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Abstract 

Context: Multiple observational studies have reported aninverse relationship between 25-hydroxyvitaminD con-
centrations (25(OH)D) and type 2 diabetes (T2D). However, the results ofshort- and long-term interventional trials 
concerning the relationship between 25(OH)D and T2D risk have beeninconsistent.

Objectives and methods: To evaluate the causal role of reduced blood25(OH)D in T2D, here we have performed 
a bidirectional Mendelian randomizationstudy using 59,890 individuals (5,862 T2D cases and 54,028 controls) 
fromEuropean and Asian Indian ancestries. We used six known SNPs, including threeT2D SNPs and three vitamin D 
pathway SNPs, as a genetic instrument to evaluatethe causality and direction of the association between T2D and 
circulating25(OH)D concentration.

Results: Results of the combined meta-analysis of eightparticipating studies showed that a composite score of three 
T2D SNPs wouldsignificantly increase T2D risk by an odds ratio (OR) of 1.24, p = 1.82 ×  10–32; Z score 11.86, which, 
however, hadno significant association with 25(OH)D status (Beta -0.02nmol/L ± SE0.01nmol/L; p = 0.83; Z score 
-0.21). Likewise, the geneticallyinstrumented composite score of 25(OH)D lowering alleles significantlydecreased 
25(OH)D concentrations (-2.1nmol/L ± SE 0.1nmol/L,p = 7.92 ×  10–78; Z score -18.68) but was notassociated with 
increased risk for T2D (OR 1.00, p = 0.12;Z score 1.54). However, using 25(OH)D synthesis SNP (DHCR7; rs12785878) 
as anindividual genetic instrument, a per allele reduction of 25(OH)D concentration(-4.2nmol/L ± SE 0.3nmol/L)was 
predicted to increase T2D risk by 5%, p = 0.004;Z score 2.84. This effect, however, was not seen in other 25(OH)D SNPs 
(GCrs2282679, CYP2R1 rs12794714) when used as an individual instrument.
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Introduction
Type 2 diabetes mellitus (T2D) has become a global 
health epidemic of twenty-first century. The International 
Diabetes Federation (IDF) data showed that the number 
of people affected with T2D would rise from 382 million 
in 2011 to 592 million by 2035 [1]. T2D is a complicated 
disease impacted by the complex interplay of genetic, 
epigenetic, and environmental factors [2–4]. In addi-
tion, several lifestyle factors such as sedentary lifestyle, 
westernized diet, smoking, and genetic predisposition 
enhance T2D risk in some ethnic groups [5, 6].

Vitamin D deficiency increases in conjunction with 
T2D, Type 1 diabetes mellitus (T1D), obesity, and cardio-
vascular disease [7]. The inverse relationship between cir-
culating 25(OH)D concentrations and T2D is confirmed 
in several observational and prospective studies from the 
US, Australia, Europe, and Asia [8–11]. However, a causal 
link has not been established between low blood 25(OH)
D levels and T2D risk. Recently, a large clinical trial of 
vitamin D3 supplementation on 2423 participants for 
2.5 years concluded that a dose of 4000 IU of 25(OH)D3 
did not protect people from developing T2D [12]. Find-
ings from observational studies may be subject to residual 
confounding because it is difficult to measure individual 
variation specifically related to sun exposure and cultural 
variations in such studies. It may also be challenging to 
rule out the reverse causality accounting for any associa-
tion. On the other hand, human genetic information is 
used by the methodology of Mendelian randomization, 
which takes account of genetic instruments to provide an 
unconfounded estimate of the association. The Mende-
lian randomization strategy is based on the principle that 
the individual genotypes are randomly assigned and can 
be used as a genetic instrument with the assumption that 
their involvement affects the outcome only by modifying 
the biomarkers (i.e., circulating 25(OH)D) and can also 
be used to test the direction of causation [13, 14].

The blood level of 25(OH)D is the best and commonly 
used method to determine vitamin D status. According 
to the US Endocrinology Society, vitamin D deficiency is 
defined as a 25(OH)D level of ≤ 20 ng/mL; insufficiency 
as 21 to 29 ng/mL; and sufficiency as > 30 ng/mL or more 
[15]. Low 25(OH)D status (deficiency or insufficiency) is 
highly prevalent among elderly, postmenopausal women, 
and certain ethnic population groups and is influenced by 
both genetic and environmental factors [16–19]. Mainly, 
populations due to specific ethnic backgrounds (South 

Asian, East Asian, and African) show a high prevalence of 
blood 25(OH)D deficiency [10, 20, 21]. Genetically regu-
lated 25(OH)D concentration in a longitudinal follow-up 
study of 95,766 Europeans of Danish ancestry showed 
that reduced 25(OH)D levels were associated with all-
cause mortality, cancer, and mortality from other causes 
[11].

