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Abstract 

In this paper, we focus on the phenomenon of pattern formation in a reaction diffusion model of plankton dynamics, 

which includes support for infochemically mediated trophic interactions. We consider a four species model created on the 

basis of the two species models which have been studied previously. In our model, which is an extended version of these 

previous models, the grazing pressure of microzooplankton (M) on phytoplankton (P) is controlled through external 

infochemically (C) mediated predation by copepods (Z). We undertake a stability analysis of both the two species and the 

four species models and compare their system dynamics. We compared the mathematical roots related to these models using 

both numerical and analytical methods, and we found consistency between the two approaches using asymptotic expansion. 

We also explored spatial pattern formation in relation to both forms of model and considered under what conditions Turing 

patterns are exhibited and when spatiotemporal chaos can be observed. An attempt was made to study the non-Turing patterns, 

which were discovered with a special emphasis on spatiotemporal chaos. 
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1. Introduction 

As highlighted by (Banerjee, 2015), Turing and non-Turing Patterns have been used by many researchers to try to 

understand the mechanisms of pattern formation in various physical processes. Turing and non-Turing Patterns arise, in the 

biological context, as a result of interactions between different species, leading to the modification of the temporal dynamics 

of population distributions (Bandyopadhyay and Chattopadhyay, 2005). Among the processes which instigate such pattern 

formation are, for instance, the meanderings of rivers; the mixing of chemical reagents and chemical processes; and ripple 

like structures in the sand (Banerjee, 2010). In this work, we introduce the trophic web illustrated in Fig.(1), where the arrows 
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indicate the interaction directions. There are four interacting components, namely the phytoplankton (P), the 

microzooplankton (M), the zooplankton (Z), and the infochemical release, (C) as shown in Fig.(1). The interactions shown in 

the diagram are described by a system of four differential equations, below is a full description of the PMZC-model. 

  

     

Where U represents a vector of four components: P denotes the population density of the prey phytoplankton, M denotes 

the population density of the predator microzooplankton, and Z denotes the population density of the top predator (copepods), 

all at time T; i = 1,2,3,4 indicates the num- 

 

Figure 1: Schematic diagram of proposed model 

ber of species in the community, C denotes the effect of prey (copepods) on trophic interactions, and functions Fi take into 

account the effects of birth and mortality. In most biologically meaningful situations, the functions Fi are nonlinear with 

respect to at least some of their arguments. In the second part of the above equation, D∇2U indicates that the simplest 

(biologically meaningful) case is yielded by random isotropic motion, i.e., diffusion, where Di is the diffusion coefficient of 

the ith species, and ∇2 is the Laplace operator: 
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  (2) 

Keeping in view the above discussion, we study a plankton model supporting a one prey and two-predator system with Holling 

type II functional responses Fig.1. The main contribution of this paper is to expand the two trophic model studied by (Lewis 

et al., 2012) to a four trophic model and then study the effect of diffusion on the resultant four species food web model (which 

retains the Holling type II functional responses). 

We focus mainly on a spatiotemporal system and provide an analytical and numerical explanation of diusion driven 

instability conditions. The Non-Turing patterns encountered are studied with particular emphasis on spatiotemporal chaos, 

which can explain the irregular distribution of populations so frequently observed in nature. Phytoplankton, which plays a 

crucial role in ocean dynamics, forms the basis of all food sources in aquatic environments (K et al., 1992). Zooplankton 

consumes phytoplankton, and this interaction forms the basis of the prey predator associations in marine environments. 

Phytoplankton supplies oxygen and absorbs carbon dioxide, thus combating global warming effects (Edwards and Brindley, 

1999). Infochemicals play a vital role in food web interactions; they can help prey to avoid predators, and conversely they 

can assist predators to locate prey. Infochemicals can also assist in the location of mates (Banerjee, 2010). Phytoplankton 

have trophic interactions, which help them defend themselves against grazers. These involve the use of deterrents and toxins, 

as well as multi-trophic interactions that indirectly influence the foraging behaviours of prominent predators (predators of 

those species which prey on phytoplankton) (Banerjee and Venturino, 2011). It is crucial to study marine ecosystems because 

they are central to the mechanisms by which life on earth maintains itself. Studies of predator-prey models have developed 

from looking at one, two and three species models to looking at four and n species models, although there is little research on 

the latter. The methodology has been developed using mathematical equations originated by the pioneers (Rosenzweig and 

MacArthur, 1963) and (Edwards and Brindley, 1999). The simple population model as developed by (Maini et al., 2012) 

illustrates phytoplankton that produce DMS in small quantities a one species model. When grazing by microzooplankton is 

added, this becomes a two species model and when microzooplankton predations by mesozooplankton is added, a three species 

model. The above study was based on an initial assumption that microzooplankton act as a trophic link between plankton and 

copepods. DMS (Dimethylsulde) is well studied due to its potential impact on climate regulation (E et al., 1987), but it is also 

increasingly being recognized as an important marine infochemical, with a number of studies reporting that it results in 

attraction by a wide range of taxa (Baurmann et al., 2004). The release of DMS (Dimethylsulde) is promptly accelerated 

following microzooplankton grazing on phytoplankton (S et al., 2016), and this release is shown to elicit a behavioural 

foraging response in the copepod Temora longicornis (Wolfe and Steinke, 1996), making this copepod a relevant example for 

this study. The four species prey-predator model developed in this study is based on the multi-trophic interactions that are 

exhibited once infochemicals are released after microzooplankton start grazing on phytoplankton; the released chemical cues 

attract copepods that prey on microzooplankton, thus inducing significant grazing pressure (on the latter). These interactions 

form the basis of the four species model. Here we construct a PZC-style model which supports two species of zooplankton, 

microzooplankton and copepods; this yields a PMZC model. First, we study the dynamic behaviour of the system under 

varying levels of infochemically mediated predation and then we examine how the system changes as the levels of a number 

of different resources are varied simultaneously. Also, we study the behaviour of the system once spatial considerations have 

been added, and we carry out a Turing instability analysis in order to determine the robustness of the resultant model, as recent 
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studies in the ecological field pay particular attention to the practical contexts of spatial processes (Baurmann et al., 2004). 

