hy5-2, and (e) hy5-215. Asterisks (panels a, b, d, e) indicate significant difference between mutant compared with Col-0 at day 5 (P < 0.01; ANOVA and

Tukey HSD). Upward arrows (c) indicate significant difference between YHB and Col-0 at day 1 (P < 0.01; ANOVA and Tukey HSD).
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The threat comes from the possibility that the PPFD will

continue to increase and render the plant susceptible to

irreversible photoinhibition. The opportunity comes from

enhancing photosynthetic capacity and consequently accli-

mating to the HL (Figure 2a–d), accompanied by a lowered

reliance on the dissipation of excitation energy using NPQ

(Figure S2a), which can limit plant productivity (Kromdiijk

et al., 2016).

The adaptation to a potential increase in photo-oxidative

stress and photoinhibition (see Introduction) is the early (≤
1 h), strong, but transient change in transcript abundance

of 257 genes in clusters 21–26, upon exposure to HL. Clus-

ters 22, 23, 25, and 26 include among them 64 known

genes that promote abiotic stress tolerance (Figure 1a,b;

cluster 23 in Figure S1; Figure S2c; Data S1 and S2). The

transiently enhanced expression of these genes presum-

ably allows the plant to overcome any potential initial

detrimental effects of the HL exposure, as many other stud-

ies have reported (e.g. Balfag�on et al., 2019; Ball et al.,

2004; Crisp et al., 2017; Gadjev et al., 2006; Huang et al.,

2019; Ramel et al., 2012, 2013; Willems et al., 2016).

Coordinated alteration in specific biological processes

was evident in some clusters. Downregulated clusters

include those collectively associated with aspects of basal

or innate resistance to pathogens (Piasecka et al., 2015;

Underwood, 2012). Examples include genes coding for cell

wall modifications and callose deposition (cluster 1),

defence response to bacteria (cluster 3), and glucosinolate/

glycosinolate biosynthesis (cluster 10). In this study, plants

were grown at a PPFD below their light saturated rate of

photosynthesis (Asat; Figure 2c; see Experimental proce-

dures). Plants grown under such light-limiting conditions

may initially reallocate resources away from some cellular

processes to begin acclimation and take advantage of a

sustained increase in PPFD. Photosynthetically active

expanded but not senescing leaves, such as leaf 7 used

here (Bechtold et al., 2016), may maintain a higher degree

of poising of immunity to respond to biotic stress com-

pared with abiotic stress (Berens et al., 2019). Therefore, in

a converse situation where a potential abiotic stress threat

emerges, the diversion of resources from defence against

pathogens may be an appropriate response. Meanwhile,

among the DEG time-series clusters whose transcript

levels increased at various points in the experiment, are

those that could be preparing the leaf to increase its photo-

synthetic and metabolic capacity to begin acclimation

(Dietz, 2015 ; Eberhard et al., 2008). Genes in over-

represented GO BP terms included those involved in

macromolecule synthesis and particularly translation (clus-

ters 41–43) and related metabolic processes such as

enhanced amino acid and organic acid biosynthesis (clus-

ter 39). The HL induction of transcript levels of one gene,

GPT2, in temporal cluster 30 (Data S1), is noteworthy (Fig-

ure 5b). This gene is required for dynamic acclimation

(Athanasiou et al., 2010) and this change in expression

may indicate initiation of HL acclimation processes.

BBX32 connects a range of cellular processes during the

response to HL

Of all the comparisons carried out with relevant transcrip-

tomics datasets, the most extensive overlap with time-

series HL DEGs was with those from dark-germinated

phyA/phyB seedlings exposed to red light (Data S4; Shikata

et al., 2014). While this was initially surprising because of

the very different experimental conditions, earlier studies

had shown a strong influence of photoreceptor genes

(CRYs and PHYs) on photosynthetic capacity in Arabidop-

sis grown at a range of PPFDs (Walters et al., 1999) and

photoreceptor-directed signalling on the induction of HL-

responsive genes (Guo et al., 2016; Huang et al., 2019;

Kleine et al., 2007; Shaikhali et al., 2012).

The above analysis prompted a selection of 91 light- and

PHYA/B-regulated (co-)TF genes (Data S6). The HL time-series

expression data from these genes were subjected to VBSSM,

which after two iterations, inferred a highly interconnected

BBX32-centric (co-)TF GRN (Figure 3; Figure S4; see Results).

In the GRN, >50% of the nodes (genes) were subsequently

confirmed by RNA-seq to be influenced significantly in their

expression by BBX32 (Figures 3 and 5; Data S8).

