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When searching for an object, do we minimize the number of eye movements we need to make? Under
most circumstances, the cost of saccadic parsimony likely outweighs the benefit, given the cost is exten-
sive computation and the benefit is a few hundred milliseconds of time saved. Previous research has
measured the proportion of eye movements directed to locations where the target would have been visi-
ble in the periphery as a way of quantifying the proportion of superfluous fixations. A surprisingly large
range of individual differences has emerged from these studies, suggesting some people are highly effi-
cient and others much less so. Our question in the current study is whether these individual differences
can be explained by differences in motivation. In two experiments, we demonstrate that neither time
pressure nor financial incentive led to improvements of visual search strategies; the majority of partici-
pants continued to make many superfluous fixations in both experiments. The wide range of individual
differences in efficiency observed previously was replicated here. We observed small but consistent
improvements in strategy over the course of the experiment (regardless of reward or time pressure) sug-
gesting practice, not motivation, makes participants more efficient.

Public Significance Statement
In this study, neither time pressure nor financial incentive led to improvements in visual search strat-
egies, ruling out motivation as the explanation for the large individual differences in search effi-
ciency seen in previous studies. Small but consistent improvements in strategy over time suggest
experience, rather than differences in motivation, could help explain why some participants are
more efficient than others.
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We select and process only a small subset of available informa-
tion. Selective sampling is achieved in part by directing the eyes to
a given location, thus allowing detailed processing by the high-re-
solution fovea. Understanding the processes that govern eye move-
ments can therefore help us understand and predict which aspects
of the visual environment humans will be most likely to process in
greater depth. In the current study, we measure the extent to which
eye movements are directed to locations where central vision is
most needed; that is, can they be considered efficient in how they
sample information? This is not a new question: We already know
that people, in general, do not tend to search very efficiently. Pro-
found failures to find and use information effectively have been

shown in a range of different search contexts (e.g., Araujo et al.,
2001; Clarke & Hunt, 2016; Hout et al., 2017; Morvan & Maloney,
2012; Rajsic et al., 2015, 2017). The question we address here is
whether people can be efficient when they need to be. Specifically,
we ask whether differences in priorities and motivation might
explain why some individuals are inefficient with their eye move-
ments, while others are close to optimal (Nowakowska et al.,
2017).

Search for a specified target among distractors is a widely used
task for studying how the visual features of the target, distractors
and background influence visual selection (e.g., Treisman &
Gelade, 1980; Wolfe, 1994). But visual search entails a complex
cascade of perceptual and cognitive processes, and performance is
influenced not only by visual factors, but also by decision-level
factors like strategy, heuristics, and biases (e.g., Clarke et al.,
2019; Leber & Irons, 2019). In the decision literature, the role of
motivation, reward, effort, and tolerance for error have historically
been central to methods and theories (Dreher & Tremblay, 2009).
In visual search, decision-related issues such as target prevalence
(Wolfe & Van Wert, 2010) and stopping rules (Chun & Wolfe,
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1996) have also been studied but have been given far less attention
than factors of perception and attention (Nakayama & Martini,
2011). Accounting for contributions to variance in search perform-
ance at all stages of processing—from low-level visual properties
like salience to cognitive factors like strategy and risk tolerance—
is fundamental to a complete understanding of visual search.
Large individual differences have been documented across a

range of different visual search tasks (Irons & Leber, 2016; Krist-
jánsson et al., 2014; Nowakowska et al., 2017). “Individual differ-
ences” in this context is used in the literal sense that individual
participants do not converge on a single pattern but display a wide
range of different behaviors under the same conditions. A con-
certed effort to try and account for these differences has had mixed
results. Kristjánsson et al. (2014) showed individual differences in
search strategy were apparent during complex conjunction-based
foraging but not during easy feature-based foraging. They sug-
gested the cognitive capacity of individual foragers might explain
the differences. Similar between-subjects variation was docu-
mented in oculomotor orienting (Tagu & Kristjánsson, 2020), with
a suggestion that selection modality (using a mouse, touch screen
or eye movements) mediated individual differences. Although these
differences appear to be relatively stable over time within an indi-
vidual, a given person’s performance on one search task appears to
tell us very little about how they will perform on the others (Clarke
et al., 2020), and efforts to explain the differences in search using
other psychometric tests have not, to date, been very successful
(e.g., Irons & Leber, 2018; Jóhannesson et al., 2017).
Persistent individual differences present challenges for efforts