The remainder of this paper is organized as follows: in Section 2, we propose the spatiotemporal PMZC model; Section 3 

presents an asymptotic expansion analysis; this is followed by Section 4 which presents a local stability analysis and indicates 

the limit cycle condition for the temporal system; In Section 5, we derive the analytical conditions for diffusion driven 

instability using the Ruth Hurwitz criteria. Also in that section we provide the results of the numerical simulation, which was 

performed; in Section 6, the systematic analysis is discussed; and finally, conclusions are given in the last section, Section 7. 

2. The temporal PMZC-Model 

A mathematical model was developed of the situation whereby one prey species is utilized by two predator species and 

this model included the chemical releases involved; this was studied within a temporal domain and with Holling type II 

functional responses (Holling, 1965). Motivated by the work (Lewis et al., 2012), we derived Fi, i = 1..4, which is the 

interaction function for the model which we have developed. The interaction function has the following format: 

 , 

                             (3) 

(4) 

(5) 

(6) 

(7) 

 ,(8) 

  (9) 

  (10) 

The above model describes the interactions between the small infochemical producing phytoplankton, the 

microzooplankton and the copepods in a system that is depleted of nutrients. The parameter, r, represents the phytoplankton 

intrinsic growth rate, a is the clearance rate of microzooplankton at low food densities, bi i = 1,2 represents the half saturation 

constants, β is the copepod linear predation rate, mi (i = 1,2) are the predators death rates, m3 is the chemical evaporation rate, 

γi i = 1,2, are the parameters representing the biomass conversion rates, from prey to predator. ζ is the rate of chemical change 
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and  is a key parameter that we use to reduce the general four species model to a special case model, i.e., that of (Lewis et al., 

2012). η is the productivity rate of the DMS-infochemicals, and ω is the amount of chemical given off by each phytoplankton. 

In Eq. (7), we employ a logistic map to describe the growth rate of prey and a Holling II functional response to describe the 

effects predators have on (the microzooplankton) prey. In Eq. (8), we define the microzooplankton population growth using a 

Holling II functional response with γ1 as a conversion parameter — this latter regulates the conversion of prey biomass into 

predator biomass. The second term in Eq.(8) represents the normal (non-predator-induced) mortality of microzooplankton, 

while the third term represents the effects of zooplankton on microzooplankton— of course, zooplankton provides another 

source of microzooplankton mortality. The third term represents the increase in predation with β as a linear predation rate 1. 

Copepods saturate w.r.t. their predation activities according to their behaviour when handling their prey (microzooplankton), 

with b2 being the half saturation parameter. The chemicals released could also be saturated via the (1 + C) factor, and the ζ 

parameter is used to measure the rate of chemical increase (that effects increases in predation 2. In Eq. (9) the first term we 

introduce is the copepod population growth which connects both predator populations, M and Z. This term also describes how 

copepods consume microzooplankton following DMS release and how copepods saturate because of the time it takes to handle 

prey. The next term represents copepod mortality due to their consumption by higher trophic predation. The final equation (10) 

has three terms. The first term is used to describe the infochemical release following the start of microzooplankton grazing on 

phytoplankton; η is the productivity rate of DMS. The second term in F4 stands for chemical evaporation. The third term 

represents the level of chemical (exudation) release by each cell. We can reduce the model in Eqs. (7)- (10) into a special case 

model by setting = 0, i.e:                                                                                                                     

    

The main difference between the two set of nonlinearities and the model represented by Eq. (14) is the linear predation 

function, which describes the linear effects of the predation by copepods of microzooplankton. It can be assumed that the 

                                                        

1 -β MZ represents the effects of the copepods on the microzooplankton; any species should saturate at some level. 

Therefore we changed the layout of this term to that of a 

Holling II functional response. 

 

2    also can be defined as the maximum level of chemical, which can be released, especially if we model this 

term by 1 + ζ. 
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model is valid over significant periods of time–scales because we have included resources which are in addition to the basic 

food chain of the two species model: i.e., the infochemical releases (by the phytoprotozoa) and the population density of the 

copepods. Thus, we must consider the time that both predators M and Z take to handle their prey. The model represented by 

Eq. (14) is considered as a special case of the models represent by Eqs. (7) - (10). This is because, when = 0 the 

model is reduced to the two species model as in (Lewis et al., 2012). One goal of the model construction undertaken here is 

to predict the predator–prey kinetic and dynamic properties. Since our model is constructed from the two species predator–

prey model P and M, a basic question to raise here is how can the four species model provide for more descriptive power than 

the two species model? 

3. Qualitative analysis of the location of the equilibria 

Here we look for the steady-state solutions (P,M,Z,C) which satisfy ) = 0. The system shown in Eqs. (7)-

(10) possesses five possible nonnegative equilibria: namely, the extinction equilibrium E0; the microzooplankton and 

copepod-eradication equilibrium E1; the phytoplankton and infochemical eradication equilibrium E2; the copepod (free) 

eradication equilibrium E3; and finally the coexistence equilibrium E4. Table 3 shows the number of equilibria and their types 

and definitions. 

 

 

Table 1: All possible equilibria of the system given by Eqs. (7)-(10)  both biologically relevant and irrelevant. 

Equilibrium Definition Value in 

Parametrized 

System 

Description Hyperbolic 

Eigenvalues 

E0 (Pe,Me,Ze,Ce) (0,0,0,0) Trivial (extinct) Eq. (20) 

E1 (Pe,0,0,Ce)  phytoplankton and infochemical equilibrium Eq. (21) 

E2 (0,Me,Ze,0) (0,Me,Ze,0) Biologically irrelevant equilibrium yielded by Eq 

(15) 

Eq.(22) 

E3 (Pe,Me,0,Ce) (P,M,0,C) Copepod free equilibrium yielded by Eq (16) Eqs. (23). 

E4 (Pe,Me,Ze,Ce) as in Eq 

(17) 

Full Coexistence equilibrium yielded by Eq. 