BBX32 showed a greater transcript abundance over LL

controls at any point onwards from 2 h HL. Nevertheless,

its transcript abundance was on a downward trend

through the diel, paralleling its LL pattern of expression

(Figure S5). Interestingly, while BBX32-OE plants displayed

a 66-fold elevated BBX32 transcript level in LL, this reduced

to 33-fold after 3.5 h HL (Data S9). The enhanced BBX32

expression in these plants is driven by the CaMV 35S pro-

moter (Holtan et al., 2011); therefore, the decline in tran-

script abundance over a diel could indicate that a temporal

post-transcriptional control operates on BBX32 expression.

The overexpression of BBX32 strongly influenced the

immediate responses of plants to HL across a range of cel-

lular processes (Figure 6c; Data S8 and S9) and in their

photosynthetic physiology (Figure 4a–d). Most promi-

nently, under LL, BBX32-OE plants displayed perturbed

expression of genes with basal immunity, including multi-

ple GO designations for glucosinolate/glycosinolate meta-

bolism, callose deposition, and responses to chitin and to

pathogens (Figure 7c; Data S10 and S11). This observation

is consistent with enrichment of the same processes in

downregulated HL temporal clusters in Col-0 (see above;

Data S2) and supports our suggestion that in wild-type

plants, downregulation of basal immunity may be a neces-

sary prerequisite for successful adjustment to elevated

light intensities and that BBX32 is a negative regulator of

this process.

BBX32 overexpression under LL and HL conditions per-

turbed the expression of PhAGs (Figure 6a; Data S8) and
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the combined effects of such disruption would be consis-

tent with a modestly significant (P < 0.1) depressed PSII

quantum efficiency that both BBX32-OE lines displayed

after a single 4 h of HL (Data S7).

BBX32 and the control of photosynthetic capacity and HL

acclimation

There was an inhibitory effect of BBX32 overexpression in

HL on GPT2 transcript levels (Figure 6c) and on those of

LHCB4.3 in BBX32-OE HL and LL plants (Figure 6a; Data

S8). GPT2 is required for dynamic acclimation (Athanasiou

et al., 2010) and levels of LHCB4.3 correlate with the degree

of long-term acclimation to HL (Albanese et al., 2016). This

indicates that processes that would lead to acclimation had

been initiated during this first exposure to HL and that

BBX32 is involved in their regulation. However, a single

exposure to 4 h HL is not sufficient to induce HL acclima-

tion and increased photosynthetic capacity. This requires,

under our conditions, a further three daily episodes of 4 h

HL for this to begin to occur (Figure 2a–d). Our experience

is consistent with a previous study where dynamic accli-

mation took about 5 days to be fully manifested and 2–
3 days to discern any change in photosynthesis rates after

a permanent shift from a PPFD of 100–400 µmol m�2 sec�1

(Athanasiou et al., 2010). In contrast to the weak but signifi-

cant effects on photosynthesis of BBX32 overexpression

during a single 4 h HL exposure (Data S7), there was a

strongly significant negative impact upon HL acclimation

after 5 days of daily 4 h HL (Figure 4a,c). This suggests that

BBX32 exerted a negative control on HL acclimation that

was stronger than its impact on photosynthesis at growth

PPFD. Similarly, a gpt2 mutant showed wild-type levels of

maximal photosynthetic capacity when grown at two differ-

ent PPFDs (100 and 400 µmol m�2 sec�1) but lowered

dynamic acclimation going from the lower to the higher

PPFD (Athanasiou et al., 2010). In summary, we propose

that BBX32 exerts control over a large number of genes in

the first hours of HL exposure and the acclimation-

associated increase in photosynthetic capacity that occurs

several days later. Therefore, BBX32 provides a link

between these temporally distinct events that establish

acclimation to HL (Eberhard et al., 2008; see Introduction).

Negative regulation of HL acclimation by BBX32 (Fig-

ure 4a) suggested that a defective allele ought to confer a

converse elevated phenotype. The mutant bbx32-1 (see

Results; Holtan et al., 2011), displayed a weakly significant

trend of enhanced PSII operating efficiency compared with

Col-0 between days 2 and 4 of the 5 days of 4-h HL expo-

sure (Figure 4b; Data S7). However, this genotype is unli-

kely to be a null mutant. The mutagenic T-DNA is inserted

such that the first 172 amino acid residues of BBX32 would

still be produced and a truncated transcript spanning this

region has been detected in bbx32-1 seedlings (Holtan

et al., 2011). The retained N-terminal region coded by this

allele harbours the single B-Box zinc finger domain of

BBX32 (Gangappa and Botto, 2014) and downstream

sequences to residue 88, capable of binding at least the

transcription regulator EMBRYONIC FLOWER1 (EMF1; Park

et al., 2011). The possibility of a partially functional trun-

cated BBX32 may explain the weak phenotype of bbx32-1

with respect to this acclimation phenotype (Figure 4b; Data

S7) and its mild constitutive photomorphogenic phenotype

in seedlings (Holtan et al., 2011).

