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Abstract 

This study evaluates the benefits of integrating return forecasts from a variety of machine learning and 

forecast combination methods into an out-of-sample asset allocation framework. The economic 

evaluation of the forecasts shows that model complexity translates to improved results in the majority 

of cases considered, with shrinkage methods and shallow neural networks generating the highest 

individual performance. Overall, an investor would consistently realize superior out-of-sample gains by 

incorporating forecast combinations of machine learning models in the portfolio formation process. 
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1. Introduction 

The allocation of wealth among risky assets is one of the most important problems faced by investors. 

Investors’ objectives and constraints along with estimating expected returns plays a crucial role in 

constructing optimal portfolios. Since forecasting returns is quite challenging, the historical average is 

often used as an input in portfolio optimization. However, existing literature shows that out-of-sample 

return predictability adds economic value to asset allocation. This study sets out to examine whether 

return forecasts generated by linear and nonlinear machine learning methods and their combinations 

benefit portfolios consisting of stocks, bonds and commodities, when compared to simple forecast 

combinations, the equal-weighted portfolio or portfolios based on the historical average. 

Our study contributes primarily to two strands of literature. First, our study adds to the literature of asset 

allocation and portfolio formation that exploits the predictability of asset returns. There exists a rich 

literature in finance, such as DeMiguel, Garlappi and Uppal (2009), Duchin and Levy (2009), Kritzman, 

Page and Turkington (2010), Kirby and Ostdiek (2012), Bianchi and Guidolin (2014) and Gao and 

Nardari (2018), who evaluate the out-of-sample performance of asset portfolios relative to simple 

benchmarks such as the equal-weighted portfolio. Specifically, we relate to the literature that 

incorporates machine learning in an asset allocation framework (see Callot, Caner, Onder, and Ulasan, 

2019; D'Hondt, De Winne, Ghysels and Raymond, 2020). Our contribution to this strand of literature 

arises from investigating the benefits of integrating return forecasts from machine learning 

methodologies into an out-of-sample portfolio optimization framework, by comparing the alternative 

portfolios to the widely used benchmarks of the equal-weighted portfolio and portfolios based on the 

historical average forecast.  

Second, it contributes to the growing literature that uses machine learning methodologies to forecast 

economic and financial variables. The methodologies we employ have been applied in the context of 

macroeconomic forecasting using a large number of predictors. Specifically, studies using shrinkage 

methods to examine the predictability of key macroeconomic indicators include Bai and Ng (2008), De 

Mol, Giannone and Reichlin (2008) and Stock and Watson (2012), Carrasco and Rossi (2016), 

Kotchoni, Leroux and Stevanovic (2019) and Babii, Ghysels and Striaukas (2019). The advantages of 

machine learning in the context of asset pricing and return predictability have been explored among 
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others by Rapach, Strauss and Zhou (2013), Neely, Rapach, Tu and Zhou (2014), Lima and Meng 

(2017), Kelly, Pruitt and Su (2019), Rapach, Strauss, Tu and Zhou (2019) and Kozak (2019). Gu, Kelly 

and Xiu (2020), Bianchi, Büchner and Tamoni (2020) and Kim and Swanson (2014) provide a 

comprehensive comparison of the predictive accuracy of machine learning methodologies for the equity 

premium, bond risk premia and key macroeconomic variables, respectively. Our contribution to this 

literature stems from exploring the economic value of a wide range of machine learning methods when 

used to model stock, bond and commodity returns used as inputs to asset allocation. 

We employ a variety of machine learning methods along with forecast combination schemes to generate 

the return forecasts for individual stocks, bonds and commodities. Specifically, we consider shrinkage 

methods with a wide range of convex and non-convex penalties, supervised and unsupervised 

dimensionality reduction techniques, ensembles of regression trees, support vector machines, artificial 

neural networks and methods that combine forecasts not only from single predictor models, but also 

those from the machine learning approaches.  

To explore the potential benefits of using the machine learning methods in an asset allocation setting, 

we construct portfolios based on the return forecasts generated from the multivariate prediction models.  

We compare the out-of-sample performance of portfolios utilizing machine learning forecasts to that of 

the equal-weighed portfolio and a mean-variance portfolio based on the historical average forecast. The 

analysis is conducted for a conservative and an aggressive investor and for different levels of leverage. 

Additionally, we conduct robustness analysis and investigate how alternative estimates of the 

covariance matrix affect the performance of the portfolios. We explore the performance of the portfolios 

in terms of the average characteristics of the weight vectors, variable importance and evaluate the 

models for the full sample and around NBER-dated recessions and expansions. Finally, we examine the 

performance of the portfolios incorporating transaction costs based on a penalized mean-variance 

objective function that dampens the effects of transaction costs to portfolio returns.  

Overall, our study shows that using machine learning techniques can be beneficial for the out-of-sample 

portfolio performance. Our asset allocation results show that the majority of the portfolios outperform 

the equal-weighted and historical average portfolio benchmarks. When comparing portfolios across 

different combinations of weight constraints, our findings indicate that allocations that allow leverage 
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further improve the performance of portfolios based on machine learning methods and that machine 

learning methods benefit more the portfolios of an aggressive investor. However, we observe that mean-

variance portfolios exhibit similar out-of-sample performance across different specifications of the 

covariance matrix. Furthermore, we find that portfolios based on machine learning consist primarily of 

stocks and commodities, with bonds being a small part of portfolios belonging to a conservative 

investor. For the equal-weighted and historical average and most of the simple forecast combination 

portfolios we find higher Sharpe ratios during expansionary periods. The pattern is similar for most of 

the dimensionality reduction and non-linear machine learning methods, while for shrinkage methods 

and machine learning forecast combinations the pattern is reversed. Finally, when introducing 

transaction costs, the performance of the portfolios deteriorates due to the high degree of turnover, even 

when using the modified mean-variance objective function. However, portfolios based on forecast 

combinations of machine learning models tend to yield the best performance.   

The remainder of this study is organized as follows. Section 2 describes the methods used to generate 

the out-of-sample return forecasts used in portfolio optimization. Section 3 provides details on the data, 

sample splitting and hyperparameter tuning. Section 4 presents the asset allocation framework and 

examines the economic value of the forecasts, Section 5 investigates further the portfolio performance, 

while Section 6 concludes. 

 

2. Return Prediction Models 

Let 𝑟𝑡 denote the return of an asset at time 𝑡 and 𝐫 = (𝑟1, 𝑟2, … , 𝑟𝑇) the 𝑇 × 1 vector of asset returns. 

We express by 𝑥𝑖,𝑡−1 the 𝑖th predictor at time 𝑡 − 1, 𝐱𝑡−1 = (𝑥1,𝑡−1, 𝑥2,𝑡−1, … , 𝑥𝑝,𝑡−1)
′
 is the 1 × 𝑝 

vector of 𝑝 candidate predictors and 𝐗 = (𝐱0, 𝐱1, … , 𝐱𝑇−1) the 𝑇 × 𝑝 matrix of predictors. The equation 

we use to model an asset’s return takes the following general form  

𝑟𝑡  = 𝑓(𝐱𝑡−1) + 𝜀𝑡 (1) 

Once the model 𝑓 has been estimated, the expected return of an asset at time 𝑡 + 1 using data available 

through 𝑡 is 𝐸𝑡(𝑟𝑡+1) = 𝑓(𝐱𝑡). This prediction can then be used in asset allocation.  
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A commonly used method is the classic normal linear regression model, estimated by ordinary least 

squares (OLS). In this case the form to approximate 𝑓 is the following linear function 

𝑓𝛉(𝐗) = 𝛼 + 𝐗𝛃 (2) 

where 𝛼 is the intercept and 𝛃 = (𝛽1, 𝛽2, … , 𝛽𝑝) is the coefficient vector. The estimates of the 

parameters 𝛉 = (𝛼, 𝛃) are obtained by minimizing the residual sum of squares: 

argmin
𝛉

ℒ(𝛉) = argmin
𝛉

‖𝐫 − 𝑓𝛉(𝐗)‖
2 (3) 

where ℒ(⋅) indicates the least squares loss and ‖∙‖ denotes the 𝑙2 norm. First, we consider the kitchen 

sink (KS) model, which is a multivariate prediction model utilizing all 𝑝 predictors. The forecast at 𝑡 +

1 of a regression with 𝑝 predictors is given by 𝑟̂𝑡+1 = 𝛼̂ + 𝐱𝑡𝛃̂.  

It is well known that this model tends to have poor forecasting performance, as the estimated parameters 

have low bias but high variance. This problem becomes more acute as the number of predictors 

increases. Another simple model we consider is the historical average (HA), where the forecast is 

estimated as 𝑟̂𝑡+1 = (1 𝑡⁄ )∑ 𝑟𝑠
𝑡
𝑠=1 . 

In this study we focus on the evaluation of machine learning methods for estimating 𝑓 in the context of 

mean-variance portfolio optimization. To this end, we consider alternative models that belong to 

shrinkage, dimensionality reduction, non-linear machine learning methods and forecast combinations 

that combine the estimates of simple bivariate prediction models or those of machine learning models.  

2.1. Shrinkage Methods 

In general, shrinkage methods regularize the coefficient estimates and involve fitting the model in all 𝑝 

predictors. These procedures shrink the coefficients towards zero relative to the OLS estimates and aim 

at significantly reducing the respective coefficient variances. Shrinkage methods can also perform 

variable selection depending on the type of regularization. A shrinkage method is similar to the simple 

linear model, in that it considers only the baseline, untransformed predictors, however, it modifies the 

least squares problem by adding one additional term in the loss function. In the most general form, a 

shrinkage method includes a penalty term in the loss function: 
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argmin
𝛉

[ℒ(𝛉) + 𝒫(𝛃; ⋅)] , where 𝒫(𝛃; ⋅) =∑𝒫(𝛽𝑖; ⋅)

𝑝

𝑖=1

 (4) 

There are several choices for the penalty function 𝒫(⋅).1 We consider the shrinkage methods with the 

following penalties: ridge, lasso, elastic net, adaptive lasso, bridge, smoothly clipped absolute deviation, 

minimax concave penalty and smooth integration of counting and absolute deviation. 

The first set of shrinkage methods are all based on convex penalties that can be derived by the following 

penalty function: 

𝒫(𝛽𝑖; 𝜆; 𝛾; 𝑎) = 𝜆𝑤̂𝑖[𝛾|𝛽𝑖| + (1 − 𝛾)𝛽𝑖
2], with 𝑤̂𝑖 =

1

|𝛽̂𝑖|
𝑎 (5) 

where 𝜆 > 0 is a tuning parameter, which is determined separately and controls the amount of shrinkage 

and 𝛾 is a hyperparameter that controls the trade-off between 𝑙1 and 𝑙2 regularization. The parameter 

𝑤̂𝑖 is the weight corresponding to coefficient |𝛽𝑖|, 𝛽̂𝑖 is the OLS estimate and 𝑎 ≥ 0 is a hyperparameter 

that controls the strength of the weight.  

When 𝑎 = 0 and 𝛾 = 0 then the above function becomes ridge regression (Hoerl and Kennard, 1970) 

that shrinks the coefficients towards zero and when 𝑎 = 0 and 𝛾 = 1 it yields the least absolute 

shrinkage and selection operator (lasso), introduced by Tibshirani (1996), which allows for both 

shrinkage and variable selection, by setting some of the coefficients equal to zero. The elastic net (EN), 

proposed by Zou and Hastie (2005), combines both 𝑙1 and 𝑙2 terms in the penalty, thus simultaneously 

performing continuous shrinkage, automatic variable selection and can also select groups of correlated 

variables. The penalty produces the EN solution when 𝑎 = 0 and 𝛾 ∈ (0,1). The adaptive lasso 

(ALasso), developed by Zou (2006), solves the drawback of the original lasso, which is that it does not 

necessarily satisfy the oracle properties (Fan and Li, 2001). This is achieved by modifying the lasso to 

include adaptive weights that penalize individual coefficients less severely. The adaptive lasso solution 

is derived by setting 𝑎 > 0 and 𝛾 = 1.  

                                                           
1 Note that the intercept, 𝛼, is not included in the penalty term. The penalty is applied to the coefficient vector 𝛃 

that measures the association of each predictor with the asset returns and not the intercept, which is a measure of 

the mean value of the asset returns when, 𝐱1 = 𝐱2 = ⋯ = 𝐱𝑝 = 0. Penalization on the intercept is not typically 

considered, since it would make the optimization procedure dependent on the origin chosen for the asset returns; 

i.e. adding a constant to each observation of the asset returns, would not simply result in a shift of the predictions 

by the same amount. 
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The convex penalties described above are combinations of 𝑙1 and 𝑙2 terms that often select models that 

are overly dense (Fan and Li, 2001). It is typical in such situations to turn to greedier methods such as 

those that employ non-convex penalties that include an 𝑙0 term, which is typically associated to best-

subsets selection and penalizes the number of non-zero coefficients in the model. These penalties 

achieve sparser solutions for the same or improved prediction accuracy and enjoy superior variable-

selection properties.  

Bridge regression developed by Frank and Friedman (1993) and Friedman (2012), has a penalty term 

based on the 𝑙𝛾 norm and is given by 

𝒫(𝛽𝑖; 𝜆; 𝛾) = 𝜆|𝛽𝑖|
𝛾 (6) 

where 𝜆 > 0 and 𝛾 ≥ 0 are the two tuning parameters. The bridge penalty term for 0 ≤ 𝛾 ≤ 2 represents 

all the penalties between ridge regression and best-subsets selection. When using the squared error loss 

it includes ridge (𝛾 = 2), the lasso (𝛾 = 1) and best-subsets (𝛾 = 0), which produces the sparsest 

solutions by forcing many coefficients to be equal to zero and applies no shrinkage to the non-zero 

coefficients. For 𝛾 > 1 all coefficients are strictly non-zero and all penalties in the power family are 

convex, while for 𝛾 < 1 the penalties are non-convex. 

The smoothly clipped absolute deviation (SCAD), proposed by Fan and Li (2001), is a non-convex 

penalty function given by 

𝒫(𝛽𝑖; 𝜆; 𝛾) =

{
 
 

 
 

𝜆|𝛽𝑖|,                               if |𝛽𝑖| ≤ 𝜆

2𝛾𝜆|𝛽𝑖| − |𝛽𝑖|
2 − 𝜆2

2(𝛾 − 1)
,             if 𝜆 < |𝛽𝑖| ≤ 𝛾𝜆

𝜆2(𝛾 + 1)

2
,                         if |𝛽𝑖| > 𝛾𝜆

 

(7) 

for 𝛾 > 2. SCAD coincides with the lasso until |𝛽𝑖| = 𝜆, then smoothly transitions to a quadratic 

function until |𝛽𝑖| = 𝛾𝜆 and then it remains constant for all |𝛽𝑖| > 𝛾𝜆. For small coefficients, the SCAD 

penalty has similar penalization rate as the lasso but leaves large coefficients not excessively penalized.  

The minimax concave penalty (MCP), developed by Zhang (2010), is defined by 

𝒫(𝛽𝑖; 𝜆; 𝛾) =

{
 
 

 
 𝜆|𝛽𝑖| −

|𝛽𝑖|
2

2𝛾
,   if |𝛽𝑖| ≤ 𝜆𝛾

𝛾𝜆2

2
,                    if |𝛽𝑖| > 𝜆𝛾

 

(8) 
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for each value of 𝜆 > 0 and 𝛾 > 1, there is a continuum of penalties and threshold operators varying 

from hard thresholding (𝛾 → 1 +) to soft thresholding (𝛾 → ∞). MCP starts with the same rate of 

penalization as the lasso but smoothly relaxes the penalization rate to zero as the absolute value of the 

coefficient increases. Furthermore, MCP relaxes the penalization rate immediately, compared to SCAD, 

where the rate remains flat for a while before decreasing. 

Finally, the smooth integration of counting and absolute deviation (SICA) penalty (Lv and Fan, 2009) 

takes the form 

𝒫(𝛽𝑖; 𝜆; 𝛾) = 𝜆
(𝛾 + 1)|𝛽𝑖|

𝛾 + |𝛽𝑖|
 

(9) 

with 𝜆 > 0  and a small shape parameter 𝛾 > 0. SICA is another non-convex regularization method 

which is a combination between the 𝑙0 and 𝑙1 penalties and therefore gives sparse solutions. For smaller 

values of 𝛾, SICA yields results closer to the best-subsets selection, while for larger values of 𝛾 it is 

closer to the lasso.2 

2.2. Dimensionality Reduction Methods 

The next set of models incorporates the information of a large set of economic variables in a predictive 

regression framework using latent factors, which are estimated either in a supervised way (using 

information in both 𝐫 and 𝐗) or an unsupervised way (using information only in 𝐗). The function 𝑓 

takes a similar form to equation (2) 

𝑓(𝐗) = 𝛼 + (𝐗𝐀)𝛃 = 𝛼 + 𝐙𝛃 (10) 

where 𝐀 = (𝛂1, 𝛂2, … , 𝛂𝐾) is a 𝑝 × 𝐾 matrix of weights, 𝛃 = (𝛽1, 𝛽2, … , 𝛽𝐾) is the coefficient vector, 

𝐙 = (𝐳0, 𝐳1, … , 𝐳𝑇−1) is a 𝑇 × 𝐾 matrix of latent factors, with 𝐳𝑡−1 = (𝑧1,𝑡−1, 𝑧2,𝑡−1, … , 𝑧𝐾,𝑡−1)
′
 and 

𝐾 ≪ 𝑝. The latent factor models we use differ based on how the matrix 𝐀 is derived. 

Partial least squares (PLS), introduced by Wold (1966) and more recently by Kelly and Pruitt (2015), 

identifies the features in a supervised way. Specifically, PLS decomposes the matrix of predictors 𝐗 

                                                           
2 For all penalized methods, we choose 𝜆 ∈ [10−3, 103]. For the elastic net, 𝛾 ∈ [0.1,0.9] so that the solutions 

differ from those of ridge or the lasso, while for the adaptive lasso 𝑎 ∈ [0.1,2]. For the bridge penalty 𝛾 ∈
[0.1,1.9], excluding 𝛾 = 1, so that the ridge and lasso solutions are not included. For SCAD, 𝛾 ∈ [3.7,10], 3.7 

being the recommended value in Fan and Li (2001). For MCP, 𝛾 ∈ [1.5,100], while for SICA we used the values, 

𝛾 = {10−2, 10−1}. 
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and the zero-mean vector of asset returns 𝐫 into the form: 𝐗 = 𝐙𝐏′ + 𝐄 and 𝐫 = 𝐙𝐪′ + 𝒆, where the 

matrix 𝐏 and the vector 𝐪 are the loadings, while 𝐄 and 𝒆 are the residuals. In order to find the PLS 

component matrix 𝐙, the columns of the weight matrix 𝐀 need to be obtained through successive 

optimization problems. The criterion to find the 𝑘th estimated weight vector 𝒂𝑘 is 

argmax
𝒂

[𝛂′(𝐗′𝐫𝐫′𝐗)𝒂]    s.t.   𝛂′𝛂 = 1,   𝛂′𝚺XX𝛂 = 0 (11) 

where 𝚺XX is the sample covariance of 𝐗. The version of PLS we employ is SIMPLS proposed by de 

Jong (1993). If 𝐾 = 𝑝 then PLS would give a solution equivalent to the OLS estimates.  

Sparse partial least squares (SPLS) is an extension of PLS that imposes the 𝑙1 penalty to promote 

sparsity onto a surrogate weight vector 𝒄 instead of the original weight vector 𝒂, while keeping 𝒂 and 

𝒄 close to each other (Chun and Keles, 2010). The first SPLS weight vector solves 

argmin
𝒂,𝒄

[(𝒄 − 𝒂)′(𝐗′𝐫𝐫′𝐗)(𝒄 − 𝒂) + 𝜆1‖𝒄‖1 + 𝜆2‖𝒄‖
2]    s.t.   𝛂′𝛂 = 1 (12) 

where 𝜆1 and 𝜆2 are non-negative tuning parameters. To solve SPLS a large 𝜆2 value is usually required 

and setting 𝜆2 = ∞ yields a solution that has the form of the soft threshold estimator by Zou and Hastie 

(2005). This reduces the number of tuning parameters to two, the tuning parameter 𝜆1 and the number 

of latent factors 𝐾.  

