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%e multiple objective simplex algorithm and its variants work in the decision variable space to find the set of all efficient extreme
points of multiple objective linear programming (MOLP). Other approaches to the problem find either the entire set of all efficient
solutions or a subset of them and also return the corresponding objective values (nondominated points). %is paper presents an
extension of the multiobjective simplex algorithm (MSA) to generate the set of all nondominated points and no redundant ones.
%is extended version is compared to Benson’s outer approximation (BOA) algorithm that also computes the set of all non-
dominated points of the problem. Numerical results on nontrivial MOLP problems show that the total number of nondominated
points returned by the extended MSA is the same as that returned by BOA for most of the problems considered.

1. Introduction

Multiobjective linear programming seeks to optimize two or
more linear objective functions subject to a set of linear
constraints with a view of obtaining either all the efficient
solutions or nondominated points or a subset of them, or a
most preferred solution depending on the approach adop-
ted. MOLP has been studied over the years because of its
relevance in practice.

Indeed, many decision-making problems that arise in
the real world involve more than one objective function.
Consequently, it has been widely applied in many fields and
has become a useful tool in decision-making.

Formally, it can be written as

min

c
T
1 x � f1

⋮

c
T
q x � fq

subject tox ∈ X � x ∈ Rn
: Ax � b, b ∈ Rm

, x≥ 0 .

(1)

We noted in [1] that “in practice, MOLP is typically
solved by the Decision-Maker (DM) in conjunction with the

analyst who looks for a most preferred solution in the
feasible region X. %is is because optimizing all the objective
functions at the same time is not possible due to their
conflicting nature. Consequently, the concept of optimality
is replaced with that of efficiency. %erefore, the purpose of
MOLP is to obtain either all the efficient extreme points or
nondominated extreme points or a subset of them, or a most
preferred point depending on the purpose for which it is
needed.”

Many algorithms have been suggested for the problem.
Most of them are based on the simplex method for linear
programming. Prominent among them is the multiobjective
simplex algorithm (MSA) and its variants. According to
Eiselt and Sandblom [2], Evans and Steuer [3], Philip [4],
and Zeleny [5] all derived generalized versions of the simplex
method known as MSA. %is algorithm works in the de-
cision variable space to find the entire set of all efficient
solutions. However, it was noted in [6] that finding the
nondominated points instead of the efficient set is more
important for the DM.

%e aim of this paper is to extend the MSA of Evans and
Steuer [3] whose explicit form can be found in [7] to
generate the whole set of nondominated points. We shall
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then compare this extended version with the original one
and with the primal variant of Benson’s outer approximation
(BOA) algorithm [8] which is an objective space based
method that also computes the set of all nondominated
points of the problem.

%is paper is organized as follows: Section 2 is the
motivation. Section 3 introduces MOLP and basic notation.
Section 4 is a brief review of the relevant literature. We
present MSA and its extended version in Sections 5 and 6,
respectively. Section 7 discusses two scalarization tech-
niques. BOA is presented in Section 8. Section 9 presents
experimental results obtained with the different algorithms.
Finally, a conclusion is presented in Section 10.

2. Motivation

From the outset, MSA and BOA are not comparable since
one is decision space based while the other is objective space
based; one computes efficient solutions and the other
nondominated points. However, if one can generate non-
dominated points from MSA, then this can be performed.

It is well known [6–16] that, in practice, decision-makers
prefer to base their choice of a most preferred point on the
objective values (nondominated points) rather than on the
efficient solutions. %is means that algorithms such as MSA
which return only the set of efficient solutions are less
favourable to the DM, say, compared to BOAwhich works in
the objective space and returns the nondominated set. It is
therefore desirable to generate the nondominated set from
the efficient set returned by MSA. In other words, we extend
it. %is extended variant of MSA becomes as desirable as
those computing the nondominated set for the DM.
However, this can only be decided after a comparison with
such an algorithm. Here, we suggest comparing with BOA
on a number of nontrivial MOLP instances. Clearly, ex-
tended MSA becomes very attractive given that it gives all of
the efficient solutions and nondominated points.

3. Notation and Definitions

An alternative and compact formulation of (1) is as follows:

min Cx

subject to
Ax � b

x≥ 0,

(2)

where C is a q × n criterion matrix consisting of the rows
ck, k � 1, 2, . . . , q, A is an m × n constraint matrix, and
b ∈ Rm is the right-hand side vector. %e feasible set in the
decision space is X � x ∈ Rn: Ax � b, x≥ 0{ } and, in the
objective space, it is Y � Cx: x ∈ X{ }. %e set Y is also re-
ferred to as the image of X [1].

A nondominated point in the objective space is the
image of an efficient solution in the decision space, and the
set of all nondominated points forms the nondominated set
[6].

An efficient solution to the problem is a solution that
cannot improve any of the objective functions without re-
ducing at least one of the other objectives. A weakly efficient

solution is the one that cannot improve all the objective
functions simultaneously, [17]. Let x ∈ X be a feasible so-
lution of (2) and let y � Cx:

(i) x is called efficient if there is no x ∈ X such that
Cx≤Cx and Cx≠Cx; correspondingly, y � Cx is
called nondominated

(ii) x is called weakly efficient if there is no x ∈ X such
that Cx<Cx; and y � Cx is called weakly non-
dominated [7]

%e set of all efficient solutions and the set of all weakly
efficient solutions of (2) are denoted by XE and XWE, re-
spectively [10]. YN � Cx: x ∈ XE  and YWN � Cx: x ∈{

XWE} are the nondominated and weakly nondominated sets
in the objective space of (2), respectively.