Establishment of HL acclimation involves BBX32-centric

GRN members

The VBSSM that led us to BBX32 also led us to HY5 (Fig-

ure 3) and was subsequently reinforced by its known inter-

action with BBX32 in seedling photomorphogenesis

(Gangappa and Botto, 2016; Holtan et al., 2011). HY5 was

shown to be a strong positive regulator of acclimation in

mature leaves (Figure 8d,e). Therefore, these observations

reveal new functions for BBX32 and HY5, extending their

role to a further dimension in the interaction of the plant

with its light environment. In seedlings, HY5 controls

chlorophyll content and transcript levels of PhAGs in cool

temperatures (Toledo-Ortiz et al., 2014) and the control of

chloroplast development during photomorphogenesis

(Ruckle et al., 2007), which suggests, along with data

shown here (Figure 6; Data S8), that control of these

photosynthesis-associated processes by a BBX32/HY5-

regulatory module is retained throughout the life of the

plant.

SPA1, PIF4, and PIF7 also were incorporated into the

BBX32-centric GRN by VBSSM (Figure 3). This reinforced

the comparison between the control of seedling photomor-

phogenesis and HL acclimation in fully expanded leaves,

which was extended beyond the GRN by establishing that

CRY1 (and possibly PHYB) along with and one or more

members of the PIF family are positive regulators of HL

acclimation (Figures 8a,c and 9e), while COP1 and one or

more SPA genes are negative regulators (Figure 9b,c).

We suggest that COP1 and SPA genes act together to

suppress HL acclimation under LL by enabling the

ubiquitin-mediated degradation of HY5 and therefore cou-

pling photosynthetic capacity to the prevailing PPFD. In HL,

this suppression would be reversed by CRY1 physically

interacting with and inhibiting the action of COP1/SPA

(Gangappa and Botto, 2016; Hoecker, 2017; Huang et al.,

2014; Lau and Deng, 2012; Lau et al., 2019; Laubinger et al.,

2004; Lian et al., 2011; Pham et al., 2018). Consequently,

CRY1 would cause HY5 to be redirected to HL acclimation.

However, a further adaptation may be required to retard or

accelerate acclimation. For example, to fine tune the estab-

lishment of HL acclimation in a fluctuating light environ-

ment in order to balance source-sink relationships. We

suggest under HL, when HY5 is free of negative regulation

by COP1/SPA, that BBX32 is the important additional
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Figure 9. High light (HL) acclimation of photoreceptor signal transduction mutants.

(a) Photosynthetic efficiency of the same single Col-0, cop1-4, and det1-1 plants after 1 and 5 days of daily 4 h HL exposure. Chlorophyll fluorescence (CF)

images are of Fq0/Fm0 (photosystem II operating efficiency) at a 400 µmol m�2 sec�1 actinic photosynthetically active photon flux densities (PPFDs).

(b–e) Plots show the photosystem II operating efficiencies (Fq0/Fm0) determined from CF images from eight plants (24–28 days post-germination) over two

experiments (means � SE). Plants had been exposed to 5 days of daily 4 h HL (see Experimental procedures and legend of Figure 2). Note that because of the

size of the cop1-4, pifq, and det1-1 plants, data were collected from whole rosettes rather than from mature leaves. CF parameter values were collected at a

range of actinic PPFDs at the end of days 1 and 5 of HL. Fq0/Fm0 values at day 1 (black lines) and day 5 (red lines) for mutant plants (dashed line) and Col-0 (solid

line) of the HL treatments for (b) cop1-4, (c) spa1,2,3, (d) det1-1, and (e) pifq. Asterisks (e) indicate significant difference between mutant compared with Col-0 at

day 5 (P < 0.01; ANOVA and Tukey HSD). Upward arrows (b,c) indicate significant difference between mutants and Col-0 at day 1 (P < 0.01; ANOVA and Tukey HSD).
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moderator of the establishment of acclimation. The tran-