(17) 

Eqs.(17) 

 

The biologically irrelevant equilibrium is yielded by: 

 . (15) 

The fourth equilibrium is yielded by: 
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 . (16) 

The full co-existence state satisfies the quartic polynomial 

 

Where Ai, i = 0,..,4 are cascading parameters as given in Appendix A. While M, Z and C are given by 

, 

Z(Pe) = A5(Pe)2 + B(Pe) + G, (18) 

. 

The persistent full co-existence is state yielded by a quartic polynomial as follows; 

  (19) 

Where Ai, i = 0,..,4 are all cascading parameters (provided in Appendix C). 

3.1. System behaviour near the origin E0 

A straightforward calculation shows that the hyperbolic equilibrium, which is the first trivial (extinction) equilibrium, is 

an unstable saddle point, with the unstable manifold in the direction orthogonal to the M−Z−C coordinate 

plane. 

 λE0 = (r,−m1,−m2,−m3) (20) 

3.2. System behaviour near the microzooplankton and copepod eradication equilibrium E1 

The E1 equilibrium point of the system, which entails microzooplankton and copepod eradication, is locally 

asymptotically stable if γ1ak − b1km1 − m1 ≤ 0. Further, if γ1ak < b1km1 − m1, 1 + b1k > 0 then E1 is globally 
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stable. The eigenvalues of the second microzooplankton and copepod eradication equilibrium are: 

 

3.3. System behaviour near the phytoplankton and infochemical eradication equilibrium E2 

The Jacobian matrix of the system 10 around the, non-feasible, phytoplankton and infochemical eradication equilibrium 

point, E2, yields the following eigenvalues. 

 

Where all its coefficients are given in Appendix 3 Now, this hyperbolic point is an unstable saddle, since all the parameters 

are positive: λ1 is unstable; also, because λ2,3 have negative real parts, these are stable foci. Further, since λ4 < 0 we have a 

saddle-focus point, as when we have one real eigenvalue with the opposite sign to that of the real part of a pair of complex-

conjugate eigenvalues and a negative real fourth eigenvalue; This type of equilibrium is always unstable. 

3.4. System behaviour near the copepod eradication equilibrium E3 

The Jacobian matrix of the system 10 for the fourth equilibrium (with copepod eradication) has the following four 

eigenvalues: 

  (23) 

Where A and B are as in Appendix 2.  This hyperbolic point is unstable since all the parameters are positive. And λ1 is 

unstable if A > B > 0, and because λ2,3 have negative real parts, these are stable foci, and since λ4 < 0, we have a saddle-focus 

point — as when we have one real eigenvalue with the opposite sign to that of the real part of a pair of complex-conjugate 

eigenvalues and a negative real fourth eigenvalue; This type of equilibrium is always unstable. 

3.5. System behaviour around the coexistence equilibrium point E4 

The relevant Jacobian matrix is J4 = (aij)4×4. Let λi, i = 1,2,3,4 be the roots of the characteristic polynomial of J4 which is 

given by: 

 , (24) 
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Where Ai are cascading parameters given in Appendix D and A0 = 1. From the Routh-Hurwitz criterion, all the roots of a 

Jacobian matrix have negative real part if and only if the determinants of all the Harwitz matrices are positive (Porter, 1968), 

and then any E is locally asymptotically stable if and only if A1 > 0, A3 > 0 and A1A2 > A3 and A3 > pA1(A1A4 − A2A3) or 

.  

Obviously, we have A1 < 0 and A3 < 0 and by depending on the Jacobian element matrix, when a12 < 0, a21 > 0, a23 < 0, a32 > 

0, a33 < 0 and a44 < 0. It is readily seen that A1A2A3 > . Therefore, we formulate the necessary and sufficient 

conditions for the positive equilibrium to be locally asymptotically stable; these follows from the Routh Hurwitz criterion. 

For this purpose, we use the notation given in appendix. 

 

4. Asymptotic Expansion Analysis 

Using an asymptotic approach it is possible to make some limited analytical progress with the general system given in 

Eqs.(10). In this analysis, we study how to scale our parameters in order to determine the general stability for PMZC-models’ 

roots. We can start performing the method by setting the following assumption: 

, 

. and by substitute our scaled parameters 

and the following expansion into the full co-existence persistence state, which is given by 17: 

  (25) 

we will obtain an expanded polynomial, by collecting the coefficient of its leading order we could obtain the appropriate value 

of prey density Pe. Which 

is: 

  (26) 

and by substituting the expanded (scaled) value of P into the quadratic polynomial of MZC, we could have the following 

values for the predators MZ and chemical release C. 

 



 

                                International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:19 No:02                                          15 

 

                             190202-4848- IJBAS-IJENS @ April 2019 IJENS                                         I J E N S 

Now, after determine the values of scaled root E4, we could study the general stability analysis by following the same 

procedures method we presented on this section i.e 

  (27) 

An expanded characteristic polynomial could be obtained following the same procedures and by substituting 27 and 

collecting the coefficient of the leading order and then solve for λ, we could obtain the following eigenvalues: 

 . (28) 

and by substituting the analytically derived value of P into the quadratic polynomials of M and C and the fractional 

polynomial of Z we obtain: 

 

After determining the values of the scaled root, E4, we can undertake a general stability analysis by following the same 

procedures. After determining the characteristic polynomial of the model in Eq. 6 from the Jacobian matrix, we expand λ as 

in Eq. 29and substitute it back into the characteristic polynomial. 

  (29) 

and by collecting the coefficient of the leading order, we will determine four eigenvalues as follows: 

. 
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Figure 2: A comparison between the numerical and the analytical approaches used to solve the quantic polynomial of the four 

species model in Eq.6. 

Where A, B, α and β are all cascading parameters: the formula is quite prolix, so it has been moved to the appendix. 

Comparing the analytical roots and eigenvalues of the system, 6, with the numerical results shows that all the results are 

consistent. Fig. 2 illustrates the consistency of the two approaches. 