%e nondominated faces in the objective space of the
problem constitute the nondominated frontier and the ef-
ficient faces in the decision space of the problem constitute
the efficient frontier [1].

4. Literature Review

As stated earlier, Eiselt and Sandblom [2] note that Evans
and Steuer [3], Philip [4], and Zeleny [5] all derived gen-
eralized versions of the simplex method known as MSA for
generating the entire efficient decision setXE of the problem.
%at of Philip [4] first determines if an extreme point is
efficient and subsequently checks if it is the only one that
exists. If not, the algorithm finds them all. %is MSA ap-
proach, however, may fail at a degenerate vertex. In [18],
Philip modified it to overcome this difficulty.

%eMSA of Evans and Steuer [3] also generates the set of
all efficient solutions and unbounded efficient edges of the
problem; see also Algorithm 7.1, page 178 of [7]. %e al-
gorithm first confirms that the problem is feasible and has
efficient extreme points. %ereafter, it computes all of them
by moving from one efficient extreme point to an adjacent
efficient extreme point, until all of the efficient extreme
points have been computed. An LP test problem is solved to
determine the pivots that lead to efficient extreme points.
%e algorithm is implemented as software called ADBASE
[19].

%e MSA variant of Zeleny [5] also uses an LP test
problem to determine the efficiency of extreme points. But
here, vertices are tested for efficiency after they have been
obtained unlike in [3] where the test problem determines
pivots leading to efficient vertices.

Yu and Zeleny [20, 21] used the approach in [5] to
generate the set of all efficient solutions and presented a
formal procedure for testing the efficiency of extreme points.

%e efficient solutions are derived from the efficient
faces, in a top-to-bottom search strategy. Numerical illus-
trations with three objectives were used to demonstrate the
effectiveness of the method. In a similar paper, Yu and
Zeleny [22] applied their approach expanded in [21] to
parametric linear programming. Two basic forms of the
problem and two computational approaches for generating
the entire efficient set were presented: the direct decom-
position approach that decomposes the parametric space
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into subspaces associated with extreme points and the in-
direct algebraic approach. From a numerical experience
point of view, the indirect algebraic approach was superior
to the direct decomposition method.

In [23], Isermann proposed a variant of the MSA in [3]
that solves fewer LPs when determining the entering vari-
ables. %e algorithm first establishes whether an efficient
solution for the problem exists and solves a test problem to
determine pivots leading to efficient vertices. It was
implemented as a software called EFFACETin Isermann and
Naujoks [24].

%e MSA of Gal [25] generates the set of all higher-
dimensional faces and all efficient vertices of the problem.
%is approach is meant to address the problem of deter-
mining efficient faces and higher-dimensional faces that
were not resolved in [3, 4]. Here, efficient solutions are
computed using a test problem. %e algorithm also deter-
mines higher-dimensional efficient faces for degenerate
problems which were only discussed in [5, 23] but were not
solved. %e efficient faces are computed in a bottom-to-top
search strategy unlike what was suggested in [20, 21].

Steuer [26] used the MSA of Evans and Steuer [3] to
solve parametric and nonparametric problems. Different
approaches for determining an initial efficient extreme point
as well as different LP test problems were also considered.
Efficient solutions were computed through the direct de-
composition of the weight space into finite subsets that
provided optimal weights corresponding to efficient
solutions.

In [7], Ehrgott also used theMSA of Evans and Steuer [3]
to solve MOLP problem instances with two and three ob-
jective functions. Ecker and Kouada [27] also proposed a
variation on the MSA of Evans and Steuer [3]. %ey noted
that algorithms usually started from an initial efficient ex-
treme point and moved to an adjacent one following the
solution of an LP problem. %e proposed method does not
require the solution of any LP problem to test for the ef-
ficiency of extreme points and the feasible region need not be
bounded. %e algorithm enumerates all efficient extreme
points and appears to have a computational advantage over
other methods.

In a different paper, Ecker et al. [28] presented yet
another variant of MSA. %e algorithm first determines the
maximal efficient faces incident to a given efficient vertex
(i.e., containing the efficient vertex) and ensures that pre-
viously generated efficient faces are not regenerated. %is is
done following a bottom-to-top search strategy as in [25],
which dramatically improves computation time. %e pro-
posed approach was illustrated with a degenerate example
given in [21], to demonstrate its applicability. It was com-
putationally more efficient than the method in [21].

%e MSA of Armand and Malivert [29] determines the
set of efficient extreme points even for degenerate MOLPs.
%e approach follows a bottom-to-top search strategy and
utilizes a lexicographic selection rule to choose the leaving
variables which proves effective when solving degenerate
problems. It was tested successfully on a number of de-
generate problems. A numerical example with five objectives
and eight constraints which was solved in [21] was also used

to demonstrate its effectiveness. %e proposed MSA was
superior to that in [21].