scriptional control of HY5 and by extension, other mem-

bers of the BBX32-centric GRN (Figure 3), could be subject

to regulation by additional intracellular signals in HL, such

as those from chloroplasts (e.g. H2O2) and hormones, to

coordinate a wider range of cellular processes necessary

for acclimation (Dietz, 2015; Estavillo et al., 2011; Exposito-

Rodriguez et al., 2017; Galvez-Valdivieso et al., 2009; Gan-

gappa and Botto, 2016; Guo et al., 2016; Hardtke et al.,

2000; Ramel et al., 2012, 2013). Other than SPAs, HY5, and

PIFs, we have not determined if other GRN members (Fig-

ure 3) influence aspects of photosynthesis but GOLDEN-

LIKE 2 (GLK2; Waters et al., 2009) and ACTIVATING FAC-

TOR1 (ATAF1; also called NO APICAL MERISTEM/CUP

SHAPED COTYLEDON2 (NAC002); Garapati et al., 2015) do

affect PhAG expression and chlorophyll levels.

The opposing regulation of HL acclimation by BBX32

and HY5 could mean that some form of interaction

between these genes drives its establishment in a manner

similar to their respective negative and positive regulation

of photomorphogenesis (Datta et al., 2007; Gangappa and

Botto, 2016; Holtan et al., 2011; Xu et al., 2014). BBX32

does not bind DNA and has been proposed to act as (co-)

TF in complexes with several TFs, such as the BBX32-

BBX21-HY5 tripartite complex involved in the control of

photomorphogenesis (Datta et al., 2007; Gangappa and

Botto, 2016; Holtan et al., 2011; Park et al., 2011; Tripathi

et al., 2017; Xu et al., 2014). Therefore, there may also be a

post-translational control of HY5 by BBX32 during HL accli-

mation.

The proposed need for both a CRY1/COP1/SPA- and a

BBX32-mediated control of photosynthetic capacity and

acclimation comes also from considerations about light

quality and intensity. First, the fluence of blue light in the

HL exposure used in this study would exceed the satura-

tion of CRY1 activation, which is approximately 32–
40 µmol m�2 sec�1 blue light (Hoang et al., 2008; Liu et al.,

2020). Therefore, while CRY1 signalling would need to be

activated (i.e., on) for acclimation to happen, further sig-

nalling input may be required from other sources via

BBX32 and its GRN to modulate the degree of response. A

second factor is that at high fluence, CRY1 may produce

H2O2 in the nucleus (Consentino et al., 2015). H2O2 for HL

signalling is primarily synthesized and exported from

chloroplasts and is dependent upon active photosynthetic

electron transport (Exposito-Rodriguez et al., 2017; Mulli-

neaux et al., 2018). However, this does not exclude the

possibility that HL-dependent accumulation of H2O2 in

nuclei for signalling may be augmented from other

sources such as photo-saturated CRY1.

In contrast to Arabidopsis grown at differing PPFDs but

using similar fluorescent lighting to this study (Walters

et al., 1999; see Experimental procedures), no influence of

PHYA or PHYB was observed on HL acclimation

(Figure S6a,b). This could have been a consequence of the

degree of blue light used in both growth conditions and in

HL exposure (9% and 58% of the total PPFD respectively;

Figure S7; see Experimental procedures). This range of

wavelengths in artificial lighting is typical of many con-

trolled environment conditions (Naznin et al., 2019) and

may have favoured a response mediated by CRY1. The

observation that plants harbouring a constitutively active

PHYB allele (YHB) displayed a partially accelerated accli-

mation phenotype (Figure 8c) means that PHYs could also

control HL acclimation under some light environments and

modify or interact with a CRY1-dependent signalling path-

way (Ahmad et al., 2002; Yu et al., 2010).

Conundrum of the control of photosynthetic capacity and

the type of HL acclimation

In interpreting the data from the mutants and BBX32-OE

genotypes used in this study, the question can be asked: Is

the mutants’ altered HL acclimation phenotype a conse-

quence of limited development or functioning of the pho-

tosynthetic apparatus such that maximal photosynthetic

capacity could never be attained? This question can be

answered in two parts: first and as stated above, the effect

of BBX32 overexpression is more marked in the increase in

photosynthetic efficiency between days 1 and 5 of daily HL

exposures (i.e. HL acclimation) than in the starting photo-

synthetic efficiencies at day 1 (Figure 4a,c; Data S7). The

same pattern can be observed in the hy5 mutants (Fig-

ure 8d,e; Data S7). However, the cry1 mutants and pifq

showed no difference from Col-0 on day 1 HL but a strong

difference by day 5 HL (Figures 8a,b and 9e). Second,

mutants such as bbx32-1, YHB, cop1-4, and spa1,2,3 dis-

played an accelerated chloroplast-level HL acclimation phe-

notype, which showed that their photosynthetic apparatus

was set at a level higher than it should have been for their

growth PPFD and for the number of days of 4-h HL expo-

sure (Figures 4b, 8c and 9a–c). This means that HL acclima-

tion can become uncoupled from the prevailing light

intensity. However, in such mutants this phenotype cannot

be due to partially disabled photosynthesis but is a feature

of acclimated wild-type plants having been exposed to HL

for a longer period. Therefore, in summary, we conclude

that BBX32, members of its GRN and CRY1 exert both neg-

ative and positive control over the setting of photosyn-

thetic capacity and the extent of chloroplast-level

acclimation to HL.

