1 Implicit motor imagery of the foot and hand in people with Achilles

2 tendinopathy: a left right judgement study

3	Rio, Ebonie. K., PhD ¹	ORCID 0000-0002-6854-929X	
4	Stanton, Tasha. R., PhD ^{2,3}	ORCID 0000-0001-7106-4456	
5	Wand, Benedict M., PhD ⁴		
6	Debenham, James R., PhD ⁴	ORCID 0000-0003-0662-9048	
7	Cook, Jill., PhD ¹		
8	Catley, Mark J. PhD ²	ORCID 0000-0002-1582-4390	
9	Moseley, G. Lorimer, PhD ² ORCID 0000-0002-3750-4945		
10	Butler, Prudence, B. Physio(Hons) ⁴		
11	Cheng, Kylie, B. Physio(Hons) ³		
12	Mallows, Adrian. J., PhD ^o		
13	Cirdwood Michael M Dhysio Breet		
14 15	Giruwood, Michael, M. Physio Prac-	URCID 0000-0001-6477-7263	
16 17 18	 La Trobe Sport & Exercise Medicine Research Centre, La Trobe University, Bundoora, VIC, Australia IIMPACT in Health. The University of South Australia. Adelaide. SA. Australia 		
19	3. Neuroscience Research Australia, Sydney, NSW, Australia		
20	4. University of Notre Dame, School of Physiotherapy, Freemantle, WA, Australia		
21	5. Department of Physiotherapy, School of Medicine, Nursing and Health Sciences, Monash		
22	University, Clayton, VIC, Australia.		
23	6. School of Sport Rehabilitation a	nd Exercise Sciences, University of Essex, Colchester, Essex,	
24	United Kingdom		
25			
26	Running title: Left right judgement in Achilles Tendinopathy		
27	Conflicts of Interest: TS is supported by an NHMRC Career Development Fellowship (ID1141735). TS		
28	received travel and accommodation support from Eli Lilly Ltd for speaking engagements (2014;		
29	unrelated to the present topic). In the last 5 years, GLM has received support from: ConnectHealth		
30	UK, Seqirus, Kaiser Permanente, Workers' Compensation Boards in Australia, Europe and North		
31	America, AIA Australia, the International Olympic Committee, Port Adelaide Football Club, Melbourne		
32	Football Club and Arsenal Football Club. Professional and scientific bodies have reimbursed him for		
33	travel costs related to presentation of research on pain at scientific conferences/symposia. He has		
34	received speaker fees for lectures on pain and rehabilitation. GLM receives book royalties from		
35	NOIgroup publications, Dancing Giraffe Press & OPTP. ER is supported by an NHMRC Early Career		
36	Fellowship.		
37	Keywords: Achilles, tendinopathy, left r	ight judgement, pain, motor imagery, foot	
38 39 40 41 42	Corresponding author: Dr. Ebonie Rio La Trobe Sport and Exercise Medicine Centre La Trobe University, Bundoora, VIC, 3068, AUSTRALIA <u>e.rio@latrobe.edu.au</u> (03) 9479 3785		

44 Abstract

- 45 **Objective:** To determine if impairment in motor imagery processes is present in Achilles
- 46 tendinopathy (AT), as demonstrated by a reduced ability to quickly and accurately identify the
- 47 laterality (left-right judgement) of a pictured limb. Additionally, this study aimed to use a novel data
- 48 pooling approach to combine data collected at 3 different sites via meta-analytical techniques that
- 49 allow exploration of heterogeneity.

50 **Design:** Multi site case-control study.

- 51 Methods: Three independent studies with similar protocols were conducted by separate research
- 52 groups. Each study-site evaluated left/right judgement performance for images of feet and hands
- using Recognise[©] software and compared performance between people with AT and healthy
- 54 controls. Results from each study-site were independently collated, then combined in a meta-
- 55 analysis.
- 56 **Results:** 126 participants (40 unilateral, 22 bilateral AT cases, 61 controls) were include. There were
- 57 no differences between AT cases and controls for hand image accuracy and reaction time. Contrary
- to the hypothesis, there were no differences in performance between those with AT and controls for
- 59 foot image reaction time, however there were conflicting findings for foot accuracy, based on four
- 60 separate analyses. There were no differences between the affected and unaffected sides in people
- 61 with unilateral AT.
- 62 **Conclusions:** Impairments in motor imagery performance for hands were not found in this study and
- 63 we found inconsistent results for foot accuracy. This contrasts to studies in persistent pain of limbs,
- 64 face and knee osteoarthritis, and suggests that differences in pathoaetiology or patient
- 65 demographics may uniquely influence proprioceptive representation.
- 66 Keywords: Achilles, tendinopathy, left right judgement, pain, motor imagery, foot
- 67
- 68
- 69

70 Introduction

71 Achilles tendinopathy (AT) presents as localised pain intimately linked with Achilles tendon loading,

72 without spreading or localised pain at rest.(1) It is often a chronic condition and can be recalcitrant

to treatment.(2) AT affects both athletic and sedentary populations throughout the lifespan, making

it the most common tendinopathy(3) with a reported incidence of 2.35 per 1000 GP

75 presentations.(4)