Common genetic variants in ~ six loci have been identi-
fied to affect blood 25(OH)D concentrations in genome-
wide association studies (GWAS) performed in European 
whites [22], Hispanics [23], and Asian Indians [24]. Also, 
multiple GWAS on T2D have identified the associa-
tion of common variants in over 100 genes in ethnically 
diverse cohorts [4]. However, whether genetically influ-
enced reduced 25(OH)D concentrations can be causal 
or contributes to enhancing T2D risk, or conversely, 
whether gene variants that are now widely accepted to be 
robustly associated with increased risk for T2D could be 
involved in altering blood 25(OH)D levels is unclear and 
inconsistent.

Here, we have used genetic instrumental variable meth-
ods to obtain estimates of the causal association between 
circulating 25(OH)D concentrations and T2D, including 
the direction of causality, by performing two-directional 
reciprocal Mendelian randomization study [25]. The 
selection of index SNPs from six genetic loci as an instru-
mental variable was based on the bonafide gene-regions 
identified in GWAS and metanalysis studies for affecting 
T2D and blood 25(OH)D concentrations and their avail-
ability in all participant studies [22, 24, 26–28]. These 
included two clusters of 3 index SNPs, each associated 
with 25(OH)D concentrations (GC rs2282679, DHCR7 
rs12785878, CYP2R1 rs12794714), and T2D (IGF2BP2 
rs1470579, TCF7L2 rs7903146, and KCNQ1 rs2237896), 
respectively. Even though multiple GWAS studies have 
pointed out the role of variants in genes involved in the 
synthesis, transport, and metabolism for influencing cir-
culating 25(OH)D concentrations, the results of earlier 
published Mendelian randomization studies to deter-
mine the causal link between vitamin D insufficiency 
and T2D risk have been inconsistent and controversial. 
With few exceptions, these studies neither clearly sup-
port nor exclude the causal association of 25(OH)D lev-
els with T2D [11, 29–31].  Moreover, these studies have 
examined mainly individuals from European popula-
tions, except one recent study included East Asians with 
Europeans [31]. Thus, in this study, we, for the first time, 

Conclusion: Our new data on this bidirectional Mendelianrandomization study suggests that genetically instru-
mented T2D risk does notcause changes in 25(OH)D levels. However, genetically regulated 25(OH)Ddeficiency due to 
vitamin D synthesis gene (DHCR7) may influence the risk ofT2D.
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have included data from South Asian Indians with Euro-
peans. People from the Indian sub-continent have 3 to 
sixfold higher T2D prevalence than Europeans and are 
a highly understudied population for vitamin D genetic 
studies. There is a paucity of data showing the relation-
ship between vitamin D status and T2D in South Asian 
Indians [32].

Research design and methods
Ethical statement
All participating studies were reviewed and approved 
by the respective Universities or Institutional Review 
Boards, including the primary institute of the Univer-
sity of Oklahoma Health Sciences Center’s Institutional 
Review Board, as well as the Human Subject Protection 
Committees at the participating hospitals and institutes 
in India. All participants provided written informed con-
sent for investigations.

Study design and phenotypic measurements
Our study with data from up to 59,890 participants from 
eight cohorts included: the Asian Indian Diabetic Heart 
Study/Sikh Diabetes Study (AIDHS/SDS); the Indian 
Migration Study (IMS); Twins UK; The British 1958 
birth cohort (1958 BC); the Copenhagen City Heart 
Study (CCHS), the Copenhagen City General Popula-
tion Study (CGPS), and the Copenhagen Ischemic Heart 
Disease Study (CIHDS); The UK Household Longitu-
dinal Study (UKHLS); and The Prevention of Renal and 
Vascular End-Stage Disease (PREVEND) study. Details 
of study design and experimental work flow is presented 
in the Flow Chart (online Supplementary Section). Phe-
notypic measurements including T2D, 25(OH)D and 
other recruitment details are presented separately for 
each cohort  (online Supplementary Section).  Measures 
of blood 25(OH)D levels were not available on UKHLS 
(European) and MS India (Asian Indian) cohorts. UV 
index values were calculated for the city nearest the blood 
draw location and the month of recruitment using data 
from the National Weather Service Climate Prediction 
Center (http:// www. cpc. ncep. noaa. gov) and by averag-
ing of the previous three months UV index as described 
previously [33]. The clinical characteristics of each study 
cohort stratified by T2D are summarized in Table 1.

SNP Genotyping and Quality Control (QC) and statistical 
analysis
The selection of SNPs as genetic instruments was 
based on their strong global association with respective 
exposure phenotypes of T2D and 25(OH)D reported 
in multiethnic GWAS and meta-analysis studies [22, 
26–28]. Additional criteria for selecting instrumental 
variables were based on their availability in most of the 

participating studies. We have provided genotyping, 
sample, and SNP QC details separately by each cohort 
in the online Supplementary Section.  Genome-wide 
genotype data for each cohort were checked for popu-
lation structure using principal components, and out-
liers were removed before the analysis. To ensure that 
the Mendelian randomization assumptions were not 
violated, all SNPs selected as genetic instruments were 
strongly associated with the outcome (i.e. gene variants 
associated with T2D for increasing T2D outcome; and 
gene variants associated with vitamin D for affecting 
plasma 25(OH)D outcome). None of the SNPs used as 
Mendelian instruments for T2D and 25(OH)D were in 
linkage disequilibrium (r2 = 0.001). None of the instru-
mental variables were associated with the outcome via 
exposure to other factors (BMI, age, and gender).