HL acclimation in fully expanded leaves strongly sug-

gests BBX32 regulates dynamic acclimation (see Introduc-

tion) possibly, but not exclusively, through the control of

GPT2 expression (Figure 6c; Athanasiou et al., 2010). How-

ever, we cannot rule out that BBX32, its GRN and CRY1-

directed signalling influence developmental acclimation

(see Introduction) as many of the mutants used in this

study have altered growth and development phenotypes
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(Gangappa and Kumar, 2018; Holtan et al., 2011; Jones

et al., 2015; Laubinger et al., 2004; Leivar et al., 2008;

Ruckle et al., 2007; Figure 9a). However, such an effect

would probably not influence chloroplast-level acclimation

as this property was unaffected in det1-1 plants despite

their severe dwarf shoot morphology (Figure 9a,d).

In summary, this study uncovering a BBX32-centric GRN

provides the outline for a highly sensitive and flexible sys-

tem of adjusting photosynthetic capacity and points to

how chloroplast-level acclimation is influenced not only by

light intensity and quality but also many other environ-

mental and internal cues.

EXPERIMENTAL PROCEDURES

Growth conditions

Plants were grown in an 8-h photoperiod (short day) at a PPFD of
150 (�10) µmol m�2 sec�1 under fluorescent tubes (Philips TLD
58W, 830 (warm whites); the spectrum of the light source is
shown in Figure S7), 22 � 1°C, 1-kPa vapour pressure deficit and
cultivation conditions as described previously (Bechtold et al.,
2016; Windram et al., 2012). Unless stated otherwise, all plants
were used from 35 to 40 dpg.

Arabidopsis genotypes

The following Arabidopsis mutants and transgenic lines, all in a
Col-0 background, have been described previously: BBX32-10,
BBX32-12, bbx32-1 (Holtan et al., 2011), hy5-215 (Oyama et al.,
1997), hy5-2 (Ruckle et al., 2007), pifq (Leivar et al., 2008), cop1-4
(Deng and Quail, 1992), det1-1 (Chory et al., 1989), spa1/spa2/spa3
(spa1,2,3; Laubinger et al., 2004), phyA-219 (Reed et al., 1994),
phyB-9 (Yoshida et al., 2018), cry1-304 (Ahmad and Cashmore,
1993), cry2-1 (Guo et al., 1998), and phyBY276H (YHB; Jones et al.,
2015).

Identification of the cry1M32 mutant

Based upon earlier research in our laboratory (Galvez-Valdivieso
et al., 2009; Gorecka et al., 2014) in which we studied a possible
role for heterotrimeric G protein-mediated HL signalling, we set
out to identify candidate genes coding for seven transmembrane
proteins that may have a role as G protein-coupled receptors. A
collection of 59 T-DNA insertion mutants in genes coding for puta-
tive 7-transmembrane proteins (Moriyama et al., 2006; a kind gift
from Professor Alan Jones, University of North Carolina) was
screened for perturbed CF in response to HL exposure (see
below). The screening revealed that the insertion line
Sail_1238_E12 (hereafter termed M32) was deficient in HL acclima-
tion (Figure 8b). The information available on T-DNA flanking
sequences indicated that this was a T-DNA insertion in the first
exon of At4g21570, a gene encoding a transmembrane protein of
unknown function. However, complementation of M32 by trans-
formation with the wild-type At4g21570 gene did not restore a
wild-type phenotype.