76 Little is known about the nociceptive driver in tendon pain and, like other musculoskeletal 77 conditions, the pain experienced does not correlate well with tissue damage or imaging findings.(5) 78 There is an incomplete understanding of the consequences of chronic AT outside of muscle and 79 tendon changes, and a deeper understanding of any central nervous system changes may improve 80 understanding and outcomes for this condition. The presence of sensory processing deficits in AT are 81 conflicting – reduced tactile discrimination ability(6) and conditioned pain modulation (CPM)(7), but 82 no differences in quantitative sensory testing when compared with pain-free controls.(8) In other 83 chronic pain conditions, impairments in implicit motor imagery (tested via left right judgement [LRJ] 84 tasks) have been observed, (9-12) but this has never been explored in people with AT. The LRJ task 85 requires participants to view an image of a body part and decide whether the image shows a left or right part (or is rotated towards the left or right). This is achieved by mentally manoeuvring the 86 87 image of the body in the brain to match the position of the body in the image, thus activating 88 movement relevant areas including the supplementary motor and pre-motor area.(13) This task 89 involves visuospatial processing, memory, and integration of sensory information. (14) The two main 90 outcomes of the LRJ task are accuracy and reaction time. Accuracy on the task is thought to 91 represent an intact proprioceptive representation for that body part (i.e., intact function of the 92 cortical maps that coordinate and plan movement).(10) In contrast, reaction time is thought to 93 provide information on the information processing resources delegated to that body part or side of 94 space.(15, 16) Together such information on impairment of task performance is important given past 95 work that has shown that improving LRJ performance via brain-targeted treatment (e.g., graded 96 motor imagery) has positive clinical outcomes in some pain conditions.(17)

97 The aim of this study was two-fold: first, to investigate implicit motor imagery performance for 98 images of the foot and of the hand (control) using a LRJ task in AT cases compared to pain-free 99 controls; and second, to use a novel approach to combine data collected at three different sites via 100 meta-analytical techniques that allow exploration of site heterogeneity. Given the persistence of 101 pain in AT, we hypothesised that people with AT would be less accurate and slower to make LRJs for 102 images of feet than healthy controls, but that the groups would not differ for images of hands. 103 Further, we hypothesised that in those with unilateral AT, there would be a spatial difference between the affected and unaffected side, with LRJs being slower and less accurate for the imagescongruent with the foot of the affected side.

106

107 Materials and methods

- 108 This study collated data from three case-control studies, completed by different research groups.
- 109 Each of the three studies were independently planned and implemented, but given similarities in
- 110 objectives and methods identified during collaborative discussion, data were combined into a larger
- analysis. All studies were designed as case-control studies with an AT group and a pain-free control
- 112 group. Ethical approval was received at each location: Monash University Research Ethics (ID:
- 113 CF14/2034-2014001065), University of South Australia Human Research Ethics (ID: 0000034628) and
- 114 University of Notre Dame Australia Human Research Ethics Committee (ID:011008F).

115 Participants

- 116 English speakers over the age of 18 years were recruited. Cases were required to have a diagnosis of
- symptomatic mid-portion or insertional Achilles tendinopathy (unilateral or bilateral). Symptomatic
- 118 AT was defined slightly differently between study-sites:
- 119 For study-site 1 (University of Notre Dame), the inclusion criterion for the AT group was a clinical
- 120 diagnosis based on the following diagnostic criteria: greater than a 6-week history of mid-portion
- 121 Achilles tendon pain, concordant pain on tendon palpation, pain with or after tendon loading,
- morning stiffness, and a Victorian Institute of Sport Assessment-Achilles (VISA-A) score of less than
- 123 80/100.
- 124 For study-site 2 (University of South Australia), the diagnosis of AT was self-reported, as data were
- 125 collected in an online questionnaire format, with no face-to-face contact with a researcher.
- Participants were asked whether they had "undertaken activity to elicit Achilles tendon pain in the
- 127 previous 24 hours."
- 128 Study-site 3 (Monash University) recruited people with localised pain at the AT insertion or mid-
- portion on a progressive load test of a single leg calf raise or hop with no restrictions on symptom
- 130 chronicity duration.
- 131 Participants with AT at all three study-sites were excluded if they had a history of tendon rupture,
- 132 previous lower limb surgery or other concomitant lower limb pathologies, were pregnant, or had
- 133 other metabolic diseases (e.g. diabetes mellitus, rheumatoid arthritis, psoriasis). Study-site 2 also

- excluded participants if they had a diagnosis or suspected diagnosis of partial tear in the Achillestendon.
- 136 At all study-sites, controls participants were required to have no current or past AT symptoms, no
- 137 surgery in the preceding 12 months, no other current lower limb disorders and no other medical
- 138 problems. Participant groups from study-site 3 were matched for age, sex, and activity level.

139 Recruitment

- 140 For study-site 1, cases were recruited via referrals from health professionals and through advertising
- amongst local sporting communities (Freemantle, Australia), whilst control participants were
- 142 recruited from the local community (Freemantle, Australia). Study-site 2 recruited through
- advertisements on pain science websites (bodyinmind.org and noigroup.com), social media,
- 144 presentations at conferences, and flyers at local sporting clubs in Adelaide. Study-site 3 recruited
- 145 through social media and contacting physiotherapy clinics and clinicians in the Melbourne region.