to develop models of visual search or even to draw simple conclu-
sions about how people, as a group, search for objects. Human
search has been proposed to be consistent with an “ideal” model,
in which each fixation is directed to locations that maximize the
accrual of new information (Najemnik & Geisler, 2005; 2008). On
the other end of the spectrum, search has also been demonstrated
to be consistent with a stochastic model, in which fixations are ran-
domly selected from a population of fixations constrained by habit
and biases. Nowakowska et al. (2017) demonstrated that human
fixation behavior is in fact consistent with both of these models, in
that some individuals were consistent with the predictions of the
ideal model and some with a stochastic model. Other individuals,
however, were consistent with neither account. While these indi-
vidual differences do partially resolve the contradiction between
different accounts of fixation selection, they also lead to new,
more complicated questions about why these differences exist and
how to develop a model of search that accounts for them.
In the paradigm that uncovered these large individual differen-

ces, called split-half line search (SHLS), participants searched an
array of lines for a line tilted 45° to the right while their eye move-
ments were recorded. The mean orientation of the distractors was
perpendicular to the target, but on one side the distribution of
distractor orientations was narrow (“homogeneous”), and on the
other side the distribution was much wider (“heterogeneous”, see
Figure 1). When the target is present on the homogeneous side, it
can be easily detected using peripheral vision. When the target is
present on the heterogeneous side, foveal vision is required to dis-
criminate it from the distractors. The SHLS experiment can there-
fore measure the extent to which eye movements are directed to
the locations where foveal vision is required. In other words, eye
movement efficiency is operationally defined as the proportion of

eye movements directed to the heterogeneous side of the search
array on target absent trials1. Models of optimal visual search in
which fixation selection is based on expected information gain
(e.g., Najemnik & Geisler, 2005) would predict this proportion to
approach 1. Nonetheless, in Nowakowska et al. (2017), nearly half
of the first five search related fixations on each trial were made to
the homogenous (easy) side. Underlying this general lack of effi-
ciency was the large variation between participants already men-
tioned, with some participants performing near optimal, some
being extremely inefficient, and the rest falling in between. Two
factors contributed to this search inefficiency: making more fixa-
tions than was necessary, and not directing eye movements to the
locations that would be most informative for finding the target.

It is possible, however, that participants are capable of searching
more efficiently but, for reasons of motivation or distraction, fail
to implement an efficient strategy. In Nowakowska et al. (2017),
even though participants were encouraged to be as fast and as
accurate as possible, participants had 60 seconds to search before
each trial timed out. Thus they could “afford” to make the redun-
dant confirmatory eye movements that were observed without sac-
rificing accuracy. Some participants may prefer to explore every
region to increase their confidence that the target is not present,
while others prefer to respond as quickly as possible. Indeed, there
was a very wide range of reaction times, particularly on target
absent trials, on which individual median reaction times ranged
from less than 2 seconds to more than 15. If the display time had
been limited, fixations on the easy side would leave no time for
inspecting the hard side while not adding to the accuracy to detect
targets on the easy side (as it is already at ceiling). Therefore, one
factor that could induce more efficient fixation behavior could be
tighter restrictions on how long participants can spend searching.

Time pressure was found previously to affect decision-making
and judgment, in that observers tended to use different decision

Figure 1
Example of the Search Stimuli

Note. The target is present on the heterogeneous side of the array (10th
row, 8th column).