Besides being defective in dynamic acclimation, M32 was
impaired in blue light inhibition of hypocotyl elongation under
both low and high blue light fluence, accumulated less chloro-
phylls and anthocyanins than Col-0 under blue light, and pre-
sented delayed flowering time when grown in short day
photoperiod. (Figure S8b–e). Later and in light of our subsequent
hypothesis that CRY1-mediated signalling controls HL acclimation

in Arabidopsis (see Results and Discussion), we realized that M32
resembled the phenotype of known cry1 mutants. Therefore, we
tested if CRY1 was altered in this mutant. CRY1 was amplified
from its genomic DNA and the PCR product was Sanger
sequenced on both strands. Col-0 CRY1 amplicon was also
sequenced. The analysis of the sequence showed that in M32,
CRY1 contains a single point mutation (G?A), which caused a
substitution of Gly347Arg mutation in CRY1 (Figure S8f). This
mutation was previously identified in a screening of EMS-
mutagenized Arabidopsis seedlings (Ahmad et al., 1995) and des-
ignated as hy4-15, and affects the domain comprising the pho-
tolyase signature sequence. Consequently, hy4-15 plants produce
a wild-type amount of full-length CRY1, but the protein is not
functional. Therefore, we concluded that the M32 mutant is in fact
a cry1 mutant that we named cry1M32.

HL exposures

The HL exposure was a PPFD of 1100 (�100) µmol m�2 sec�1 from
a white light emitting diode (LED) array (Isolight 4000; Technolog-
ica Ltd, Colchester, UK) as described previously (Gorecka et al.,
2014) and permitted the simultaneous exposure of nine plants.
The spectrum of the LED array is shown in Figure S7.

For the HL time-series transcriptomics, two consecutive sow-
ings, 24 h apart, were grown to 35 dpg on the same growth room
shelf and randomized across the shelf every day. Leaf 7 (Bechtold
et al., 2016) was tagged at 30 dpg. We used this staging of plant
growth and 3 LED Isolight arrays to treat 27 plants each day. The
HL exposure began 1 h after subjective dawn and was completed
1 h before subjective dusk. Each set of tagged leaves (four) at
each HL time point and their LL controls (four) were sampled
within 5 min at time 0.5 h and each 0.5 h interval for the 6 h expo-
sure. Two HL experiments were conducted with duplicate sam-
plings of a full range of time points on each day. In addition, four
time zero samples were processed for the 0 h time point. Both HL
experiments provided, in total, 100 samples for RNA extraction.
These were four biological replicates (i.e. four sampled leaves) per
time point per HL treatment (48 samples) and LL control (48 sam-
ples) plus four 0 time point samples.

To elicit HL acclimation, plants were subjected to 4 h HL, fol-
lowed by a 0.5 h dark adaptation and then exposed to a range of
actinic PPFDs (over 50 min) to collect CF data (see below). This HL
treatment was repeated daily and CF data collected from the same
plants for 5 consecutive days or on days 1 and 5 only as stated.

CF measurements and imaging

During the time-series HL experiments, CF measurements were
taken from leaf 7 of one plant in situ under each isolight using
PAM-2000 portable modulated fluorimeters (PAM-2000; Walz
GmbH, Effeltrich, Germany). At the end of each experiment the
dark-adapted CF parameter Fv/Fm was determined for the same
plants and LL controls and then again 24 h after being returned to
growth conditions.

For the HL acclimation experiments, photosynthetic efficiency
was estimated with a CF imaging system (Fluorimager; Techno-
logica Ltd), exposing the plants to increasing actinic PPFD from
200 to 1400 µmol m�2 sec�1 in 200 µmol m�2 sec�1 steps every
5 min as described previously (Barbagallo et al., 2003; Gorecka
et al., 2014). Whole rosette CF images were collected at each PPFD
and processed using software (Technologica Ltd) to collect
numerical data typically from fully expanded leaves (≥ 4 per plant)
for Fq0/Fm0, Fv0/Fm0 and Fq0/Fv0 (Baker, 2008; Barbagallo et al.,
2003; Gorecka et al., 2014). In some experiments, the diminished
size of mutant plants rendered image processing problematic and

© 2021 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2021), doi: 10.1111/tpj.15384

18 Ruben Alvarez-Fernandez et al.



in such stated cases, whole rosette data were collected. The raw
data were fed via Excel into a program in R to calculate, plot, and
analyse statistically the CF parameters (Gorecka et al., 2014). The
fluorimager software produces average data of all leaf pixel val-
ues. CF parameters were represented as mean � SE from a mini-
mum of four plants, and statistical significance was estimated
with ANOVA followed by a post-hoc Tukey HSD test.

Measurement of photosynthesis

A was measured on leaf 7 of plants at 49 dpg using an infrared
gas exchange system (CIRAS-1; PP Systems, Amesbury, MA,
USA). The response of A to changes in the intercellular CO2 con-
centration (Ci) was measured under a saturating PPFD, provided
by a combination of red and white LEDs (PP Systems, Amesbury,
MA, USA). In addition, the response of A to changes in PPFD from
saturating to subsaturating levels was measured using the same
light source at the current atmospheric CO2 concentration
(390 µmol mol�1). All gas analysis was made at a leaf temperature
of 20 � 1°C and a VPD of 1 � 0.2 kPa. Plants were sampled
between 1 and 4 h after the beginning of the photoperiod. For
each leaf, steady-state rates of A at current atmospheric [CO2]
were recorded at the beginning of each measurement.