146 **Procedures**

- 147 All three study sites used the experimental protocol for LRJ testing described by Bray & Moseley.(18)
- 148 LRJ discrimination was assessed using Recognise © (NOI, Adelaide, Australia
- 149 <u>http://www.noigroup.com/</u>). This program is reliable(10) and has been used previously for
- assessment of LRJ in a number of conditions.(9, 19) The program presents a series of pictures of
- 151 body parts (for example, feet) in various positions. Participants are asked to determine whether the
- 152 pictured feet belong to the left or right side of the body. Images of hands were also used as a control
- 153 condition.

154 Three slightly different protocols were used. Study-sites 1 and 3 seated participants comfortably in 155 front of a computer monitor with their forearms resting on the table and feet in a standardised position (figure 1). The "A" key was used to indicate a left hand/foot and the "D" key was used to 156 157 indicate a right hand/foot. Instructions were not given on which fingers to use. The keyboard was 158 positioned to ensure the A and D keys aligned with the middle of the computer monitor. Each 159 picture was displayed for a maximum of 5 seconds and participants were instructed to identify the 160 pictures as left or right as quickly and as accurately as possible. To eliminate assessor bias, 161 standardised instructions were provided to each participant. Study-site 2 modified the original Recognise program for use in an online survey platform that was delivered to eligible participants at 162 163 their own convenience. Because it was delivered online, the exact set up of the participant could not be controlled. The "F" and "J" keys were therefore used to encourage centralisation of positioning of 164 165 the hands and body in front of the computer. The keyboard and computer were placed centrally

within the participant mid-line given that bias in the allocation of attention to a spatially-defined
location, as seen in many pain conditions, could influence responding(20). No further instructions
were provided on how the participants were to position themselves, apart from sitting comfortably
with their feet on the floor.

170 The images used in the judgements tasks for all study arms were comprised of left and right hands 171 and left and right feet against plain backgrounds. Images of hands and images of feet were tested in 172 separate blocks. Assessment sets contained 50 percent left-sided and 50 percent right-sided images. 173 Images of varied magnitude of rotation and 'awkwardness' of limb position were randomly provided 174 during each assessment set. Assessment sets contained 40 images as suggested by Bray & 175 Moseley(18). Study-sites 1 and 2 completed a familiarization of 20 images and then 2 sets of 40 176 images each for the hand and the foot for formal testing. Study-site 3 completed a familiarization of 177 20 images and 1 set of 40 images for formal testing. Accuracy results (correct/incorrect) and reaction 178 times (to the nearest tenth of a second) were exported as raw excel spreadsheets.

179 Approx. location of Figure 1

180 Data analysis

181 <u>Primary analysis:</u>

Given differences in recruited populations, inclusion criteria, testing methods, and the timing of
 when studies were conducted, we decided to separately summarise the results of each individual
 sub-study , and then collate these sub-study results together in a meta-analysis, allowing for formal
 evaluation of heterogeneity between study-sites.

186 Each of the three study-sites collated their own data returned from participants. For each 187 participant, the number of correct responses was calculated and reported as a percentage correct 188 for both hand images and foot images for each side (left/right; affected/unaffected). Average 189 reaction time for hand images and feet images were calculated using trials for which correct 190 responses were given. Any trials with reaction times less than 500ms were excluded, as this is 191 quicker than human processing times and consistent with past protocols.(21, 22) Means and SDs 192 were calculated for each group (control, unilateral AT, bilateral AT) for each outcome (accuracy and 193 reaction time for foot and hand). Left and right values for each outcome were also averaged, and 194 mean and SD calculated. No statistical testing was conducted within study-sites (only group mean 195 and SD was calculated).

Data from all study-sites were then collated and analysed with a random-effects meta-analysis by an
 independent researcher (MG) who was not involved in any data collection; however the researcher

198 was unblinded to group status. All meta-analyses were conducted in the statistical program R (v. 199 3.3.3, R Foundation for Statistical Computing, Vienna, Austria) using the 'metafor' package.(23) A 200 random-effects model was used, given the subtle differences in data collection characteristics. 201 Standardised mean differences (SMD) were calculated for all comparisons. Heterogeneity was 202 indicated by the I² statistic, with 0-40% indicating heterogeneity might not be important, 30-60% 203 moderate heterogeneity, 50-90% substantial, 75-100% considerable heterogeneity.(24) Separate 204 meta-analyses were planned for outcomes of foot image accuracy, foot image reaction time, hand 205 image accuracy and hand image reaction time, using the following group comparisons:

- Analysis 1: Cases with AT compared to healthy controls. Overall reaction time and accuracy
 values from all cases (unilateral and bilateral AT) were calculated by averaging performance
 for left and right images. This was completed for images of feet and for images of hands.
- 209 Analysis 2: Unilateral AT affected side versus healthy controls. Past work has shown that • 210 people with bilateral neck pain are most impaired in LRJ performance (vs left-sided or right-211 sided pain),(25) thus we aimed to separately evaluate those with unilateral AT to confirm and supplement the above findings. Reaction time and accuracy values from those with 212 213 unilateral AT (affected side only) were compared to those of healthy controls, separately for 214 hand and feet images. Because not all data-sets provided information on hand dominance, 215 the right side of controls was used for comparison. A sensitivity analysis using the left side of 216 controls was then conducted, and visually inspected to identify any discrepancies.
- Analysis 3: Unilateral AT Affected side compared to the non-affected side. This analysis
 aimed to determine if within-individual differences existed in LRJ performance, given that
 this pattern of impairment is seen in some conditions such as complex regional pain
 syndrome.(11) Such findings would suggest a high somatotopic specificity of impairment.
- Analysis 4: Bilateral AT compared to controls. If sufficient participants, this analysis planned
 to supplement and confirm Analysis 1 findings, using averaged performance for left and right
 images.
- 224