For 25(OH)D analysis, linear regression and additive 
genetic model were used with the natural log-trans-
formed 25(OH)D level adjusted with age, gender, BMI, 
and study-specific covariates (e.g., T2D, UV index). 
Similarly, the three GWAS SNPs known to affect T2D 
risk were analyzed for their association with T2D using 
logistic regression and an additive genetic model. The 
T2D binary trait was the dependent variable with 
covariates age, gender, BMI. Each cohort analysis 
was limited to a single ancestral group (e.g. European 
ancestry only, South Asian only). If selected SNPs were 
unavailable, the best proxy SNP (SNP on the local hap-
lotype having strong linkage disequilibrium (LD) with 
the reference SNP) was used using SNAP [34].

Upon completing the association analysis, the final 
list of SNPs was determined for gene score construc-
tion for each trait. The SNP, risk allele, number of risk 
alleles, and effect size (of each allele regarding the 
effect allele for log-transformed 25(OH)D levels) were 
required to construct a weighted gene score using the 
PLINK program [35]. Samples with missing 25(OH)
D levels were excluded from the analysis (see Supple-
mentary Section). A weighted gene score construc-
tion for T2D required the SNP, risk allele, number of 
risk alleles, and odds ratio (of each allele concerning 
the effect allele for T2D) for gene construction through 
PLINK as described previously [22]. Samples missing 
T2D status data were excluded, and SNPs that were 
directly genotyped are included to construct both gene 
scores. The additional parameter “–score-no-mean-
imputation” was used in PLINK to construct both gene 
scores. The “–score-no-mean-imputation” was used so 
that the missing allele was not accounted as the most 
common allele based on the sample allele frequencies 
while constructing gene scores. The constructed gene 
scores were each normalized to a quantitative variable 
at an appropriate scale.

http://www.cpc.ncep.noaa.gov


Page 4 of 11Bejar et al. Nutr J           (2021) 20:71 

An association analysis was performed on the con-
structed gene scores for each cohort. A linear regression 
and an additive genetic model were used with blood 
25(OH)D levels as the dependent variable adjusted by 
gender, age, BMI, and T2D. Similarly, a logistic regres-
sion and an additive genetic model were used with T2D 
as the dependent variable adjusted by the gender, age, 
BMI. To combine the association analysis results of 
each trait by SNP for each cohort, a fixed effect inverse 
variance meta-analysis implemented in METAL [36] 
was performed. This required the minor allele fre-
quency, effect size, standard error, and p-value for each 
SNP across the different ethnic cohorts. The combined 

results were stratified by their respective trait asso-
ciation; the three SNPs associated with 25(OH)D lev-
els were assessed for their association with T2D and 
25(OH)D. Similarly, the three significant SNPs for T2D 
were evaluated for their association with T2D and blood 
25(OH)D. Each cohort provided their statistical data 
summaries for the SNPs, and meta-analysis was per-
formed on these SNPs by trait using METAL and For-
est Plot Viewer (http:// ntp. niehs. nih. gov/ ntp/ ohat/ 
fores tplot/), and PRISM (https:// www. graph pad. com/ 
scien tific- softw are/ prism/)  was used to generate the 
forest plots. We did not observe heterogeneity of asso-
ciation of the genetic instruments of T2D and 25(OH)

Table 1 Clinical and demographic traits of subjects in the participating cohorts stratified by type 2 diabetes

† Total 435 sib pairs (870 individuals); 54.8% T2D (N = 870); Out of 435 pairs, 385 pairs are discordant for T2D, and 50 pairs are concordant for T2D
* Please note all participants are at the same age. Information for BMI, blood 25(OH)D were measured from 45 yr. survey, whereas T2D cases/controls were ascertained 
from 45, 46 and 50 yr. surveys combined

Abbreviations: N/A: Not available, AIDHS/SDS: Asian Indian Diabetic Heart Study/ Sikh Diabetes Study, IMS: Indian Migration Study, CCHS/CGPS/CIHDS: Copenhagen 
City Heart Study/ Copenhagen General Population Study/ Copenhagen Ischemic Heart Disease Study, UKHLS: UK Household Longitudinal Study, PREVEND: Prevention 
of Renal and Vascular End-Stage Disease study

Study Cohorts Location Type 2 Diabetes N Female Age BMI 25(OH)D
% (yrs) (kg/m2) (nmol/L)