Relative ion leakage

The method described by Overmyer et al. (2008) was followed.
Briefly, leaves were collected from plants and placed in 5 ml
deionized water, incubated with rotary shaking (100 rpm) for 4 h,
and the conductivity of the solution determined with a conductiv-
ity meter (Mettler Toledo, Leicester, UK) calibrated according to
the manufacturer’s instructions. Leaves were frozen overnight,
thawed, and conductivity measured again. Relative ion leakage
was expressed as conductivity after 4 h/conductivity after freeze-
thawing.

RNA extraction, labelling and hybridization to microarrays

For the time-series HL experiment, RNA was extracted from leaf 7
samples, labelled and hybridized to CATMA (a Complete Ara-
bidopsis Transcriptome MicroArray) microarrays (v3; Sclep et al.,
2007), as described by Breeze et al. (2011). Two technical repli-
cates were used per biological replicate. Four biological replicates
with, in total, 13 time points per treatment (HL and LL) were anal-
ysed in this way, resulting in a highly replicated high-resolution
time series of expression profiles. The experimental procedure for
the hybridization of labelled cDNA samples for the HL and LL time
series followed a statistically randomized loop design (Figure S9),
which enabled expression to be determined at different time
points both within and between treatments. After hybridization
and washing, microarrays were scanned for Cy3 and Cy5 fluores-
cence and analysed as below. The raw and processed data are
deposited with NCBI GEO (GSE78251).

Analysis of microarray data

This has been described in detail previously (Breeze et al., 2011;
Windram et al., 2012). Briefly, a mixed model analysis using MAA-

NOVA (Breeze et al., 2011; Wu et al., 2003) was used with the same
random (dye and array slides) and fixed variables (time point,
treatments, and biological replicate) to test the interaction
between these factors for the analysis of time-series microarray
data for senescing, Botrytis cinerea-infected, Pseudomonas
syringae-infected and drought-stressed leaves (Bechtold et al.,
2016; Breeze et al., 2011; Lewis et al., 2015; Windram et al., 2012).
Predicted means were calculated for each gene probe for each of

the combinations of treatment, biological replicate, and time
point, and for each of the combinations of treatment and time
point from averages of the biological replicates.

A GP2S Bayes’ factor (Stegle et al., 2010) was used to rank
probes and genes in order of likelihood of differential expression
over the whole of the time series. Inspection of selected probes
from the rank order of likelihood of differential expression was
used to identify significant changes in expression with a Bayes’
factor cut-off >10 giving 4069 probes corresponding to 3844 DEGs
(Data S1).

Clustering of gene expression profiles

The expression patterns of the identified DEGs in HL and LL were
co-clustered with SPLINECLUSTER (Heard et al., 2005), using the mean
expression profiles of the biological replicates generated from
MAANOVA and a previous precision value of 0.001, as described pre-
viously (Bechtold et al., 2016; Windram et al., 2012).

GO analysis

GO annotation analysis was performed using DAVID (Huang et al.,
2008) or AGRIGO (Du et al., 2010) with the GO Biological Process
(BP) category (Ashburner et al., 2000). Overrepresented GO_BP
categories were identified using a hypergeometric test with an
FDR threshold of 0.05 compared against the whole annotated gen-
ome as the reference set.

Comparisons with published transcriptomics data

The 3844 HL DEGs were compared on a cluster-by-cluster basis
with publicly available transcriptomics data. The references for
each dataset can be found in the References. Each DEG list from
published data was mapped to AGI codes when necessary,
cleaned to obtain single AGI codes since in some microarray
data, probes mapped to several genes or were listed as ‘no_-
match’ and were eliminated from the list. Overlaps within each
cluster and their statistical significance were determined using a
Hypergeometric Distribution Test [phyper function in R (v3.2.1)]
in a custom R script, available upon request. When required,
Venn diagrams of overlaps between datasets were plotted with
Venny (http://bioinfogp.cnb.csic.es/tools/venny/index.html) and
the significance of the overlaps calculated using the R phyper
function.