225 Exploratory analyses

226 Due to the inconsistencies in data collection, notably the omission of hand dominance in one

dataset, a decision was made to conduct two exploratory analyses to evaluate the effect of 'location

[side] of pain' where all data from each study cohort were combined together (without weighting).

- 229 First, the influence of pain location was explored for all outcomes, given that previous work has
- shown that people with left-sided pain (or bilateral) pain have more impaired LRJ performance than
- those with right-sided pain.(25) Specifically, four groups (Control, R sided AT, L sided AT and Bilateral
- AT) were compared using a Kruskall-Wallis test to determine if there were differences between
- 233 group for left and right accuracy and reaction time, at the hand and the foot (8 comparisons). Non-
- 234 parametric testing was chosen for more conservative estimates, and adjustments for multiple
- comparisons were made using the Benjamini-Hochberg method.(26)
- 236 Second, we explored whether impairment in LRJ performance might relate to the side of space from 237 the mid-line of the body (e.g., altered performance for images of left hands and left feet). Stanton et al previously found an interaction effect for the side of pain on image accuracy in knee OA,(9) thus in 238 239 people with unilateral AT, a 2 (painful side: left side versus right side) x 2 (image side: left sided 240 images versus right sided images) repeated measures ANOVA was conducted. Values for image sides 241 were calculated by summing together the foot and hand value from each side of the body (i.e. left 242 foot accuracy plus left hand accuracy). This analysis was repeated for reaction time values. The alpha 243 level for all testing was set at 0.05.

244 Results

Study-site 1 recruited 27 people of which 1 was removed due to corrupted data leaving 12 cases and 14 controls. Study-site 2 had 210 participants provide consent, however 103 did not complete the full online questionnaire (i.e., discontinued part-way through leaving incomplete data), and 26 were removed based on exclusion criteria, leaving 84 participants included in final analysis (45 cases, 39 controls). Study-site 3 recruited 8 cases and 17 controls, of which 8 were matched for analysis, and remaining data not used. In total 126 participants (n= 65 AT cases [43 unilateral, 22 bilateral], n=61 controls) were included for analysis (see Table 1, Appendix A).

252

Approx. location of Table 1

253 Primary meta-analyses:

- 254 Analysis 1: Cases with AT compared to healthy controls. When values for each side (left & right)
- 255 were averaged (Figure 2 below, n=65 cases, 61 controls), no differences were seen between AT
- cases and controls in LRJ accuracy or reaction time for either of the images (hand and feet).
- 257 gHeterogeneity as measured by I² was 0.0% in all analyses.
- 258 Approx. location of Figure 2
- 259 Analysis 2: Control vs unilateral AT affected side

260	People with unilateral AT (n=43) were significantly less accurate than healthy controls (n=61) for		
261	images of the foot only (SMD=0.68, 95%Cl 0.05-1.31); see Figure 3. The sensitivity analysis, using the		
262	data from the left side of healthy controls, found conflicting results and showed no difference		
263	between AT cases and controls for foot accuracy (SMD= -0.06, 95%CI -0.49-0.38); see Supplementar		
264	Figure. There was no difference between groups for any other LRJ outcome.		
265	Approx. location of Figure 3		
266	Analysis 3: Unilateral AT Affected versus unaffected		
267	The affected and non-affected side of unilateral AT cases are compared in figure 4 (n=43). No		
268	differences were seen between the affected and non-affected side for foot accuracy, foot reaction		
269	time, hand accuracy or hand reaction time. Heterogeneity was low ($I^2 = 0.0\%$).		
270	Approx. location of Figure 4		
271	Analysis 4: Bilateral cases versus healthy controls		
272	Due to limited numbers, this planned meta-analysis comparison was not conducted.		
273	We conducted sensitivity power analyses, assuming an alpha level of 0.05 and a power of 0.80, we		
274	were powered to detect a moderate effect in the above analyses (SMD = 0.5, 0.56, 0.44		
275	respectively).		
276	Exploratory analyses		
277	Data from each study cohort was combined, which included data from 61 control participants, 24		
278	participants with right sided AT, 19 with left sided AT, 22 with bilateral AT.		
279	Analysis 1: There were no differences between groups based on the location of pain (left-sided AT,		
280	right-sided AT, bilateral AT, and controls) for any of the outcomes: left foot accuracy (p=0.38); right		
281	foot accuracy (p=0.26); left hand accuracy (p=0.19); right hand accuracy (p=0.29); left foot reaction		
282	time (p=0.68); right foot reaction time (p=0.86); left hand reaction time (p=0.68); and right hand		
283	reaction time (p=0.68). See Figure 5A and 5B for accuracy and reaction time findings for each side,		
284	for accuracy and reaction time, respectively.		
285	Approx. location of Figure 5A & 5B		
286	Analysis 2: There was no spatially based LRJ performance impairment in people with unilateral AT.		
287	Specifically, there was no significant interaction effect found for side of pain on accuracy of left or		

- right sided images (n=43, $F_{1,18}$ =0.149, p=0.704). There was also no significant interaction effect for
- side of pain on reaction time of left or right images (n=43, $F_{1,18}$ =2.454, p=0.135).