1We acknowledge that many other definitions of “efficiency” exist, both
within and beyond the visual search literature (e.g. Liesefeld & Janczyk,
2019; Townsend & Ashby, 1983; Wolfe, 1998).
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rules when time was constrained (Edland, 1994; Svenson &
Edland, 1987). In consumer choice tasks, time pressure has been
associated with decreased average fixation duration (Pietersa &
Warlopb, 1999) and a reduction of the amount of information fix-
ated (van Herpen & Trijp, 2011). Time pressure also moderated
the effect of visual saliency on consumer choices (Mormann et al.,
2012). Specifically, the visual saliency of an item was a better pre-
dictor of consumer choices than their personal preferences when
the time to make a choice between a number of items was con-
strained. This study in particular suggests that time constraints
lead to the “rational” decision being overridden by the low level
saliency of the visual items. In the context of eye movements dur-
ing search, however, we predict the opposite effect, where the
time constraints would encourage more rational fixation behavior.
In Thornton et al. (2019), participants adapt strategies according to
task demands, suggesting participants might be able to switch to
more efficient eye movement behavior when the time to complete
the task is limited. With time constraints, inefficient fixations
could lead to errors and trial time-outs, which may be more effec-
tive in motivating efficient fixations than search speed.
Another way to increase efficiency may be financial incentives.

The study of reward as a mechanism driving visual selective atten-
tion has been of close interest to researchers in recent years
(Anderson et al., 2011; MacLean & Giesbrecht, 2015; Navalpak-
kam et al., 2010). Learning to associate visual stimuli with reward
creates a persistent attentional bias that continues to involuntarily
drive attentional selection in favor of previously rewarded stimuli,
even when those stimuli are no longer task relevant or rewarded
(Anderson et al., 2011, 2012; Anderson & Yantis, 2012), and the
modulating effect of reward might last up to half a year after ac-
quisition (Anderson & Yantis, 2013). In visual search, Zhang et al.
(2017) found evidence that when searching for multiple targets,
humans change their strategy in response to different patterns of
reward, searching for longer when reward were high, and for less
time when they were low. Navalpakkam et al. (2010) model visual
search by presenting participants with brief search displays con-
taining two targets associated with a monetary reward. The reward
value and salience associated with the targets varied from trial to
trial, and both measures of performance used in the experiment—
saccadic eye movements and key presses—indicated that strategy
was flexibly adapted to the changing demands to achieve near
optimal performance, in line with assumptions of the ideal Bayes-
ian Observer model. It is important to note, however, that optimal
saccades were directly associated with a reward. In the real world,
the aim of the eye movements is to accumulate “evidence” to aid
the decision/action to be rewarded (Eckstein, 2011).
Chelazzi et al. (2013) outline two potential mechanisms modulat-

ing attentional selection by means of reward. First, attention could
be biased through direct incentive motivation. Varying reward with
respect to different spatial locations or stimuli is associated with
preferential deployment of attention to the location or stimuli asso-
ciated with the maximum incentive value (see e.g., Small et al.,
2005). Second, the availability of the reward biases attentional pri-
ority by means of learning, which results in alteration of the current
performance by stimuli previously associated with a reward (see
e.g., Della Libera & Chelazzi, 2009). In the context of eye-move-
ments, Hayhoe and Ballard (2005, 2014) link the evidence from
neural recording, reinforcement learning studies, and research into
graphic simulations and suggest a model of eye movements

integrated with the ongoing task. This model samples multiple sour-
ces of dynamic information at moments of increasing uncertainty
and is shaped by reward. In order to make a decision about the rele-
vance of a stimulus, observers need to learn through practice
(Haider & Frensch, 1999); this learning could be achieved through
feedback, associated with a reward value of attending to the rele-
vant stimuli (Hayhoe & Rothkopf, 2011; Tatler et al., 2011).

In our first experiment, we manipulated the duration of the search
display and measured the effect on eye movement efficiency. Par-
ticipants were asked to complete two blocks of the split-half visual
search task from Nowakowska et al. (2017). In one block, partici-
pants only had two seconds to search before the search array was
masked (we will call this the brief condition); after two seconds a
gray mask covered the search array, but participants could still
respond. The dependent variable of interest in the experiment is eye
movements; to be useful, they need to be executed while the visual
display is presented. With a two-second display, more efficient eye
movements become a requirement for an accurate response. We left
manual response times unconstrained to avoid unnecessary pressure
to press response keys quickly, which would lead to errors and data
loss. In the other block, the observers had up to 60sec to view the
search array and respond (which we will call the long condition).
Half of the participants completed the brief block first, and the other
half completed the long block first. Participants completed both
brief and long conditions because this permits a measurement of the
effect of timing within each participant, which is important given
the very large individual differences in search efficiency observed
in previous studies.