South Asian
AIDHS/SDS Punjab, India Cases 1586 44 54.0±11.1 27.4±4.9 31.2±37.6

STAGE I Controls 1123 46 51.0±14.3 26.5±4.9 46.3±45.5

Combined 2709 45 52.8±12.6 27.0±4.9 37.0±41.5

AIDHS/SDS Punjab, India Cases 1164 44 55.9±11.9 27.1±4.8 32.8±21.4

STAGE II Controls 1033 44 46.2±14.2 25.8±4.5 34.9±23.8

Combined 2197 44 51.4±13.9 26.5±4.7 33.8±22.5

Andra Pradesh India Cases 385 35 44.2±0.5 23.8±0.2 N/A

IMS† Controls 485 37 47.5±0.3 26.0±0.2 N/A

Combined 870 36 46.0±8.4 25.0±4.2 N/A

Caucasian
London Cases 124 100 61.1±9.4 28.1±5.9 76.2±44.9

TWINS UK UK Controls 5215 91 52.1±14.5 26.1±4.9 76.4±40.5

Combined 5339 91 52.3±14.4 26.1±5.0 76.4±40.6

England/Scotland/ 
Wales

Cases 179 41 45* 33.9±6.7 47.4±23.4

1958 Birth Cohort UK Controls 5002 50 45* 27.2±4.7 57.9±25.5

Combined 5181 50 45* 27.4±4.9 57.6±25.5

Copenhagen,  
Denmark

Cases 1562 44 65.8±10.1 29.5±5.1 47.3±25.0

CCHS/CGPS/ CIHDS Controls 29478 56 59.2±12.9 25.9±4.2 54.1±26.0

Combined 31040 55 59.5±12.8 26.1±4.3 53.7±26.0

Essex, UK Cases 496 45 64.9±12.3 31.8±6.1 N/A

UKHLS Controls 8409 57 52.6±16.1 27.9±5.1 N/A

Combined 8905 56 53.3±16.2 28.1±5.3 N/A

Groningen, Cases 366 62 56.5±10.1 29.4±4.7 55.1±21.0

PREVEND Netherland Controls 3283 50 49.5±12.5 25.8±4.0 59.0±23.7

Combined 3649 52 50.2±12.5 26.1±4.3 58.6±23.4

http://ntp.niehs.nih.gov/ntp/ohat/forestplot/
http://ntp.niehs.nih.gov/ntp/ohat/forestplot/
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
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D with their respective phenotypes between studies; 
thus, fixed-effect models were used in metanalysis to 
drive odds ratios and confidence intervals. Finally, to 
assess the robustness of our conclusions, we applied 
conservative Bonferroni’s correction and used a cor-
rected significant threshold of 0.0063 (0.05/ 8 test vari-
ables including six instrument SNPs, T2D, and 25(OH)
D concentration)

Results
Demographics and clinical characteristics of all study 
cohorts are summarized in  Table  1.  As expected, there 
were significant differences in the distribution of BMI 
and 25(OH)D among cases and controls in most partici-
pating cohorts. The overall distribution of blood 25(OH)
D was consistent with previously published reports on 
these studies, and mean 25(OH)D levels were much lower 
across South Asian, compared to European cohorts. Data 
on 25(OH)D concentration was available for only a few 
individuals in the South Asian cohorts, except for the 
Punjabi Sikh studies (AIDHS/SDS).

Association of T2D susceptibility genes with T2D and blood 
25(OH)D concentrations
The association of genetic variants with an increased 
risk for T2D was analyzed using three known and 
well-established T2D associated variants from previ-
ous studies. Meta-analysis of association of IGF2BP2 
(rs1470579) with T2D (adjusted for age, gender, and 
BMI) showed an OR (95% CI) of 1.12 (1.08, 1.16), 
P= 7.2x10-7, and Z score = 4.96  (Supplementary 
Table  1).  Similarly, the adjusted per- allele effect for 
TCF7L2 (rs7903146) was associated with an increased 
risk for T2D (OR 1.25 (95% CI (1.23, 1.28), P= 1.3  x10-32, 
and Z score = 11.31 (Supplementary Table 1). Similarly, 
the adjusted per-allele effect of KCNQ1 (rs2237896) was 
1.49 (1.43, 1.55), P= 5.07  x10-7, and Z score = 5.02 (Sup-
plementary Table  1).  We then analyzed the same T2D 
variants for their association with blood 25(OH)D con-
centrations in the same population cohorts. None of the 
variants associated with increased or decreased risk for 
T2D showed any association for affecting blood 25(OH) 
D concentrations. The per-allele association of IGF2BP2 
(rs1470579) for affecting blood 25(OH)D concentra-
tion was Beta ± SE (0.0058, 0.005) P= 0.20, Z score = 
1.29  (Supplementary Table  2).  The per allele effect for 
TCF7L2 (rs7903146) for affecting blood 25(OH)D con-
centration was marginally significant Beta ± SE (-0.011, 
0.005), P= 0.02, Z score = -2.30, and no association was 
observed in KCNQ1 (rs2237896) with 25(OH)D con-
centration Beta ± SE (-0.005, 0.01]), P= 0.26, Z score 

= -1.18 after adjusting for age, gender, and T2D  (Sup-
plementary Table 2).