Rudloff et al. [30] suggested a MSA which works in the
decision variable space but does not generate all the efficient
extreme points unlike the algorithm in [3]. Instead, it finds a
subset of efficient extreme points based on the idea of Löhne
[31]. %at is, a subset of efficient extreme points and di-
rections that allows computing the whole efficient frontier.
%e algorithm was compared with BOA [8] which also
provides a solution based on the idea in [31] and with Evans
and Steuer’s MSA [3]. Numerical experiments show that the
proposed method is superior to Benson’s algorithm for
nondegenerate problems. However, that of Benson’s out-
performs it for highly degenerate ones.

In [1], we presented the results of a more detailed
computational investigation of theMSA in [30] and BOA [8]
using existing small, medium, and realistic MOLP instances
to evaluate the robustness and quality of the most preferred
nondominated point (MPNP) returned by these two algo-
rithms which was not discussed or considered in [30]. Also
presented in [1] was a formal procedure for the computation
of a MPNP of the problem. Numerical results on the ro-
bustness, efficiency, and quality of a MPNP show that BOA
outperforms PSA in terms of the quality of a MPNP it
returns and robustness, as well as confirming what was
reported in [30] that BOA is computationally more efficient
than PSA on highly degenerate problems, while PSA is
superior to BOA computationally on nondegenerate MOLP
problems.

Of all these variants, it was noted in [32] that, that of
Evans and Steuer [3] is the most popular and successful for
computing all efficient extreme points of the problem.

Apart from MSA and its variants that work in the de-
cision variable space to find the entire set of all efficient
solutions, there are algorithms that work in the objective
space to find the set of nondominated points of the problem.
Prominent among them is Benson’s outer approximation
algorithm [8]. As was noted in [1], the author who presented
an account of decision space based methods proposed an
algorithm for computing the nondominated set in the ob-
jective space of the problem. According to him, his method
is the first of its kind. It was motivated by the observation
that many efficient extreme points map onto the same
nondominated point in the objective space; Decision-
Makers prefer to base their choice of a most preferred point
on the nondominated set rather than the efficient set; and
moreover, the dimension of the objective space is much
smaller than that of the decision space, [12]. %erefore,
finding the nondominated set instead of the efficient set is
also more important for the DM [6]. %e algorithm was
compared with the MSA of Evans and Steuer [3]. Results
show that the average number of nondominated solutions
returned by BOA is less than the average number of efficient
solutions returned by MSA in all the problems considered.
In a similar paper, a further analysis of the objective space
based methods was presented in Benson [9]. Here, it was
shown that the algorithm in [8] also computes the weakly
nondominated points, thereby enhancing the usefulness of
the method as a decision aid [1].
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Before Benson’s proposal, Dauer and Liu [12] suggested
a procedure for obtaining the nondominated points and
edges in the objective space. It was noted that not all efficient
extreme points necessarily map onto the nondominated
points and the procedure analyzes a simpler structure.

In [10], Benson suggested a hybrid method for solving an
MOLP in the objective space. %e method involves parti-
tioning the objective space into simplices that lie in each face
so as to compute the nondominated set. %is idea was earlier
presented in [33]. %e method is quite similar to his algo-
rithm in [8]. %e difference between them is in the way in
which the nondominated extreme points are generated.
While a vertex enumeration approach is utilized in [8], a
simplicial partitioning method is used in the latter [1].

We also noted in [1] that a modification of the algorithm
of Benson [8] was presented in [15]. While in [8], a bisection
approach that requires the solution of more than one LP is
required in one step; here, solving only one LP gives the
desired effect and in the process improves computation time.
Shao and Ehrgott [16] suggested an approximate dual
variant of the algorithm of Benson [8] for generating ap-
proximate nondominated points of the problem. %e pro-
posed method was tested on the beam intensity optimization
problem of radiotherapy treatment planning for which
approximate nondominated points were generated. Nu-
merical results show that the method is faster than solving
the primal problem directly.

Shao and Ehrgott [15] modified the algorithm of Benson
[8] and presented it in explicit form in [31]. %is modified
version solves two LPs in each iteration during the process of
computing the nondominated set. In [34], Löhne introduced
the MATLAB implementation of this modified version
called BENSOLVE-1.2, for generating all the nondominated
extreme points and directions of the problem.

Csirmaz [35] also presented an improved version of the
algorithm of Benson [8] where only one LP and a vertex
enumeration problem is solved in each iteration while in [8],
two steps, as well as two LPs, are required to be solved in
order to determine a unique boundary point and supporting
hyperplane of the image; here, the two steps are merged into
one and solving one LP does both tasks and dramatically
improves computation time. %e algorithm was used to
compute all the nondominated points of the polytope de-
fined by a set of Shannon inequalities on four random
variables so as to map their entropy region [1]. Numerical
results show the applicability of the algorithm to medium
and large instances.

Similarly, Hamel et al. [36] introduced new variants of
the algorithm in [8] that solves only one LP problem in each
iteration. Numerical experiments reveal a reduction in
computation time.

We noted in [1] that Löhne et al. [14] presented an
extension of the primal and dual variants of the algorithm of
Benson [8] to solve convex vector optimization problems
approximately in the objective space.