5. Parameter Values Investigation 

A major reason for modelling the dynamics of a population is to understand its principle controlling features and so be 

able to predict the likely pattern of development consequent upon a change of environmental parameters (Murray, 2002). In 

the PMZC model of 10 we assumed that the parameters within the elementary analysis are similar to their values as given 

previously (Lewis et al., 2012).We denote these values as default values. It was apparent that oscillatory solutions were present 

in the two models, when κ = b2 = ω = 0 and when κ = 1, b2 = 0.05, ω = 0.1; this makes the two sys- 

tems presented here consistent with the results which were found previously: 

i.e. the model relaxes to a stable steady state. However, in this paper we are concerned with a 4 species system. Therefore, we 

need to consider carefully the effects of each parameter on the PMZC food chain; this might help us to obtain a valid solution 

(model) especially with respect to the fact that we are introducing the effects of zooplankton into this system. Following 

(Edwards and Brindley, 1999), the parameter values used to model the zooplankton mortality can have a major influence on 

the dynamics of simple models (Edwards and Yool, 2000), (Edwards and Brindley, 1999). They found that, for their particular 

parameter values, the limit cycle behaviours (unforced oscillations) which occurred when they used a linear zooplankton 

mortality term did not occur when they used a quadratic term. With respect to (Lewis et al., 2012) and (Morozov et al., 2010), 

we keep the maximum growth rate parameter of these logistic growth models in the range 0.1 < r < 2d−1. In (Franks, 2001), 

the phytoplankton carrying capacity was set to K = 50µgCI−1, but (Morozov et al., 2010) considered a much wider range K = 

∞. Therefore, we use 50 < K < ∞ (Edwards and Brindley, 1999). 

(Edwards and Brindley, 1999), (Saiz and Calbet, 2007) estimated the half saturation constant of phytoplankton to be in the 

range 20 < b1 < 

150µgCI−1, and the zooplankton (copepod) half saturation constant to be 20 < b2 < 100µgCI−1 — to reflect the fact that 

copepod dynamics develop on a slower time scale than microzooplankton dynamics. However, because we are introducing 

zooplankton (copepods) and we are going to study their effects on the food chain, the more accurate values for b1 and b2 which 

will be used in this model is much smaller than the literature suggests. We will set a very small value for the zooplankton 

(copepod) population density, in contrast to that set for microzooplankton. This is because we are not introducing any higher 

trophic, and because the model is non-nutrient limited in particular circumstances. We have chosen the b1P and b2M terms in 

the way that we have because these terms may be regarded as reflecting the amount of time it takes for the predators to handle 

their prey (Cantrell and Cosner, 2004), and if we choose 0, then the predator density will tend to zero over time. 

Therefore, we postulate that  similarly for 
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. In this model, we cannot choose b2 > b1 for the same reasons. 

In (Strom and Morello, 1998), the microzooplankton conversion efficiency is estimated to be 0.15 < γ1 < 0.64, but 

(Kiørboe, 2008) states that the conversion efficiency may be higher when considering zooplankton feeding on microplankton; 

hence, here, a higher value of γ2 = 0.7 is chosen for the copepod assimilation efficiency. Also, the maximum copepod predation 

rate was chosen to be β = 1d−1. In our model, copepods are specified as having a default mortality value; we didn’t take into 

account any predation from higher predators which would increase this above the rate of mortality due to old age, etc. We can 

determine the effects of choosing these specific values numerically by substituting the default values from table 2 into the 

functional responses to check the corresponding population density. Here we present the parameter values that have been used 

in the current study: 
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Table 2: Outline descriptions, default values and the ranges of the parameters: the ranges presented cover values used by a variety of authors for 

different models.(Edwards and Brindley, 1999), (Edwards and Yool, 2000) and (Saiz and Calbet, 2007). 

 
 

Parameters Definition Value Unit Range 

R Phytoplankton Intrinsic Growth rate 1.5 days−1   

K Phytoplankton Carrying Capacity 120 µg C I−1   

A Clearance Rate of Microzooplankton at Low Food Densities 0.3 µg CI−1 days−1   

b1 Half Saturation Density 0.05 µg C I−1 0.01 

0.05 

− 

b2 Half Saturation Density 0.02 µg C I−1 0.01 

0.05 

− 

γ1 Microzooplankton Grazing Efficiency 0.3 days−1 0.3 

0.64 

− 

γ2 Mesozooplankton Grazing Efficiency 0.7 - 0.3−0.7 

m1 Microzooplankton Mortality in the Absence of DMS 0.1 days−1 0.015 

0.15 

− 

m2 Zooplankton Mortality in the Absence of DMS 0.15 days−1 0.015 

0.15 

− 

m3 Chemical Evaporation or Flux to the Atmosphere 0.03 days−1  
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η DMS Production Rate 0.1 -  

β Mesozooplankton Linear Predation Term 1 -  

ζ Chemical Release, Rate of Increase CP -  

ω Exotic Rate for each Phytoplankton Cell 0.01 -  
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6. Mathematical analysis and results 

6.1. Time Series and Phase Portraits 

The main objective of this section is to support the analytical findings with the help of experimental parameter values 

derived from the published literature — as presented in table 2. This table is of the 14 parameters used in the model 10 across 

the same range as the range of the parameters shown in my previous work on two species spatial analysis. Also the values of 

these parameters are closely related to the value of the main control parameters, ν and m3, that helped us to set initial 

condition/prediction (IC) for the numerical analysis (in order to obtain consistent results). One of the main purposes of this 

section is to verify our analytical findings (in Table 3) using numerical methods. The numerical simulations illustrate a number 

of important features of the system from a practical point of view. Figure 3 exhibits the local stability of the model around a 

proposed initial condition; we set this condition in order to test the consistency between the two species model and the expanded 

model (with the parameter values given in table 2). 

In figure 3, the development over time plot is of the special case model and the trajectory in PMZC space of the system 

from the proposed initial condition (Pe,Me,Ze,Ce) = (3.942,5.789,0.0481,20.379) and ζ = 0.01 (and all other parameters fixed at 

their default values). In 3(b), it is shown that the trajectory is attracted onto a limit cycle with a specific period of roughly 500 

days. The trajectory exhibits large-amplitude fluctuations in P. 

The dynamics of the prey-dependent model are: stable coexistence, unstable coexistence, or extinction of the predator. 