In Experiment 2 we manipulated incentives offered to partici-
pants in order to examine the effect of reward on search strategy.
We divided participants into two groups: the reward group and the
flat payment group. Both groups completed two blocks of the
split-half search task, and both groups were initially informed that
they would receive £5 after completing the first block. After com-
pletion of the first block, participants in the reward group were
told that they would receive a £5 additional reward if they
responded 10% faster than they did in the first block and a £10
additional reward if they responded 20% faster, thus potentially
topping up their reimbursement to £10 or £15. We also stipulated
that accuracy in the second block had to stay at least as high as ac-
curacy in the first block to receive the additional reward. Partici-
pants in the reward group were therefore highly motivated to
improve their search speed. Participants in the flat payment group
were told they would receive an additional £5 after completing the
second block regardless of their performance.

If individual differences observed in previous studies were due
in part to differences in error tolerance or motivation to search
quickly, we should see an overall increase in eye movement effi-
ciency, as measured by a higher proportion of fixations directed to
the heterogeneous side of the search array, under conditions of re-
stricted time and/or financially incentivized search speed. We
should also see an overall reduction in individual variation under
these conditions, as all individuals should approach the ceiling of
efficiency. Baseline conditions should replicate the wide variation
in individual search efficiency seen in previous experiments
(Clarke et al., 2020; Nowakowska et al., 2016, 2017, 2019).
Search strategy is also likely to fluctuate within participants, not
only between experimental blocks, but also within the blocks, or
even within the trial. We therefore also present an exploratory
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analysis across both experiments of how search efficiency changes
over blocks, trials, and fixations.

Experiment 1: Deadline

Method

Participants

18 naive observers gave informed consent to participate in the
experiment (females = 9; age range = 17–33; mean age = 24.1).
The experimental protocol was reviewed and approved by the
Aberdeen Psychology Ethics Committee.

Stimuli and Procedure

The search arrays were similar to the ones used in Nowakowska
et al. (2017). Line segments were aligned in 22 columns and 16
rows on a uniform gray background. The line was 1.2 cm long
(1.5° at a viewing distance of 45 cm). The target line was always
tilted 45° to the right. The distractors had random orientations,
sampled from a uniform distribution with a mean angle perpendicu-
lar to the target angle. The target was easy to spot on one half of
each search array and difficult on the other (see Figure 1 for an
example). Difficulty was manipulated by varying the range of the
distractor line orientations, with a narrow range (right side of
Figure 1) producing easy search and a wider range (left side of Fig-
ure 1) producing more difficult search. In Nowakowska et al.
(2017), the distractor orientations were sampled from a 30° range
of distractor line orientations (“homogeneous”) or a 106° range
(“heterogeneous”). However, in a related study, Nowakowska et al.
(2019) found that participants tended to improve at spotting the tar-
get line on the heterogeneous background with practice, independ-
ent of their eye movement strategies. To ensure heterogeneous-side
targets continue to not be visible in the periphery for the entire dura-
tion of the current experiment, we made the search more difficult
on the heterogeneous side by increasing the range of distractor
angles to 120°. We also slightly decreased the range of distractor
orientations on the homogeneous side to 18° (thus making the line
array even more uniform).
To compare the extent to which participants explored the homo-

geneous vs heterogeneous side of the array, all the search arrays
were translated into the same visual coordinate space, with 0 at
center, negative values on the heterogeneous side, and positive
values on the homogenous side. We only use target absent trials in
this analysis to ensure we examine “searching” fixations, rather
than those directed toward found targets.
There were 96 arrays of lines in each of the two blocks (192 tri-

als in total), and the target was present on half of the trials.
Whether the heterogeneous side was on the left or right was ran-
domly determined on each trial. The side of the target relative to
the search difficulty was counterbalanced. The target could be
located in any of the possible locations apart from the middle two
vertical columns. Participants were told they would see an array of
line segments on the screen and that their task was to determine
whether a line tilted 45° to the right was present among other lines.
Participants were asked to respond as quickly and accurately as
possible by pressing either the left (present) or right (absent) arrow
key. In one block, the search array would remain on the screen

until the participant responded. In the other block, the search array
would remain on the screen for two seconds. Participants were
told which condition they were about to complete before each
block started. Participants were encouraged to be as fast and as
accurate as possible in both conditions. The order of blocks was
counterbalanced, with nine participants completing each order.