5. The Multiobjective Simplex Algorithm

%e MSA of Evans and Steuer [3] described in this section
can be found in [7]. We consider this algorithm because of
its popularity (see [32]), and because most of the MSA al-
gorithms discussed earlier are either based on or are variants
of it. It works in the decision variable space to find the entire
set of all efficient solutions.

In an MOLP problem, only one of the following situ-
ations can occur: the problem can be infeasible, meaning
that the feasible set X is empty (X � ∅); the problemmay be
feasible, that is (X≠∅) but may not have efficient solutions,
that is, (XE � ∅); or it is feasible and has efficient solutions,
that is XE ≠∅. %is algorithm handles these situations in
three phases: in the first phase, it finds an initial basic feasible
solution or stop with the conclusion that X � ∅; in the
second phase, it finds an initial efficient basis or stop with the
conclusion that XE � ∅; and, in the final phase, it pivots
among efficient bases to determine all efficient extreme
points of the problem [7].

%e algorithm starts by solving two auxiliary LPs to
determine whether the problem is feasible and to verify that
it has efficient solutions. If the feasible region X and the
efficient set XE are not empty, a weighted sum LP is solved to
determine an initial efficient basis B. Its implementation
stores a list of efficient bases L1 to be processed, a list L2 of
efficient bases for output, and a list of efficient nonbasic
variables NE. An LP test problem is solved to determine
pivots that lead to efficient bases. %e algorithm pivots from
an initial efficient basis to an adjacent efficient basis until the
list L1 of efficient bases to be processed is empty. %e al-
gorithm terminates and returns a list L2 of efficient bases
from where all efficient extreme points are computed.

Before we present the pseudocode of MSA, we first
explain the notation used.

A, b, C: the problem data
L1: list of efficient bases to be processed
L2: list of efficient bases for output
eT � (1, . . . , 1) ∈ Rq

I: the identity matrix of proper order
X: the feasible set
XE: the set of efficient solutions
B: the efficient basis
NE: list of efficient nonbasic variables
N: the set of nonbasic variables
B′: the new basis
A and b: the updated constraint matrix and RHS vector,
respectively
R: the nonbasic part of the reduced cost matrix
rj: a column of R corresponding to the nonbasic var-
iable being tested for efficiency
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5.1. Illustration of MSA. Consider the following MOLP
adapted from [37]:

min f1 � −x1

min f2 � −x2

subject to 6x1 + 10x2 ≤ 60,

x1 ≤ 7,

x2 ≤ 5,

x1, x2 ≥ 0.

(3)

%e efficient solutions found using a MATLAB imple-
mentation of Algorithm 1 are x1 � (7.0, 1.8)T,
x2 � (1.6, 5.0)T, x3 � (1.6, 5.0)T, and x4 � (7.0, 1.8)T, where
x1 � (x1

1, x1
2)

T, . . . , x4 � (x4
1, x4

2)
T ∈ XE. %e algorithm is

prone to generating more efficient solutions due to the way it
operates and due to the fact that MSA may find the same
efficient solutions in more than one iteration, as in this case;
x1 � x4 and x2 � x3 are repetitive of what has already been
found. Solutions x3 and x4 are redundant and would be of
little or no use to the DM.%e feasible region in the decision
variable space is shown in Figure 1.

0
0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

X2

X1

X1

X2

Figure 1: Edge connecting the two efficient points in the decision variable space.

(0) Input: A, b, C: Problemdata
(1) Initialize: Set L1⟵∅, L2⟵∅;

Phase I : solve the LPmin eTz: Ax + Iz � b, x, z≥ 0 . If the optimal value of this LP is nonzero, STOP, X � ∅;
Otherwisex0 is a basic feasible solution of MOLP
Phase II: solve the LPmin uTb + wTCx0: uTA + wTC≥ 0, w≥ e . If it is infeasible,
STOP, XE � ∅;Otherwise(u, w) is an optimal solution; Find an optimal basisB of the LPmin wTCx: Ax � b, x≥ 0 ;
Set L1⟵ B{ }, L2⟵∅.;

(2) while L1 ≠∅
(3) ChooseB ∈ L1, L1⟵ L1\ B{ }, L2⟵ L2 ∪ B{ };
(4) Compute A, b, andR according toB;
(5) NE⟵N;
(6) for all j ∈ N

(7) Solve the LPmax eTv: Ry − rjσ + Iv � 0; y, σ, v≥ 0 .
(8) If this LP is unboundedNE⟵NE\ j ;
(9) for all j ∈ NE

(10) for all i ∈ B

(11) if B′⟵ (B\ i{ })∪ j  is feasible, B′ ∉ L1 ∪ L2 then;
(12) L1⟵ L1 ∪B′;
(13) endif
(14) endfor
(15) endfor
(16) endfor
(17) endwhile
(18) Output: L2: List of efficient bases.

ALGORITHM 1: Multiobjective Simplex Algorithm [7].
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6. The Extended Multiobjective
Simplex Algorithm

As part of the initialization step (line 1 of Algorithm 2), we
have included the set of efficient extreme points XE and that
of nondominated points YN. In the second phase, as the
algorithm finds an initial efficient basis B by solving a
weighted sum LP, the algorithm also finds a corresponding
efficient basic feasible solution and appends it to the set of
efficient solutions (XE← x{ }). %e first nondominated point
is also computed from CTx and appended to the non-
dominated set (YN← CTx ).