 

 (a) (b) 

 

 (c) (d) 

Figure 3: Time series and phase-space trajectories around the proposed initial condition for the two cases of PMZC system put 

forward here: all of the other parameters (not included in the set initial condition) are fixed as in table 2 — also ζ = 0.01. In 

both cases, the trajectories are attracted to the equilibrium point, and this results in a stable limit 

cycle. 
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 (a) (b) 

Figure 4: Time series and phase portraits near the microzooplankton and copepod eradication equilibrium point, E1 and ζ = 

0.01.It is readily seen that the trajectories are attracted onto a stable limit cycle 

 

 (a) (b) 

Figure 5: Time series and phase portraits of (copepod free) equilibrium point E3 withζ = 0.01 and all other parameters fixed as 

in 2. The trajectories are attracted onto a stable limit cycle. 

 

 (a) (b) 

Figure 6: Time Series and phase portraits around the coexistence equilibrium point E4 with ζ = 0.01 and all the other parameters 

fixed at their default values and In 6(a), the limit-cycle components for the PMZC model is shown in red, blue, dashed blue 
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and in black. The limit-cycle represents the overall movement over the time series, ignoring seasonality and any small random 

fluctuations. In 6(b), It is illustrated that the trajectories are attracted onto a stable limit cycle. 

6.2. One parameter bifurcation behaviour 

We have used numerical simulations of the proposed model 10. Figure 7 represents the local stability diagram around E4 

with the parameter values given in table 2. It is readily seen that 7(a) indicates that if in the coexistence equilibrium E4 < K then 

the population of phytoplankton will bloom. Especially, if E4 is a function of ζ; this can be seen to reflect the consistency 

between our previous work and this current study. However, if E4 > K then the prey population will decrease significantly. 

Also, if E4 = K then the population will remain constant (Freedman, 1980). 

These graphs illustrate the PMZC biological model. When a specific choice of parameters is made, the prey population 

increases to extremely high numbers in each cycle and then recovers (while the predator population remains sizeable as at the 

highest prey density). In real-life situations, how- 

 

 (a) (b) 

 

 (c) (d) 

Figure 7: The coexistent equilibrium point w.r.t ζ as an infochemical metric, shows that the range of our control parameter 

should be 0 < ζ < 0.1 to avoid having negative real roots for Z. 

ever, chance fluctuations in the discrete numbers of individual entities and in the life-cycles of prey might cause the prey to 

actually go extinct, and, by consequence, the predators as well (Chapman and Reiss, 1998). 
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7. Turing Analysis in Relation to the PMZC Model 

Several studies have been devoted to the various modes of spatiotemporal organization generated by different models: e.g., 

limit cycles, Turing patterns, and traveling waves in one-dimensional systems ().The interest in this paper is to provide a 

fundamental understanding of how a steady state that is locally asymptotically stable in a non-spatial system can become 

unstable in a corresponding diffusive system. Consider the system in 1, where Ui and i = 1,2,3,4 represent a vector of the system 

state variables P,M,Z,C at position X and time t. It is readily seen that, in the vicinity of a spatial homogeneous steady state 

(Pe,Me,Ze,Ce), the corresponding linearized system has the following form: 

  (30) 

where Ui = P,M,Z,C, and i = 1,..,4 this is in the case of a spatially homogeneous perturbation, and 

  (31)  
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In the case of a spatially inhomogeneous perturbation with k as a wave number. Here  and δij is the Kronecker 

symbol, and Ui(t) and Ui(t,k) are the amplitudes of the perturbation and its Fourier transform, respectively (Malchow, 1993). It 

is readily seen that when k = 0, the system given by 30 coincides with that in 31. The matrix of the linearised system is shown 

in Appendix B. We obtained the dispersion relation as a quartic polynomial and by solving this polynomial for δ we can study 

the Turing 

instability conditions. 

 , (32) 

Where Pi are all cascading parameters, all the related details are given in Appendix C. It is apparent that, according to the 

analytical break-down shown in table 3, E1 is a steady state of the system 10, called the phytoplankton and infochemical 

equilibrium. This state is stable under the common two conditions trace(A) < 0 and a11 + a22 + a33 + a44 < 0. Spatiotemporal 

chaos arises from the diffusive coupling of local limit cycle oscillators (Malchow et al., 2008); the patterns so generated in two- 

and three-dimensional systems include patterns arising from the interference of different instability mechanisms. 

8. Spatial Distribution and Limit Cycles 

In this section we consider the model in Eq. (1) as it exists in continuous time and space. The model is of four interacting 

species and represents an example of a community population with an oscillatory solution. Here we are interested in the possible 

emergence of non-Turing, Turing, and limit cycle patterns. First, we assume that the diffusivity is the same for all species, and 

then we assume that DC < DM < DZ < DP . However, it appears that the choice of initial condition, as given in Eq. (33), could 

affect the types of pattern which is generated (Murray, 2002). Fig’s 8 and 9 show the one dimensional systematic analysis of 

Eq. (1), starting from the types of the patterns and the behaviour of the system in time and space. The PMZC model can generate 

a number of quite different patterns, depending on the choice of initial condition. 

 . (33) 

 

The type of system dynamics exhibited depends significantly on the choice of the initial conditions (Malchow et al., 2008). 

The initial conditions given by Eq. (33) include Ue as the system coexistence point and ) as the perturbation term — 

which depends on the value of  and the value of w, the wave number. Fig. 8 shows how the initial condition develops to a 

smooth spatial distribution of prey and predator. The spatial distribution gradually varies over time; the local temporal 

behaviours of the dynamic variables, PMZC, are strictly periodic and depend on the limit cycle of the non-spatial system. 

Another type of initial condition, as presented in Eq. (34), gives chaotic non-Turing patterns — when the zero-flux boundary 
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condition is imposed. Non-

Turing patterns result when 

we perturb the initial 

distribution by adding terms 

like  and δ into the two 

dimensional initial 

distribution below:, 

 

  (34) 

Where the values for the important terms,  and δ in Eqs. (34) are given as follows: 

 

(Malchow et al., 2008).  
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(a) 

 

(b) 

 

(c) 
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Figure 8: Population distribution over the one-dimensional space at the point’s t = 150, t = 350 and t = 1500, using Eqs. (33) as 

the initial condition and Ue = E4 — with parameters as shown in Table 2.