290

291 Discussion

292 This study presents data from three sub-studies evaluating implicit motor imagery performance in 293 participants with AT compared with healthy controls. Foot reaction time, hand accuracy and hand 294 reaction time were no different between unilateral cases and controls. We found inconsistent 295 results regarding foot accuracy for unilateral AT cases compared with healthy controls. The primary 296 analysis comparing unilateral AT performance for foot images (affected side) showed significantly 297 worse performance than controls, which may represent impaired function of the working body 298 schema (i.e., proprioceptive representation) for the foot. However, this impairment was not found 299 in sensitivity analyses. The unaffected side of AT cases was also not different to the affected side. 300 Last, the exploratory analyses showed that there were no differences between healthy controls, and 301 unilateral or bilateral AT. Together, these findings suggest that motor imagery performance is not 302 impaired at the hand of individuals with AT, and at this stage the data is not sufficiently consistent to 303 support impairment at the foot either.

304 Given the conflicting findings regarding the accuracy of LRJ in people with unilateral AT for images 305 corresponding to the affected foot, no strong conclusions can be made. We did not observe 306 widespread alterations in LRJ performance, or a spatial (sided) effect in people with AT. This is in 307 contrast with previous work in musculoskeletal pain conditions. For example, people with leg pain 308 (origin unspecified) were found to be significantly slower and less accurate at performing LRJs of feet 309 images compared with healthy controls.(27) Further, Stanton et al(9) found that patients with lower 310 limb pain (i.e., knee osteoarthritis) had impairments in accuracy for LRJ of foot images (compared 311 with controls) but also side-specific impairment, such that performance was impaired for both hand 312 and feet images that corresponded to the side of pain. Cartilage and tendon injury share similarities 313 in pathoaetiology, however this structural approach does not account for the multitude of other 314 factors that influence and contribute to pain experience, notably context, comorbidities, chronicity, 315 socio-economic status and education status. Understanding how alterations in LRJ performance 316 develop, and how these link to other factors (possibly explaining differences between conditions) is 317 not known. Futher work is needed to understand whether there are are differences in the nociceptive drive between AT and OA, which may then also influence cortical representation of the 318 319 affected limb. For example, given that walking is frequently painful in OA, it may result in long term 320 potentiation and facilitation, demonstrated by studies previously in knee OA.(28, 29) However, only 321 some people with AT have pain with walking – many athletes only have pain with high-level activities such as sprinting. This may lead to differences in the frequency of stimulation of the peripheral 322 323 nerve and pain experience(8) Immobilisation has also been linked to altered left-right judgement,

which could explain differences between different pain states and conditions.(30) Also, participants
in the Stanton et al(9) study were significantly older than any of the cohorts in this study, which may
have conflated the difference in findings as older age (>50) may lead to a decrease in performance
on a left/right judgement task.(14) Increasing age leads to a variety of changes in neurocognition and
sensory processing, which may lead to altered embodiment, potentially explaining these

329 differences.(31)

330 As the left-right judgement task requires participants to mentally manoeuvre the limb to the 331 position seen, proprioceptive input or output may also be linked to any impairments in the task. For 332 example, in healthy participants, impairing proprioceptive input negatively influences performance on a motor imagery task.(32) Thus the findings here of a lack of LRJ task impairment in people with 333 334 AT raise the possibility that proprioception is intact in this population. No studies to date have 335 investigated proprioception in people with AT, with only two studies evaluating proprioception in 336 surgically managed Achilles rupture patients.(33, 34) Both of those studies found impaired 337 proprioception of the affected limb, but conflicting findings for the unaffected side. However the 338 applicability to AT patients is questionable, given the differing pathoaetiology of rupture, as well as 339 post-surgical effects on proprioception. Future studies to evaluate both proprioception and LRJ 340 performance within AT cases appear warranted to better understand this condition. For example, 341 unique impairment in proprioceptive capacity but not LRJ performance would suggest intact cortical 342 proprioceptive processes but either impaired proprioceptive detection at the periphery or 343 transmission in the spinal cord.