As the algorithm iterates, a new efficient basis B′ is ob-
tained after each pivot and the corresponding efficient basic
feasible solution x′ (line 11 of Algorithm 2) is found and added
to the set of efficient solutions XE (line 13). Likewise, the
corresponding nondominated points are also found at each
iteration and added to the nondominated set YN (line 14).%is
continues until the set of efficient bases L1 to be processed is
empty. %e algorithm returns the set of all efficient extreme
points and the corresponding nondominated points (line 20).

Before we present Algorithm 2 as the extended MSA in
pseudocode form, we first state here that the structure of the
algorithm and the used notation remain the same as those in
Algorithm 1. %e additional components are x, x′, XE, and
YN which stand for the efficient basic feasible solution, the
new efficient basic feasible solution, the set of efficient so-
lutions, and the corresponding set of nondominated points
for output.

6.1. Illustration of the Extended MSA. We modified and
extended the MATLAB implementation of Algorithm 1 and
used it to solve problem 3 of Section 5.1.

%e efficient solutions found are x1 � (7.0, 1.8)T,
x2 � (1.6, 5.0)T, and the corresponding nondominated
points are f1 � (−7.0, −1.8)T and f2 � (−1.6, −5.0)T, re-
spectively, where x1 � (x1

1, x1
2)

T, x2 � (x2
1, x2

2)
T ∈ XE, and

f1 � (f1
1, f1

2)
T, f2 � (f2

1, f2
2)

T ∈ YN. Note here that, the
efficient extreme points x1 and x2 and the corresponding
nondominated points f1 and f2 returned are devoid of
redundant points. %e algorithm is designed to avoid
returning redundant nondominated points unlike the
original version. %e feasible region in the decision space is
the same as in Figure 1.

6.2. Limitations of Extended MSA. As it is already known
that the efficiency of the simplex-type algorithm is better
when the problem is nondegenerate [30]. Like other sim-
plex-type algorithms, the extended MSA or EMSA is not an
exception. %e extended MSA may exhibit one or more
redundancies whenever the problem is degenerate. %e first
is that EMSA may find the same efficient solutions in more
than one iteration or find different efficient solutions that
leads to the same nondominated point. %is can be seen
clearly in Table 1, as the number of efficient solutions
returned by EMSA is the same as that returned by the
original MSA, though this is corrected in the computation of
the corresponding nondominated points as the

(0) Input: A, b, C(data of MOLP problem)

(1) Initialize: set L1⟵∅, L2⟵∅, XE⟵∅, YN⟵∅;
Phase I: solve the LP min eTz: Ax + Iz � b, x, z≥ 0 . If the optimal value of LP is not zero; STOP; X � ∅. Otherwise, x0 is a

basic feasible solution of MOLP.
Phase II : solve the LP min uTb + wTCx0: uTA + wTC≥ 0, w≥ e . If it is infeasible STOP, XE � ∅. Otherwise, (u, w) is an

optimal solution. Find optimal basis B and basic feasible solution x of LP min wTCx: Ax � b, x≥ 0 ;
Set L1⟵ B{ }, L2⟵∅, XE⟵ x{ }, YN⟵ CTx .

(2) while L1 ≠∅ do
(3) ChooseB ∈ L1, L1⟵ L1\ B{ }, L2⟵ L2 ∪ B{ };
(4) Compute A, b, andR according toB;
(5) NE⟵N;
(6) for all j ∈ N

(7) Solve the LPmax eTv: Rz− rjσ + Iv � 0; z, σ, v≥ 0}.
(8) If this LP is unboundedNE⟵NE\ j ;
(9) for all j ∈ NE

(10) for all i ∈ B

(11) if B′⟵ (B\ i{ })∪ j  is feasible, B′ ∉ L1 ∪ L2, letx′ be its basic solution; then
(12) L1⟵ L1 ∪B′;
(13) XE⟵XE ∪ x′ ;
(14) YN⟵YN ∪ CTx′ ;
(15) endif
(16) endfor
(17) endfor
(18) endfor
(19) endwhile
(20) Output:XE: the efficient set

YN: the non dominated set.

ALGORITHM 2: Extended Multiobjective Simplex Algorithm.
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Table 1: Comparative results for individual problem.