 

(a) 

 

(b) 

Figure 9: Schematic analysis, with respect to space and time, of Eqs. (10) and of the average density of PMZC in time, using 

Eqs. (33) as the initial condition and Ue = E4. 

Figures 8(a), 8(b) and 8(c) show the population densities generated by the dynamics variables at times t = 150, 350 and 

1500, using Ue = E4. Fig. 8(c) shows the regularity of the oscillatory solution of the population densities given by the dynamics 

variables in time and space. Both figures 9(a) and 9(b) in 9 illustrate regular spatiotemporal oscillations over the whole domain. 

Furthermore, we decided to analyse each equilibrium point of the four species model, and we present the results of these 

analyses in Fig. 10 and Fig. 11, for Ue = E3 and Ue = E1 respectively. 
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 (a) 

 

(b) 

 

(c) 

Figure 10: The population distribution over the one-dimensional space at the point33 t = 1500, plus the correspondent 

schematics analysis across space and time, Eqs. (10); also the average density of PMZC over time, using Eqs. (33) as the initial 

condition, E3, for ζ = 0.001 — other parameters are as shown in 2. 
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(a) 

 

(b) 

 

(c) 

34 
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Figure 11: The population distribution over the one dimensional space at the point t = 1500 plus the correspondent schematics 

analysis across space and time, Eqs. (10); also the average density of PMZC over time, using Eqs. (33) as the initial condition, 

E1, for ζ = 0.001; other parameters are as in 2. 

 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 

Figure 12: Non-Turing patterns in a predator-prey distribution over the two dimensional space relating to the times t = 150, t = 

180 and t = 1500, using Eq. (33) as the initial condition and Ue = E4, with parameters as shown in Table 2. In Fig .12, the spatial 

distributions of a prey species at different times is presented in order to show the continuous changes in the distribution of 

species. Patterns are presented here which were generated within the time span t = 10 to t = 1500, but the existence of similar 

patterns was verified for longer duration simulations. This type of pattern is classified as a stripes patterns and is a non-Turing 

pattern because not all the Turing conditions hold. In Fig. 13, we find another non-Turing pattern, generated by the PMZC 

model when ζ = 0.001 and when a suitable choice of the parameters such that DC < DM < DZ < DP  was made; this analysis was 

to include horizontal diffusion: i.e., we also consider the effects of the diffusion of P, M, Z and C in the x-direction. We have 

observed that the stationary nonTuring patterns are cold spot patterns which exhibit circular patches that have lower 
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concentrations of both prey and predators. The non-Turing patterns observed for the classical Holling-functional response are 

of two types: hot spot patterns and cold spot patterns. Hot spots consist of localized circular patches with high population 

densities. Our stationary cold spot pattern changed to a chaos pattern due to the coalescence of nearby circular patches with 

low population densities. The stationary patterns obtained for the PMZC model are completely independent of the initial 

condition. We have checked this independence numerically, by using E4 as an initial guess, without perturbing it, we obtained 

a flat state. This unstable steady-state property of the non-stationary patterns is illustrated in Fig.12 and 13, where the spatial 

averages of the population densities are plotted against the space dimension, as in 12(e), and against the time dimension, as in 

12(f). It is 

 

 

 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 



 

                                International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:19 No:02                                          32 

 

                             190202-4848- IJBAS-IJENS @ April 2019 IJENS                                         I J E N S 

 

(g) 

 

Figure 13: Non-Turing patterns for predator-prey distribution over a two dimensional space representing prey and predator for 

t = 150,350 and t = 1500, using Eq.34 as I.C. with Ue = E4 and ζ = 0.001; all other parameters are as shown in Table 2. 

Important to note here that the temporal steady state is unstable and oscillates for ζ ≥ 0.001. Further analysis is performed in 

order to investigate other biologically relevant equilibria which were generated in order to obtain some specific patterns; the 

patterns yielded vary according to the choice of the initial condition and the type of the equilibrium. See Fig. (14). 

The patterns produced by the PMZC model 1 can be in the form of a stripe-like arrangement of activated cells (in terms of 

phytoplankton concentrations)3; alternatively, active spots can lead to chaos. E1,E3 and E4 are unstable equilibriums of the non-

spatial model: Eqs.7–, 10, ⇒<(λ) > 0. The Turing conditions are not satisfied and this gives rise to chaos patterns in the spatial 

system because ⇒ λ(k2) > 0. Spatiotemporal chaos arises from a diffusive coupling system of equations with local limit cycle 

oscillators(Malchow et al., 2008); spatiotemporal patterns depend on the choice of the initial conditions. Infochemically 

mediated interactions can have a strong effect on the structuring, functioning and composition of marine ecosystems. For 

example, it has been observed that chemical gradients play a key role in generating complex patterns and in cell differentiation 

(Steinke et al., 2006). 

 

                                                        

3 The concentration of the activator (P) is suggested by the dot or spot density 
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 (a) (b) 

 

 (c) (d) 

 

(e) 

Figure 14: Non-Turing patterns generated by Eq. (1), using the initial conditions from Eq. (34) with Ue = E1 and ζ = 0.001; other 

parameters are as shown in 2. 
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 (a) (b) 

 

 (c) (d) 

Figure 15: Non-Turing patterns generated by Eq. (1), using the initial conditions from Eq. (34) with Ue = E3 and ζ = 0.001; 

other parameters are as shown in 2. 
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Table 3: Spatial Analysis of the four species model presented in Eq. (1). 

Equilibrium Description Turing Conditions Routh–Hurwitz 

Criterion 

Type of pat- 

terns 

E0 Trivial (eradication) λ(k2) > 

0 and 

H(k2) 

P1 > 0, 

 

E1 Phytoplankton and 

infochemical equilibrium 

λ(k2) > 

0 and 

H(k2) < 

0 

P1 > 0, Stripes patterns using 

Eq.33 as I.C. 

and spots 

pattern using Eq.34 as I.C. 

E2 Biologically irrelevant 

equilibrium as given in Eq. 