In the dimensionality reduction methods described above the directions that best represent the predictors 

𝐗 are derived in a supervised way since the vector of asset returns, 𝐫, is used to determine the component 

directions. The next set of models derives the latent factors in an unsupervised way. 

Principal component analysis (PCA) is the most widely used method to obtain estimates of the latent 

factors. PCA can be viewed as a regression-type problem (see e.g. Friedman, Hastie and Tibshirani, 

2009) where the goal is to find the first 𝐾 principal component weight vectors by minimizing: 

argmin
𝐀

‖𝐗 − 𝐗𝐀𝐀′‖2 ,     s.t.     𝐀′𝐀 = 𝐈𝐾 (13) 

The solution to this problem is most often obtained via singular value decomposition: 𝐗 = 𝐔𝐃𝐕′, by 

setting 𝐀 = 𝐕. The columns of 𝐕 = (𝐯1, 𝐯2, … , 𝐯𝐾) are the principal components weights. Each 𝐯𝑘 is 

used to derive the 𝑘th principal component, 𝐳𝑘 = 𝐗𝐯𝑘, thus, 𝐙𝐕 is the dimension reduced version of the 



9 

 

original predictors. The derived variable 𝐳1 is the first principal component of 𝐗 and has the largest 

sample variance amongst all normalized linear combinations of the columns of  𝐗. 

Sparse principal component analysis (SPCA), developed by Zou, Hastie and Tibshirani (2006), is based 

on the regression/reconstruction property of PCA and produces modified principal components with 

sparse weights, such that each principal component is a linear combination of only a few of the original 

predictors. They show how PCA can be viewed in terms of a ridge regression problem and by adding 

the 𝑙1 penalty, they convert it to an elastic net regression, which allows for the estimation of sparse 

principal components. The following regression criterion is proposed to derive the sparse principal 

component weights: 

argmin
𝐀,𝐂

[‖𝐗 − 𝐗𝐀𝐂′‖2 + 𝜆1‖𝒄‖1 + 𝜆2‖𝒄‖
2]    s.t.   𝐀′𝐀 = 𝐈𝐾 (14) 

where 𝐂 is 𝑝 × 𝐾. If 𝜆1 = 𝜆2 = 0, 𝑇 > 𝑝 and restrict 𝐂 = 𝐀, then the minimizer of the objective 

function is exactly the first 𝐾 weight vectors of ordinary PCA. When 𝑝 ≫ 𝑇, in order to obtain a unique 

solution, 𝜆2 > 0 is required. The 𝑙1 penalty on 𝒄𝑘 induces sparseness of the weights, with larger values 

of 𝜆1 leading to sparser solutions. The algorithm by Zou and Hastie (2005) is used to compute the sparse 

approximations of each principal component. 

Independent component analysis (ICA), developed by Comon (1994), aims at finding a linear 

representation of non-Gaussian data so that the components are statistically independent. The ICA 

objective is: 

argmin
𝐀

‖𝐗𝐀‖1 ,     s.t.     𝐀′𝐀 = 𝐈𝐾 (15) 

Solving the ICA problem amounts to finding an orthogonal 𝐀 such that the components of the vector 

random variable 𝐙 = 𝐗𝐀 are independent and non-Gaussian. More in detail, the independent 

components are estimated by iterative estimation of the matrix 𝐀, systematically increasing the degree 

of independence of the components. However, since there is no direct measure of independence, non-

Gaussianity is used instead.3 

                                                           
3 Popular approaches for measuring independence or non-Gaussianity in ICA are based on entropy. We use the 

FastICA algorithm developed by Hyvärinen and Oja (2000), which uses negentropy as a measure of Non-

Gaussianity. 
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Ordinary ICA has two drawbacks; it requires constrained optimization which can become difficult in 

high dimensional settings and is sensitive to whitening, a pre-processing step that decorrelates the input 

data, which cannot always be computed exactly when 𝑝 ≫ 𝑇. Le, Karpenko, Ngiam and Ng (2011), 

propose reconstruction independent component analysis (RICA), which overcomes the drawbacks of 

ICA, by replacing ICA’s orthonormality constraint with a reconstruction penalty. This produces the 

unconstrained problem: 

argmin
𝐀

[‖𝐗𝐀‖1 + 𝜆‖𝐗 − 𝐗𝐀𝐀
′‖2] (16) 

where 𝜆 > 0 is a regularization parameter. RICA is equivalent to ICA when 𝐾 < 𝑝, data is whitened 

and 𝜆 approaches infinity.4 

2.3. Nonlinear Machine Learning Methods 

So far the models we described assume a linear relationship between return and predictors. In this 

section we consider three types of nonlinear models from the machine learning literature; ensembles of 

regression trees, support vector machines and artificial neural networks.  

A regression tree is a non-parametric model that is constructed using a recursive binary splitting 

approach (Breiman, Friedman, Stone and Olshen, 1984). At first, starting from the top of the tree, we 

divide the predictor space into two distinct and non-overlapping rectangular regions or leaves and then 

model the asset returns as the simple average of 𝐫 within that region. Then one or both of those regions 

are split into two more regions and this process continues until certain stopping criteria are met. The 

predictor variable upon which a branch is based, and the value where the branch is split, is chosen to 

minimize the forecast error. Specifically, the prediction of a tree, 𝒯, with 𝑀 leaves 𝑅1, 𝑅2, … , 𝑅𝑀 and 

maximum depth 𝐷, is defined as 𝒯(𝐗, 𝑐,𝑀, 𝐷) = ∑ 𝑐𝑚I{𝐗∈𝑅𝑚(𝐷)}
𝑀
𝑚=1 , where 𝑅𝑚(𝐷) represents one of 

the partitions of the predictor space. The score 𝑐 associated with partition 𝑚, 𝑐𝑚, is the simple average 

of returns within region 𝑅𝑚, written as 𝑐𝑚 = 1 𝑇𝑚⁄ ∑ 𝐫𝐗𝜖𝑅𝑚 , where 𝑇𝑚 denotes the number of 

observations in region 𝑚. At each branch we choose the sorting variable among the set of predictors 

and the split value that minimize the following loss function:  

                                                           
4 For all dimensionality reduction approaches the number of latent factors is 𝐾 ∈ [1,6]. The parameter that controls 

for the 𝑙1 penalty in the sparse methods is 𝜆1 ∈ [10
−2, 103]. Then for reconstruction ICA 𝜆 ∈ [10−2, 10]. 
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𝑄𝑚(𝑐, 𝑇𝑚) =
1

𝑇𝑚
∑ (𝐫 − 𝑐𝑚)

2

𝐗∈𝑅𝑚

 (17) 

Branching halts when the depth, 𝐷, of the tree reaches a pre-specified threshold that is tuned adaptively 

using a validation sample. Regression trees are among the methods that tend to overfit, resulting in 

inferior out-of-sample performance. To improve the prediction accuracy of regression trees we consider 

several ensemble approaches that combine a large number of trees, 𝒯1, 𝒯2, … , 𝒯𝐾, to yield a single 

consensus prediction.  

The first set of methods are based on boosting, first proposed by Schapire (1990) and Freund (1995) for 

classification problems, which recursively combines a large number of shallow trees, known as “weak 

learners”, to form an ensemble of trees with greater stability than a single more complex tree. The first 

ensemble method we consider is the gradient boosting machine (GBM), proposed by Friedman (2001), 

who extends boosting to regression frameworks. Gradient boosting is initialized by fitting a shallow 

tree, then a second tree with the same depth is used to fit the residuals of the previous model and the 

forecasts of these two trees are added together to form a single ensemble prediction. This procedure is 

repeated sequentially until the total number of iterations 𝐾 is reached. The goal is to minimize the 

objective function, based on the square loss 

argmin
𝑓

ℒ(𝐫, 𝑓𝐾(𝐗)) = argmin
𝑓

‖𝐫 − 𝑓𝐾(𝐗)‖
2 (18) 

Gradient boosting is an additive model that can be expressed as  

𝑓𝐾(𝐗) = ∑𝑓𝑘(𝐗, 𝑐𝑘 ,𝑀𝑘, 𝐷, 𝑣)

𝐾

𝑘=1

, (19) 

where 𝐾 is the total number of trees and 𝑓𝑘 is given by 𝑓𝑘(𝐗, 𝑣) = 𝑓𝑘−1(𝐗) + 𝑣𝒯𝑘(𝐗, 𝑐𝑘 , 𝑀𝑘, 𝐷). 

The parameter 𝑣 controls the learning rate of the boosting procedure that scales the contribution of each 

tree to the ensemble by a factor of 0 < 𝑣 < 1 and prevents the model from overfitting the residuals.  

We also consider a regularized gradient boosting machine (RGBM), which is an extension to gradient 

boosting that includes a regularization term in the loss function to control for the complexity of the 

model and avoid overfitting (Chen and Guestrin, 2016). The updated objective function is  
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argmin
𝑓

ℒ(𝐫, 𝑓𝐾(𝐗)) + Ω(𝑓𝐾(𝐗)) (20) 

Refining the definition of a tree as 𝒯(𝐗) = 𝑤𝑞(𝐗), where 𝑤 is a vector of scores for each region and 𝑞 

is a function assigning each observation to the corresponding leaf, the regularization term Ω is defined 

as 

Ω(𝑓𝐾(𝐗)) = 𝛾𝑀𝑓 +
1

2
𝜆‖𝑤‖2 + 𝑎‖𝑤‖1, (21) 

where the regularization parameter 𝛾 is the complexity cost by introducing an additional leaf to a tree 

and the parameters 𝜆 and 𝑎 control the 𝑙2 and 𝑙1 regularization of the weights. The set of 

hyperparameters for gradient boosting machine is {𝐾, 𝑣, 𝐷} and {𝐾, 𝑣, 𝐷, 𝛾, 𝜆, 𝑎} for extreme gradient 

boosting. 

The second set of ensemble methods are based on bootstrap aggregating or bagging (Breiman, 1996) 

that combines many noisy but approximately unbiased models to reduce the variance of the estimates. 

The baseline bagging procedure estimates 𝒯1, 𝒯2, … , 𝒯𝐵 based on 𝐵 different bootstrap samples of the 

data and then averages their forecasts to obtain a single low-variance model, given by 

𝑓𝐵(𝐗) =
1

𝐵
∑𝒯𝑏(𝐗, 𝑐𝑏 ,𝑀𝑏 , 𝐷)

𝐵

𝑏=1

, (22) 

In bagging, most commonly the regression trees are simply i.d. (identically distributed, but not 

independent), with the variance of the average estimates, as the number of bootstrapped trees increases, 

depending on the product of the variance of each tree and the correlation among trees (see Hastie, 

Tibshirani and Friedman, 2009). We opt to use stationary bootstrap (see Politis and Romano, 1992), 

instead of standard bootstrap, due to the underlying time series structure of the data.5 

The first variation of bagging we consider is random forests (RF), proposed by Breiman (2001), which 

aims to reduce the variance of the average estimate by minimizing the correlation among the regression 

trees in the ensemble. The random forest procedure builds a set of de-correlated trees by considering 

only a randomly drawn subset of predictors for splitting at each potential branch. This lowers the 

average correlation among predictions and further reduces the variance relative to bagging. We also 

                                                           
5 We would like to thank an anonymous referee for this suggestion. 
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consider extremely randomized trees (ERT), proposed by Geurts, Ernst and Wehenkel (2006), which is 

an extension to the random forest algorithm. This model has two distinguishing features compared to 

random forests: the first is that each regression tree is trained using the full sample instead of a bootstrap 

sample and the second is that the top-down splitting of a tree is randomized. This is achieved by 

selecting the value where the branch is split randomly, instead of choosing the optimal split value locally 

for each input variable under consideration. Specifically, the split values are selected from a uniform 

distribution within the empirical range of the input variable in the training set and the randomized split 

that gives the highest performance is chosen to split the region. The hyperparameters to be determined 

using the validation set approach within each iteration of the expanding window, are the number of 

trees in the ensemble, the depth of the trees and the size of the randomly selected subset of predictors.6  

 

Support vector machine7 (SVM) regression is a non-parametric technique that learns a non-linear 

function by mapping linear functions into high dimensional kernel induced feature space. We first 

consider the epsilon-insensitive SVM (e-SVM), as seen in Vapnik (1995), where the objective is to find 

a function 𝑓(𝐗) that deviates from 𝐫 by a value no greater than 𝜖 for each training observation of 𝐗 and 

at the same time is as flat as possible. The e-SVM can be formulated as a Lagrange dual problem by 

introducing 𝒂 and 𝒂∗ vectors of non-negative multipliers for each observation of 𝐗. The dual 

optimization problem for 𝜖-SVM becomes: 

argmin
𝒂

1

2
(𝒂 − 𝒂∗)′𝐐(𝒂 − 𝒂∗) + 𝐫′(𝒂 − 𝒂∗) + 𝜖𝐢′(𝒂 + 𝒂∗) (23) 

s.t.   𝐢′(𝒂 − 𝒂∗) = 0 

0 ≤ 𝑎𝑖, 𝑎𝑖
∗ ≤ 𝐶, 𝑖 = 1, 2, … , 𝑡 

where 𝐢 is the unity vector, 𝐐 is a 𝑡 × 𝑡 positive semidefinite matrix, 𝑄𝑖,𝑗 ≡ 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)
′𝜙(𝑥𝑗) is 

a non-linear kernel8 function and 𝜙(𝑥) is a transformation that maps 𝑥 to a high-dimensional space. 

                                                           
6 For the boosting-type methods, the number of trees is set to 𝐾 = 1~1000, the depth to 𝐷 = {1,2} and the 

learning rate to 𝑣 = {0.01,0.1}. The regularization parameters for RGBM are set to 𝛾 ∈ [10−5, 10−3] and 𝜆, 𝑎 ∈
[0.1,10]. For bagging-type approaches, the number of trees is set to 𝐾 = 1~500, the depth to 𝐷 = {1,2} and the 

size of the selected subset of predictors to [2, 44].  
7 The equivalence of support vector machines with the lasso has been examined by Jaggi (2014) and with the 

elastic net by Zhou, Chen, Song, Gardner, Weinberger and Chen (2015). 
8 Kozak (2019) applies the kernel trick to the cross section of returns. 
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Based on the Karush-Kuhn-Tucker conditions, only a certain number of Lagrange multipliers 𝒂 and 𝒂∗ 

will assume non-zero values. The observations associated with them have approximation errors equal 

to or larger than 𝜖 > 0 and are referred to as support vectors. The parameter 𝜖 is the trade-off between 

the sparseness of the representation and closeness to the data, with large values of 𝜖 resulting to fewer 

support vectors and thus sparser representation of the solution.9 The cost parameter, 𝐶 > 0, controls the 

penalty imposed on observations that lie outside the epsilon margin, 𝜖, and helps to prevent overfitting 

as it represents the balance between the flatness of 𝑓(𝐗) and the extent to which violations to 𝜖 are 

tolerated.  

One of the problems of e-SVM is choosing the appropriate value for the parameter 𝜖. The nu-support 

vector machine (nu-SVM), proposed by Schölkopf, Bartlett, Smola and Williamson (1999) and 

Schölkopf, Smola, Williamson and Bartlett (2000), is a method that automatically adjusts 𝜖, by 

considering it as part of the optimization problem. The dual optimization problem for nu-SVM becomes 

argmin
𝒂

1

2
(𝒂 − 𝒂∗)′𝐐(𝒂 − 𝒂∗) + 𝐫′(𝒂 − 𝒂∗) (24) 

s.t.   𝐢′(𝒂 − 𝒂∗) = 0 

0 ≤ 𝑎𝑖, 𝑎𝑖
∗ ≤ 𝐶, 𝑖 = 1, 2, … , 𝑡 

𝐢′(𝒂 + 𝒂∗) = 𝐶𝜈 

where the parameter 0 ≤ 𝜈 ≤ 1 determines the proportion of the number of support vectors kept in the 

solution with respect to the total number of observations in the dataset. The regression function is then 

given by 

𝑓(𝐗) =∑(𝑎𝑖
∗ − 𝑎𝑖)𝐾(𝑥𝑖, 𝑥)

𝑡

𝑖=1

 (25) 

We use the radial basis function (RBF) kernel, with parameter 𝛾 > 0, given by 𝐾(𝑥𝑖 , 𝑥) =

exp(−𝛾|𝑥𝑖 − 𝑥|
2). The set of hyperparameters to be selected are {𝐶, 𝛾, 𝜖} for e-SVM and {𝐶, 𝛾, 𝜈} for 

nu-SVM.10 

                                                           
9 As support vectors are usually only a small subset of the training observations, this characteristic is referred to 

as the sparsity of the solution. 
10 The cost parameter is set to 𝐶 ∈ [10−5, 10−2] and the parameter of the kernel function is set to 𝛾 ∈ [10−3, 103]. 
The parameter specific to e-SVM, is set to 𝜖 ∈ [10−5, 10−2], while the parameter of nu-SVM is set to 𝑣 ∈ [0.1,1]. 
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The final nonlinear method we consider is artificial neural networks, which have been shown to be 

universal approximators for any continuous function 𝑓 (Hornik, Stinchcombe and White, 1989; 

Cybenko, 1989). We focus on the multilayer perceptron (MLP), a type of feed-forward neural network 

where information flows through the function being estimated from 𝐗, through intermediate 

computations used to approximate 𝑓, to the output 𝐫. These models are comprised of a number of layers 

with multiple nodes in each layer. They consist of an input layer of the predictors, one or more hidden 

layers, with nodes that transform the predictors using nonlinear activation functions and an output layer 

that allows a final transformation of the outcome of the hidden layers to form a prediction. For the 

training and design of the neural networks we follow a similar approach to Gu, Kelly and Xiu (2020). 

Feed-forward neural networks can be defined as a composition of ℎ(1), ℎ(2), … , ℎ(𝐿) nonlinear activation 

functions for each of the 𝐿 hidden layers of the network 𝐙(𝐿) = ℎ(𝐿) ∘ … ∘ ℎ(2) ∘ ℎ(1)(𝐗), with 𝐙(𝑙) =

ℎ (𝑏0
(𝑙)
+𝐖(𝑙)′𝐙(𝑙−1)), for 𝑙 = 1, 2, … , 𝐿, where 𝐙(𝑙) is the 𝑙th layer of the network with 𝑚 = 1, 2,… ,𝑀 

nodes, 𝐖(𝑙) is the matrix of weights and 𝑏0
(𝑙)

 is the bias. For the first hidden layer the input is the matrix 

of predictors, 𝐙(0) = 𝐗, such that 𝐙(1) = ℎ (𝑏0
(1)
+𝐖(1)′𝐗). The results from each hidden layer are 

aggregated in the output layer; 𝑓(𝐗) = 𝑏0
(𝐿+1) +𝐰(𝐿+1)′𝐙(𝐿). We consider three different network 

architectures based on whether the network has one, two or three hidden layers (MLP1, MLP2 and 

MLP3). The number of hidden nodes in each layer is selected according to the geometric pyramid rule 

by Masters (1993). The activation function applied to each node can take various forms. We follow the 

existing literature and use the rectified linear unit (ReLU) defined as ℎ(𝑥) = max(0, 𝑥), which 

encourages sparsity in the number of active nodes and avoids the vanishing gradient problem (Nair and 

Hinton, 2010 and Glorot, Bordes and Bengio, 2011).  

The weights and biases of the neural network are estimated by minimizing the following objective 

function 

argmin
𝐖,𝐛0

ℒ(𝐫, 𝑓(𝐗)) = argmin
𝐖,𝐛0

‖𝐫 − 𝑓(𝐗)‖2 (26) 

The estimates of the parameters of a neural network are solutions of a non-convex optimization 

problem. The neural network is trained using stochastic gradient descent (SGD). Unlike standard 
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gradient descent that uses the entire training sample to evaluate the gradient at each iteration of the 

optimization, SGD evaluates the gradient from a random subset of the data and iteratively minimizes 

the objective function through back propagation.11 Training a neural network is challenging due to the 

large number of parameters to be estimated and the nonconvexity of the objective function. To alleviate 

those concerns we modify the loss function by adding a parameter norm penalty. We consider an elastic 

net type of penalty (Goodfellow, Bengio and Courville, 2016), based on the 𝑙1 and 𝑙2 norm of the 

weights. The regularized objective then becomes 

argmin
𝐖,𝐛0

[ℒ(𝐫, 𝑓(𝐗)) + 𝜆1‖𝐖‖1 + 𝜆2
1

2
‖𝐖‖2], (27) 

where higher values of the hyperparameters 𝜆1 > 0 and 𝜆2 > 0 correspond to more regularization. 