Genes involved in 25(OH)D synthesis, metabolism, 
and transport and their effects on 25(OH)D concentrations 
and T2D
Interestingly, not only was there a significant asso-
ciation, the direction of the minor (effect) allele of GC 
(rs2282679) and CYP2R1 (rs12794714) and DHCR7 
(rs12785878) with blood 25(OH)D were largely consist-
ent across chorts  (Supplementary Table  3).  The minor 
(effect) allele frequency was significantly higher in South 
Asian (0.73 Sikhs) populations compared to Cauca-
sian cohortso  (which ranged between 0.22-0.32)  (Sup-
plementary Table  3). In the combined meta-analysis of 
30,058 samples, the per allele effect of the GC variant 
(rs2282679) for its association with 25(OH)D levels was 
(Beta -0.091 ± SE 0.005); P= 2.87x10-61; and Z score = 
-16.52 nmol/L after adjusting for age, gender and BMI. 
For CYP2R1, age, gender, and BMI adjusted association 
was (Beta -0.039 ± SE 0.0032); P=7.56x10-34; and Z score 
-11.66 nmol/L, while the association of the DHCR7 vari-
ant (rs12785878) resulted in Beta -0.042 ± SE 0.0032, P= 
9.0x10-32; and Z score -11.73 nmol/L for a total of 49,433 
samples (Supplementary Table 3).

Next, we tested the association of the same vari-
ants with the risk of T2D. As summarized in  Supple-
mentary Table  4,  neither variants for GC and CYP2R1 
were associated with the risk of increasing T2D in 
any of the individual cohorts in the combined meta-
analysis. The per-allele effect for increasing T2D risk 
yielded an OR (95% CI’s) of 1.03 (0.97,1.09), P=0.207, 
and Z score = 0.16 for the GC variant (rs2282679), 
and 1.01 (0.97,1.05), P=0.453, Z score = 1.09 for the 
CYP2R1 (rs12794714).  However, the per-allele effect 
of the DHCR7 (rs12785878) variant showed a signifi-
cantly increased risk for T2D OR 1.05 95% CI (1.0, 1.11), 
P=0.004, and Z score =2.84 in the meta-analysis  (Sup-
plementary Table  4). We also adjusted the effects of 
UV index on modulating association of 25(OH)D SNPs 
on 25(OH)D concentrations  (Supplementary Tables  5), 
and also for their association with T2D (Supplementary 
Tables 6). The overall outcome of association remained 
unchanged as the data on the UV index was only avail-
able in AIDHS/SDS.

Gene score association analysis
The gene score construction for SNP alleles associated 
with an increased risk for T2D, IGF2BP2 (rs1470579), 
TCF7L2 (rs7903146), and KCNQ1 (rs2237896) showed 
a significant association with increased risk for T2D in 
all studies OR (95% CI) 1.24 (1.22, 1.26), P= 1.82x10-32, 
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Z score 11.86 in 51,816 subjects (Table  2; Supplemen-
tary Figure 1A). However, the same allelic score showed 
no association for affecting blood 25(OH)D concentra-
tion (Beta ± SE [-0.0002 ± 0.0001], P= 0.829, Z score 
= -0.212). These results appear to suggest that diabetes 
genetic loci increase T2D risk independently without 
modulating 25(OH)D concentrations (Table  3 and Sup-
plementary Figure 1B).

Next, we combined the allelic effects of genes 
affecting blood 25(OH)D concentrations and gene 
variants associated with T2D risk by constructing 
a gene score.  Table  4  shows a significant associa-
tion between the gene score of 25(OH)D lowering 
alleles in GC (rs2282679), CYP2R1 (rs12794714), 
and DHCR7 (rs12785878) in a total of 41,136 indi-
viduals which yielded Beta ± SE (-0.021 ± 0.001), 

Table 2 Association analysis of composite gene score of T2D SNPs (IGF2BP2, TCF7L2, and KCNQ1) used as a genetic instrument for 
their joint effect on T2D

Study N OR LCI UCI P Val Z score Direction

AIDHS/SDS 2675 1.42 1.33 1.52 6.09E-13

SIKH REPLICATION 2197 1.69 1.36 2.02 2.00E-03

IMS 848 1.27 1.04 1.51 4.62E-02

SOUTH ASIAN META 5720 1.42 1.34 1.50 1.33E-12 7.09  +  +  + 
Twins UK 5335 1.18 1.00 1.35 6.84E-02

1958 BC 5181 1.30 1.13 1.46 1.81E-03

CCHS/CGPS/CIHDS 23,029 1.24 1.22 1.26 5.70E-15

UKHLS 8902 1.18 1.09 1.26 1.53E-04

PREVEND 3649 1.27 1.17 1.37 2.18E-06

Meta-Analysis 51,816 1.24 1.22 1.26 1.82E-32 11.86  +  +  +  +  +  +  +  + 

Table 3 Association analysis of composite gene score of T2D SNPs (IGF2BP2, TCF7L2 and KCNQ1) used as a genetic Instrument for 
their joint effects on 25(OH)D concentrations