(15) 

λ(k2) > 

0 and 

H(k2) > 

0 

P1 > 0, Stripes patterns using 

Eq.33 as I.C. 

and spots 

pattern using Eq.34 as I.C. 

E3 Copepod eradication 

equilibrium given by Eq. 

(16) 

λ(k2) > 

0 and 

H(k2) > 

0 

P1 > 0, Stripes patterns using 

Eq.33 as I.C. 

and spots 

pattern using Eq.34 as I.C. 

E4 

 

 

 

Full Coexistence 

equilibrium given by Eq. 

(17) 

λ(k2) > 

0 and 

H(k2) > 

0 

P1 > 0, Stripes patterns using 

Eq.33 as I.C. 

and spots 

pattern using Eq.34 as I.C. 
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10. Conclusion 

In this paper, a one prey and two predator system with Holling type II functional responses has been considered. It is shown 

that there exists a limit cycle with respect to the chemical release, ζ, in relation to the spatially homogeneous system as given 

in fig.7. In the qualitative analysis of Eq. 1, we studied the dynamical behaviour of the temporal system. It was established that 

when the rate of mutual interference of the predator (i.e., M and Z), crosses a threshold value (i.e., M = M0 and Z = Z0) then 

prey, first predator and second predator populations start oscillating around the interior equilibrium as shown in Fig.7. The 

dynamics of spatially inhomogeneous aquatic communities has been illustrated in this chapter by studying Turing instability in 

the PMZC model, using the Routh Hurwitz criteria (DeJesus and Kaufman, 1987). The Turing criteria did not hold in relation 

to this study because, as we have remarked earlier, the coexistence point, E4, possesses four eigenvalues and two of these 

represent an unstable focus (with Re(λ) > 0) and the other two stable sinks. Furthermore, based on the numerical experiments, 

we obtained a spatial homogeneity in Eq. (10) which can give way to the appearance of a regular spatiotemporal pattern, 

depending on the parameter range given in Table 2. It is important to clarify that spatiotemporal chaos is typical for two 

dimensional reaction-diffusion systems with oscillatory dynamics. However, oscillatory behaviour is seen in the four species 

model even with small amplitudes in Eq. (1), and can be seen to be widely possible in terms of the response of the plankton 

model over time and space. Different patterns may be obtained by setting different initial conditions and using different 

numerical methods. We address the issue of the non-Turing patterns in Figs. 12 and 13 –using different initial conditions for 

the reaction–diffusion PMZC model (one and two dimensional). The population densities of all the species illustrated in Fig. 

12 showed oscillatory behaviour; this behaviour raises an important question in relation to the phytoplankton population 

response to the periodic (seasonal) stimuli (Ryabchenko et al., 1997). Such large scale oscillations may push the system into 

and out of oscillatory phase during the course of the year (Edwards and Brindley, 1996). The models short-term oscillations 

are connected with feedbacks in the ecosystem initiated either by abrupt changes in the phytoplankton, by increased density in 

spring or by increased spatial depth in autumn (Ryabchenko et al., 1997). The systematic analyses of the nonlocal interactions 

in the one dimensional model of Fig. 9 and in the two dimensional model of Fig. 12 prove the persistence of the oscillation that 

we have already discovered in the spatially homogeneous model and show the consistency between the density and the average. 

In relation to this, for mathematical simplicity, the ranges of the nonlocal interactions for prey and predators are assumed to be 

same (this is consistent with (Banerjee and 
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Banerjee, 2012)). Also, we could provide a more detailed explanation of the sort of patterns that were yielded by studying 

further the dispersion relation of the model as it is when we obtain the striped patterns given in Fig. 12, because we used a 

periodic function as an initial condition for Eq. (33). As found in (Genieys et al., 2006), we can expect the existence of 

oscillatory travelling waves and more complex, for instance modulated, spatio–temporal dynamics. Spatiotemporal patterns 

exists for the parameter values given in Table 2. In Fig 13, using the parameter values shown in Table 2 but different initial 

conditions such as the initial conditions given in Eq. (34), we observed a pattern formation with a number of different time 

steps. Also, it can be observed that the stationary ”mixtures −→ stripe–spot mixtures −→ spots” patterns are time-dependent, 

as was found in (Malchow et al., 2008). These observations confirm the fact that the interactions between the temporal and the 

spatial aspects are unable to drive the system towards spatial and temporal irregularity under any circumstances. The existence 

of irregular distributions of populations over space and continuous changes to these over time depends on complex interactions 

which take place over both the spatial and temporal scales. Finally, all these spatial patterns show that qualitative changes lead 

to different spatial density distributions for each species, across the spatial system. Furthermore, we analysed the stability of 

the linear and non-linear systems with the help of a Turing instability analysis and observed that the spatiotemporal system in 

Eq. (1) does not change its behaviour: as revealed by the spatial systematic analyses shown in Figs. 8 and 9 for one dimension; 

and Figs. 12, 12(e), 12(f), 13 and 13(g) for two dimensions. This is because the trajectories are spiralling in a limit cycle and 

thus they tend to converge into a stable point. Our results show that modeling by reaction –diffusion equation is an appropriate 

way to investigate the fundamental mechanisms of the spatio-temporal dynamics of the real world food web system (Petrovskii 

and Malchow, 1999) and (Baghel et al., 2014). 