Similarly to the elastic net regression, the penalty term induces sparsity to the weights. We choose to 

penalize only the weights of the affine transformation at each layer and leave the biases unregularized. 

Following Gu, Kelly and Xiu (2020), we consider several other forms of regularization. To improve the 

performance of the model we implement early stopping, batch normalization and forecast averaging. In 

each iteration of the optimization algorithm the parameter estimates are updated so as to reduce 

prediction errors in the training sample and then the predictive performance of the model for that 

iteration is evaluated using data from the validation sample. Early stopping is implemented by stopping 

the training process prematurely when the validation error no longer decreases. Specifically, the 

optimization process halts when the maximum number of iterations (100) is reached or if the validation 

error has not improved for 5 consecutive iterations, preventing overfitting and significantly speeds up 

the training process. In both cases the parameter estimates of the best performing model are retrieved. 

Batch normalization (Ioffe and Szegedy, 2015) reduces the variability of the predictors by scaling the 

input of activations. It was proposed to solve the problem of internal covariate shift in which the 

distribution of the inputs of the hidden layer change during training, as the parameters of the previous 

layers change. For each node in each training step, the algorithm cross-sectionally standardizes the 

output of a previous activation to restore the representation power of the node. This allows to increase 

                                                           
11 The version of SGD we implement is the adaptive moment estimation algorithm (Adam), introduced by Kingma 

and Ba (2015). Adam computes individual adaptive learning rates for the model parameters using estimates of 

first and second moments of the gradients. 
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the stability of the neural network and increase the speed of training. Finally, to reduce the prediction 

variance of the neural network, due to the stochastic nature of the optimization, we adopt an ensemble 

approach (Hansen and Salamon, 1990 and Dietterich, 2000) by forming the final prediction from the 

average of the forecasts from ten models initialized from different random seeds.12 

2.4. Forecast Combination Methods 

The forecast combination approach was originally proposed by Bates and Granger (1969) and can be 

used as an alternative approach to individual forecasting methods (see Timmermann, 2006 for a 

comprehensive review). Forecast combinations may be preferred over using forecasts based on 

individual models, since the latter could suffer from model uncertainty and instability, while combining 

different models can increase accuracy by including valuable information from each model.  

The forecast combinations, denoted by 𝑟̂𝑡+1
𝐶 , are the weighted averages of return forecasts from 𝑚 

individual models and can be expressed as: 

𝑟̂𝑡+1
𝐶 = 𝐫̂𝛚𝑡 (28) 

where 𝐫̂ = (𝑟̂1,𝑡+1, 𝑟̂2,𝑡+1, … , 𝑟̂𝑚,𝑡+1)
′
 is the vector of 𝑚 individual forecasts and 𝛚𝑡 =

(𝜔1,𝑡, 𝜔2,𝑡, … , 𝜔𝑚,𝑡) are the combining weights of the individual forecasts at time 𝑡. We consider two 

forecast combination approaches based on the type of models that are averaged. In the first approach 

we combine 𝑚 = 𝑝 number of simple bivariate prediction models based on individual predictors. This 

simple linear model is based on a single predictor 𝑥𝑖, and the forecast for 𝑡 + 1 using the 𝑖th predictor 

is given by: 

𝑟̂𝑖,𝑡+1 = 𝑎̂𝑖 + 𝑥𝑖,𝑡𝛽̂𝑖, for 𝑖 = 1, 2,… , 𝑝. 

This model is estimated using OLS. In the second approach we combine the forecasts generated by the 

𝑚 = 23 machine learning models.13 

We further differentiate the forecast combinations based on the way 𝛚𝑡 is computed. Specifically, the 

mean combination (MC) sets the weight 𝜔𝑖,𝑡 = 1/𝑚 for 𝑖 = 1, 2, … ,𝑚 and the median combination 

                                                           
12 The tuning parameters for the neural networks are set to 𝜆1, 𝜆2 ∈ [10

−5, 10−3] the learning rate is set to 0.01 

and the parameters for Adam left to the defaults. The maximum epochs are set to 100, patience is set to 5 and the 

forecasts are an ensemble of 10 networks. 
13 We would like to thank an anonymous referee for suggesting the forecast combination of machine learning 

models. 
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(MDC) is the median of 𝐫̂𝑡+1. The trimmed mean combination (TMC) sets 𝜔𝑖,𝑡 = 0 for 5% of the 

forecasts with the lowest and highest values and 𝜔𝑖,𝑡 = 1 (0.9 × 𝑚)⁄  for the remaining forecasts. These 

simple forecast averaging schemes do not require a holdout period, 𝑞0.  

For the second type of forecasting methods, the combining weights are computed based on the historical 

forecasting performance of the individual models over the holdout period, 𝑞0. Aiolfi and Timmermann 

(2006) consider a method based on the rank of each model according to the Mean Squared Forecast 

Error (MSFE).  This weighing scheme lets the weights be inversely proportional to the forecast models’ 

rank, RANK𝑖, i.e. 𝜔𝑖,𝑡 = RANK𝑖,𝑡
−1 ∑ RANK𝑖,𝑡

−1𝑚
𝑖=1⁄ , where the model with the lowest MSFE value gets a 

rank of 1, the model with the second lowest MSFE value gets a rank of 2 and so forth. Aiolfi and 

Timmermann (2006) also consider a clustering approach to combine forecasts. Specifically, the 

forecasts from the individual models are grouped into 𝐿 equal-sized clusters based on their past MSFE 

performance, with the first cluster containing the models with the lowest MSFE. Each combination 

forecast is the average of the individual forecasts contained in the first cluster. This procedure starts 

with the initial holdout period and then goes through the end of the available OOS period using a rolling 

window. We consider forecast combinations with two (CL2) and three (CL3) clusters. 

The third type of combining methods considered is also based on past performance of the individual 

models and uses time-varying combination weights. Stock and Watson (2004), proposed the discounted 

mean square forecast error combining method, which uses the following weights 𝜔𝑖,𝑡 =

𝜑𝑖,𝑡
−1 ∑ 𝜑𝑖,𝑡

−1𝑚
𝑖=1⁄ , where 𝜑𝑖,𝑡 = ∑ 𝜓𝑡−1−𝑞0(𝑟𝑠+1 − 𝑟̂𝑖,𝑠+1)

2𝑡−1
𝑠=𝑅 , for 𝑡 = 𝑅 + 𝑞0, … , 𝑇, where 𝑅 is the in-

sample period and 𝜓 is a discount factor, with 0 < 𝜓 ≤ 1. In the case of 𝜓 < 1 this method assigns 

greater weights to recent individual predictive regression forecasts. When 𝜓 = 1, then there is no 

discounting and the equation above produces the optimal combination forecast derived by Bates and 

Granger (1969) for the case where the individual forecasts are uncorrelated. The values for 𝜓 considered 

are 1 and 0.9 (DMSFE1 and DMSFE09).  

To facilitate the discussion of our findings, Table 1 lists all the models used in this study grouped in six 

categories.  

[Insert Table 1 Here] 
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3. Data and Sample Splitting 

3.1. Data 

On the asset side, our dataset consists of 50 individual stocks, 12 bond portfolios and 52 commodities, 

for a total of 𝑁 = 114 assets. On the predictor side, we consider a common set of 𝑝 = 44 economic 

indicators. The sample period starts from January 1980 to December 2019, for a period of 40 years (or 

𝑇 = 480 monthly observations).  

Specifically, we obtain the total returns for the 50 stocks with the highest market capitalization from 

the Center for Research in Security Prices (CRSP) that have no missing return observations over the 

full sample period.14 For the bond portfolios we use the returns of the Fama maturity portfolios, also 

retrieved from CRSP, where the first 10 portfolios are defined according to maturity in 6-month 

intervals for up to 60 months, while the remaining are portfolios for maturities between 60 and 120 

months and for maturities greater than 120 months. The returns of the 52 commodities are calculated 

from the prices acquired from the Primary Commodity Price System dataset of the International 

Monetary Fund (IMF) and are chosen based on having a full price history over the sample period. The 

majority of the commodities are classified as food or beverages, for a total of 27 assets, while the 

remaining belong to the following general categories: 11 are metals, 9 are agricultural raw materials, 3 

are categorized as fertilizer and 2 are energy commodities. Further details regarding the assets along 

with their identifiers can be found in Tables A1 to A3 in the appendix, for stocks, bond and commodities 

respectively. 

The choice of predictors draws upon the literature of return predictability, such as Rapach, Wohar and 

Rangvid (2005), Welch and Goyal (2008), Rapach, Strauss and Zhou (2010), Neely, Rapach, Tu and 

Zhou (2014), Lima and Meng (2017) for stocks, Ludvigson and Ng (2009), Lin, Wu and Zhou (2018) 

and Gargano, Pettenuzzo and Timmermann (2019) for bonds and Gargano and Timmermann (2014) 

and Gao and Nardari (2018) for commodities. The first set of predictors are the factors used in the 

Fama-French 3- and 5-factor models (Fama and French 1993, 2016) and the 4-factor model of Carhart 

                                                           
14 We restrict our selection to stocks listed to the NYSE, AMEX, and NASDAQ stock exchanges (exchange codes 

1, 2 or 3) and to ordinary common shares (share codes 10 or 11). 
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(1997). We include the market (MKT), size (SMB), value (HML), profitability (RMW), investment 

(CMA) and momentum (MOM) factors. As a proxy to market liquidity, we use the Pastor and 

Stambaugh (2003) aggregate innovation in liquidity measure (LIQ). We also consider variables from 

Welch and Goyal (2008), which are the dividend-price ratio (DP), dividend yield (DY), earnings-price 

ratio (EP), dividend-payout ratio (DE), stock variance (SVAR), book-to-market ratio (BM), net equity 

expansion (NTIS), Treasury bill rate (TBL), long-term yield (LTY), long-term return (LTR), term 

spread (TMS), default yield spread (DFY) and default return spread (DFR). Additional predictors 

related to the bond market are the ICE BofA US corporate total return index (BAML) and the Cochrane 

and Piazzesi (2005) factor (CP). In the set of predictors, we include economic indicators such as the 

industrial production (INDPRO), the money stock M1 (M1), the consumer price index (CPI), the 

producer price index (PPI), capacity utilization (CAP), the unemployment rate (UNRATE), the 

inventory-sales ratio (IR), housing starts (HOUST) and total consumer credit (Credit). As a proxy for 

the overall commodity market, we use the S&P Goldman Sachs commodity total return index (GSCI) 

and include four commodity currencies (Chen, Rogoff and Rossi, 2010), the Australian dollar-US dollar 

(USAU), the Canadian dollar-US dollar (USCA), the Indian rupee-US dollar (USIN) and the New 

Zealand dollar-US dollar (USNZ). Finally, we consider eight additional variables, namely the Chicago 

Board Options Exchange volatility index (VXO), the University of Michigan consumer sentiment index 

(UMSENT), the Chicago Fed national activity index (CFNAI), Kilian’s (2009) real economic activity 

index (REA), the Philadelphia Fed business outlook survey current and future activity indices (GAC 

and GAF) and the macroeconomic and financial uncertainty indices (UMacro and UFin respectively), 

proposed by Jurado, Ludvigson and Ng (2015) and Ludvigson, Ma and Ng (2015). The candidate 

variables and their sources are given in Table A4 in the appendix, while descriptive statistics of the 

predictors are reported in Table A5.  

3.2. Sample Splitting and Hyperparameter Tuning 

We generate out-of-sample forecasts of asset returns by employing a recursive forecasting scheme. The 

total sample, 𝑇, is divided into the in-sample part, 𝑅 and the out-of-sample part, 𝑄 = 𝑇 − 𝑅. The first 

𝑞0 forecasts of the out-of-sample period, 𝑄, serve as the hold-out period for the forecast combination 

methods that require it. The initial size of the recursive window, used to estimate the individual 
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forecasting models, is set to 𝑅 = 180 monthly observations (or 15 years, from January 1980 to 

December 1994) and the hold-out period, for the forecast combination methods that require it, is set to 

𝑞0 = 60 observations (or 5 years, from January 1995 to December 1999). The window expands by one 

observation at a time, leading to an out-of-sample size of 240 monthly observations from January 2000 

to December 2019. 

The machine learning models used to generate the return forecasts rely on hyperparameter tuning. The 

choice of hyperparameters controls the amount of model complexity and is critical for the performance 

of the model. Specifically, we adopt a validation sample approach similar to Gu, Kelly and Xiu (2020), 

in which the optimal set of values for the tuning parameters is selected in the validation sample. One of 

the advantages of using this approach over 𝑘-fold cross validation is that we maintain the temporal 

ordering of the data. Specifically, in each iteration of the expanding window, the in-sample is split into 

two disjoint periods, the training subsample, consisting of 80% of the observations, with the remaining 

observations belonging to the validation subsample. In the training subsample the model is estimated 

for several sets of hyperparameters. The second subsample is used to select the optimal set of tuning 

parameters, by constructing forecasts, using the model estimates from the training sample for the 

respective hyperparameter set, for the observations in the validation sample. The optimal set of 

hyperparameters is chosen so as to minimize the Mean Squared Error over the validation subsample. 

Once the optimal set of hyperparameters is chosen, the model is refitted using all data from the in-

sample period and the estimates of the model parameters are kept to construct the forecasts. The 

predictors are standardized for all methods; first separately for observations within each of the training 

and validation subsamples, during the selection of the optimal set of hyperparameters and then using 

all observations of the in-sample window, when estimating the parameters of the model. For a detailed 

description of cross-validation see Friedman, Hastie and Tibshirani (2009). Due to the computational 

cost of training these methods, we avoid recursively fitting the models in each iteration. Instead, we 

estimate the parameters once a year and retain those estimates to derive the remaining forecasts for that 

year. 
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4. Optimal Asset Allocation 

Consider an investor who allocates her wealth among 𝑁 individual assets with a 𝑁 × 1 portfolio weight 

vector: 𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑁). The initial wealth is normalized to 1. The benchmark strategy is the naive 

diversification rule of an equal-weighted portfolio, where 𝑤𝑗 = 1/𝑁, for 𝑗 = 1, 2, … ,𝑁. The objective 

of the main framework is to optimize the trade-off between risk and return. As a basic measure of 

portfolio risk the standard deviation of the portfolio (Markowitz, 1952), is used. The mean-variance 

(MV) optimization problem is:  

argmin
𝐰

[𝛾𝐰′𝚺𝐰 − 𝐰′𝐫̂]  (29) 

where 𝚺 is the 𝑁 × 𝑁 covariance matrix of asset returns, 𝐫̂ = (𝑟̂1,𝑡+1, 𝑟̂2,𝑡+1, … , 𝑟̂𝑁,𝑡+1) is the 𝑁 × 1 

vector of return forecasts for each asset and 𝛾 is the coefficient of relative risk aversion. As an alternative 

to the 1/𝑁 benchmark, portfolios using historical average forecasts are considered. The two 

benchmarks are compared to portfolios based on forecasts generated by multivariate prediction models. 

All portfolio models include short-selling and leverage constraints to avoid implausible positions. The 

first constraint sets an upper bound to the sum of the portfolio weights, 𝐰′𝐢𝑁 = ℎ, where 𝐢𝑁 is an 𝑁-

vector of ones and ℎ denotes the maximum leverage, for example ℎ = 1 ensures that the portfolio 

weights sum up to one, while ℎ = 1.5 indicates that the investor cannot borrow more than 50% of total 

wealth. The second constraint sets a lower bound to the weight of each asset as 𝑤𝑗 ≥ 0, with 𝑗 =

1,… ,𝑁, which leads to portfolios without short selling (Jagannathan and Ma, 2003). The portfolio 

return at 𝑡 + 1 can then be computed as: 

𝑟𝑃,𝑡+1 = 𝐰̂𝑡
′𝐫 + (1 − 𝐰̂𝑡

′𝐢𝑁)𝑟𝑓,𝑡+1 (30) 

where 𝐫 = (𝑟1,𝑡+1, 𝑟2,𝑡+1, … , 𝑟𝑁,𝑡+1) is an 𝑁-vector of risky asset returns. In the case of ℎ = 1, the 

portfolio return is equivalent to 𝑟𝑃,𝑡+1 = 𝐰̂𝑡
′𝐫. For the mean-variance optimization framework, two 

approaches are used to estimate the covariance matrix. The first is the graphical lasso, which is a static 

estimator that derives a sparse version of the covariance matrix. The second is a dynamic estimator 

based on the DCC GARCH. The estimates of the covariance matrix, 𝚺̂, for assets 𝑖 = 1, 2, … , 𝑁, are 

based on a rolling window of 120 observations. 
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The graphical lasso algorithm, proposed by Friedman, Hastie and Tibshirani (2008), estimates the 

sparse precision matrix (inverse of the covariance matrix), using the 𝑙1 (lasso) penalty to enforce 

sparsity. The graphical lasso problem is to maximize the following penalized log likelihood: 

log(det𝚯𝑡) − tr(𝐒𝑡𝚯𝑡) − 𝜌‖𝚯𝑡‖1 (31) 

where 𝐒𝑡 is the sample covariance matrix and 𝜌 ≥ 0 is a tuning parameter controlling the amount of 

regularization. Here, 𝚯𝑡 = 𝚺𝑡
−1, with entries 𝜃𝑖,𝑗, is the 𝑁 × 𝑁 inverse of the covariance matrix and 

‖𝚯𝑡‖1 is the 𝑙1 norm of 𝚯𝑡 – the sum of the absolute value of the elements 𝜃𝑖,𝑗. The penalty parameter 

𝜌 is chosen by the validation sample approach, to make the value of log(det𝚺1,𝑡
−1) − tr(𝚺2,𝑡𝚺1,𝑡

−1) large, 

where 𝚺1,𝑡 is the covariance matrix estimated using the training set and 𝚺2,𝑡 is the covariance estimated 

over the validation set. 

For the dynamic conditional correlation GARCH model, proposed by Engle (2002), the one-period 

ahead covariance based on the DCC GARCH model evolves according to: 

𝚺𝑡+1 = 𝐃𝑡+1𝐑𝑡+1𝐃𝑡+1 (32) 

where 𝐃𝑡+1 is an 𝑁 × 𝑁 diagonal matrix with conditional standard deviation 𝜎̂𝑖,𝑡+1 on the 𝑖th diagonal 

element and 𝐑𝑡+1 is the 𝑁 × 𝑁 correlation matrix, with ones on the diagonal and conditional 

correlations in the off-diagonal. The estimation of the DCC GARCH has two steps. The first step 

involves estimating the diagonal elements of the conditional standard deviation matrix, 𝐃𝑡+1, where we 

estimate the conditional standard deviation, 𝜎̂𝑖,𝑡+1, of the 𝑖th asset is using a GARCH(1,1) model. The 

second step involves the estimation of the conditional correlation matrix, 𝐑𝑡+1. Removing the 

conditional mean from the 𝑁 series of asset returns yields the residuals, 𝛆𝑡+1 and the standardized 

residuals, 𝐮𝑡+1, can be obtained using the conditional standard deviation matrix, 𝐃𝑡+1: 𝐮𝑡+1 =

𝐃𝑡+1
−1 𝛆𝑡+1. The conditional correlation structure then is: 

𝐐𝑡+1 = (1 − 𝑎 − 𝑏)𝐐̅ + 𝑎𝐮𝑡𝐮𝑡
′ + 𝑏𝐐𝑡 (33) 

𝐑𝑡+1 = 𝐐𝑡+1
∗−1𝐐𝑡+1𝐐𝑡+1

∗−1   

where 𝐐̅ is the unconditional covariance of the standardized residuals and 𝐐𝑡+1
∗  is a diagonal matrix 

composed of the square root of the diagonal elements of 𝐐𝑡+1. 