Algorithm MSA EMSA BOA
Prob. Origin n m q NES NES NNP NNP
1 Ehrgott, 2006 3 3 3 5 5 3 3
2 Zeleny, 1982 2 2 2 5 5 3 3
3 ” 2 4 2 16 16 2 2
4 ” 2 4 3 36 36 3 3
5 ” 2 6 2 64 64 3 3
6 ” 3 3 3 15 15 5 5
7 ” 5 3 3 6 6 4 4
8 ” 5 2 2 1 1 1 1
9 ” 6 4 2 36 36 1 1
10 ” 7 4 3 36 36 5 5
11 iMOLPe 2 3 2 8 8 4 3
12 ” 3 3 4 12 12 3 3
13 ” 3 5 3 88 88 10 10
14 ” 3 3 3 19 19 7 7
15 ” 4 3 3 18 18 8 8
16 ” 4 2 3 8 8 6 6
17 ” 4 4 3 44 44 11 11
18 ” 3 3 3 37 37 5 5
19 ” 15 10 2 98 98 11 11
20 ” 15 10 3 254 254 28 37
21 Steuer, 1986 10 15 3 50 50 15 14
22 ” 5 5 2 28 28 5 5
23 ” 4 4 3 10 10 3 3
24 ” 5 5 4 154 154 14 14
25 ” 10 8 4 2096 2096 51 63
26 ” 5 4 3 26 26 9 9
27 ” 6 8 4 560 560 13 13
28 ” 7 6 4 48 48 12 36
29 ” 7 6 4 152 152 9 9
30 ” 8 8 6 1080 1080 56 56
31 ” 8 8 3 208 208 5 5
32 ” 8 8 3 64 64 1 1
33 ” 5 5 4 74 74 12 12
34 ” 6 6 3 304 304 17 17
35 ” 5 5 4 202 202 9 9
36 ” 10 10 4 3,072 3,072 6 6
37 ” 8 8 3 608 608 13 13
38 ” 6 7 4 440 440 25 21
39 ” 12 16 4 ∗ — — 601
40 ” 10 14 5 ∗ — — 132
41 Steuer, 1986 7 6 3 40 40 3 3
42 ” 7 7 3 56 56 7 7
43 ” 6 6 4 128 128 5 5
44 ” 6 6 4 168 168 10 10
45 ” 10 14 5 ∗ — — 471
46 ” 10 14 5 ∗ — — 128
47 ” 7 7 3 60 60 6 6
48 Bensolve-1.2 100 101 2 ∗ — — 32
49 Bensolve-2.0 5 31 5 ∗ — — 22
50 ” 36 36 2 82 82 31 8
51 ” 64 64 2 292 292 57 14
52 ” 100 100 2 1102 1102 99 20
53 ” 343 343 3 x — — 1,368
54 MOPLIB 30 21 12 ∗ — — 1
55 ” 53 226 3 561 561 552 552
56 ” 53 221 3 ∗ — — 2552
(∗) Aborted after 3 days of running time. (x) Out of memory.
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nondominated points are sorted after they are generated,
leading to the same number of nondominated points
returned by EMSA with that returned by BOA. In other
words, EMSA may find redundant efficient solutions but the
nondominated points found are devoid of redundant ones.
Secondly, EMSA may also be sensitive to the number of
nondominated points in a particular problem as can also be
seen in the result table, as larger instances with more than
four objective functions tend to take more than 3 days to
return the required nondominated points. We note here that
some of these problems most especially those from Bensolve
and MOPLIB [38] are numerically ill-posed and highly
challenging MOLP instances with difficult structures.

7. Scalarization Techniques

We now present two basic scalarization approaches that play
an important part in the implementation of BOA as was
discussed in [1]. %ese approaches are weighted sum sca-
larization and scalarization by a reference variable. As
contained in [31], scalarization is one of the most important
methods used in MOLP.

In the weighted sum method, a new objective function
based on the q-linear objectives is obtained by assigning
nonnegative weights wi ∈ Rq to each of the objectives. %e
weighted sum of the objectives is 

q

i�1 wicix � wTCx. For
each vector w ∈ Rq, w≥ 0, we obtain a scalar linear program

min w
T

Cx

subject to Ax≥ b
(4)

%eweights are usually normalized so that eTw � 1, with
eT � (1, . . . , 1). %e dual of (4) is

max b
T
u

subject to
A

T
u � C

T
w,

u≥ 0.

⎧⎨

⎩
(5)

In themethod of scalarization by a reference variable, the
q objectives are associated with a common reference variable
z and the i-th objective is restrained from being larger than
the reference variable and a fixed real number yi, that is,
c1x≤y1 + z, c2x≤y2 + z, . . . , cqx≤yq + z.

%e reference variable z is the objective function that has
to be minimized. By setting e � (1, . . . , 1)T, we obtain for
each vector y ∈ Rq the scalar linear program:

min z

subject to
Ax≥ b

Cx − z.e≤y


(6)

%e dual program is

max b
T
u − y

T
w

subject to
A

T
u − C

T
w � 0

e
T
w � 1

(u, w)≥ 0

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

as in [31]. %e above two scalarization techniques are
fundamental for the implementation of BOA which is
discussed in Section 8 [1].

8. Benson’s Outer Approximation Algorithm

Wehereby present a description of BOA aswe did earlier in [1].
%is version of BOA is due to [15]. It can be found in [31]. It
works in the objective space to compute the nondominated set
and directions of the problem. %e algorithm is regarded as a
primal-dualmethod as it also solves the dual problem. But here,
our interest is only in the solution of the primal problem. %e
algorithm first constructs an initial polyhedron Y0 (outer
approximation) containing the upper image Y in the objective
space and an interior point p of the image is determined by
solving equation (4).%e inequality representation of Y0 is also
determined by solving equation (5). %e algorithm then
constructs a sequence of decreasing polytopes
Y0 ⊇Y1 ⊇ · · · ⊇Yk � Y. %e vertices of each polytope Yk and
their inequality representation are stored in each iteration.
%en, for each vertex v of the polytope, the algorithm confirms
if it is on the boundary of Y. If the vertices are on the boundary
of Y, the problem is solved. %e outer vertices of Y are among
the vertices of Yk. Otherwise, for any vertex v of Yk that is not
on the boundary of Y, the algorithm connects this vertex to the
interior point p and finds the intersection y of this line with the
boundary of Y by solving equation (6). %en, a supporting
hyperplane adjacent toy is constructed by solving equation (7).
%is hyperplane is added to Yk to provide a smaller approx-
imation. %e algorithm is repeated in the same manner until
the vertices of Yk coincide with the boundary of Y. %e al-
gorithm returns the set of vertices on the boundary of Y as the
nondominated points Y and directions Yh of the problem.