11. Appendix 

A. The cascading parameters of the coexistence point 

A0 = γ2b1βηr2 + ζb1βηr2 − b1b2ηm2r2, 

A1 = −2γ2b1βηkr2 − 2ζb1βηkr2 + 2b1b2ηkm2r2 − γ2b1βkωr − ζb1βkωr 

+ b1b2km2ωr + γ2βηr2 + ζβηr2 − b2ηm2r2, 

A2 = −γ2b1βηk2r2 + ζb1βηk2r2 − b1b2ηk2m2r2 + γ2b1βk2ωr 

+ ζb1βk2ωr − b1b2k2m2ωr − γ2b1βkm3r − 2γ2βηkr2 − 2ζβηkr2 
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+ b1b2km2m3r + 2b2ηkm2r2 − γ2βkωr − ζβkωr + aηkm2r + b2km2ωr, 

A3 = γ2b1βk2rm3 + γ2βηk2r2 + ζβηk2r2 − b1b2k2rm2m3 

− b2ηk2r2m2 + γ2βk2ωr + ζβk2ωr − aηk2rm2 − b2k2ωrm2 

− γ2βkrm3 − ak2ωm2 + b2krm2m3, 

A4 = γ2βk2m3r − b2k2m2m3r − ak2m2m3, 

B. The details of the fourth eigenvalue correspond to E2 

 A0 = γ1ak(γ1a − b1m1) (B.1) 

 

 

+ γ12a2b21k2m21r2 + 4γ1ab13k2m14r − 2γ1ab31k2m31r2 

+ b41k2m41r2 + 4γ13a3km21r − 8γ12a2b1km31r 

− 2γ12a2b1km21r2 + 4γ1ab21km14r + 2b31km41r2 

+ γ12a2m21r2 + 2γ1ab1m31r2 

+ b21m41r2 



 

                                International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:19 No:02                                          39 

 

                             190202-4848- IJBAS-IJENS @ April 2019 IJENS                                         I J E N S 

 

C. The cascading value of A and B of the eigenvalue  correspond  to the equilibria E3. 

 

 

A = −γ14γ2a3βk2m3r + γ14a3b2k2m2m3r + 3γ13γ2a2b1βk2m1m3r 

− γ13γ2a2βηk2m1r2 − γ13ζa2βηk2m1r2 

− 3γ13a2b1b2k2m1m2m3r + γ13a2b2ηk2m1m2r2 − 3γ12γ2ab12βk2m21m3r 

+ 2γ12γ2ab1βηk2m21r2 + 2γ12ζab1βηk2m21r2 

+ 3γ12ab21b2k2m21m2m3r − 2γ12ab1b2ηk2m21m2r2 + γ1γ2b31βk2m31m3r 

+ γ1γ2b21βηk2m31r2 − γ1ζb21βηk2m13r2 + γ1b31b2k2m31m2m3r 

+ γ1b21b2ηk2m31m2r2 + γ14a4k2m2m3 − γ13γ2a2βk2m1ωr 

− γ13ζa2βk2m1ωr + 4γ13a3b1k2m1m2m3 − γ13a3ηk2m1m2r + γ13a2b2k2m1m2ωr − 

2γ12γ2ab1βk2m12ωr − 2γ12ζab1βk2m21ωr 

+ 6γ12a2b21k2m21m2m3 + 3γ12a2b1ηk2m21m2r + 2γ12ab1b2k2m12m2ωr 

− γ1γ2b21βk2m31ωr + γ1ζb21βk2m31ωr + 4γ1ab31k2m31m2m3 

+ 3γ1ab21ηk2m31m2r − γ1b21b2k2m13m2ωr − b41k2m41m2m3 

− b31ηk2m41m2r − γ13γ2a2βkm1m3r − γ13a3k2m1m2ω 

− γ13a2b2km1m2m3r + 2γ12γ2ab1βkm12m3r − 2γ12γ2aβηkm21r2 

+ 2γ12ζaβηkm21r2 − 3γ12a2b1k2m21m2ω − 2γ12ab1b2km12m2m3r 

− 2γ12ab2ηkm21m2r2 + γ1γ2b21βkm31m3r − 2γ1γ2b1βηkm31r2 

− 2γ1ζb1βηkm31r2 + 3γ1ab21k2m31m2ω − γ1b21b2km13m2m3r 

+ 2γ1b1b2ηkm31m2r2 − b31k2m41m2ω − γ12γ2aβkm21ωr 
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+ γ12ζaβkm21ωr − γ12a2ηkm21m2r − γ12ab2km21m2ωr 

− γ1γ2b1βkm3
1ωr − γ1ζb1βkm1

3ωr + 2γ1ab1ηkm3
1m2r + γ1b1b2km31m2ωr − b21ηkm41m248r − 

γ1γ2βηm13r2 − γ1ζβηm13r2 

− γ1b2ηm31m2r2. 

B = γ14a3b2k2m3r − 3γ13a2b1b2k2m1m3r + γ13a2b2ηk2m1r2 + 3γ12ab21b2k2m21m3r − 

2γ12ab1b2ηk2m21r2 − γ1b31b2k2m31m3r 

+ γ1b21b2ηk2m31r2 + γ14a4k2m3 − 4γ13a3b1k2m1m3 + γ13a3ηk2m1r 

+ γ13a2b2k2m1ωr + 6γ12a2b21k2m21m3 − 3γ12a2b1ηk2m12r 

− 2γ12ab1b2k2m21ωr − 4γ1ab31k2m13m3 + 3γ1ab21ηk2m31r 

+ γ1b21b2k2m31ωr + b41k2m41m3 − b31ηk2m41r + γ13a3k2m1ω 

− γ13a2b2km1m3r − 3γ12a2b1k2m12ω + 2γ12ab1b2km21m3r 

− 2γ12ab2ηkm21r2 + 3γ1ab21k2m31ω − γ1b21b2km31m3r 

+ 2γ1b1b2ηkm31r2 − b31k2m41ω − γ12a2ηkm21r − γ12ab2km21ωr 

+ 2γ1ab1ηkm31r + γ1b1b2km31ωr − b21ηkm41r + γ1b2ηm31r2 

D. The cascading parameter of the coexistence eigenvalue E4 

 A1 = −a11 − a22 − a33 − a44. (D.1) 

A2 = a11a22+a11a33+a11a44−a12a21+a22a33+a22a44−a23a32−a24a42+33a44. 

   (D.2) 
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A3 = −a11a22a33 − a11a22a44 + a11a23a32 + a11a24a42 − a11a33a44 + a12a21a33 + a12a21a44 − 

a12a24a41 − a22a33a44 + a23a32a44 − a23a34a42 +24 a33a42.                                                                                

(D.3)A4 = a11a22a33a44 − a11a23a32a44 +11 a23a34a42 − a11a24a33a42 − a12a21a33a44 

 − a12a23a34a41 + a12a24a33a41. (D.4)  
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