Each trial consisted of a black fixation point (letter x) subtend-
ing 1.5cm x 2.5cm (1.9° 3 3.1°), presented at the center of the
computer screen. We asked participants to fixate the center of the
fixation cross. On the press of a space bar the fixation cross disap-
peared, then the array of line segments was displayed until the par-
ticipant made a response (or timed out after 60 seconds). Auditory
feedback in the form of a beep immediately followed incorrect key
presses. Before the start of the experiment, participants underwent
a nine-point calibration sequence and a block of 10 practice trials.

A 19 in. CRT ViewSonic Graphics Series G90fB monitor with
a resolution of 1024 3 768 and refresh rate of 100Hz was used to
display stimuli. MATLAB 2014 running Psychtoolbox (Brainard,
1997; Pelli, 1997) and EyelinkToolbox (Cornelissen et al., 2002)
was used to present stimuli and record data on a Macintosh Power-
Mac. A desktop-mounted EyeLink 1000 eye tracker sampling at
1000 Hz was used to record the position of one eye. The right eye
was recorded by default; however, if we failed to calibrate the
right eye, the left eye was used instead.

Analysis

We summarize each participant’s scan-path by reporting the
proportion of fixations made to the heterogeneous side of the
display. Following Clarke et al. (2020), we only consider fixa-
tions 2–6 made during correct target absent trials. We use only
target absent trials to ensure all the fixations are related to the
process of searching, rather than being target-directed. We limit
to the first five search-related fixations (the first fixation was
always at the center) for two reasons. First, nearly all target
absent trials contain at least six fixations, so limiting to six
means, we get an unbiased sample of search behavior. Second,
search strategies vary most widely early in the trial; later on,
participants tend to converge on the heterogeneous side, leav-
ing little variation in this metric.

We used Bayesian generalized multilevel linear models to
investigate how our experimental manipulations influenced visual
search strategy. Because we are modeling proportional data, we
use beta distributions, which are defined over (0, 1). The small
number of 0 and 1 data points values are set to .01 and .99, respec-
tively. For both Experiments 1 and 2, the model formula, we will
use the maximal random effects structure.

Models are fit using R (v3.6.1) with the brms (v2.12) package
(Bürkner, 2017). In general, we follow the advice given by
McElreath (2020), using weakly informative priors and plotting
the predictions made by both the prior and posterior distribu-
tions. In the text, we use the 95% highest posterior density
interval (HPDI) to summarize the posteriors from our models.
HPDI should be interpreted in the following way: If we were to
sample a point at random from the distribution, there is a 95%
chance that it would be within this interval. In order to assess
the extent to which the results support our hypothesis, we need
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to estimate the difference between the distributions. One of the
advantages of Bayesian analysis is that this calculation is com-
paratively simple, and we can directly calculate the probability
that the difference is greater than zero (given our data and
assumptions).

Power Analysis

A simulation-based power analysis was carried out by assuming
a target posterior distribution in which the average participants fix-
ated the heterogeneous side of the display 51% of the time in the
long condition and 57% of the time in the brief condition. We
selected 51% based on results from previous experiments (which
show a very slight tendency to fixate the heterogeneous side) and
57% as a hypothetical small increase in this tendency associated
with our intervention. This is a highly conservative estimate of the
difference we expect under the hypothesis; if a lack of motivation
makes some participants inefficient, our intervention should pro-
duce close to 100% heterogeneous fixations. We selected this far
smaller number (57%) to ensure we have the power to detect
effects that partially confirm the hypothesis. We then simulated
our experiment by sampling data for 15 observers each carrying
out 32 target absent trials. This simulated dataset was then ana-
lyzed as if it were the real data, and the result was summarized by
p(x . 0 j d): the probability, given the data (d), that the difference
between the brief and long conditions (x) was greater than zero.
Over 50 repetitions of this process, all values of p(x . 0 j d) were
greater than .95. This analysis demonstrates that our sample size
(n = 18) is sufficient to detect relatively small differences (i.e.
51% compared to 57%) in eye movement efficiency. For the full
specification of our data generation process, including all code,
please see the online supplementary materials.