24 

 

4.1. Portfolio Performance 

In this section, we assess the economic value of using return forecasts in asset allocation. The portfolios 

are constructed recursively using the related return and covariance estimates in each iteration, starting 

in January 2000. The buy-and-hold portfolio returns are calculated for the period of one month and the 

portfolio is rebalanced monthly until the end of the evaluation period (December 2019). Each portfolio 

is computed for different combination of weight constraints: unleveraged long-only portfolios (0 ≤

𝑤𝑗 ≤ 1) and leverage restricted to 50% of wealth (0 ≤ 𝑤𝑗 ≤ 1.5). Two types of investors are considered 

based on different values of the coefficient of risk aversion, 𝛾 = 2 for an aggressive investor and 𝛾 =

10 for a conservative investor. Similar values of risk aversion are used in Callot, Kock and Medeiros 

(2017) and DeMiguel, Garlappi and Uppal (2009). 

The performance of the portfolios is evaluated over the out-of-sample period using the average return 

of the portfolio and the out-of-sample Sharpe ratio. The Sharpe ratio (SR) is calculated as the fraction 

of the out-of-sample excess return (average realized return less the risk-free rate) divided by the standard 

deviation of the out-of-sample portfolio returns: SR = (𝑟̅𝑃 − 𝑟𝑓) 𝜎̂𝑃
2⁄ , where 𝑟̅𝑃 =

1 (𝑄 − 𝑞0)⁄ ∑ 𝑟𝑃,𝑡
𝑄−𝑞0
𝑡=1  is the average realized return of the portfolio over the out-of-sample period, 𝑟𝑓 

is the risk free rate and 𝜎̂𝑃 is the standard deviation of the portfolio excess returns over the out-of-

sample period. Additionally, we report portfolio turnover, defined as a measure of the amount of trading 

required to implement a particular strategy. Following DeMiguel, Garlappi and Uppal (2009), the 

portfolio turnover is defined as the average absolute change of the portfolio weights over the 𝑄 − 𝑞0 

rebalancing periods across the 𝑁 assets and is given as follows: 

PTP =
1

𝑄 − 𝑞0 − 1
∑ ∑|𝑤𝑗,𝑡+1 −𝑤𝑗,𝑡|

𝑁

𝑗=1

𝑄−𝑞0−1

𝑡=1

 (34) 

where 𝑤𝑗,𝑡+1 is the weight in asset 𝑗 at time 𝑡 + 1 and 𝑤𝑗,𝑡 is the weight in asset 𝑗 at time before 

rebalancing at 𝑡 + 1. When a portfolio is rebalanced at 𝑡 + 1, |𝑤𝑗,𝑡+1 −𝑤𝑗,𝑡| denotes the magnitude of 

trading asset 𝑗. 

Table 2 presents the results of the portfolio evaluation based on average return. The first row gives the 

average return of the 1/𝑁 portfolio, which is 5.73% across all panels since derivation of the weights 
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for this strategy does not involve any optimization or estimation. The remaining rows of the table report 

the average return of the mean-variance portfolio based on the historical average, KS and alternative 

forecasting models. These results vary based on the estimator of the covariance matrix, the type of 

investor and combination of weight constraints. 

[Insert Table 2 Here] 

Focusing on the results of the first panel, which are based on the graphical lasso estimates of the 

covariance matrix, the average return of the HA portfolio for an aggressive investor (𝛾 = 2), is 4% for 

𝑤𝑗 ∈ [0,1] and 7.12% for 𝑤𝑗 ∈ [0,1.5]. On the other hand, the average return of a conservative investor 

(𝛾 = 10), for weight constraints 0 ≤ 𝑤𝑗 ≤ 1 is 6.06% and when 0 ≤ 𝑤𝑗 ≤ 1.5 it is 9.16%. For the 

portfolios based on the KS forecasts, the average returns range from 24.96% to 37.38% for an aggressive 

investor and from 20.43% to 27.29% for a conservative investor. Turning to the results of the second 

panel, HA portfolios of a conservative investor benefit more when using the DCC estimator instead of 

the graphical lasso, while for the KS portfolios, the sparse estimator yields higher average returns across 

different combinations of weight constraints and levels of risk aversion. 

Overall, forecast combinations of machine learning models tend to achieve the best performance in 

terms of average return, especially for an aggressive investor. Individual models that perform well are 

those based on shrinkage methods, partial least squares, sparse partial least squares and a neural network 

with a single hidden layer. Relaxing the leverage constraint consistently improves the performance of 

the models. The average return of the mean-variance portfolios, based on the graphical lasso, across all 

alternative predictive regressions, for an aggressive investor, is between 4.41% (CL2) and 27.08% 

(DMSFE09ML) for the case when no short sales or leverage is allowed.  For a 50% leverage constraint, 

the respective returns are 7.05% and 38.93%.  In the case of a conservative investor, for weight 

constraints 0 ≤ 𝑤𝑗 ≤ 1 the average return is between 6.40% (CL2) and 20.21% (MCP) and when 

leverage is allowed, returns range from 9.81% (MDC and CL2) to 27.48% (MCP). Comparing the 

results between the two specifications for the covariance matrix, the graphical lasso outperforms the 

DCC, except in the case of portfolios based on certain forecast combinations of bivariate prediction 

models and for portfolios based on nu-SVM. The majority of the machine learning models and their 
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combinations outperform the equal-weighted allocation and the HA benchmarks, while portfolios based 

on the KS model prove to be harder benchmarks to overcome. The model that fails to outperform the 

EW portfolio is the neural network with three hidden layers, for portfolios based on the dynamic 

covariance estimator and 𝛾 = 10, while the HA portfolio yields higher average return than RGBM and 

a neural network with three hidden layers for portfolios of a conservative investor based on the DCC 

covariance.  

Table 3 reports the results for the annualized Sharpe ratio. Our findings indicate that between 18 and 

19 models for an aggressive investor and 20 to 25 models for a conservative investor outperform the 

EW benchmark, with a ratio of 0.78, depending on the weight constraints and estimates of the 

covariance matrix. The simple forecast combination methods, along with ensemble methods and 

support vector machines fail to outperform the EW in the majority of specifications. The Sharpe ratio 

for the HA portfolio with 𝛾 = 2 varies between 0.25 and 0.37 and is outperformed by 37 to 39 of the 

models, while for a conservative investor the ratio is between 0.59 and 0.74, with 32 to 37 models 

generating better performance. More importantly, the models that consistently outperform both 

benchmarks are the forecast combinations of machine learning models. For example, for an aggressive 

investor with a 50% leverage constraint, the Sharpe ratio ranges from 0.95 (RankML) to 1.28 

(DMSFE09ML). 

[Insert Table 3 Here] 

The KS portfolio generates ratios from 0.96 to 1.16 for an aggressive investor and between 1.14 and 

1.25 for a conservative investor. The Sharpe ratio for portfolios with relative risk aversion of 2, is 

between 0.29 and 1.22 for unleveraged and long only portfolios and 0.33 to 1.28 for a 50% leverage 

constraint. Among the best-performing portfolios are those with return forecasts generated by machine 

learning model combinations, PLS, Ridge and MLP1. Based on different weight constraints, the Sharpe 

ratios for a conservative investor are higher compared to those of a more aggressive investor, with 

values from 0.37 to 1.25 when 𝑤𝑗 ∈ [0,1] and 0.38 to 1.27 for 𝑤𝑗 ∈ [0,1.5]. Shrinkage methods, PLS, 

MLP1 and ML forecast combinations are among the models that yield the highest ratios across all 
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weight constraints. Finally, portfolios based on graphical lasso tend to generate slightly higher Sharpe 

ratios than the DCC GARCH. 

The first part of Figure 1 presents the cumulative return series of the EW and HA benchmarks and the 

eight portfolios based on forecast combinations of machine learning models of an aggressive investor 

with 50% leverage. The eight strategies significantly outperform the EW and HA benchmarks 

throughout the out-of-sample period, especially after 2002-2003. The cumulative return series of the 

forecast combinations exhibit overall an upward trend and experience a slight downward trend during 

the global financial crisis. The discounted mean square forecast error scheme with 𝜓 = 0.9 displays 

superior gains compared to the other models after about 2013 and achieves the highest end-of-period 

value. The worst performing forecast combination is based on the rank scheme, while the cumulative 

returns of the remaining models evolve in a similar way over time. 

[Insert Figure 1 Here] 

The second part of Figure 1 depicts the cumulative return of the EW and HA benchmarks and the eight 

portfolios based on forecast combinations of machine earning models of a conservative investor without 

any leverage. Overall, the performance of the eight portfolios of the conservative investor is more stable 

over time compared to those of an aggressive investor, however, the end of period value is 

approximately half that of the portfolios with 𝛾 = 2. The eight portfolios considerably outperform the 

HA and EW benchmarks, especially after the global financial crisis, with the portfolio based on a cluster 

combination scheme of two clusters yielding the highest end-of-period-value. 

We report the annualized average turnover of the portfolios as a percentage in Table 4. The portfolio 

with the lowest turnover (except for the 1/𝑁) is the HA, with values between 6.55% and 10.58%, in 

the case of graphical lasso and from 16.12% to 39.31% for the DCC. The majority of the portfolios of 

an aggressive investor have a higher turnover than those of a conservative investor. Additionally, most 

of the portfolios based on the DCC have higher turnover, the exceptions being shrinkage methods, PLS 

and certain machine learning combinations in the case of 𝛾 = 2 and neural networks for most of the 

combinations of portfolio parameters. 

[Insert Table 4 Here] 
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Among the multivariate prediction models, the simple forecast combinations generate the lowest values, 

with turnover between 12.67% (MDC) and 164.42% (Rank) for portfolios based on sparse covariance 

estimates and from 27.19% (MDC) to 191.68% (Rank) for the dynamic covariance estimator. Machine 

learning models have a turnover in the range of 57.35% and 276.97%, while combinations of ML 

models generate turnover from 147.25% to 264.40%. Portfolios based on extremely randomized trees 

have the lowest turnover, while a neural network with three hidden layers consistently produces the 

highest average turnover across all models. 

4.2. Asset Selection and Portfolio Weights 

The percentage of wealth invested in each asset class throughout the out-of-sample period is reported 

in Table 5 for portfolios based on the graphical lasso. In the case of the EW portfolio 43.86% is invested 

in stocks, 10.53% in bonds and 45.61% in commodities. Inspecting the Table, we observe that the 

remaining models allocate little to no wealth to bonds. Focusing on the results for unleveraged 

portfolios, the HA and simple forecast combination methods tend to invest primarily in stocks with only 

a small percentage (approximately 5% to 10% depending on the degree of risk aversion) invested in 

commodities. The KS model and shrinkage methods show similar results, placing approximately equal 

weights between stocks and commodities. Portfolios based on dimensionality reduction and non-linear 

methods invest on average 70% in stocks and 30% on commodities, while in the case of forecast 

combinations of machine learning models the split is 60% to stocks and 40% to commodities.  

[Insert Table 5 Here] 

Figure 2 presents the average contribution of each asset to the portfolio across the OOS period. The 30 

assets with the highest contribution to the portfolio of an aggressive and a conservative investor are 

reported. The assets that contribute most to the portfolio of an aggressive investor are 20 stocks and 10 

commodities, while for the conservative investor there are 18 stocks and 12 commodities. The 

commodities with the highest contributions according to both investors are bananas, lead, nickel, oats, 

oil, pork, silver, sugar (free market), uranium and urea, while the portfolio of a conservative investor 

places significant weights also on iron and orange juice. Portfolios based on the HA, simple forecast 

combinations, unsupervised dimensionality reduction methods, bagging-type ensembles and support 
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vector machines tend to focus heavily on certain stocks such as Walmart (WMT) and Altria Group 

(MO), while the remaining methods allocate wealth across assets more evenly. 

[Insert Figure 2 Here] 

4.3. Portfolio Performance During Business Cycles 

In this section we examine the performance of the portfolios during NBER dated recessions and 

expansions. Table 6 reports the results for the average return. For the EW, HA and the majority of the 

simple forecast combinations the average return is positive during expansions but negative during 

recessions, the exception being the rank combination scheme for an aggressive investor that generates 

higher and positive returns during recessions. For the forecast combinations of machine learning 

models, the portfolios of an aggressive investor and those of a conservative investor without any 

leverage also yield better performance during expansions, however, compared to the simple forecast 

combinations the returns during both subperiods are positive. This pattern persists for most of the 

dimensionality reduction or non-linear methods and is reversed for shrinkage methods, where the 

models yield higher return during recessionary subperiods. 

[Insert Table 6 Here] 

We report the results in terms of Sharpe ratio in Table 7. Our findings suggest that the portfolios of a 

conservative investor are consistently higher during expansions than in recessions, with most models 

generating positive Sharpe ratios during both subperiods, except for EW, HA and forecast combinations 

of bivariate regression models that have negative ratios during recessions. For an aggressive investor 

the performance based on the Sharpe ratio is qualitatively similar to that based on average return, with 

the exception of forecast combinations of machine learning models that tend to have higher ratios during 

recessions than expansions. 

[Insert Table 7 Here] 

4.4. Variable Importance 

In this section we present the contribution of each feature to the learning process. Gu, Kelly and Xiu 

(2020) highlight the importance of quantifying the influence of each predictor as a way to interpret 

machine learning models. The measure of variable importance is calculated as the change in the out-of-

sample 𝑅2, as defined in Campbell and Thompson (2007), from setting the values of a predictor to zero 
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within each iteration of the out-of-sample period and then averaging these values to obtain a single 

variable importance measure for each predictor of a particular model. To gain further insight as to which 

features contribute most for each asset class, we further summarize the results by averaging the variable 

importance measure, of a specific feature and model, for all assets depending on whether they are a 

stock, bond, or a commodity. Figure 3 reports the variable importance, for the three asset classes and 

the 20 most influential predictors of each model. Variables are ranked so that those with the highest 

variable importance are on top and the lowest are at the bottom, with the ranking starting from the first 

model (KS).   

[Insert Figure 3 Here] 

For stocks and the KS model, the most important features are the industrial production, market retrurn, 

dividend-price ratio, capacity utilization, earnings-price ratio and term spread. The important variables 

for shrinkage methods are similar to those of the KS model, however, the MKT variable becomes less 

important, while financial uncertainty is more influential. For dimensionality reduction methods, 

influential variables for PCA- and PLS-type of methods include financial uncertainty, the payout ratio, 

stock variance and real economic activity index, while for ICA and RICA the dividend-price ratio and 

the market are the most important features. Non-linear machine learning methods tend to use a broader 

set of predictors, the exception being the neural network with a single hidden layer that focuses on 

dividend-price ratio and the market proxy. The variable importance results for the bond market indicate 

that most models use the information from the full set of predictors, except for RICA and MLP1 that 

are skewed towards the dividend-price ratio. For the commodities, influential predictors for most 

shrinkage methods include the market, dividend-price ratio, industrial production, capacity utilization, 

CFNAI and GSCI. Turning to the dimensionality reduction methods, ICA and RICA focus especially 

on the market, DP and TMS. On the other hand, the remaining methods draw information from a wider 

set of variables. Non-linear methods again appear to not focus on a particular predictor, except for the 

market and dividend-price ratio variables in the case of MLP1. 
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5. Further Performance Evaluation and Robustness Checks 

In this section we examine portfolio performance when transactions costs are introduced, for different 

rebalancing frequency and for time-varying risk aversion parameter. We also perform several 

robustness checks, such as employing an alternative shrinkage estimator of the covariance matrix, 

including power series and interactions in the predictor set and using the Huber loss function as an 

objective function. 

5.1. Effects of Transaction Costs 

The estimation of transaction costs is based on portfolio turnover. Given a transaction cost of 𝑐, the 

trading cost of the entire portfolio is 𝑐 ∑ |𝑤𝑗,𝑡+1 −𝑤𝑗,𝑡|
𝑁
𝑗=1 . The return of the portfolio after transaction 

costs is as follows: 

𝑟𝑃,𝑡+1
𝑇𝐶 = (1 + 𝑟𝑃,𝑡+1)(1 − 𝑐∑|𝑤𝑗,𝑡+1 −𝑤𝑗,𝑡|

𝑁

𝑗=1

)− 1 (35) 

We follow Olivares-Nadal and DeMiguel (2018) who show that incorporating a 𝑙𝑝 transaction cost term 

in the mean-variance portfolio problem may help to reduce the impact of estimation error. Here we 

consider the case of proportional transaction costs and modify the mean-variance optimization problem 

by adding a 𝑙1 transaction cost term, which is equivalent to assuming that transaction costs are 

proportional to the amount traded. The new constrained optimization problem becomes 

argmin
𝐰

[𝛾𝐰′𝚺𝐰−𝐰′𝐫̂ + 𝑐‖𝐰 −𝐰0‖1]  (36) 

s.t. 𝐰′𝐢𝑁 = ℎ and 𝑤𝑗 ≥ 0, with 𝑗 = 1,… ,𝑁 

where 𝑐 is the transaction cost parameter and 𝐰0 are the weights of the portfolio from the previous 

period before rebalancing. For the first period of the expanding window the weights 𝐰0 are initialized 

based on the original mean-variance allocation. The transaction costs are set to 𝑐 = 50 bps for each 

asset. When 𝑐 = 0 the above optimization problem becomes equivalent to the one in (29).  

Panel A of Table 8 reports the portfolio performance in terms of Sharpe ratio, for transaction costs of 

50 bps using the penalized portfolio objective function with a covariance matrix estimated by the 

graphical lasso. When transaction costs are introduced, the portfolios of a conservative investor are 
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affected more than those of an aggressive investor, with several models failing to outperform the EW 

portfolio and the number of models with Sharpe ratios lower than the EW and HA portfolios increasing.  

[Insert Table 8 Here] 

More in detail, the Sharpe ratio for the HA portfolio of an aggressive (conservative) investor is 0.36 

(0.57) and 0.42 (0.66) for unleveraged and leveraged positions, while the respective values for the KS 

portfolios range from 0.64 to 0.68. The Sharpe ratio for portfolios of an aggressive investor based on 

alternative predictive models, is between -0.15 (MLP3) and 0.83 (DMSFE09ML) for unleveraged 

portfolios and -0.24 (MLP3) to 0.82 (DMSFE09ML) for a 50% leverage constraint. Turning to the results 

for the conservative investor, for 𝑤𝑗 ∈ [0,1] the Sharpe ratio is between -0.23 (MLP3) and 0.80 

(RankML) or from -0.25 (MLP3) to 0.83 (RankML) when leverage is allowed. Overall, models based on 

machine learning forecast combinations yield the highest ratios, while those based on RICA and a neural 

network with three hidden layers generate the lowest Sharpe ratios. Turning to the results for average 

turnover (Panel B), the added penalty to the mean-variance objective has the greatest effect on the HA 

and simple forecast combination portfolios, which produce lower turnover compared to the remaining 

strategies. The turnover for portfolios with 𝛾 = 2 ranges from 15.30% (ERT) to 260.69% (Ridge) and 

for 𝛾 = 10, the respective values are 11.01% (ERT) and 239.16% (GBM).  

The cumulative returns of the EW, HA and forecast combinations of machine learning models for an 

aggressive investor are plotted in the first part of Figure 4. The cumulative returns of all series fluctuate 

much more compared to the case without transaction costs (Figure 1); this volatility becomes more 

pronounced around the two crises periods. After the global financial crisis, the portfolios based on 

machine learning forecast combinations show significant gains over the two benchmarks, however, all 

models exhibit similar behavior over time with the discounted mean square forecast error scheme with 

𝜓 = 0.9 having the highest end-of-period value. The cumulative return graphs of the eight forecast 

combinations along with the two benchmarks for portfolios with 𝛾 = 10 and transaction costs are 

presented in the second part of Figure 4. Overall, the difference in behavior of the cumulative return 

series across models is more pronounced, compared to when 𝛾 = 2. The portfolios based on cluster 

combination forecasts outperform all other models (especially after the dot-com bubble) and achieve 
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the highest end-of-period values. The performance of the remaining forecast combinations is superior 

to the EW portfolio after the global financial crisis.  