Study N Beta SE P Val Z Score Direction

AIDHS/SDS 2675 -0.006 0.014 6.98E-01

SIKH REPLICATION 2197 -0.001 0.009 8.96E-01

SOUTH ASIAN META 4872 -0.003 0.008 7.45E-01 -0.367 – –
Twins UK 5335 0.0004 0.001 7.07E-01

1958 BC 5181 0.1322 0.056 1.90E-02

CCHS/CGPS/CIHDS 11,665 -0.0080 0.007 2.35E-01

PREVEND 3649 -0.0154 0.031 6.20E-01

Meta-Analysis 30,702 -0.0002 0.0001 8.29E-01 -0.212 – – +  + – –

Table 4 Association analysis of composite gene score of vitamin D SNPs (GC, CYP2R1 and DHCR7) used as a genetic in strument for 
their effect on 25(OH)D concentrations

Study N Beta SE P Val Z score Direction

AIDHS/SDS 2388 -0.042 0.012 2.70E-04

SIKH REPLICATION 1846 -0.025 0.009 4.00E-03

SOUTH ASIAN META 4234 -0.031 0.007 4.01E-06 -4.61 – –
Twins UK 3679 -0.129 0.020 5.20E-11

1958 BC 4993 -0.035 0.005 4.20E-14

CCHS/CGPS/CIHDS 24,581 -0.020 0.001 3.00E-39

PREVEND 3649 -0.021 0.002 3.70E-33

Meta-Analysis 41,136 -0.021 0.001 7.92E-78 -18.68 – – – – – –
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i= 7.92x10-78, and Z score = -18.68 (Supplementary 
Figure  2A).  However, the same gene score of the 
25(OH)D lowering allele was not associated with the 
increased risk for T2D OR, 1.002 (1.001-1.005), p= 
0.12, and Z score = 1.54 (Table 5 and Supplementary 
Figure 2B).

Discussion
Here we performed a Mendelian randomization study to 
investigate whether genetically reduced vitamin D levels 
could be causally related to increasing T2D risk using 
data from up to 59,890 participants (5,862 cases and 
54,028 controls). Essentially, our findings suggest that 
even though the candidate genetic variants (individually) 
or via composite gene score are associated with increased 
susceptibility to T2D, these are not involved in affect-
ing blood 25(OH)D concentration. This means that the 
genetically instrumented T2D risk could be independent 
of the pathway (s) linked with vitamin D synthesis, trans-
port, or early stages of metabolism. Additionally, our 
data showed that the genetically instrumented reduction 
of 25(OH)D levels does not increase T2D susceptibility 
in a composite gene score. More specifically, gene vari-
ants in the vitamin D transporter (GC) and metabolism 
(hydroxylation) (CYP2R1) regulate 25(OH)D concen-
trations independent of influencing T2D risk. On the 
other hand, in the (DHCR7; the gene involved in 25(OH)
D synthesis), the genetically instrumented decrease of 
-4.2  nmol/L ± 0.3  nmol/L SE of 25(OH)D concentration 
(Supplementary Table 3) was predicted to increase T2D 
risk by 5% [95% CI 0%,11%], p = 0.004, with a Z score of 
2.84 (Supplementary Table  4).  These results agree with 
an earlier published study on 96,423 Danes (one of the 
participating cohorts from Copenhagen) in which the 
DHCR7 allelic effect was associated with a modestly 
increased risk of T2D (OR 1.51 [95% CI 0.98, 2.33]; p 
trend = 0.04), whereas no association was observed for 

CYP2R1 (OR 1.02 [95% CI 0.75, 1.37]; p = 0.86) in that 
study [11].

During exposure to sunlight, a precursor molecule, 
7-dehydrocholesterol (DHC), is converted to choles-
terol by the action of ultraviolet light (UV) on the skin 
through a thermal isomerization. Hydroxylation of 
pre-vitamin D3 occurs in the liver from the actions of 
CYPs (CYP2R1). The CYP27A1 drives the conversion of 
25(OH)D to 1,25(OH)D in the kidney (Supplementary 
Fig. 3). While our present study was in progress, a study 
using the Mendelian randomization approach showed 
that a combined gene score of 25(OH)D genes involved 
in synthesis (DHCR7 rs12785878) and metabolism 
(CYP2R1 rs10741657) was associated with an increased 
risk for T2D in European and Chinese adults [31]. How-
ever, our results could not confirm the role of CYP2R1 
variants in the risk for T2D. This discrepancy could be 
due to the use of a different CYP2R1 SNP (rs12794714) in 
the present study or due to the overlapping role of multi-
ple cytochrome P450 (CYP) enzymes on the hydrolysis of 
25(OH)D in hepatocytes [37].

As multiple CYPs in addition to CYP2R1 and CYP27A1 
could evidently be involved in vitamin D hydroxylation in 
the liver [38].  Therefore, the role of other CYPs result-
ing in compensation for 25 hydroxylase activity cannot 
be ruled out [37]. Thus, in light of these findings, our 
negative findings on genetically reduced vitamin D by 
CYP2R1 are not surprising.