Results

Manual Response Data

We report search accuracy and reaction time (RT) in Figure 2.
It is clear from this figure that median brief reaction times (sec-
onds) were faster (2.07, SD = 1.00) than long (4.75, SD = 9.25);
this shows that taking the information away after 2 seconds led to
faster responses than displaying it (more or less) indefinitely, as
would be expected. There was a modest speed–accuracy trade-off,
with accuracy (%) lower in the brief (74.30, SD = 6.94) than the
long condition (81.82%, SD = 7.91).

The results across target present and absent trials look as
expected, with slower reaction times when the target is absent or
when it is present on the heterogeneous side of the array relative to
the homogeneous side, when it is detected very quickly. Similar to
previous experiments (Nowakowska et al., 2017; Clarke et al.,
2020), participants tend to report that the target is absent when
they are unable to find it, so accuracy is high in target absent trials
and low when the target is present on the heterogeneous side. The
level of difficulty of the search task was increased slightly in the
current experiments, compared to the original experiment (Nowa-
kowska et al., 2017), because of the findings from a related experi-
ment (Nowakowska et al., 2019) that observers’ ability to spot the
target using peripheral vision improves quickly, even on the heter-
ogeneous side. One minor concern about this change was that
when faced with this more difficult search task, participants might
have given up searching at all. However, this concern was allevi-
ated by the long reaction times observed when the target was pres-
ent on the heterogeneous side or absent; this suggests they were
continuing to try to find the target even when it was not immedi-
ately visible. Participants were also successful in finding the target

Figure 2
Accuracy (Top) and Reaction Time (Bottom) Data in the two Conditions (Long and Brief) for Each of
the Target Conditions

Note. The lower and upper hinges correspond to the first and third quartile. See the online article for the
color version of this figure.
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on the heterogeneous background on around a third of the long-du-
ration trials.

Eye Movement Efficiency

Figure 3a shows our measure of search efficiency: the propor-
tion of the first five search-related fixations on target absent trials
that were made on the heterogeneous side of the display. Similarly
to the previous experiment of Nowakowska et al., 2017, a strict
criteria for an optimal strategy in this experiment would be to not
look to the homogeneous side at all, leading to proportions close
to 1. As we can see in Figure 3, most participants waste a consid-
erable number of fixations on the homogeneous side, and there
was large variability between participants in terms of the propor-
tion of fixations directed to the heterogeneous side (as seen in the
individual points for each participant). Despite these individual
differences, the strategies appeared relatively stable, with partici-
pants implementing a similar eye movement strategy across both
blocks (discussed in greater detail below).
As can be seen in Figure 3c, there is no evidence of a difference

in the proportion of fixations directed to the heterogenous side
between brief and long exposure conditions. The HPDIs are [.45,
.67] and [.46, .69] for the long and brief conditions respectively.
The probability that the difference between the two conditions is
greater than 0, given the data, is .62. Therefore, we conclude that
the addition of a short time limit did not substantially or consis-
tently increase search efficiency.

Experiment 2: Reward

Method

Participants

42 naive observers participated in the experiment (reward:
females = 18; age range = 19–65; mean age = 24.90 [SD = 10.12];
flat: females = 16; age range = 19–36; mean age = 23.15 [SD =
4.24]). Three participants were excluded from further analysis:
Two participants scored below 50% correct in the easy condition
(i.e. when the target appeared on the homogenous side), and one
participant had a mean RT of over 8 s on these same trials,

suggesting these three participants did not understand the task.
Thus, we had 18 observers in the flat payment group and 21 in the
reward group. The protocol was reviewed and approved by the
Aberdeen Psychology Ethics Committee. Participants in the con-
trol group always received £10 for participating in the experiment;
participants in the reward group received between £5 and £15
(mean was £8.41).