[Insert Figure 4 Here] 

5.2. Alternative Rebalancing Frequencies 

In the analysis detailed above, we demonstrate that for monthly rebalancing, portfolios based on 

machine learning forecast combinations generate the highest performance. In this Section we examine 

the effects to portfolio performance when the rebalancing frequency of the portfolios is reduced from 

monthly to quarterly or annual. We report the results for the two alternative rebalancing frequencies, 

for the average return and the Sharpe ratio in Tables A6 and A7, respectively. Overall, the results 

indicate that machine learning models favor higher rebalancing frequencies. Reducing the frequency 

with which a portfolio is rebalanced leads to considerably lower performance for all models, in terms 

of both measures. Specifically, the results based on average return show that the best performing 

portfolio in the case of quarterly rebalancing is based on a shallow neural network. However, when 

rebalancing frequency is reduced to annual, the best performing portfolios become sparse PCA and a 

neural network with two hidden layers for the aggressive and conservative investors, respectively. On 

the contrary, the results based on the Sharpe ratio show that all alternative models fail to outperform 

the equally weighted allocation.  

5.3. Time-Varying Parameter of Risk-Aversion 

In the previous section we used values for the parameter of risk aversion that remain fixed across the 

portfolio formation period. Here we employ a new measure of time-varying risk aversion, named 

RAbex, proposed by Bekaert, Engstrom, Xu (2021), which is derived from observable financial 

variables, such as earnings yield, corporate return spread (Baa-Aaa), term spread (10yr-3mth), equity 

return realized variance, corporate bond return realized variance, and equity risk-neutral variance.15 The 

results for the average return, Sharpe ratio and turnover are reported in Table A8 in the Appendix. In 

terms of average return and Sharpe ratio, the best performing models are those based on forecast 

combinations of machine learning models, followed by the KS model, a shallow neural network (MLP1) 

                                                           
15 We would like to thank an anonymous referee for their suggestion. 
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and shrinkage methods. The best performing forecast combination is DMSFE09ML with AR (SR) 

26.56% (1.30) for unleveraged positions and 37.04% (1.33) when leverage is allowed. The KS model, 

the neural network with three hidden layers and shrinkage methods exhibit the highest average turnover. 

Overall, the performance of portfolios with time-varying risk-aversion is between that of the portfolios 

with 𝛾 = 2  and 𝛾 = 10 from the previous section. 

5.4. Shrinkage Covariance Estimator 

As an alternative to the graphical lasso used in the previous section, we consider portfolios based on 

the linear shrinkage estimator of the covariance matrix proposed by Ledoit and Wolf (2004). 

Specifically, the sample covariance matrix is shrunk towards a one-parameter matrix, where all the 

variances are the same and all covariances are zero. The results, presented in Table A9 in the appendix, 

remain qualitatively similar to the graphical lasso estimator. The quantitative difference in performance 

between the two estimators is small and any small benefits from using the shrinkage over the sparse 

estimator are mixed and depend on the model used to generate the return forecasts.   

5.5. Power-Series and Interactions  

Our findings so far have shown that shrinkage methods tend to outperform the majority of the non-

linear methods, with the exception of a shallow neural network. In this respect, we also examine how 

the performance of the portfolios is affected when the predictor set of the shrinkage methods is replaced 

with one that includes higher polynomials and two-way interactions of the original variables. The results 

are reported in Appendix Table A10. Our findings suggest that the performance of the portfolios is 

significantly reduced across combinations of weight constraints and values for the parameter of risk 

aversion. Moreover, shrinkage methods with non-convex penalties are more affected than those based 

on convex penalties.   

5.6. Alternative Loss Function  

The presence of extreme observations in financial and economic variables can undermine the stability 

of the models due to the emphasis placed by least squares on large errors. In some cases, it is possible 

to improve model performance by using an alternative to the least squares objective function in equation 

(3). Similarly to Gu, Kelly and Xiu (2020), we consider the Huber loss function which is a hybrid of 

the least squares loss for relatively small errors and the absolute loss for relatively large errors. 
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Specifically, we replace the least square loss for the shrinkage methods with convex penalties (Ridge, 

Lasso and Elastic Net) and boosting ensembles (GBM and RGBM). The optimal parameter of the Huber 

loss function, which interpolates between the mean and the median regression, is chosen using the 

validation sample approach described in Section 3.2. The results are presented in Table A11 in the 

Appendix. Our findings suggest that shrinkage methods tend to generate higher average returns and 

Sharpe ratios when using the least square loss. However, the Huber loss function provides small 

economic benefits to portfolios based on forecasts from boosting methods for the case of a conservative 

investor (𝛾 = 10).  

 

6. Conclusion 

This study sets out to explore whether return forecasts generated by machine learning add value to 

portfolios consisting of stocks, bonds and commodities. The portfolios are constructed based on the 

proposed models and their performance is compared to that of the equal-weighted portfolio and a mean-

variance portfolio based on the historical average. The majority of the portfolios utilizing return 

forecasts outperform the 1/𝑁 and historical average benchmarks in terms of average returns and Sharpe 

ratio, with forecast combinations of machine learning models yielding the highest performance. 

Portfolios with leverage generate higher average return than the unleveraged allocations. There are no 

major changes when comparing either performance measure across different specifications of the 

covariance matrix. When transaction costs are introduced and a mean-variance objective function with 

a transaction cost penalty is utilized, the results for the monthly-rebalanced portfolios continue to favor 

forecast combinations of machine learning methods even though the performance of the portfolios is 

considerably reduced. 
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Tables 

 
TABLE 1 List of Models 

EW Equally weighted portfolio 

HA Historical average 

KS Kitchen sink model (OLS) 

Forecast Combinations of Bivariate Prediction Models 

MC Equally-weighted average of forecasts (Mean Combination) 

MDC Median Combination forecast 

TMC Trimmed Mean Combination forecast 

Rank Weighted average of forecasts based on MSE ranking 

CL2 Average of forecasts contained in the first of two clusters 

CL3 Average of forecasts contained in the first of three clusters 

DMSFE1 Discounted mean square forecast error, 𝜓=1 

DMSFE09 Discounted mean square forecast error, 𝜓=0.9 

Shrinkage Methods 

Ridge Ridge regression 

Lasso Least absolute shrinkage and selection operator 

EN Elastic net 

aLasso Adaptive least absolute shrinkage and selection operator 

Bridge Bridge regression 

SCAD Smoothly clipped absolute deviation 

MCP Minimax concave penalty 

SICA Smooth integration of counting and absolute deviation 

Dimensionality Reduction Methods 

PCA Principal component analysis 

SPCA Sparse principal component analysis 

PLS Partial least squares 

SPLS Sparse partial least squares 

ICA Independent component analysis 

RICA Reconstruction independent component analysis 

Non-Linear Machine Learning Methods 

RF Random forests 

ERT Extremely randomized trees 

GBM Gradient boosting machine 

RGBM Regularized gradient boosting machine 

e-SVM Epsilon support vector machine 

nu-SVM Nu support vector machine 

MLP1 Multilayer Perceptron, one hidden layer 

MLP2 Multilayer Perceptron, two hidden layers 

MLP3 Multilayer Perceptron, three hidden layers 

Forecast Combinations of Machine Learning Models 

MCML Equally-weighted average of ML forecasts (Mean Combination) 

MDCML Median Combination of ML forecasts 

TMCML Trimmed Mean Combination of ML forecasts 

RankML Weighted average of ML forecasts based on MSE ranking 

CL2ML Average of ML forecasts contained in the first of two clusters 

CL3ML Average of ML forecasts contained in the first of three clusters 

DMSFE1ML Discounted mean square forecast error, 𝜓=1, of ML forecasts 

DMSFE09ML Discounted mean square forecast error, 𝜓=0.9, of ML forecasts 
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TABLE 2 Portfolio Performance Based on Average Return 

 A. Sparse Covariance  B. Dynamic Covariance 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 5.73 5.73 5.73 5.73 5.73 5.73 5.73 5.73 

HA 4.00 7.12 6.06 9.16 3.69 6.77 6.52 10.28 

KS 24.96 37.38 20.43 27.29 23.74 33.74 18.84 25.79 

Forecast Combinations of Bivariate Prediction Models 

MC 5.29 8.30 6.65 10.22 5.83 8.79 6.88 10.58 

MDC 5.53 9.05 6.62 9.81 5.15 8.48 7.06 10.65 

TMC 5.39 8.28 6.51 9.91 5.58 8.53 6.90 10.54 

Rank 8.11 12.56 7.17 10.81 8.32 12.06 7.68 11.86 

CL2 4.41 7.05 6.40 9.81 5.32 7.78 6.27 10.24 

CL3 4.78 7.33 6.48 10.12 5.68 7.92 5.99 10.16 

DMSFE1 5.29 8.30 6.66 10.24 5.82 8.72 6.86 10.60 

DMSFE09 5.34 8.30 6.64 10.28 5.82 8.56 6.85 10.71 

Shrinkage Methods 

Ridge 25.31 36.55 20.20 27.40 23.89 33.15 17.97 24.76 

Lasso 23.49 32.02 18.13 24.35 22.81 31.95 15.37 20.62 

EN 23.30 31.59 18.03 24.13 22.65 31.48 15.23 20.20 

aLasso 22.43 31.67 18.11 24.79 21.10 29.56 15.15 20.65 

Bridge 22.09 30.50 18.68 26.23 21.07 29.44 16.31 23.41 

SCAD 21.17 29.63 18.92 25.92 20.50 27.84 15.94 23.94 

MCP 25.19 35.76 20.21 27.48 24.60 34.26 18.52 26.04 

SICA 21.31 30.36 17.27 23.86 19.78 28.09 15.25 20.98 

Dimensionality Reduction Methods 

PCA 9.44 14.11 9.43 12.67 9.99 14.66 9.41 12.69 

SPCA 9.64 16.14 9.52 12.44 9.31 16.14 10.25 13.11 

PLS 24.06 34.96 16.94 21.27 21.86 31.56 14.52 17.79 

SPLS 21.14 29.52 13.58 17.53 20.45 29.33 13.80 17.07 

ICA 11.23 15.53 7.51 9.95 13.56 18.26 9.16 12.18 

RICA 8.68 12.28 8.11 11.68 7.26 9.71 6.62 9.23 

Non-Linear Machine Learning Methods 

RF 12.19 17.12 9.64 13.48 11.93 16.54 8.77 11.79 

ERT 5.88 9.76 7.60 11.45 6.78 10.09 7.59 11.56 

GBM 10.88 16.54 11.50 17.16 11.22 16.72 10.53 15.50 

RGBM 9.98 15.33 9.55 13.57 6.68 10.92 6.12 8.43 

e-SVM 9.48 13.70 8.77 12.63 6.82 9.78 7.91 11.67 

nu-SVM 7.05 11.78 6.86 10.59 7.63 13.03 8.66 12.55 

MLP1 24.66 34.66 18.05 24.75 22.52 31.98 16.03 20.87 

MLP2 13.12 18.73 10.35 13.51 11.96 17.06 7.60 10.71 

MLP3 6.79 10.16 6.83 10.20 7.10 8.72 5.63 8.62 

Forecast Combinations of Machine Learning Models 

MCML 25.17 34.12 16.77 21.11 24.05 32.11 13.98 18.33 

MDCML 24.52 36.15 17.25 20.82 22.64 31.98 15.32 19.23 

TMCML 25.25 34.99 16.87 21.63 24.24 32.68 13.94 18.75 

RankML 19.60 30.09 16.54 21.37 18.89 28.18 14.50 19.08 

CL2ML 23.45 35.10 19.07 24.84 24.28 36.41 17.46 21.47 

CL3ML 24.01 35.62 18.24 23.88 26.12 38.53 18.17 22.71 

DMSFE1ML 25.49 35.66 17.07 21.55 24.33 33.70 14.41 18.61 

DMSFE09ML 27.08 38.93 17.93 23.21 26.60 37.28 15.49 19.23 

Notes: This table reports the annualized average return of the mean-variance portfolios, with monthly rebalancing, for the out-

of-sample period of January 2000 to December 2019. Panel A reports the performance based on a sparse covariance estimator 

estimated using the graphical lasso, while the results of Panel B are based on a dynamic covariance estimated using the DCC 

GARCH. The performance is reported for different levels of risk aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) 

and portfolios with leverage (𝑤𝑗 ∈ [0,1.5]). The models with the highest average return are underlined. 
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TABLE 3 Portfolio Performance Based on Sharpe Ratio 

 A. Sparse Covariance  B. Dynamic Covariance 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 

HA 0.30 0.37 0.59 0.67 0.25 0.34 0.63 0.74 

KS 1.05 1.16 1.25 1.25 0.96 1.00 1.14 1.16 

Forecast Combinations of Bivariate Prediction Models 

MC 0.37 0.42 0.65 0.76 0.39 0.42 0.65 0.75 

MDC 0.40 0.47 0.64 0.72 0.35 0.41 0.69 0.77 

TMC 0.38 0.42 0.63 0.74 0.37 0.41 0.66 0.75 

Rank 0.46 0.54 0.68 0.79 0.44 0.49 0.69 0.81 

CL2 0.30 0.35 0.62 0.72 0.35 0.38 0.60 0.73 

CL3 0.31 0.35 0.63 0.75 0.37 0.39 0.57 0.72 

DMSFE1 0.37 0.42 0.65 0.76 0.39 0.42 0.65 0.75 

DMSFE09 0.37 0.42 0.64 0.76 0.39 0.41 0.65 0.76 

Shrinkage Methods 

Ridge 1.07 1.14 1.25 1.27 0.96 0.99 1.11 1.16 

Lasso 0.96 0.95 1.10 1.12 0.86 0.89 0.90 0.93 

EN 0.94 0.93 1.09 1.12 0.85 0.87 0.89 0.91 

aLasso 0.91 0.93 1.09 1.12 0.80 0.83 0.89 0.93 

Bridge 0.90 0.91 1.17 1.21 0.80 0.84 0.99 1.07 

SCAD 0.86 0.89 1.19 1.19 0.79 0.81 0.98 1.10 

MCP 1.05 1.10 1.25 1.27 0.97 1.01 1.12 1.19 

SICA 0.86 0.90 1.09 1.12 0.73 0.78 0.92 0.97 

Dimensionality Reduction Methods 

PCA 0.48 0.54 0.78 0.79 0.50 0.56 0.75 0.76 

SPCA 0.39 0.50 0.76 0.80 0.39 0.50 0.82 0.81 

PLS 1.08 1.12 1.05 0.98 0.95 1.00 0.87 0.79 

SPLS 0.92 0.92 0.84 0.81 0.85 0.86 0.83 0.78 

ICA 0.48 0.48 0.56 0.56 0.58 0.56 0.63 0.64 

RICA 0.41 0.44 0.62 0.67 0.35 0.35 0.49 0.51 

Non-Linear Machine Learning Methods 

RF 0.59 0.61 0.72 0.76 0.57 0.59 0.65 0.64 

ERT 0.37 0.46 0.74 0.83 0.40 0.45 0.70 0.79 

GBM 0.45 0.48 0.65 0.74 0.46 0.47 0.59 0.66 

RGBM 0.43 0.47 0.53 0.57 0.29 0.33 0.37 0.38 

e-SVM 0.55 0.57 0.79 0.90 0.39 0.40 0.68 0.76 

nu-SVM 0.44 0.53 0.62 0.74 0.46 0.57 0.76 0.83 

MLP1 1.01 1.02 1.09 1.14 0.91 0.90 0.90 0.87 

MLP2 0.59 0.61 0.77 0.79 0.53 0.58 0.55 0.60 

MLP3 0.36 0.40 0.59 0.68 0.36 0.33 0.44 0.52 

Forecast Combinations of Machine Learning Models 

MCML 1.16 1.16 1.16 1.13 1.07 1.04 0.94 0.94 

MDCML 1.04 1.11 1.09 1.00 0.95 0.96 0.96 0.92 

TMCML 1.16 1.18 1.17 1.16 1.07 1.06 0.95 0.98 

RankML 0.86 0.95 1.15 1.17 0.84 0.88 1.02 1.06 

CL2ML 1.00 1.04 1.17 1.19 1.07 1.13 1.15 1.11 

CL3ML 0.99 1.04 1.08 1.08 1.13 1.18 1.15 1.14 

DMSFE1ML 1.17 1.19 1.18 1.15 1.06 1.07 0.98 0.97 

DMSFE09ML 1.22 1.28 1.23 1.23 1.18 1.21 1.08 1.03 

Notes: This table reports the annualized Sharpe ratio of the mean-variance portfolios, with monthly rebalancing, for the out-of-

sample period of January 2000 to December 2019. Panel A reports the performance based on a sparse covariance estimator 

estimated using the graphical lasso, while the results of Panel B are based on a dynamic covariance estimated using the DCC 

GARCH. The performance is reported for different levels of risk aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) 

and portfolios with leverage (𝑤𝑗 ∈ [0,1.5]). The models with the highest Sharpe ratio are underlined. 
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TABLE 4 Portfolio Performance Based on Average Turnover 

 A. Sparse Covariance  B. Dynamic Covariance 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

HA 8.04 9.79 6.55 10.58 16.12 24.82 23.35 39.31 

KS 182.42 273.82 177.69 260.47 180.35 270.92 178.03 263.34 

Forecast Combinations of Bivariate Prediction Models 

MC 40.67 48.02 24.61 35.98 51.88 67.30 36.82 59.07 

MDC 21.04 24.48 12.67 19.02 29.62 40.78 27.19 45.93 

TMC 37.17 44.13 22.71 33.30 47.37 61.99 34.49 56.34 

Rank 122.36 164.42 82.44 113.65 136.22 191.68 102.25 145.23 

CL2 59.60 74.43 38.22 55.29 69.89 92.74 48.42 79.69 

CL3 78.89 103.17 52.67 74.59 90.25 122.22 63.01 98.70 

DMSFE1 40.83 48.31 24.77 36.18 52.05 67.56 36.92 59.20 

DMSFE09 40.73 48.51 24.73 36.19 52.09 67.83 36.71 58.71 

Shrinkage Methods 

Ridge 182.75 274.05 177.30 258.44 180.47 270.85 178.39 263.68 

Lasso 177.26 267.33 170.80 247.97 174.01 262.86 175.47 259.47 

EN 178.04 268.31 171.49 248.62 175.21 264.24 175.77 259.54 

aLasso 177.83 267.44 170.35 246.90 175.67 263.87 175.10 258.56 

Bridge 182.63 273.42 175.50 257.16 180.47 270.65 177.79 264.61 

SCAD 182.63 274.20 174.96 255.89 180.92 270.54 177.20 263.06 

MCP 183.03 274.55 177.54 260.03 181.34 271.11 178.87 265.27 

SICA 181.75 271.61 174.18 254.07 180.34 269.76 176.32 261.25 

Dimensionality Reduction Methods 

PCA 151.17 215.06 118.22 167.30 157.19 230.38 130.80 187.16 

SPCA 155.49 224.36 128.32 179.96 163.11 239.16 142.87 205.50 

PLS 177.51 266.15 169.86 246.51 174.65 263.06 172.22 253.15 

SPLS 177.85 265.59 168.19 243.13 178.80 266.75 174.92 258.38 

ICA 152.13 224.07 128.19 179.37 155.72 230.42 138.87 198.97 

RICA 153.47 223.24 131.73 188.33 154.96 228.85 140.82 204.02 

Non-Linear Machine Learning Methods 

RF 151.46 219.92 123.11 170.48 154.25 229.41 138.38 196.37 

ERT 82.87 110.56 57.37 80.06 101.30 138.07 72.43 106.63 

GBM 178.06 266.65 172.91 255.86 178.92 268.34 174.85 259.51 

RGBM 181.99 271.01 173.65 254.98 182.68 272.69 177.34 260.04 

e-SVM 121.57 176.16 105.33 151.77 126.40 189.28 119.60 175.38 

nu-SVM 117.27 172.07 96.80 135.37 124.46 184.33 114.53 168.32 

MLP1 163.82 247.16 166.66 248.59 160.98 242.38 163.10 244.87 

MLP2 177.05 266.60 175.71 259.82 174.24 262.03 172.86 258.34 

MLP3 185.95 276.97 181.64 269.58 185.44 276.57 180.35 269.61 

Forecast Combinations of Machine Learning Models 

MCML 176.62 263.17 166.56 241.71 175.56 261.14 169.32 250.21 

MDCML 176.91 263.59 167.65 243.65 177.58 264.40 169.98 250.88 

TMCML 177.22 263.41 165.86 239.91 176.16 262.47 169.94 250.85 

RankML 168.14 250.13 150.69 211.93 169.14 253.28 158.75 228.07 

CL2ML 166.36 246.79 151.69 216.84 166.34 248.31 158.09 230.43 

CL3ML 165.37 244.75 147.25 208.76 166.25 248.27 156.09 225.24 

DMSFE1ML 175.92 261.89 165.69 239.49 174.48 260.09 168.90 250.31 

DMSFE09ML 175.81 261.93 165.96 239.93 175.35 263.88 171.18 253.19 

Notes: This table reports the annualized average turnover of the mean-variance portfolios, with monthly rebalancing, for the out-

of-sample period of January 2000 to December 2019. Panel A reports the performance based on a sparse covariance estimator 

estimated using the graphical lasso, while the results of Panel B are based on a dynamic covariance estimated using the DCC 