344 As well as sensory and motor processes, cognitive processes are also key to motor imagery tasks. 345 This has important considerations for movement control and co-ordination, which call upon the 346 same brain regions for motor planning and execution.(35) Studies have shown limited association 347 between pain duration, severity or other measures of disability and left-right judgement task 348 performance, and instead other cognitive factors and sensory integration may be more 349 important.(36, 37) Our results suggest further work is needed in determining whether alterations in 350 these processes are important to the clinical picture in AT, and how they might relate to symptom 351 trajectory. While only a handful of studies have investigated sensory processing in AT to date, they 352 do not support widespread alterations in sensory processing, though some peripheral impairments 353 are seen at the site of pain.(7, 8)

354 One of the key limitations of this research is that we did not ascertain duration of symptoms, as well

as the fact that we did not measure any other key outcomes such as proprioception, strength,

356 sensorimotor processing or cognitive ability. It is possible that symptom duration may have affected

357 findings, as previous work in back and neck pain has shown first time back pain cases did not have 358 impaired LRJ performance compared to controls but more chronic cases did.(21, 25) Further work is 359 required to investigate proprioception in AT, determine whether cognitive, psychological or 360 sensorimotor deficits are present, and how these might relate to motor imagery, movement and 361 disease progression in this condition. For clinicians our findings suggest that measuring left right 362 judgement performance or targeting implicit motor imagery with specific training may not be 363 required as part of assessment or treatment of AT. However, it is important to note that our present 364 meta-analytic findings were powered to detect a moderate effect, meaning that we may have 365 missed detecting differences between groups and/or limbs should the effect be smaller. It is unclear 366 at present whether the size of implicit motor imagery impairment is important to movement 367 dysfunction, pain levels, or response to brain-based treatment, or, whether any impairment might be relevant. 368

369 Our study is one of the first to also consider bilateral musculoskeletal presentations separately, and 370 we found no difference between cases and controls, though this was limited by a small sample size. 371 Our findings of a lack of heightened impairment in those with bilateral cases (and if any impairment 372 potentially exists, it occurs in unilateral cases) is not supported by past work evaluating LRJ 373 performance in people with neck pain where bilateral neck pain cases were most impaired.(25) AT 374 often presents bilaterally, and changes in tendon structure are also often seen bilaterally (even in 375 unilaterally symptomatic cases),(38) yet it is not known whether unilateral or bilateral pain states 376 differ in their pathoaetiology or manifestations. Given that no other studies investigating sensory 377 processing have evaluated bilateral presentations of lower limb tendinopathy, it is therefore unclear 378 whether any significant differences in sensory processing exist between unilateral and bilateral cases 379 beyond our findings.

380 There were additional limitations that should be considered in this study. While this is one of the 381 largest cohort of laterality research to date, this was achieved by combining 3 smaller study-sites in a 382 meta-analysis. Care was taken by each research group to minimise risk of bias and error and use of 383 meta-analysis methodology was purposeful to weight samples based on size. While data collection was conducted in different locations at different times, which could feasibly influence the results, 384 such methodology may also be considered a strength - amalgamating data from two studies based 385 386 in laboratories and one online study increases the generalisability of results. This novel approach provides opportunity for research groups to combine data to answer research questions, and to limit 387 388 research waste. Given that complete demographic data were not available for all study participants, 389 our analyses were limited to those of simple pooling. Complete demographic data could not be 390 obtained for one study, however we thought it best to proceed with including the data set as is, with

391 maximum transparency, to avoid any bias by selection of included participants. Several participants 392 did not fully complete data collection at study-site 2, and we could not determine whether these 393 participants were significantly different from those included in the study. Diagnosis of AT was also 394 self-reported at study-site 2, which could lead to population heterogeneity, however the online data 395 collection method allowed for a larger sample size to be recruited to ensure adequate power. There 396 were slight differences in age between study cohorts, the importance of which is unknown in adults 397 (though as accuracy increases with age in children(39), it seems it may decrease again with older 398 age(14)). Given the unique task and technology involved, it is possible that age may impact on 399 laterality recognition, however neither study showed significantly different results between 400 variables analysed. Future studies should investigate, whether activity level and chronicity are 401 important influencers of results, use tighter inclusion criteria and defined diagnosis (though there is 402 no consensus for this in tendinopathy) and standardise protocols. Increased reporting standards 403 have since been recommended in tendinopathy research including more detailed demongraphic 404 details such as athletic status, comorbidities) to facilitate reproducibility of research and clinical 405 translation (40).

406

407 Conclusion

408 This paper evaluated whether people with AT differ in their left/right judgement performance 409 compared with healthy controls by combining three data-sets. Overall, we found no consistent 410 differences in accuracy or reaction time in left-right judgement between limbs in people with AT, or 411 compared to healthy control participants. At this stage, given conflicting findings, it is unclear if AT 412 patients have impaired working body schema (proprioceptive representation) of their affected foot. 413 Further prospectively designed studies are needed to confirm the findings from this paper, and to 414 understand whether pain chronicity, activity level and other demographic factors may influence any 415 findings.

- 416
- 417
- 419

- 420
- 421

422	
423	
424	
425	
426	
427	
428	Figure Legend:
429	Figure 1: Participant positioning for testing of laterality recognition in study-site 1 & 3.
430	Figure 2: Meta-analysis with values for each side averaged for AT cases compared to healthy controls
431	Figure 3: Meta-analysis comparing the affected side of unilateral AT cases to controls (Right side)
432	Figure 4: Meta-analysis comparing the affected and unaffected side for unilateral AT cases
433 434	Figure 5A & 5B: Exploratory analysis comparing accuracy and reaction time between the location of pain (left sided, right sided or bilateral AT).
435 436	Supplementary Figure: Meta-analysis comparing the affected side of unilateral AT cases to controls (Left side)
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	

Author Declaration: EKR, TRS, BMW, JRD, MJC, JC & GLM. conceived the research project. EKR, KC,
TSR, MVW, JDR, BMW, PB, AJM were responsible for data collection. MG was responsible for data
collation and analysis. EKR, TRS, MG interpreted the findings. All authors discussed the results and
commented on the manuscript.