%e used notation in the pseudocode of BOA is pre-
sented below.

A, b, C: problem data
Ph: the homogeneous problem
D∗h: the homogeneous dual problem T
h: the solution of the homogeneous dual problem
p: an interior point
T: a set of solutions of the dual problem
Yd

k : the inequality representation of the current
polytope
k: the iteration counter
Y

p

k : the representation by vertices
(y, z): an optimal solution to P2(y)
δ(0 < δ < 1): a unique value that determines the in-
tersection or boundary point y
R(v): the LP that finds the unique value δ
%e command solve: solves an LP
vert(): function that returns the vertices of a polytope
Yk
Y: the set of nondominated vertices
(Yh): the set of extreme directions [1]
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8.1. Illustration of BOA. We consider again problem (3) of
Section 5.1. %e nondominated points found using a
MATLAB implementation of Algorithm 3 are
f1 � (−7.0, −1.8)T and f2 � (−1.6, −5.0)T where f1 and
f2 ∈ YN. %ese points are shown in Figure 2.

9. Experimental Results

In this section, we provide numerical results to study the
number of efficient solutions (NES) and to compare the
number of nondominated points (NNP) returned by Al-
gorithms 2 and 3. Table 1 shows the numerical results for a
collection of 56 problems from the literature; these
problems range from small to moderate size MOLP in-
stances and a few large instances. Problem 1 is taken from
Ehrgott [7]. Problems 2 to 10 were taken from Zeleny [39].
Problems 11 to 20 are test problems from the interactive
MOLP explorer (iMOLPe) of Alves et al. [40]. Problems 21
to 47 are taken from Steuer [26]. Problem 48 is a test
problem in Bensolve-1.2 of Löhne [34], while problems 49
and 53 are test problems in Bensolve-2.0 of Löhne and
Weißing [41]. Problems 50 to 52 are obtained using a script
in Bensolve-2.0 of Löhne and Weißing [41] that is used to
generate problem 53 with the same number of variables and
constraints. Finally, problems 54 to 56 are test problems in
MOPLIB [38] which stands for multiobjective problem
library.

Problem 48 is such that the constraint matrix is sparse
while the objective matrix is dense. All the components of
the RHS vector are ones except for 200 at the end as the
largest entry. Problem 49 has a dense constraint matrix with
an identity matrix of order n as its objective matrix where n is
the number of variables in the problem.All the components
of the RHS vectors are zeros except for the first entry which
is one (1) as the only nonzero component it is a degenerate
problem. Problems 50 to 53 have dense objective matrices
with identity matrices of order n as their constraint matrices
where n is also the number of variables in the respective
problem. All the components of the RHS vectors are ones.

(0) Input: A, b, C: Problemdata
a solution( 0{ }, Y

h
)toPh;

a solutionT
h toD∗h;

(1) Initialize: p⟵P(solve(P1(0))) + e;
(2) T⟵ (solve(D1(w)), w)|(u, w) ∈ T

h
 ;

(3) while z � 0 do
(4) Yd

k⟵ D∗(u, w)|(u, w) ∈ T ;
(5) Y

p

k⟵ vert(Yd);
(6) Y⟵∅;
(7) for i � 1 to |Yp| do
(8) v⟵Y

p

k [i];
(9) (y, z)⟵ solve(P2(y));
(10) Y⟵Y∪ y ;
(11) if z≠ 0 then
(12) (x, δ)⟵ solve(R(v)), (0< δ < 1);
(13) y⟵ δv + (1 − δ)p;
(14) (u, w)⟵ solve(D2(y));
(15) T⟵T∪ (u, w){ };
(16) endif;
(17) endfor;
(18) endwhile
(19) Output:(Y, Yh): nondominated set and directions;

T: a solution to dual.

ALGORITHM 3: Benson’s Outer Approximation Algorithm [31].
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Figure 2: %e edge joining the two nondominated points in the
objective space [1].

Advances in Operations Research 9



Note that problem 54 is also highly degenerate. Its structure
is such that the constraint and objective matrices are sparse
while all the components of the RHS vector are zeros except
for a one (1) as the only nonzero entry. Finally, problems 55
and 56 have sparse constraints and objective matrices with
dense RHS vectors.