GARCH. The performance is reported for different levels of risk aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) 

and portfolios with leverage (𝑤𝑗 ∈ [0,1.5]). The models with the highest turnover are underlined. 
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TABLE 5 Average Weight in Each Asset Class for Portfolios Based on the Sparse Covariance Estimator 

 Aggressive (𝛾=2) Conservative (𝛾=10) 

 [0,1] [0,1.5] [0,1] [0,1.5] 

Model S B C S B C S B C S B C 

EW 43.86 10.53 45.61 43.86 10.53 45.61 43.86 10.53 45.61 43.86 10.53 45.61 

HA 97.46 0.00 2.54 142.69 0.00 7.31 90.71 1.29 8.00 120.23 17.09 12.68 

KS 50.25 0.00 49.75 75.33 0.00 74.67 48.49 0.00 51.51 70.38 0.00 79.62 

Forecast Combinations of Bivariate Prediction Models 

MC 96.21 0.00 3.79 141.59 0.00 8.41 90.31 1.15 8.54 120.68 15.45 13.87 

MDC 97.47 0.00 2.53 142.91 0.00 7.09 90.98 1.12 7.90 121.16 16.22 12.62 

TMC 96.44 0.00 3.56 141.95 0.00 8.05 90.47 1.15 8.38 120.87 15.51 13.62 

Rank 91.72 0.00 8.28 135.55 0.09 14.36 84.40 2.61 12.99 114.70 13.76 21.54 

CL2 95.23 0.00 4.77 140.44 0.00 9.56 88.98 1.53 9.49 119.48 15.16 15.36 

CL3 94.30 0.00 5.70 139.25 0.06 10.69 87.49 2.07 10.44 118.09 14.77 17.14 

DMSFE1 96.19 0.00 3.81 141.57 0.00 8.43 90.28 1.14 8.58 120.68 15.40 13.92 

DMSFE09 96.27 0.00 3.73 141.68 0.00 8.32 90.25 1.16 8.58 120.60 15.44 13.96 

Shrinkage Methods 

Ridge 51.01 0.00 48.99 76.76 0.00 73.24 49.32 0.00 50.68 71.47 0.00 78.53 

Lasso 51.06 0.00 48.94 77.44 0.00 72.56 49.76 0.01 50.22 71.61 0.22 78.17 

EN 51.03 0.00 48.97 77.35 0.00 72.65 50.04 0.01 49.95 72.08 0.20 77.72 

aLasso 50.82 0.00 49.18 76.91 0.00 73.09 48.93 0.00 51.07 70.38 0.34 79.28 

Bridge 51.68 0.00 48.32 77.79 0.00 72.21 49.86 0.00 50.14 72.65 0.07 77.28 

SCAD 51.23 0.00 48.77 78.33 0.00 71.67 50.36 0.00 49.64 72.85 0.02 77.13 

MCP 51.38 0.00 48.62 76.91 0.00 73.09 49.21 0.00 50.79 71.69 0.00 78.31 

SICA 51.31 0.00 48.69 77.43 0.00 72.57 50.31 0.00 49.69 72.22 0.04 77.75 

Dimensionality Reduction Methods 

PCA 74.36 2.60 23.04 111.13 4.53 34.34 68.38 5.83 25.79 95.56 13.54 40.91 

SPCA 74.02 1.58 24.40 109.68 3.06 37.25 68.01 4.86 27.13 95.23 11.72 43.05 

PLS 57.22 0.00 42.78 86.80 0.00 63.20 56.12 0.18 43.70 81.04 0.84 68.12 

SPLS 63.61 0.00 36.39 95.33 0.00 54.67 59.49 0.61 39.89 85.28 2.32 62.40 

ICA 79.66 0.13 20.20 118.22 0.51 31.27 71.71 2.22 26.07 99.58 7.06 43.37 

RICA 73.15 0.67 26.18 108.35 1.34 40.31 66.17 2.33 31.51 92.72 6.52 50.76 

Non-Linear Machine Learning Methods 

RF 64.60 0.10 35.30 98.25 0.28 51.48 68.30 0.81 30.89 100.72 4.24 45.05 

ERT 92.97 0.01 7.02 138.11 0.29 11.60 86.41 1.28 12.31 118.98 10.85 20.17 

GBM 50.09 0.00 49.91 75.63 0.00 74.37 50.34 0.05 49.61 73.41 0.14 76.45 

RGBM 59.12 0.00 40.88 87.64 0.00 62.36 55.25 0.08 44.66 80.05 0.35 69.59 

e-SVM 93.38 0.17 6.45 139.02 0.68 10.29 84.27 4.65 11.07 111.32 18.61 20.07 

nu-SVM 84.91 0.00 15.09 126.30 0.13 23.57 77.05 2.05 20.89 104.28 9.41 36.31 

MLP1 53.18 0.00 46.82 81.59 0.00 68.41 55.71 0.10 44.19 80.95 0.33 68.72 

MLP2 55.15 0.30 44.55 82.56 0.61 66.82 49.51 2.75 47.74 68.41 6.31 75.29 

MLP3 54.16 1.92 43.92 80.54 3.48 65.98 45.63 7.18 47.19 61.65 15.96 72.39 

Forecast Combinations of Machine Learning Models 

MCML 59.53 0.00 40.47 90.03 0.00 59.97 57.63 0.27 42.10 81.44 1.22 67.34 

MDCML 58.40 0.00 41.60 87.90 0.06 62.03 56.32 0.55 43.13 80.78 2.08 67.14 

TMCML 59.51 0.00 40.49 90.46 0.00 59.54 58.15 0.33 41.52 82.29 1.38 66.32 

RankML 59.41 0.00 40.59 89.33 0.00 60.67 61.39 0.86 37.75 89.78 3.69 56.54 

CL2ML 53.18 0.00 46.82 79.41 0.00 70.59 54.46 1.00 44.54 81.02 3.39 65.59 

CL3ML 52.55 0.00 47.45 79.03 0.13 70.84 53.57 1.51 44.92 80.12 4.71 65.17 

DMSFE1ML 60.17 0.00 39.83 91.50 0.00 58.50 59.12 0.39 40.49 83.70 1.69 64.61 

DMSFE09ML 61.71 0.00 38.29 93.48 0.00 56.52 59.34 0.33 40.33 83.44 1.68 64.87 

Notes: This table reports the average weights in each of the three asset classes (Stock, Bond and Commodities), for the out-of-

sample period of January 2000 to December 2019. The mean-variance portfolios are based on the graphical lasso estimator. The 

average weights are reported for different levels of risk aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) and portfolios 

with leverage (𝑤𝑗 ∈ [0,1.5]). 
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TABLE 6 Portfolio Performance Based on Average Return During Business Cycles 

 A. Expansions B. Recessions 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 7.42 7.42 7.42 7.42 -8.15 -8.15 -8.15 -8.15 

HA 5.87 9.96 8.13 12.11 -11.34 -16.27 -10.98 -15.05 

KS 24.24 35.83 19.91 26.58 30.89 50.13 24.68 33.18 

Forecast Combinations of Bivariate Prediction Models 

MC 6.18 10.16 8.53 12.77 -2.04 -6.96 -8.88 -10.77 

MDC 6.82 11.24 8.50 12.52 -5.04 -9.00 -8.85 -12.52 

TMC 6.34 10.31 8.44 12.56 -2.38 -8.41 -9.38 -11.88 

Rank 6.67 11.39 8.36 12.69 19.96 22.11 -2.60 -4.67 

CL2 5.86 9.64 8.21 12.38 -7.55 -14.20 -8.50 -11.32 

CL3 5.75 9.31 8.14 12.53 -3.29 -8.96 -7.21 -9.70 

DMSFE1 6.18 10.13 8.54 12.78 -2.06 -6.74 -8.84 -10.64 

DMSFE09 6.29 10.15 8.52 12.78 -2.47 -6.89 -8.82 -10.24 

Shrinkage Methods 

Ridge 23.12 33.30 19.20 26.64 43.39 63.31 28.40 33.68 

Lasso 21.91 29.73 17.70 24.65 36.47 50.86 21.66 21.91 

EN 21.69 29.16 17.56 24.41 36.58 51.54 21.89 21.81 

aLasso 20.66 29.07 17.47 24.47 37.05 53.06 23.37 27.45 

Bridge 20.39 28.09 18.26 26.19 36.09 50.34 22.16 26.52 

SCAD 19.87 27.44 18.88 26.45 31.87 47.67 19.23 21.58 

MCP 23.13 32.49 19.26 26.76 42.11 62.66 28.07 33.45 

SICA 18.85 26.99 17.10 24.36 41.53 58.09 18.62 19.69 

Dimensionality Reduction Methods 

PCA 9.08 13.65 9.77 13.83 12.36 17.90 6.65 3.14 

SPCA 10.26 17.33 10.83 14.68 4.56 6.30 -1.24 -5.94 

PLS 24.16 35.50 17.93 23.00 23.19 30.55 8.74 7.00 

SPLS 20.12 29.50 14.66 19.29 29.58 29.68 4.74 2.99 

ICA 12.52 18.69 10.74 15.04 0.61 -10.41 -19.10 -31.96 

RICA 10.26 14.57 9.57 14.16 -4.30 -6.58 -3.89 -8.69 

Non-Linear Machine Learning Methods 

RF 13.32 18.77 11.61 16.82 2.92 3.55 -6.52 -14.03 

ERT 6.16 11.41 9.83 14.96 3.51 -3.84 -10.73 -17.44 

GBM 15.41 23.26 14.43 20.56 -26.45 -38.73 -12.58 -10.82 

RGBM 14.37 22.14 13.12 17.86 -26.15 -40.67 -19.78 -21.74 

e-SVM 9.97 14.99 9.55 13.82 5.41 3.04 2.40 2.84 

nu-SVM 8.36 13.89 8.33 12.58 -3.78 -5.57 -5.17 -5.76 

MLP1 23.24 32.72 17.69 24.59 36.32 50.67 21.01 26.07 

MLP2 12.29 18.37 11.50 15.43 19.94 21.73 0.82 -2.36 

MLP3 8.75 12.86 7.40 10.97 -9.28 -12.03 2.17 3.86 

Forecast Combinations of Machine Learning Models 

MCML 22.32 30.91 16.59 21.77 48.65 60.57 18.25 15.70 

MDCML 22.94 34.37 17.22 21.36 37.57 50.75 17.51 16.40 

TMCML 22.49 31.70 16.58 22.28 48.03 62.04 19.19 16.35 

RankML 16.83 26.11 15.92 21.77 42.39 62.80 21.67 18.03 

CL2ML 21.50 31.98 18.99 25.63 39.42 60.82 19.75 18.33 

CL3ML 21.40 32.23 18.14 24.79 45.49 63.53 19.04 16.45 

DMSFE1ML 22.74 32.23 16.82 22.22 48.10 63.89 19.14 16.07 

DMSFE09ML 24.91 36.78 17.91 24.03 44.97 56.63 18.04 16.48 

Notes: This table reports the annualized average return of the mean-variance portfolios, with monthly rebalancing, for the out-

of-sample period of January 2000 to December 2019, during business cycles. The mean-variance portfolios are based on the 

graphical lasso estimator. Panel A reports the performance during NBER expansions, while Panel B reports the performance 

during NBER recessions. The performance is reported for different levels of risk aversion (𝛾 = 2,10), for unleveraged portfolios 

(𝑤𝑗 ∈ [0,1]) and portfolios with leverage (𝑤𝑗 ∈ [0,1.5]). The models with the highest average return are underlined. 
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TABLE 7 Portfolio Performance Based on Sharpe Ratio During Business Cycles 

 A. Expansions B. Recessions 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 1.25 1.25 1.25 1.25 -0.59 -0.59 -0.59 -0.59 

HA 0.45 0.55 0.85 0.97 -0.70 -0.68 -0.74 -0.76 

KS 1.09 1.20 1.35 1.34 0.90 1.04 0.94 0.95 

Forecast Combinations of Bivariate Prediction Models 

MC 0.46 0.55 0.90 1.03 -0.11 -0.25 -0.59 -0.56 

MDC 0.51 0.61 0.88 1.00 -0.28 -0.35 -0.59 -0.64 

TMC 0.47 0.56 0.89 1.01 -0.12 -0.30 -0.61 -0.61 

Rank 0.41 0.53 0.87 1.02 0.72 0.62 -0.16 -0.22 

CL2 0.43 0.52 0.88 0.99 -0.34 -0.46 -0.55 -0.56 

CL3 0.42 0.49 0.88 1.01 -0.13 -0.27 -0.45 -0.48 

DMSFE1 0.46 0.55 0.90 1.03 -0.11 -0.24 -0.58 -0.55 

DMSFE09 0.46 0.55 0.90 1.03 -0.13 -0.25 -0.58 -0.53 

Shrinkage Methods 

Ridge 1.04 1.12 1.32 1.37 1.30 1.34 1.08 0.96 

Lasso 0.96 0.95 1.21 1.28 1.02 1.01 0.78 0.59 

EN 0.94 0.93 1.20 1.27 1.03 1.03 0.79 0.59 

aLasso 0.91 0.93 1.19 1.25 1.02 1.03 0.83 0.73 

Bridge 0.87 0.90 1.27 1.33 1.08 1.07 0.87 0.78 

SCAD 0.85 0.87 1.30 1.34 0.98 1.03 0.77 0.61 

MCP 1.03 1.07 1.33 1.38 1.26 1.32 1.06 0.94 

SICA 0.82 0.88 1.20 1.27 1.13 1.12 0.72 0.56 

Dimensionality Reduction Methods 

PCA 0.50 0.58 0.93 1.02 0.41 0.42 0.31 0.11 

SPCA 0.45 0.59 1.02 1.14 0.13 0.12 -0.05 -0.20 

PLS 1.17 1.23 1.28 1.25 0.71 0.65 0.31 0.17 

SPLS 0.91 0.97 0.99 1.00 0.97 0.68 0.19 0.08 

ICA 0.55 0.61 0.92 0.99 0.02 -0.25 -0.88 -1.11 

RICA 0.59 0.65 0.95 1.07 -0.11 -0.12 -0.14 -0.23 

Non-Linear Machine Learning Methods 

RF 0.70 0.73 0.96 1.06 0.09 0.08 -0.32 -0.52 

ERT 0.43 0.59 1.05 1.20 0.13 -0.12 -0.70 -0.88 

GBM 0.65 0.69 0.86 0.95 -0.98 -0.99 -0.53 -0.33 

RGBM 0.64 0.70 0.76 0.79 -1.00 -1.07 -0.88 -0.70 

e-SVM 0.59 0.65 0.88 1.03 0.25 0.10 0.17 0.16 

nu-SVM 0.54 0.66 0.81 0.96 -0.19 -0.19 -0.31 -0.26 

MLP1 1.06 1.08 1.23 1.31 0.93 0.89 0.73 0.67 

MLP2 0.59 0.64 0.95 1.03 0.65 0.51 0.04 -0.08 

MLP3 0.47 0.52 0.68 0.79 -0.46 -0.40 0.13 0.17 

Forecast Combinations of Machine Learning Models 

MCML 1.13 1.15 1.32 1.35 1.47 1.32 0.71 0.47 

MDCML 1.03 1.12 1.18 1.16 1.16 1.10 0.71 0.47 

TMCML 1.12 1.17 1.32 1.38 1.47 1.35 0.77 0.49 

RankML 0.82 0.93 1.26 1.37 1.19 1.22 0.87 0.57 

CL2ML 0.98 1.00 1.24 1.33 1.18 1.29 0.83 0.58 

CL3ML 0.93 1.00 1.12 1.19 1.33 1.34 0.85 0.52 

DMSFE1ML 1.14 1.18 1.33 1.38 1.46 1.36 0.76 0.48 

DMSFE09ML 1.23 1.32 1.40 1.45 1.33 1.20 0.72 0.51 

Notes: This table reports the annualized Sharpe ratio of the mean-variance portfolios, with monthly rebalancing, for the out-of-

sample period of January 2000 to December 2019, during business cycles. The mean-variance portfolios are based on the 

graphical lasso estimator. Panel A reports the performance during NBER expansions, while Panel B reports the performance 

during NBER recessions. The performance is reported for different levels of risk aversion (𝛾 = 2,10), for unleveraged portfolios 

(𝑤𝑗 ∈ [0,1]) and portfolios with leverage (𝑤𝑗 ∈ [0,1.5]). The models with the highest Sharpe ratio are underlined. 
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TABLE 8 Portfolio Performance after Transaction Costs of 50 bps 

 A. Sharpe Ratio B. Average Turnover 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 0.78 0.78 0.78 0.78 0.00 0.00 0.00 0.00 

HA 0.36 0.42 0.57 0.66 0.21 0.27 0.53 0.75 

KS 0.64 0.68 0.67 0.65 172.65 259.98 165.22 236.91 

Forecast Combinations of Bivariate Prediction Models 

MC 0.32 0.41 0.60 0.65 0.40 0.62 0.71 1.22 

MDC 0.34 0.41 0.57 0.63 0.26 0.32 0.60 0.96 

TMC 0.33 0.42 0.60 0.64 0.45 0.60 0.71 1.17 

Rank 0.50 0.50 0.65 0.72 13.16 18.72 10.32 13.28 

CL2 0.25 0.30 0.57 0.64 1.09 1.87 1.48 2.24 

CL3 0.36 0.41 0.59 0.65 2.23 3.85 2.64 3.87 

DMSFE1 0.32 0.41 0.60 0.65 0.41 0.59 0.74 1.25 

DMSFE09 0.31 0.41 0.60 0.66 0.34 0.49 0.72 1.24 

Shrinkage Methods 

Ridge 0.64 0.64 0.66 0.65 174.06 260.69 162.27 234.07 

Lasso 0.60 0.56 0.56 0.50 163.57 244.23 151.78 216.24 

EN 0.58 0.55 0.56 0.50 163.93 246.26 152.48 217.76 

aLasso 0.57 0.54 0.55 0.52 165.68 247.76 152.19 215.10 

Bridge 0.50 0.48 0.58 0.57 170.09 253.71 160.23 232.95 

SCAD 0.51 0.45 0.62 0.59 171.32 256.09 160.13 230.69 

MCP 0.60 0.62 0.65 0.61 173.00 260.04 163.64 236.80 

SICA 0.48 0.47 0.52 0.50 167.75 251.42 157.10 225.52 

Dimensionality Reduction Methods 

PCA 0.16 0.18 0.45 0.51 64.89 91.64 47.84 64.66 

SPCA 0.21 0.30 0.57 0.58 80.08 110.94 54.58 70.95 

PLS 0.62 0.65 0.50 0.40 159.27 236.95 145.62 203.96 

SPLS 0.54 0.53 0.32 0.29 157.38 233.93 141.72 197.18 

ICA 0.30 0.24 0.24 0.29 79.86 111.50 57.27 75.14 

RICA -0.02 0.07 0.29 0.37 92.57 131.23 69.56 94.96 

Non-Linear Machine Learning Methods 

RF 0.27 0.28 0.38 0.43 91.11 129.81 63.41 81.11 

ERT 0.42 0.45 0.64 0.71 15.30 21.21 11.01 13.94 

GBM 0.07 0.06 0.10 0.11 169.70 253.09 162.74 239.16 

RGBM 0.02 0.02 0.05 0.04 167.95 250.45 157.67 226.08 

e-SVM 0.27 0.27 0.57 0.70 28.85 44.20 28.59 37.44 

nu-SVM 0.11 0.19 0.38 0.47 27.61 38.54 21.89 29.15 

MLP1 0.62 0.63 0.53 0.51 151.05 229.23 150.86 220.42 

MLP2 0.14 0.11 0.05 0.00 160.23 238.90 149.26 215.41 

MLP3 -0.15 -0.24 -0.23 -0.25 167.83 246.51 156.72 228.84 

Forecast Combinations of Machine Learning Models 

MCML 0.74 0.73 0.59 0.52 146.90 213.65 124.10 168.97 

MDCML 0.71 0.68 0.60 0.50 150.71 220.99 129.56 174.37 

TMCML 0.75 0.76 0.62 0.56 146.09 214.09 122.09 166.32 

RankML 0.58 0.68 0.80 0.83 119.23 170.80 85.02 107.90 

CL2ML 0.59 0.62 0.78 0.83 124.73 181.71 94.61 124.17 

CL3ML 0.62 0.66 0.73 0.74 129.24 186.32 95.54 125.94 

DMSFE1ML 0.74 0.77 0.64 0.58 141.85 208.46 118.85 159.95 

DMSFE09ML 0.83 0.82 0.72 0.68 142.91 209.06 117.23 159.25 

Notes: This table reports the annualized Sharpe ratio and average turnover of the mean-variance portfolios, with monthly 

rebalancing, for the out-of-sample period of January 2000 to December 2019. The portfolios are based on the graphical lasso 

estimator and on the penalized mean-variance objective function with transaction costs of 50 bps. Panel A reports the performance 

based on the Sharpe ratio, Panel B reports the results based on average turnover. The performance is reported for different levels 

of risk aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) and portfolios with leverage (𝑤𝑗 ∈ [0,1.5]). The models with 

the highest Sharpe ratio and turnover are underlined. 
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Figures 