Research funding: Authors state no funding involved.

Conflicts of Interest: TS received travel and accommodation support from Eli Lilly Ltd for speaking engagements (2014; unrelated to the present topic). In the last 5 years, GLM has received support from: ConnectHealth UK, Seqirus, Kaiser Permanente, Workers' Compensation Boards in Australia, Europe and North America, AIA Australia, the International Olympic Committee, Port Adelaide Football Club, Melbourne Football Club and Arsenal Football Club. Professional and scientific bodies have reimbursed him for travel costs related to presentation of research on pain at scientific conferences/symposia. He has received speaker fees for lectures on pain and rehabilitation. GLM receives book royalties from NOIgroup publications, Dancing Giraffe Press & OPTP. ER is supported by an NHMRC Early Career Fellowship.

Informed consent: Informed consent has been obtained from all individuals included in this study.

Ethical approval: The research related to human use complies with all the relevant national

472 regulations, institutional policies and was performed in accordance with the tenets of the Helsinki

473 Declaration. Ethical approval was received at each location: Monash University Research Ethics (ID:

474 CF14/2034-2014001065), University of South Australia Human Research Ethics (ID: 0000034628) and

475 University of Notre Dame Australia Human Research Ethics Committee (ID:011008F).

л	7	Q
4	1	0

- 479
- 480
- 481
- 482
- 483
- 484 **References**

Alfredson H, Cook J. A treatment algorithm for managing Achilles tendinopathy: new
treatment options. Br J Sports Med. 2007;41(4):211-6.

Paavola M, Kannus P, Paakkala T, Pasanen M, Jarvinen M. Long-term prognosis of patients
 with achilles tendinopathy. An observational 8-year follow-up study. Am J Sports Med.
 2000;28(5):634-42.

490 3. Lopes AD, Hespanhol Junior LC, Yeung SS, Costa LO. What are the main running-related 491 musculoskeletal injuries? A Systematic Review. Sports Med. 2012;42(10):891-905.

de Jonge S, van den Berg C, de Vos RJ, van der Heide HJ, Weir A, Verhaar JA, Bierma-Zeinstra
 SM, Tol JL. Incidence of midportion Achilles tendinopathy in the general population. Br J Sports Med.
 2011;45(13):1026-8.

495 5. Ryan M, Bisset L, Newsham-West R. Should We Care About Tendon Structure? The
496 Disconnect Between Structure and Symptoms in Tendinopathy. J Orthop Sports Phys Ther.
497 2015;45(11):823-5.

498 6. Debenham J, Butler P, Mallows A, Wand BM. Disrupted Tactile Acuity in People With Achilles
499 Tendinopathy: A Preliminary Case-Control Investigation. Journal of Orthopaedic & Sports Physical
500 Therapy. 2016;46(12):1061-4.

5017.Tompra N, van Dieen JH, Coppieters MW. Central pain processing is altered in people with502Achilles tendinopathy. British Journal of Sports Medicine. 2016;50(16):1004-7.

Plinsinga ML, van Wilgen CP, Brink MS, Vuvan V, Stephenson A, Heales LJ, Mellor R,
 Coombes BK, Vicenzino BT. Patellar and Achilles tendinopathies are predominantly peripheral pain
 states: a blinded case control study of somatosensory and psychological profiles. British Journal of
 Sports Medicine. 2017:11.

Stanton TR, Lin CW, Smeets RJ, Taylor D, Law R, Lorimer Moseley G. Spatially defined
 disruption of motor imagery performance in people with osteoarthritis. Rheumatology (Oxford).
 2012;51(8):1455-64.

510 10. Bray H, Moseley GL. Disrupted working body schema of the trunk in people with back pain.
511 Br J Sports Med. 2011;45(3):168-73.

512 11. Moseley GL. Why do people with complex regional pain syndrome take longer to recognize
513 their affected hand? Neurology. 2004;62(12):2182-6.

514 12. Breckenridge JD, Ginn KA, Wallwork SB, McAuley JH. Do People With Chronic