Results for Algorithms 1 were obtained using a MATLAB
implementation of the algorithm provided by Rudloff et al.
[30]. We modified and extended Algorithm 1 of Evans and
Steuer [3] into Algorithm 2 or EMSA, the Extended Multi-
objective Simplex Algorithm introduced here. We have
implemented it in # in the same way as in [30] and experi-
mented with it on a set of test problems. We also used a
MATLAB implementation of Algorithm 3 (BOA), known as
Bensolve-1.2 [34]. %e current version, Bensolve-2.0 of Löhne
and Weißing [41] is implemented in the C programming
language. We employed Bensolve-1.2 of Löhne [34] which is
implemented inMATLAB to test the algorithms with the same
tools and for a meaningful comparison. Note that the current
version returns the same number of nondominated points as
Bensolve-1.2 but has improved running time as noted in [42].
All algorithms were executed on an Intel Core i5–2500 CPU at
3.30GHz with 16.0GB RAM. In all tests, n is the number of
variables, m the number of constraints, and q the number of
objectives. Algorithm 1 is MSA of Evans and Steuer [3], Al-
gorithm 2 its extended version, and Algorithm 3 is BOA as
presented in [15]. We recorded the number of efficient solu-
tions (NES) returned by MSA, the number of nondominated
points (NNP) returned by EMSA, and the NNP returned by
BOA for each problem.

As can be seen in Table 1, the NNP returned by EMSA is
the same as that returned by BOA for most of the problems
considered. %is is due to the fact that EMSA is designed to
avoid returning redundant nondominated points. %is
feature is also reported in [8] that BOA avoids redundant
calculations of points that would be of little or no use to the
DM. %is makes EMSA compare favourably in terms of the
NNP it returns. %ough, we noticed a few differences in the
NNP returned for some of the problems considered. %ese
differences occur when some of the nondominated extreme
points computed by BOA are repeated. We also noticed a
significant reduction in the NNP returned by EMSA com-
pared to the NES returned by MSA. %is is due to the fact
that MSA returns different efficient extreme points that yield
the same nondominated points.

It was also observed that the simplex-type algorithms could
not produce results for problems 39, 40, 45, 46, 48, and 56
despite the long running time allowed (3 days); they were
aborted. As we noted in [1], the fact that some problems were
aborted after 3 days of running time does not necessarily mean
that the algorithms cannot solve these problems; if allowed to
run further, they could potentially return a huge number of
efficient extreme points or nondominated points, or run out of
memorywhichwould indicate that the total number of efficient
extreme points or nondominated points has exceeded the
MATLAB storage capacity of the machine used.

It was also found that for these problems where EMSA
could not return a solution after running for three (3) days,
these problems may have a huge number of efficient

solutions or nondominated points as can be seen from the
nondominated extreme points computed by BOA for these
problems (see problems 53 and 56) which shows the sen-
sitivity of EMSA to the number of nondominated extreme
points in a given problem. EMSA may also find it difficult to
return a solution for the degenerate problems (problems 49
and 54) as already mentioned in Section 6.2 due to cycling;
that is, one may remain at the same vertex of the feasible
region for many iterations or return the same efficient ex-
treme points in more than one iteration. %ough this is not
the case when the algorithm is computing the nondominated
points, as the nondominated points are sorted after com-
putation. %us, leading to a nondominated set that is devoid
of redundant ones.

10. Conclusion

Wehave reviewed the relevant literature onMSA and BOA [8].
We have also extended the MSA of Evans and Steuer [3] to
compute the entire set of all nondominated extreme points and
illustrated the algorithms on a small MOLP instance. We then
proceeded to compare the total number of nondominated
extreme points computed by BOA and EMSA. It was observed
that the total number of nondominated extreme points
computed by EMSA is the same as that returned by BOA for
most of the problems considered.

Data Availability

%e authors did not use any secondary data of any kind; they
have used a collection of existing test problems in their
manuscript whose origins have been clearly stated in Section
9 for the purpose of reproducibility. %e sources of all the
test instances used are shown in the Experimental Results
section.

Conflicts of Interest

%e authors declare that they have no conflicts of interest.

Acknowledgments

%e authors are grateful to ESRC (Grant ES/L011859/1) for
partially funding this research.

References

[1] P. B. Nyiam and A. Salhi, “A comparative study of two key
algorithms in multiple objective linear programming,” Jour-
nal of Algorithms & Computational Technology, vol. 13, 2019.

[2] H. A. Eiselt and C.-L. Sandblom, Linear Programming and its
Applications, Springer Science & Business Media, Berlin,
Germany, 2007.

[3] J. P. Evans and R. E. Steuer, “A revised simplex method for
linear multiple objective programs,” Mathematical Pro-
gramming, vol. 5, no. 1, pp. 54–72, 1973.

[4] J. Philip, “Algorithms for the vector maximization problem,”
Mathematical Programming, vol. 2, no. 1, pp. 207–229, 1972.

[5] M. Zeleny, Linear Multiobjective Programming, Springer-
Verlag, Berlin, Germany, 1974.

10 Advances in Operations Research



[6] M. Ehrgott, L. Shao, and A. Schöbel, “An approximation
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[31] A. Löhne, Vector Optimization with Infimum and Supremum,
Springer Science & Business Media, Berlin, Germany, 2011.

[32] S. Murray and R. E. Steuer, “A correction to the connect-
edness of the Evans-Steuer algorithm of multiple objective
linear programming,” Foundations of Computing and Deci-
sion Sciences, vol. 30, no. 4, pp. 351–360, 2005.

[33] T. B. Vu, “A finite algorithm for minimizing a concave
function under linear constraints and its applications,” in
Proceedings of IFIPWorking Conference on Recent Advances in
System Modelling and Optimization, Hanoi, Vietnam, 1983.
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