 
FIGURE 1 Cumulative returns for portfolios without transaction costs. The mean-variance portfolios are based on the graphical lasso 

estimator, with combination of weight constraints 𝑤𝑗 ∈ [0,1.5], for the aggressive investor (𝛾 = 2) and 𝑤𝑗 ∈ [0,1], for the 

conservative investor (𝛾 = 10). The shaded regions depict the NBER-dated recessions and expansions. 
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FIGURE 2 Asset selection. Columns correspond to individual models and rows to the 30 assets that contribute most to the portfolio, according to the average 

weight across the out-of-sample period. The mean-variance portfolios are based on the graphical lasso estimator, with combination of weight constraints 𝑤𝑗 ∈
[0,1.5], for the aggressive investor (𝛾 = 2) and 𝑤𝑗 ∈ [0,1], for the conservative investor (𝛾 = 10). A darker colour indicates a greater influence of an asset to 

the portfolio utilising the return forecasts generated from the respective alternative model. 
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FIGURE 3 Variable importance. Columns correspond to individual models and rows to the 20 most influential predictors for each asset class. The colour of 

each model-predictor combination indicates the importance of the respective variable to the model, from most influential variable (blue) to least influential 

variables (white). 
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FIGURE 4 Cumulative returns for portfolios with transaction costs of 50 bps. The mean-variance portfolios are based on the graphical 

lasso estimator and on the penalized mean-variance objective function with transaction costs of 50 bps, with combination of weight 

constraints 𝑤𝑗 ∈ [0,1.5], for the aggressive investor (𝛾 = 2) and 𝑤𝑗 ∈ [0,1], for the conservative investor (𝛾 = 10). The shaded 

regions depict the NBER-dated recessions and expansions 
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Appendix  

TABLE A1 List of Stocks 

Ticker PERMNO Company Name 

HON 10145 HONEYWELL INTERNATIONAL INC 

KO 11308 COCA COLA CO 

XOM 11850 EXXON MOBIL CORP 

GE 12060 GENERAL ELECTRIC CO 

IBM 12490 INTERNATIONAL BUSINESS MACHS COR 

PEP 13856 PEPSICO INC 

MO 13901 ALTRIA GROUP INC 

COP 13928 CONOCOPHILLIPS 

CVX 14541 CHEVRON CORP NEW 

TXN 15579 TEXAS INSTRUMENTS INC 

CVS 17005 C V S HEALTH CORP 

KMB 17750 KIMBERLY CLARK CORP 

BRK 17778 BERKSHIRE HATHAWAY INC DEL 

UTX 17830 UNITED TECHNOLOGIES CORP 

PG 18163 PROCTER & GAMBLE CO 

SO 18411 SOUTHERN CO 

CAT 18542 CATERPILLAR INC 

CL 18729 COLGATE PALMOLIVE CO 

BMY 19393 BRISTOL MYERS SQUIBB CO 

WBA 19502 WALGREENS BOOTS ALLIANCE INC 

BA 19561 BOEING CO 

ABT 20482 ABBOTT LABORATORIES 

LMT 21178 LOCKHEED MARTIN CORP 

PFE 21936 PFIZER INC 

EMR 22103 EMERSON ELECTRIC CO 

JNJ 22111 JOHNSON & JOHNSON 

MMM 22592 3M CO 

MRK 22752 MERCK & CO INC NEW 

NEE 24205 NEXTERA ENERGY INC 

DIS 26403 DISNEY WALT CO 

HPQ 27828 H P INC 

BAX 27887 BAXTER INTERNATIONAL INC 

DUK 27959 DUKE ENERGY CORP NEW 

OXY 34833 OCCIDENTAL PETROLEUM CORP 

WFC 38703 WELLS FARGO & CO NEW 

MCD 43449 MCDONALDS CORP 

ADP 44644 AUTOMATIC DATA PROCESSING INC 

TYC 45356 TYCO INTERNATIONAL LTD 

JPM 47896 JPMORGAN CHASE & CO 

UNP 48725 UNION PACIFIC CORP 

TGT 49154 TARGET CORP 

BK 49656 BANK OF NEW YORK MELLON CORP 

LLY 50876 LILLY ELI & CO 

WMT 55976 WALMART INC 

AXP 59176 AMERICAN EXPRESS CO 

INTC 59328 INTEL CORP 

MDT 60097 MEDTRONIC INC 

PNC 60442 P N C FINANCIAL SERVICES GRP INC 

LOW 61399 LOWES COMPANIES INC 

USB 66157 U S BANCORP DEL 
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TABLE A2 List of Bond Portfolios 

Name TREASNOX Description 

BP6 2000028 Bonds with maturities between 1 and 6 months 

BP12 2000029 Bonds with maturities between 6 and 12 months 

BP18 2000030 Bonds with maturities between 12 and 18 months 

BP24 2000031 Bonds with maturities between 18 and 24 months 

BP30 2000032 Bonds with maturities between 24 and 30 months 

BP36 2000033 Bonds with maturities between 30 and 36 months 

BP42 2000034 Bonds with maturities between 36 and 42 months 

BP48 2000035 Bonds with maturities between 42 and 48 months 

BP54 2000036 Bonds with maturities between 48 and 54 months 

BP60 2000037 Bonds with maturities between 54 and 60 months 

BP120 2000038 Bonds with maturities between 60 and 120 months 

BP120b 2000039 Bonds with maturities greater than 120 months 
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TABLE A3 List of Commodities 

Name Description 

Coal Coal, Australian thermal coal, 12,000- btu/pound, less than 1% sulfur, 14% ash, FOB Newcastle/Port Kembla, US$ per 

metric ton 

Oil Crude Oil (petroleum), West Texas Intermediate 40 API, Midland Texas, US$ per barrel 

Cotton Cotton, Cotton Outlook 'A Index', Middling 1-3/32 inch staple, CIF Liverpool, US cents per pound 

Hides Hides, Heavy native steers, over 53 pounds, wholesale dealer's price, US, Chicago, fob Shipping Point, US cents per pound 

Rubber Rubber, Singapore Commodity Exchange, No. 3 Rubber Smoked Sheets, 1st contract, US cents per pound 

Logsk Hard Logs, Best quality Malaysian meranti, import price Japan, US$ per cubic meter 

Sawmal Hard Sawnwood, Dark Red Meranti, select and better quality, C&F UK port, US$ per cubic meter 

Logore Soft Logs, Average Export price from the US for Douglas Fir, US$ per cubic meter 

Sawore Soft Sawnwood, average export price of Douglas Fir, US Price, US$ per cubic meter 

WoolC Wool, coarse, 23 micron, Australian Wool Exchange spot quote, US cents per kilogram 

WoolF Wool, fine, 19 micron, Australian Wool Exchange spot quote, US cents per kilogram 

Aluminum Aluminum, 99.5% minimum purity, LME spot price, CIF UK ports, US$ per metric ton 

Copper Copper, grade A cathode, LME spot price, CIF European ports, US$ per metric ton 

Iron China import Iron Ore Fines 62% FE spot (CFR Tianjin port), US dollars per metric ton 

Lead Lead, 99.97% pure, LME spot price, CIF European Ports, US$ per metric ton 

Nickel Nickel, melting grade, LME spot price, CIF European ports, US$ per metric ton 

Tin Tin, standard grade, LME spot price, US$ per metric ton 

Uranium Uranium, NUEXCO, Restricted Price, Nuexco exchange spot, US$ per pound 

Zinc Zinc, high grade 98% pure, US$ per metric ton 

Gold Gold, Fixing Committee of the London Bullion Market Association, London 3 PM fixed price, US$ per troy ounce 

Platinum Platinum, LME spot price, USD/troy ounce 

Silver Silver, London Bullion Market Association, USD/troy ounce 

Cocoa Cocoa beans, International Cocoa Organization cash price, CIF US and European ports, US$ per metric ton 

CoffeOM Coffee, Other Mild Arabicas, International Coffee Organization New York cash price, ex-dock New York, US cents per 

pound 

CoffeeRob Coffee, Robusta, International Coffee Organization New York cash price, ex-dock New York, US cents per pound 

Tea Tea, Mombasa, Kenya, Auction Price, US cents per Kg, From July 1998, Kenya auctions, Best Pekoe Fannings. Prior, 

London auctions, c.i.f. UK warehouses 

Barley Barley, Canadian no.1 Western Barley, spot price, US$ per metric ton 

Maize Maize (corn), U.S. No.2 Yellow, FOB Gulf of Mexico, US price, US$ per metric ton 

Oats Generic 1st 'O ' Future, USD/bushel 

Rice Rice, 5 percent broken milled white rice, Thailand nominal price quote, US$ per metric ton 

Wheat Wheat, No.1 Hard Red Winter, ordinary protein, Kansas City, US$ per metric ton 

Beef Beef, Australian and New Zealand 85% lean fores, CIF US import price, US cents per pound 

Lamb Lamb, frozen carcass Smithfield London, US cents per pound 

Poultry Poultry (chicken), Whole bird spot price, Ready-to-cook, whole, iced, Georgia docks, US cents per pound 

Pork Swine (pork), 51-52% lean Hogs, US price, US cents per pound. 

Bananas Bananas, Central American and Ecuador, FOB US Ports, US$ per metric ton 

Fishmeal Fishmeal, Peru Fish meal/pellets 65% protein, CIF, US$ per metric ton 

Groundnuts Groundnuts (peanuts), 40/50 (40 to 50 count per ounce), cif Argentina, US$ per metric ton 

OrangeJuice Generic 1st 'JO' Future, USD/lb 

Salmon Fish (salmon), Farm Bred Norwegian Salmon, export price, US$ per kilogram 

Shrimp Thailand Whiteleg Shrimp 70 Shrimps/Kg Spot Price 

SugarFM Sugar, Free Market, Coffee Sugar and Cocoa Exchange (CSCE) contract no.11 nearest future position, US cents per pound 

SugarUS Sugar, US import price, contract no.14 nearest futures position, US cents per pound (Footnote: No. 14 revised to No. 16) 

OliveOil Olive Oil, extra virgin less than 1% free fatty acid, ex-tanker price UK, US$ per metric ton 

PalmOil Palm oil, Malaysia Palm Oil Futures (first contract forward) 4-5 percent FFA, US$ per metric ton 

RapeseedOil Rapeseed oil, crude, fob Rotterdam, US$ per metric ton 

SoybeanOil Soybean Oil, Chicago Soybean Oil Futures (first contract forward) exchange approved grades, US$ per metric ton 

Soybeans Soybeans, US soybeans, Chicago Soybean futures contract (first contract forward) No. 2 yellow and par, US$ per metric ton 

SunflowerOil Sunflower oil, Sunflower Oil, US export price from Gulf of Mexico, US$ per metric ton 
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DAP US Gulf NOLA DAP Export Spot Price per MT, USD/metric tonne 

Potassium Potassium Chloride (Muriate of Potash) Standard Grade: FOB Vancouver Spot Price, USD/metric tonne 

Urea US Gulf NOLA Urea Granular Spot Price, USD/ST 

Notes: The source of the data and their description is obtained from the IMF Primary Commodity Price System database. 
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TABLE A4 List of Predictors   

Name Description Source 

MKT Fama-French Market Factor Kenneth French's Website 

SMB Fama-French Size Factor Kenneth French's Website 

HML Fama-French Value Factor Kenneth French's Website 

RMW Fama-French Profitability Factor Kenneth French's Website 

CMA Fama-French Investment Factor Kenneth French's Website 

MOM Carhart Momentum Factor Kenneth French's Website 

LIQ Pastor-Stambaugh Liquidity Factor Robert Stambaugh's Website 

DP Dividend-Price Ratio Amit Goyal's Website 

DY Dividend Yield Amit Goyal's Website 

EP Earnings-Price Ratio Amit Goyal's Website 

DE Payout Ratio Amit Goyal's Website 

BM Book-to-Market Ratio Amit Goyal's Website 

SVAR Stock Variance Amit Goyal's Website 

NTIS Net Equity Expansion Amit Goyal's Website 

BAML ICE BofA US Corporate Total Return Index St. Louis Fed's FRED Database 

TBL Treasury Bill Rate Amit Goyal's Website 

LTY Long-term Yield Amit Goyal's Website 

LTR Long-term Return Amit Goyal's Website 

TMS Term Spread Amit Goyal's Website 

DFY Default Yield Spread Amit Goyal's Website 

DFR Default Return Spread Amit Goyal's Website 

CP Cochrane-Piazzesi Bond Factor 

Center for Research in Security 

Prices  

INDPRO Industrial Production St. Louis Fed's FRED Database 

M1 Money supply M1 St. Louis Fed's FRED Database 

CPI Consumer Price Index St. Louis Fed's FRED Database 

PPI Producer Price Index St. Louis Fed's FRED Database 

CAP Capacity Utilization St. Louis Fed's FRED Database 

UNRAT

E Unemployment Rate St. Louis Fed's FRED Database 

IS Inventory-Sales Ratio St. Louis Fed's FRED Database 

HOUST Housing Starts St. Louis Fed's FRED Database 

Credit Total Consumer Credit St. Louis Fed's FRED Database 

GSCI S&P Goldman Sachs Commodity Total Return Index Thomson Reuters Eikon 

USAU Australian dollar - US dollar exchange rate St. Louis Fed's FRED Database 

USCA Canadian dollar - US dollar exchange rate St. Louis Fed's FRED Database 

USIN Indian rupee - US dollar exchange rate St. Louis Fed's FRED Database 

USNZ New Zealand dollar - US dollar exchange rate St. Louis Fed's FRED Database 

VXO CBOE Volatility Index St. Louis Fed's FRED Database 

UMSEN

T University of Michigan: Consumer Sentiment Index St. Louis Fed's FRED Database 

CFNAI Chicago Fed National Activity Index Chicago Fed's Website 

REA Real Economic Activity Index Lutz Kilian's Website 

GAC 

Philadelphia Fed Business Outlook Survey Current Activity 

Index Philadelphia Fed's Website 

GAF 

Philadelphia Fed Business Outlook Survey Future Activity 

Index Philadelphia Fed's Website 

UFin Financial Uncertainty Index Sydney C. Ludvigson's Website 

UMacro Macroeconomic Uncertainty Index Sydney C. Ludvigson's Website 
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TABLE A5 Summary Statistics of Predictors 

  Mean St. Dev. Skewness Kurtosis Minimum Maximum 

MKT 0.0103 0.0439 -0.7410 2.3274 -0.2264 0.1289 

SMB 0.0009 0.0287 0.4104 4.5328 -0.1491 0.1832 

HML 0.0023 0.0294 0.1548 1.9267 -0.1118 0.1287 

RMW 0.0036 0.0234 -0.4153 12.3216 -0.1834 0.1333 

CMA 0.0026 0.0200 0.3934 1.8686 -0.0686 0.0956 

MOM 0.0056 0.0447 -1.3289 10.6047 -0.3439 0.1836 

LIQ 0.0000 0.0003 -0.0859 0.8868 -0.0013 0.0012 

DP -0.0022 0.0435 0.7472 2.9340 -0.1214 0.2512 

DY -0.0022 0.0434 0.7505 2.9843 -0.1214 0.2512 

EP -2.9461 0.4374 -0.7005 3.0488 -4.8365 -1.8987 

DE -0.7895 0.3528 2.9668 13.8100 -1.2442 1.3795 

BM -0.0018 0.0238 0.2478 11.5176 -0.1446 0.1634 

SVAR 0.0025 0.0051 9.0499 102.9008 0.0002 0.0709 

NTIS 0.0034 0.0204 -0.2910 -0.2716 -0.0577 0.0457 

BAML 0.0066 0.0178 0.1700 8.0024 -0.0994 0.1131 

TBL -0.0219 0.4571 -2.2107 30.8913 -4.6200 2.6100 

LTY 6.4225 3.1197 0.6233 -0.3841 1.6300 14.8200 

LTR 0.7625 3.2371 0.3923 2.0110 -11.2400 15.2300 

TMS 0.0047 0.4694 0.7653 20.1537 -3.2800 4.2300 

DFY -0.0009 0.1246 0.8870 11.8964 -0.6300 0.9400 

DFR 0.0169 1.5418 -0.4974 6.9311 -9.7500 7.3700 

CP 0.0587 1.7022 0.2810 1.2937 -6.5855 6.1543 

INDPRO 0.0015 0.0067 -1.1533 6.0317 -0.0443 0.0203 

M1 0.0049 0.0081 1.1409 7.7167 -0.0345 0.0579 

CPI 0.0000 0.0027 -0.2820 2.6973 -0.0122 0.0108 

PPI 0.0000 0.0099 -1.0818 6.8567 -0.0575 0.0357 

CAP -0.0145 0.5198 -0.9985 4.9776 -3.4255 1.4692 

UNRATE -0.0052 0.1686 0.2929 1.2951 -0.7000 0.6000 

IS -0.0002 0.0173 0.6280 5.1817 -0.0620 0.1136 

HOUST 0.1854 105.7384 -0.2583 2.3863 -597.0000 363.0000 

Credit 0.0052 0.0053 0.6956 12.7641 -0.0323 0.0446 

GSCI 0.0028 0.0561 -0.5964 2.9825 -0.3313 0.2065 

USAU -0.0010 0.0259 -0.9516 4.3938 -0.1732 0.0713 

USCA -0.0002 0.0154 -0.4985 6.2952 -0.1129 0.0601 

USIN -0.0045 0.0178 -3.0368 28.4617 -0.1956 0.0594 

USNZ -0.0008 0.0272 -0.4649 2.4203 -0.1433 0.0810 

VXO 19.9162 7.7392 1.8688 6.2694 8.0164 67.1510 

UMSENT 0.0798 3.8838 -0.0686 1.2159 -12.7000 17.3000 

CFNAI -0.0388 0.5673 -1.2617 4.1197 -2.9100 1.5700 

REA -0.0931 15.2902 -0.7146 6.6443 -100.1851 69.4538 

GAC 7.8512 16.9927 -0.8063 1.2231 -57.1000 49.5000 

GAF 0.1333 8.8601 -0.0634 0.7618 -31.3000 37.7000 

UFin 0.0001 0.0342 0.3709 6.4373 -0.1943 0.2115 

UMacro 0.6508 0.0985 1.9164 3.8795 0.5389 1.0764 

Notes: All predictors are checked for stationarity using ADF tests and non-stationary 

predictors are adjusted by taking first differences. 
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TABLE A6 Portfolio Performance Based on Average Return for Alternative Rebalancing Frequencies 

 A. 3-month rebalancing B. 12-month rebalancing 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 5.73 5.73 5.73 5.73 5.73 5.73 5.73 5.73 