VBSSM

A full description of VBSSM applied to this type of time-series
transcriptomics data is provided in Bechtold et al. (2016). The indi-
vidual expression data for each biological replicate (n = 4) for
selected DEGs in HL was run through the VBSSM algorithm (Beal
et al., 2005) on a local server at the University of Essex (Bechtold
et al., 2016) to generate the GRNs as described in Results. The
VBSSM output files were imported, mapped, and plotted with
CYTOSCAPE (Shannon et al., 2003; http://www.cytoscape.org/).

Expression profiling by RNA-seq

Total RNA was extracted from mature leaves of each individual
shoot giving four biological replicate samples per treatment and
genotype. The RNA was quality controlled as previously described
(Albihlal et al., 2018). Library construction after mRNA enrichment
and double-stranded cDNA synthesis carried out using Illumina
protocols by Novogene (UK) Ltd (Cambridge, UK; en.novogene.
com/). Library sequencing was carried out on an Illumina HiSeq
4000 with a 150-bp end reads to a depth of 20 million. Extraction
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and quality control of data from raw fastq files were carried out
using the program CASAVA (Hosseini et al., 2010). The mapping of
reads to the TAIR10 Arabidopsis genome sequence, followed by
sorting and indexing of BAM output files was carried out using
default settings in the program HISAT2 (v2.0.5; Kim et al., 2015).
Across all samples, >92.5% of bases read attained the Q30 score
threshold. Transcript assembly and quantification was as frag-
ments per kilobase of transcript sequence per million base pairs
sequenced using HTseq (in union mode; Anders et al., 2015).
Determination of differential expression between different geno-
types and treatments was done using the program DESEQ2 (Love
et al., 2014) after read count normalization and an adjusted P
value threshold of <0.05 (negative binomial distribution P value
model and Benjamini–Hochberg correction for multiple testing).
Raw and processed data files were deposited in NCBI Gene
Expression Omnibus (GSE158898).

Locus codes of genes mentioned in the paper

AT1G01720, ATAF1; AT1G04400, CRY2; AT1G06180, MYB13;
AT1G09100, AAA-ATPase; AT1G09570, PHYA; AT1G14150, PnsL2;
AT1G14920, GAI; AT1G16300, GAPCP-2; AT1G22190, RAP2.4;
AT1G22640, MYB3; AT1G25540, PFT1; AT1G25550, MYB-like;
AT1G29910, Lhcb1/CAB3; AT1G29920, CAB2/LHCII; AT1G29930,
CAB1/LHCII; AT1G43670, FBPASE; AT1G44575, PsbS; AT1G49720,
ABF1; AT1G50420, SCL3; AT1G50640, ERF3; AT1G61800, GPT2;
AT1G68520, BBX14; AT1G69010, BIM2; AT1G69490, NAP;
AT1G70000, MYBD; AT1G75540, BBX21; AT1G76100, PETE1;
AT1G76570, LHCB7; AT1G77450, NAC032; AT1G79550, PGK;
AT2G01290, RPI2; AT2G05070, LHCB2; AT2G18790, PHYB;
AT2G21330, FBA1; AT2G24540, AFR; AT2G24790, BBX4;
AT2G27510, FD3; AT2G28350, ARF10; AT2G30790, PSBP-2;
AT2G32950, COP1; AT2G34430, LHB1B1; AT2G34720, NF-YA4;
AT2G35940, BLH1; AT2G40100, LHCB4.3; AT2G40970, MYBC1;
AT2G43010, PIF4; AT2G46270, GBF3; AT2G46340, SPA1;
AT3G08940, LHCB4.2; AT3G09640, APX2; AT3G21150, BBX32;
AT3G27690, LHCB2.3; AT3G60750, TK; AT3G61190, BAP1;
AT4G05180, PSBQ-2; AT4G05390, RFNR1; AT4G08920, CRY1;
AT4G10180, DET1; AT4G10340, LHCB5; AT4G15090, FAR1;
AT4G17460, HAT1; AT4G29190, OZF2; AT4G32730, PC-MYB1;
AT4G38960, BBX19; AT5G01600, FER1; AT5G07580, ERF106;
AT5G08520, MYBS2; AT5G11260, HY5; AT5G11530, EMF1;
AT5G12840, NF-YA1; AT5G15210, HB30; AT5G28450, LHC1;
AT5G38420, RBCS2B; AT5G38430, RBCS1B; AT5G42520, BPC6;
AT5G43270, SPL2; AT5G44190, GLK2; AT5G51190, ERF105;
AT5G61270, PIF7; AT5G61590, ERF107; AT5G62000, ARF2;
AT5G65310, HB5; AT5G67300, MYBR1; AT5G67420, LBD37;
ATCG00020, PSBA; ATCG00270, PSBD; ATCG00300, PSBZ;
ATCG00350, PSAA.
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