Presumably, the differences in linkage disequilibrium 
patterns among different populations, population-spe-
cific risk factors, and pleiotropy may have masked the 
potential cumulative effects of gene scores. It appears 
that perhaps due to similar limitations, the study of Lu 
et  al. [31] also could not capture the impact of geneti-
cally regulated 25(OH)D concentration on T2D using 
a genetically instrumented gene score of four SNPs 
GC (rs2282679), CYP2R1 (rs10741657), Cyp27A1 
(rs6013897) and DHCR7 (rs12785878) with T2D 

Table 5 Association analysis of composite gene score of vitamin D SNPs (GC, CYP2R1 and DHCR7) used as a genetic Instrument for 
their association with T2D

VitD_T2D N OR LCI UCI P_Val Z score Direction

AIDHS/SDS 2388 1.004 1.00 1.01 2.30E-02

SIKH REPLICATION 1846 1.002 1.00 1.01 4.11E-01

SOUTH ASIAN META 4234 1.003 1.00 1.01 2.90E-02 2.19  +  + 
Twins UK 3679 0.89 0.56 1.42 6.26E-01

1958 BC 4993 1.00 0.99 1.05 7.92E-01

CCHS/CGPS/CIHDS 28,372 1.00 0.99 1.004 6.19E-01

PREVEND 3649 1.00 0.98 1.03 6.79E-01

Meta-Analysis 44,927 1.002 1.001 1.005 1.20E-01 1.54  +  + – +  +  + 
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(p = 0.07) in meta-analysis despite using a sample size of 
up to 476,099 of Chinese and European adults.

We undertook an additional meta-analysis combin-
ing the results of our analyses with those of Lu et  al. 
[31]. These findings for the DHCR7 SNP showed that 
the genetically instrumented reduction in 25(OH)D of 
Beta ± SE (-4.3  nmol/L ± 0.3  nmol/L), p = 1.26 ×  10–98, 
Z score -21.08 (Supplementary Table  7B)  would signifi-
cantly increase T2D risk from 5% (current study) to 7%; 
P = 5 ×  10–4 Z score = 3.51 in a total of 493,057 indi-
viduals  (Supplementary Table  8B). However, we did 
not observe this effect in the meta-analysis of the GC 
variant with the results of Lu et al. [31] (Supplementary 
Tables 7A and 8A). These data further confirm the possi-
ble causal effects associated with synthesis (DHCR) SNPs 
for increasing the risk of T2D.

The strengths of our study include well-characterized 
multiethnic cohorts to detect allelic association of vita-
min D genes with T2D risk. We reduced the confound-
ing effects of age, gender, and obesity across all studies. 
Principal components were used in each individual 
cohort to control for the potential of confounding by 
population stratification. Sample size–weighted Z score 
method was used to reduce inter-study variation in the 
diverse ancestries and differences in 25(OH)D assays 
between cohorts as described earlier [22]. Limitations of 
this study include insufficient data on 25(OH)D measures 
and T2D phenotypes in some cohorts; over-representa-
tion of European cohorts; lack of data on 25(OH)D meas-
ures in most South Asian studies that were available with 
GWAS; and data access was limited to summary statistics 
for each study cohorts. It is possible that the differences 
in serum 25(OH)D levels and T2D prevalence between 
South Asians and Europeans may influence the outcome 
of the association of biomarker with the genetic instru-
ment. However, this would less likely be the case because; 
1) the genetic instruments used for T2D and 25(OH)D 
were from bonafide candidate genes; 2) the application 
of sample-size weighted Z-score method would reduce 
inter-study variation, and 3) our metanalysis results do 
not show much heterogeneity in the SNP-phenotype 
association across all cohorts.

Additionally, seasonal differences in sun exposure (UV 
index) for effecting 25(OH)D concentration in most stud-
ies were not available except for our Punjabi Sikh cohort 
(AIDHS/SDS). Nonetheless, the geographic location of 
most participating European cohorts was nearby (North-
ern Europe), which might not have confounded the 
results due to latitude (to derive distance from the equa-
tor) variation (which all ranged from  540 to  550 N) (See 
Supplementary Table 10). Nevertheless, adjusting for the 
effects of the UV index in our Punjabi sample (AIDHS/
SDS) did not change the overall impact of genetically 

instrumented 25(OH)D on T2D susceptibility in AIDHS/
SDS and overall across studies.

It is possible to speculate that the lack of association 
with 25(OH)D metabolism and transport genes, but the 
association with synthesis gene (DHCR7) could suggest 
that any association with T2D may be through a UV-
dependent, vitamin D-independent effect as described 
[39]. The power of capturing the causal association would 
be improved by the expansion and the refinement of the 
appropriateness of the genetic instrument to determine 
causality. Moreover, because of some inherent limita-
tions of Mendelian randomization design, including plei-
otropy, buffering effects of environmental and genetic 
forces (redundancy due to more than one gene), and the 
effects of developmental compensation, large sample size 
may be required to logically confirm the causal associa-
tion of 25(OH)D status with T2D.