HA 4.78 8.24 7.01 9.49 5.08 8.37 7.06 9.61 

KS 7.44 11.61 7.83 11.28 10.04 14.34 6.59 8.13 

Forecast Combinations of Bivariate Prediction Models 

MC 5.00 8.67 6.93 9.59 4.89 7.94 7.46 10.39 

MDC 6.56 10.17 7.53 10.11 5.28 8.25 7.00 9.86 

TMC 5.06 8.62 7.11 9.73 5.18 8.19 7.34 10.45 

Rank 6.10 8.44 5.91 8.40 5.07 8.48 6.63 10.13 

CL2 4.55 8.04 6.40 9.24 4.47 7.19 7.08 10.09 

CL3 5.21 8.23 5.76 8.40 4.13 6.69 7.16 10.46 

DMSFE1 4.94 8.62 6.93 9.60 4.87 7.90 7.44 10.35 

DMSFE09 4.92 8.57 6.92 9.58 4.83 7.85 7.46 10.38 

Shrinkage Methods 

Ridge 3.84 5.68 5.87 9.06 9.89 13.81 6.61 10.09 

Lasso 4.37 5.73 5.06 8.05 11.94 16.64 7.88 10.96 

EN 4.11 5.26 5.00 8.04 11.84 16.57 7.83 10.78 

aLasso 3.92 5.31 3.41 5.88 11.82 16.68 7.56 10.76 

Bridge 4.54 5.90 5.01 7.88 10.71 15.18 6.33 8.73 

SCAD 3.09 3.96 4.54 7.54 9.89 14.29 6.18 8.78 

MCP 2.98 4.07 6.06 9.34 11.07 15.43 6.71 9.37 

SICA 2.07 3.12 4.02 6.61 10.40 15.26 7.13 10.25 

Dimensionality Reduction Methods 

PCA 5.19 7.92 6.05 8.76 9.88 14.23 9.44 13.09 

SPCA 3.01 6.41 5.45 7.79 13.06 19.34 10.64 14.57 

PLS 5.61 9.10 6.31 9.78 4.22 7.24 4.39 6.24 

SPLS 1.80 4.33 4.19 6.21 6.51 8.69 3.46 5.27 

ICA 4.65 6.64 4.65 7.05 10.78 17.83 9.51 12.97 

RICA 4.10 7.02 6.06 9.15 10.30 13.92 7.18 9.12 

Non-Linear Machine Learning Methods 

RF 4.92 6.57 4.46 6.63 3.30 5.20 5.47 8.57 

ERT 4.36 6.57 5.78 8.42 6.79 10.30 7.75 10.83 

GBM 2.97 4.99 4.48 7.75 7.49 10.02 6.35 10.75 

RGBM -0.11 -1.94 1.36 3.98 6.94 10.99 6.33 9.60 

e-SVM 3.96 7.47 6.36 8.63 6.70 11.42 7.54 9.76 

nu-SVM 0.49 2.89 4.36 6.81 9.36 14.05 9.26 12.58 

MLP1 12.43 17.39 9.83 13.00 7.54 11.19 6.90 9.74 

MLP2 7.46 9.33 2.09 2.04 7.41 13.70 12.14 18.14 

MLP3 4.59 4.94 3.38 5.54 5.92 9.57 5.96 9.30 

Forecast Combinations of Machine Learning Models 

MCML 1.72 3.16 3.24 5.77 8.40 10.80 5.61 9.03 

MDCML 2.24 4.00 3.91 6.96 5.80 8.25 4.75 8.73 

TMCML 1.87 3.18 3.28 6.44 8.81 11.78 5.69 8.68 

RankML 5.25 7.36 3.54 5.14 9.56 12.27 6.87 11.81 

CL2ML 4.07 5.24 3.68 6.00 7.58 9.86 5.61 8.93 

CL3ML 1.19 2.25 1.10 2.37 7.90 11.27 7.91 10.86 

DMSFE1ML 2.01 3.09 3.34 6.78 7.12 9.12 5.00 8.37 

DMSFE09ML 0.53 1.78 2.89 5.49 6.11 7.98 4.88 8.83 

Notes: This table reports the annualized average return of the mean-variance portfolios, with quarterly (Panel 

A) and annual (Panel B) rebalancing, for the out-of-sample period of January 2000 to December 2019. The 

portfolios are based on the graphical lasso estimator. The performance is reported for different levels of risk 

aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) and portfolios with leverage (𝑤𝑗 ∈ [0,1.5]). The 

models with the highest average return are underlined. 
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TABLE A7 Portfolio Performance Based on Sharpe Ratio for Alternative Rebalancing Frequencies 

 A. 3-month rebalancing B. 12-month rebalancing 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 

HA 0.33 0.40 0.63 0.73 0.33 0.39 0.61 0.71 

KS 0.29 0.31 0.39 0.42 0.41 0.40 0.34 0.30 

Forecast Combinations of Bivariate Prediction Models 

MC 0.34 0.41 0.62 0.72 0.30 0.36 0.67 0.76 

MDC 0.45 0.49 0.68 0.78 0.35 0.39 0.62 0.74 

TMC 0.34 0.41 0.63 0.74 0.32 0.37 0.66 0.77 

Rank 0.35 0.34 0.48 0.54 0.26 0.32 0.54 0.62 

CL2 0.29 0.37 0.56 0.68 0.26 0.31 0.63 0.71 

CL3 0.32 0.36 0.49 0.59 0.23 0.28 0.64 0.72 

DMSFE1 0.33 0.41 0.62 0.72 0.30 0.36 0.67 0.76 

DMSFE09 0.33 0.41 0.62 0.72 0.30 0.35 0.67 0.76 

Shrinkage Methods 

Ridge 0.15 0.16 0.31 0.35 0.43 0.41 0.35 0.38 

Lasso 0.18 0.17 0.27 0.32 0.52 0.50 0.43 0.43 

EN 0.17 0.15 0.27 0.32 0.51 0.50 0.43 0.42 

aLasso 0.16 0.15 0.19 0.23 0.51 0.51 0.43 0.43 

Bridge 0.18 0.17 0.27 0.31 0.41 0.41 0.34 0.33 

SCAD 0.12 0.11 0.24 0.29 0.39 0.40 0.33 0.33 

MCP 0.12 0.11 0.32 0.36 0.46 0.45 0.35 0.35 

SICA 0.09 0.09 0.22 0.26 0.51 0.51 0.41 0.41 

Dimensionality Reduction Methods 

PCA 0.27 0.30 0.43 0.47 0.47 0.49 0.68 0.76 

SPCA 0.11 0.17 0.35 0.38 0.50 0.54 0.75 0.81 

PLS 0.24 0.28 0.37 0.42 0.17 0.20 0.23 0.24 

SPLS 0.07 0.13 0.24 0.26 0.28 0.27 0.19 0.21 

ICA 0.18 0.18 0.32 0.38 0.39 0.46 0.60 0.62 

RICA 0.21 0.26 0.41 0.45 0.50 0.50 0.49 0.45 

Non-Linear Machine Learning Methods 

RF 0.23 0.23 0.30 0.34 0.15 0.16 0.35 0.40 

ERT 0.27 0.28 0.48 0.55 0.40 0.43 0.61 0.65 

GBM 0.12 0.15 0.22 0.26 0.31 0.29 0.31 0.38 

RGBM 0.00 -0.04 0.05 0.10 0.26 0.29 0.29 0.31 

e-SVM 0.25 0.33 0.52 0.57 0.39 0.47 0.62 0.70 

nu-SVM 0.03 0.13 0.34 0.40 0.53 0.56 0.66 0.70 

MLP1 0.55 0.54 0.56 0.55 0.36 0.38 0.40 0.40 

MLP2 0.38 0.34 0.14 0.10 0.31 0.40 0.62 0.65 

MLP3 0.19 0.14 0.17 0.21 0.29 0.33 0.38 0.43 

Forecast Combinations of Machine Learning Models 

MCML 0.07 0.09 0.19 0.25 0.38 0.35 0.33 0.38 

MDCML 0.08 0.11 0.21 0.26 0.23 0.23 0.24 0.33 

TMCML 0.08 0.09 0.19 0.27 0.40 0.37 0.33 0.37 

RankML 0.19 0.19 0.20 0.22 0.36 0.34 0.37 0.49 

CL2ML 0.16 0.14 0.21 0.26 0.29 0.26 0.29 0.36 

CL3ML 0.05 0.06 0.06 0.10 0.32 0.31 0.40 0.42 

DMSFE1ML 0.08 0.09 0.20 0.29 0.31 0.28 0.29 0.36 

DMSFE09ML 0.02 0.05 0.17 0.24 0.26 0.24 0.28 0.38 

Notes: This table reports the annualized Sharpe ratio of the mean-variance portfolios, with quarterly (Panel A) 

and annual (Panel B) rebalancing, for the out-of-sample period of January 2000 to December 2019. The 

portfolios are based on the graphical lasso estimator. The performance is reported for different levels of risk 

aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) and portfolios with leverage (𝑤𝑗 ∈ [0,1.5]). The 

models with the highest Sharpe ratio are underlined. 
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TABLE A8 Portfolio Performance Using Time-Varying Risk Aversion Parameter 

 A. Average Return B. Sharpe Ratio C. Average Turnover 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 5.73 5.73 0.78 0.78 0.00 0.00 

HA 4.60 7.83 0.36 0.43 9.45 12.79 

KS 25.34 36.93 1.16 1.24 182.52 273.09 

Forecast Combinations of Bivariate Prediction Models 

MC 5.41 8.81 0.41 0.48 34.55 43.35 

MDC 5.74 9.31 0.45 0.51 18.28 23.07 

TMC 5.42 8.72 0.42 0.48 32.09 39.51 

Rank 8.01 11.35 0.51 0.55 113.31 153.18 

CL2 4.96 7.94 0.37 0.44 52.95 67.68 

CL3 5.07 8.32 0.37 0.46 72.29 94.66 

DMSFE1 5.46 8.74 0.42 0.48 34.86 43.88 

DMSFE09 5.38 8.76 0.41 0.48 34.77 43.53 

Shrinkage Methods 

Ridge 24.11 34.42 1.10 1.15 182.93 273.84 

Lasso 21.73 30.21 0.96 0.97 177.89 267.32 

EN 21.47 29.66 0.94 0.95 178.65 268.46 

aLasso 21.16 29.81 0.93 0.95 178.26 267.13 

Bridge 20.50 29.35 0.90 0.96 182.43 272.94 

SCAD 20.34 29.69 0.89 0.97 182.99 273.55 

MCP 24.22 34.24 1.09 1.14 183.36 274.18 

SICA 20.59 28.76 0.91 0.95 180.90 269.38 

Dimensionality Reduction Methods 

PCA 9.38 14.72 0.54 0.64 146.10 206.07 

SPCA 11.62 17.07 0.53 0.63 151.31 218.31 

PLS 23.92 33.75 1.15 1.16 177.56 264.38 

SPLS 19.36 27.45 0.90 0.92 177.70 264.22 

ICA 10.09 13.76 0.46 0.50 151.54 219.21 

RICA 8.70 12.91 0.47 0.53 150.01 216.95 

Non-Linear Machine Learning Methods 

RF 12.03 16.82 0.64 0.66 148.90 215.16 

ERT 5.98 9.92 0.42 0.52 76.41 104.17 

GBM 11.43 18.17 0.49 0.56 177.86 265.31 

RGBM 10.34 16.41 0.47 0.52 180.90 268.68 

e-SVM 9.07 13.79 0.56 0.62 118.66 170.82 

nu-SVM 7.60 11.21 0.50 0.54 116.91 169.96 

MLP1 23.57 32.56 1.02 1.03 164.63 247.93 

MLP2 12.87 18.22 0.62 0.66 177.39 266.56 

MLP3 6.83 11.11 0.39 0.48 185.31 275.74 

Forecast Combinations of Machine Learning Models 

MCML 23.22 32.25 1.16 1.18 175.89 260.59 

MDCML 24.60 34.05 1.12 1.14 176.63 261.41 

TMCML 23.68 32.86 1.18 1.20 176.37 260.50 

RankML 20.17 30.04 0.95 1.06 167.59 245.56 

CL2ML 23.83 33.65 1.06 1.05 165.30 244.16 

CL3ML 23.48 33.98 1.03 1.07 164.51 241.42 

DMSFE1ML 24.52 33.83 1.21 1.22 175.19 259.66 

DMSFE09ML 26.56 37.04 1.30 1.33 175.34 260.08 

Notes: This table reports the annualized average return, Sharpe ratio and average turnover of the mean-variance 

portfolios, with monthly rebalancing, for the out-of-sample period of January 2000 to December 2019. The 

portfolios are based on the graphical lasso estimator and use the time-varying risk aversion (RAbex) proposed 

by Bekaert, Engstrom and Xu (2019). The performance is reported for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) and 

portfolios with leverage (𝑤𝑗 ∈ [0,1.5]). The models with the highest average return, Sharpe ratio and turnover 

are underlined. 

 

  



63 

 

TABLE A9 Portfolio Performance Based on the Shrinkage Covariance Estimator 

 A. Average Return B. Sharpe Ratio 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

EW 5.73 5.73 5.73 5.73 0.78 0.78 0.78 0.78 

HA 4.04 7.00 6.20 9.46 0.29 0.36 0.58 0.65 

KS 25.41 37.50 21.43 28.63 1.02 1.11 1.27 1.25 

Forecast Combinations of Bivariate Prediction Models 

MC 5.46 8.60 6.82 10.58 0.37 0.42 0.63 0.73 

MDC 5.59 9.21 6.79 10.26 0.39 0.46 0.62 0.70 

TMC 5.55 8.55 6.66 10.33 0.38 0.42 0.62 0.71 

Rank 8.21 12.88 7.55 11.13 0.44 0.52 0.67 0.76 

CL2 4.57 7.59 6.28 9.80 0.29 0.36 0.59 0.67 

CL3 5.06 7.83 6.58 10.32 0.31 0.36 0.62 0.71 

DMSFE1 5.47 8.56 6.82 10.59 0.37 0.42 0.63 0.73 

DMSFE09 5.49 8.57 6.78 10.57 0.37 0.42 0.63 0.73 

Shrinkage Methods 

Ridge 25.78 37.65 20.91 29.01 1.03 1.11 1.25 1.29 

Lasso 24.20 34.05 18.93 25.85 0.93 0.96 1.09 1.13 

EN 24.02 33.65 18.69 25.66 0.92 0.95 1.08 1.12 

aLasso 22.97 33.14 18.88 26.14 0.89 0.93 1.08 1.13 

Bridge 22.98 31.73 19.23 27.63 0.88 0.90 1.16 1.23 

SCAD 21.98 30.92 19.66 27.45 0.85 0.88 1.18 1.22 

MCP 25.78 36.88 21.17 29.41 1.02 1.08 1.26 1.30 

SICA 22.31 31.68 17.96 24.85 0.84 0.90 1.08 1.11 

Dimensionality Reduction Methods 

PCA 9.13 13.72 9.46 13.02 0.43 0.50 0.73 0.76 

SPCA 8.77 16.45 9.92 12.97 0.34 0.46 0.73 0.77 

PLS 24.00 34.94 18.25 22.85 1.05 1.09 1.10 1.01 

SPLS 21.71 30.43 14.53 18.74 0.91 0.92 0.87 0.83 

ICA 12.26 17.52 8.48 11.29 0.51 0.52 0.60 0.61 

RICA 8.24 12.19 7.92 11.64 0.37 0.41 0.57 0.63 

Non-Linear Machine Learning Methods 

RF 12.51 17.62 9.69 13.75 0.58 0.60 0.69 0.74 

ERT 6.04 10.06 7.59 11.96 0.36 0.45 0.70 0.81 

GBM 11.04 16.45 11.26 16.90 0.45 0.47 0.61 0.70 

RGBM 9.92 15.22 10.11 14.19 0.42 0.45 0.54 0.57 

e-SVM 9.73 13.89 8.86 12.90 0.55 0.57 0.75 0.85 

nu-SVM 6.67 11.13 6.51 10.37 0.41 0.49 0.55 0.66 

MLP1 25.43 35.90 18.70 25.72 1.01 1.01 1.08 1.13 

MLP2 13.04 19.59 10.82 14.45 0.56 0.61 0.74 0.78 

MLP3 7.22 10.02 6.71 9.95 0.37 0.38 0.54 0.62 

Forecast Combinations of Machine Learning Models 

MCML 26.17 35.78 18.11 23.14 1.15 1.15 1.18 1.16 

MDCML 24.83 36.68 18.72 23.47 1.02 1.08 1.13 1.07 

TMCML 26.12 36.60 18.12 23.66 1.15 1.17 1.19 1.19 

RankML 19.10 29.86 17.17 22.68 0.82 0.91 1.13 1.17 

CL2ML 22.86 34.86 19.71 24.98 0.96 1.01 1.16 1.16 

CL3ML 24.11 35.43 18.94 24.58 0.97 1.00 1.09 1.10 

DMSFE1ML 26.19 36.73 18.47 23.38 1.15 1.17 1.21 1.17 

DMSFE09ML 27.84 39.88 19.25 24.35 1.21 1.25 1.25 1.22 

Notes: This table reports the annualized average return and Sharpe ratio of the mean-variance portfolios, with 

monthly rebalancing, for the out-of-sample period of January 2000 to December 2019. The portfolios are based 

on the Ledoit and Wolf shrinkage estimator of the covariance matrix. The performance is reported for different 

levels of risk aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) and portfolios with leverage (𝑤𝑗 ∈

[0,1.5]). The models with the highest average return and Sharpe ratio are underlined. 
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TABLE A10 Portfolio Performance of Shrinkage Methods Using Power Series and Interaction Terms 

 A. Average Return B. Sharpe Ratio 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

KS 13.41 19.56 12.16 16.47 0.48 0.47 0.51 0.50 

Ridge 14.95 21.62 13.58 20.48 0.57 0.56 0.62 0.67 

Lasso 15.40 23.17 15.16 21.18 0.48 0.49 0.59 0.61 

EN 16.43 23.77 15.52 23.35 0.54 0.54 0.69 0.76 

aLasso 17.11 25.23 15.25 22.30 0.55 0.56 0.61 0.67 

Bridge 6.30 9.95 7.02 11.81 0.26 0.28 0.34 0.41 

SCAD 10.53 14.46 9.46 14.30 0.41 0.39 0.45 0.49 

MCP 6.98 9.53 7.24 11.32 0.27 0.25 0.33 0.37 

SICA 13.86 21.26 14.79 22.57 0.49 0.52 0.65 0.71 

Notes: This table reports the annualized average return and Sharpe ratio of the mean-variance portfolios, with 

monthly rebalancing, for the out-of-sample period of January 2000 to December 2019. Panel A reports the 

performance based on the average return, Panel B reports the results based on Sharpe ratio. The performance 

is reported for different levels of risk aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) and 

portfolios with leverage (𝑤𝑗 ∈ [0,1]). The set of predictors includes the original variables raised to the second 

and third power and two-way interactions for a total of 1034 predictors. 

 

 

TABLE A11 Portfolio Performance of Various Machine Learning Methods Using Huber Loss  

 A. Average Return B. Sharpe Ratio 

 Aggressive (𝛾=2) Conservative (𝛾=10) Aggressive (𝛾=2) Conservative (𝛾=10) 

Model [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] [0,1] [0,1.5] 

RidgeH 16.86 25.77 16.64 22.88 0.67 0.72 0.90 0.90 

LassoH 19.87 29.12 16.99 23.89 0.85 0.90 1.05 1.11 

ENH 10.35 15.74 11.41 16.10 0.39 0.41 0.60 0.65 

GBMH 9.62 15.96 11.99 17.76 0.41 0.48 0.65 0.72 

RGBMH 9.36 14.71 10.70 14.58 0.35 0.40 0.55 0.57 

Notes: This table reports the annualized average return and Sharpe ratio of the mean-variance portfolios, with 

monthly rebalancing, for the out-of-sample period of January 2000 to December 2019. Panel A reports the 

performance based on the average return, Panel B reports the results based on Sharpe ratio. The performance 

is reported for different levels of risk aversion (𝛾 = 2,10), for unleveraged portfolios (𝑤𝑗 ∈ [0,1]) and 

portfolios with leverage (𝑤𝑗 ∈ [0,1]). 

 

 

 