515 Musculoskeletal Pain Have Impaired Motor Imagery? A Meta-analytical Systematic Review of the

516 Left/Right Judgment Task. J Pain. 2019;20(2):119-32.

517 13. Parsons LM. Integrating cognitive psychology, neurology and neuroimaging. Acta Psychol 518 (Amst). 2001;107(1-3):155-81. 519 Ofte SH, Hugdahl K. Right-left discrimination in male and female, young and old subjects. J 14. 520 Clin Exp Neuropsychol. 2002;24(1):82-92. 521 15. Parsons LM, Fox PT. The neural basis of implicit movements used in recognising hand shape. 522 Cognitive Neuropsychology. 1998;15(6-8):583-615. 523 Hudson ML, McCormick K, Zalucki N, Moseley GL. Expectation of pain replicates the effect of 16. 524 pain in a hand laterality recognition task: bias in information processing toward the painful side? Eur 525 J Pain. 2006;10(3):219-24. 526 Moseley GL. Graded motor imagery for pathologic pain: a randomized controlled trial. 17. 527 Neurology. 2006;67(12):2129-34. 528 Bray HM, G. . Disrupted working body schema of the trunk in people with back pain. British 18. 529 Journal of Sports Medicine. 2009:1-6. 530 Linder M, Michaelson P, Roijezon U. Laterality judgments in people with low back pain--A 19. 531 cross-sectional observational and test-retest reliability study. Man Ther. 2016;21:128-33. 532 20. Reid E, Wallwork SB, Harvie D, Chalmers KJ, Gallace A, Spence C, Moseley GL. A New Kind of 533 Spatial Inattention Associated With Chronic Limb Pain? Ann Neurol. 2016;79(4):701-4. 534 21. Bowering KJ, Butler DS, Fulton IJ, Moseley GL. Motor imagery in people with a history of 535 back pain, current back pain, both, or neither. Clin J Pain. 2014;30(12):1070-5. 536 Cooper LA, Shepard RN. Mental transformations in the identification of left and right hands. 22. 537 J Exp Psychol Hum Percept Perform. 1975;104(1):48-56. 538 Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. 2010. 23. 539 2010;36(3):48. 540 Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions [Version 24. 541 5.1.0]: Chichester, West Sussex ; Hoboken NJ : John Wiley & amp; Sons, [2008] © 2008; 2011. 542 25. Wallwork SB, Leake H, Peek A, Moseley GL, Stanton TR. Implicit motor imagery performance 543 is impaired in people with chronic, but not acute, neck pain. PeerJ. 2020. 544 26. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 545 Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 546 1995;57(1):289-300. 547 27. Coslett HB, Medina J, Kliot D, Burkey A. Mental motor imagery and chronic pain: the foot 548 laterality task. J Int Neuropsychol Soc. 2010;16(4):603-12. 549 28. Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, Graven-550 Nielsen T. Sensitization in patients with painful knee osteoarthritis. Pain. 2010;149(3):573-81. 551 29. Foucher KC, Chmell SJ, Courtney CA. Duration of symptoms is associated with conditioned 552 pain modulation and somatosensory measures in knee osteoarthritis. J Orthop Res. 2019;37(1):136-553 42. 554 Meugnot A, Almecija Y, Toussaint L. The embodied nature of motor imagery processes 30. 555 highlighted by short-term limb immobilization. Exp Psychol. 2014;61(3):180-6. 556 31. Costello MC, Bloesch EK. Are Older Adults Less Embodied? A Review of Age Effects through 557 the Lens of Embodied Cognition. Front Psychol. 2017;8:267. 558 32. McCormick K, Zalucki N, Hudson M, Moseley GL. Faulty proprioceptive information disrupts 559 motor imagery: an experimental study. Aust J Physiother. 2007;53(1):41-5. 560 33. Kaya D, Doral MN, Nyland J, Toprak U, Turhan E, Donmez G, Citaker S, Atay OA, Callaghan 561 MJ. Proprioception level after endoscopically guided percutaneous Achilles tendon. Knee Surg Sports 562 Traumatol Arthrosc. 2013;21(6):1238-44. 563 Bressel E, Larsen BT, McNair PJ, Cronin J. Ankle joint proprioception and passive mechanical 34. 564 properties of the calf muscles after an Achilles tendon rupture: a comparison with matched controls. 565 Clin Biomech (Bristol, Avon). 2004;19(3):284-91. 566 35. Hetu S, Gregoire M, Saimpont A, Coll MP, Eugene F, Michon PE, Jackson PL. The neural 567 network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930-49.

- S68 36. Pelletier R, Bourbonnais D, Higgins J, Mireault M, Danino MA, Harris PG. Left Right
 Judgement Task and Sensory, Motor, and Cognitive Assessment in Participants with Wrist/Hand
 Pain. Rehabil Res Pract. 2018;2018:1530245.
- 37. Pelletier R, Higgins J, Bourbonnais D. Laterality recognition of images, motor performance,
 and aspects related to pain in participants with and without wrist/hand disorders: An observational
- 573 cross-sectional study. Musculoskelet Sci Pract. 2018;35:18-24.
- 57438.Docking SI, Rosengarten SD, Daffy J, Cook J. Structural integrity is decreased in both Achilles575tendons in people with unilateral Achilles tendinopathy. J Sci Med Sport. 2015;18(4):383-7.
- 576 39. Dey A, Barnsley N, Mohan R, McCormick M, McAuley JH, Moseley GL. Are children who play
 577 a sport or a musical instrument better at motor imagery than children who do not? Br J Sports Med.
 578 2012;46(13):923-6.
- 40. Rio EK, Mc Auliffe S, Kuipers I, Girdwood M, Alfredson H, Bahr R, Cook JL, Coombes B, Fu SN, Grimaldi A, de Vos RJ, Lewis JS, Maffulli N, Malliaras P, Magnusson SP, Oei EHG, Purdam CR, Rees JD,
- 581 Scott A, Gravare Silbernagel K, Speed C, Akker-Scheek IVD, Vicenzino BT, Weir A, Wolf JM, Zwerver J.
- 582 ICON PART-T 2019-International Scientific Tendinopathy Symposium Consensus: recommended
- 583 standards for reporting participant characteristics in tendinopathy research (PART-T). Br J Sports
- 584 Med. 2020;54(11):627-30.
- 585