Conclusions
For the first time, we have performed a bidirectional mul-
tiethnic Mendelian randomization study to determine 
the causal relationship between T2D and vitamin D con-
centrations, including data from the population of South 
Asians with Europeans. Even though our research has 
not found strong evidence of causation, it also does not 
rule out the possible contribution of genetic influence of 
vitamin D synthesis SNPs in increasing T2D risk. As the 
long-standing question of the role of vitamin D in influ-
encing the risk of T2D remains unaddressed, our data 
stresses the need for the population-specific design for 
future observational and randomized clinical trials on 
this important and controversial topic of immense clini-
cal importance.

In summary, our bidirectional Mendelian randomiza-
tion study having data from South Asian Indians with 
Europeans suggests that genetically instrumented T2D 
risk may not be causing changes in 25(OH)D levels. How-
ever, we cannot entirely exclude the likelihood of DHCR7 
genetic variants to influence the risk of T2D.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12937- 021- 00725-1.

Additional file 1: Supplementary Table 1. Association results of indi-
vidual T2D SNPs used as genetic instruments in Mendelian randomization 
for their association with T2D. Supplementary Table 2. Association of 
individual T2D SNPs used as genetic instruments in Mendelian randomi-
zation analyses for their association with 25(OH)D concentrations. Supple-
mentary Table 3. Association results of individual vitamin D SNPs used as 
genetic instruments in Mendelian randomization for their association with 
circulating 25(OH)D concentration. Supplementary Table 4. Associa-
tion results of individual vitamin D SNPs used as genetic instruments in 
Mendelian randomization for their association with T2D. Supplementary 
Table 5. Association of vitamin D SNPs used as genetic instruments 
for affecting 25(OH)D concentrations using UV index as a covariate. 
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Supplementary Table 6. Association of vitamin D SNPs used as genetic 
instruments showing their effect on Type 2 diabetes risk using UV index 
as a covariate. Supplementary Table 7 A-B. Results of joint metanalysis 
of current study and a published study (Lu et al, 2018) showing significant 
associations of variants in vitamin D candidate genes (GC and DHCR7) for 
effecting 25(OH)D concentrations. Supplementary Table 8 A-B. Results 
of joint metanalysis of current study and a published study (Lu et al, 
2018) showing effects of genetically instrumented vitamin D candidate 
genes (GC and DHCR7) SNPs for their effects on T2D risk. Supplementary 
Table 9. Information on samples with missing 25(OH)D levels from 8 dif-
ferent cohorts. Supplementary Table 10. Differences in latitude, 25(OH)D 
concentration and distribution of allele frequencies of vitamin D and T2D 
SNPs among South Asian and European cohorts.

Additional file 2: Supplementary (Flow Chart). Experimental plan 
including the details of participating cohorts and candidate gene SNPs 
used as genetic instrument for performing a bidirectional Mendelian rand-
omization study. Supplementary Figure 1 (A-B). Association analysis of 
composite gene score of T2D SNPs (IGF2BP2, TCF7L2 and KCNQ1) used as 
a genetic instrument for their joint effect on T2D and 25(OH)D concentra-
tions (https:// www. graph pad. com/ scien tific- softw are/ prism/). Supple-
mentary Figure 2 (A-B). Association analysis of composite gene score of 
vitamin D SNPs (GC, CYP2R1 and DHCR7) used as a genetic instrument for 
their effect on 25(OH)D concentrations and T2D (https:// www. graph pad. 
com/ scien tific- softw are/ prism/). Supplementary Figure 3. This figure 
illustrates pathways of synthesis, absorption, metabolism, and transporta-
tion of vitamin D. Genetic factors known to influence circulating levels of 
vitamin D are shown in the figure. DHCR7 expresses a reductase which 
uses nicotinamide adenine dinucleotide phosphate-oxidase to catalyzes 
the production of cholesterol to 7-dehydrocholesterol (7-DHC). The GC 
gene catalyzes the vitamin D binding protein formation. The enzyme 
(25-hydroxylase) responsible for the first hydroxylation step is encoded by 
CYP2R1. The enzyme in the kidneys responsible for the second hydroxyla-
tion is catalyzed by the CYP27B1 gene product (not used in this study). 
1,25(OH)2D3 is the most effective and commonly measured vitamin D 
deficiency marker. Genetic instruments used in this study include gene 
pathways involved in vitamin D synthesis (DHCR7), metabolism (CYP2R1) 
and transport (GC) and genetic loci linked with increased T2D risk 
(IGF2BP2, TCF7L2, and KCNQ1). Note that in our results causality appears 
to be inferred by direct association of 25(OH)D variants (i.e. DHCR7) with 
25(OH)D levels and the T2D phenotype. In contrast the T2D genes are 
associated with phenotype but not with the intermediate phenotype 
measured as 25(OH)D.

Additional file 3. Online Supplemental Information: Phenotypic 
measurements including T2D, 25(OH)D, and other recruitment details are 
presented separately for each cohort.
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