Material and Procedure

The stimuli were exactly the same as in Experiment 1. The proce-
dure was also the same as in experiment 1 long condition, and addi-
tional reward instructions were given to participants in the reward
group following the completion of the first block. At the end of the first
block of 96 trials, the experimenter told participants that they would be
paid £5 for their participation in the experiment regardless of their per-
formance. The experimenter added that the participant would receive
an additional £5 if they improved their overall reaction times
(decrease RTs) in the second block by at least 10%. If they improved
their performance by at least 20%, compared to their performance in
the first block, they would receive an additional £10. To receive the
additional reward for improvement in RT, their accuracy had to stay
at least the same as in the first block. Participants were given this in-
formation only after completing the first block to ensure they would
not deliberately underperform to make receiving the maximum
reward easier to achieve. Participants were not given feedback on
their RT after every trial but they were given feedback at the end of
block one and block two.

Power Analysis

As with Experiment 1, we ran a simulation of the experiment in
which we assumed a relatively small difference between conditions
and simulated data and then ran the analysis as if it were the real data.
Over 50 simulations with 40 observers each completing 32 target
absent trials, we found that the minimum p(x . 0 j d) to be over .95.
Please see online supplementary materials for full technical details.

Results

We preregistered the methods, hypothesis, and analysis plan for
this experiment (https://osf.io/efg8n). However, the preregistered

Figure 3
(a) The Mean Proportion of Fixations to the Heterogeneous Side for the Long and Brief Condition
for Individual Participants, (b) The Prior Predictions of Our Model, (c) The Posterior Predictions,
After Fitting the Model to Our Data

Note. In (a), the lines connect mean proportion in the two conditions for each individual participant. Both (b)
and (c) show predictions for the average participant, i.e. assuming that all random effects are set to zero. See
the online article for the color version of this figure.
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analysis plan specified an ANOVA, and after completing the anal-
ysis and developing an approach to the exploratory analysis that
follows, we decided to apply a consistent Bayesian approach to
the statistical analysis throughout the study. Both analyses lead to
the same conclusions, and the original, preregistered ANOVA is
presented in the online supplementary materials.

Accuracy and RT

From Figure 4, it is clear that there are baseline differences between
the control (flat) and reward groups: Even though the conditions are
identical in block 1, performance in the control group is slower. We
are confident that these differences are due to chance; participants
were randomly assigned and did not know what group they were in
until after the end of block 1. Participants in the reward group were
overall faster but less accurate (Figure 4 top row), and a few partici-
pants in the flat payment group who had extremely long reaction times
inflated the RTs in that group. We therefore need to be careful to focus
on the performance difference from block 1 to block 2 rather than to
interpret the differences between groups in the second block alone. To-
gether the RT and accuracy data suggest that participants improved
their performance in the Block 2 compared to Block 1 both in terms of
RT and accuracy, but the type of payment did not have significant
influence on the performance.

Eye Movement Efficiency

As in Experiment 1, in this analysis we only include the first
five search-related fixations on correct target absent trials and
exclude the first (central) fixation and any subsequent fixations
that fell inside of the central 64-pixel strip of the search array
(approx. 1°). The proportion of these fixations falling on the

heterogeneous (hard) side is shown in Figure 5a. Two participants
in the reward group (second block) do not have any trials that
meet this further criterion, hence we were left with 18 participants
in the flat payment group and 19 participants in the reward group.

As can be seen in Figure 5c, there is some evidence that partici-
pants in both the flat and reward conditions improved their eye
movement efficiency from block 1 to block 2 (HPDIs of [.04, .13]
and [�.02, .12] respectively). However, there is no evidence that
the size of this improvement was larger for participants in the
reward condition: The probability that the difference between the
two conditions is greater than 0, given the data, is p(x . 0 j d) =
.10. Therefore, we conclude that the introduction of reward did not
lead to more efficient visual search strategies.

The correlation between the proportion of fixations to the hard
side in the first and second block was relatively high (r = .63, 95%
confidence interval [.17, .83]). The finding that the pattern is vari-
able between participants but consistent over repeated measures is
consistent with the results of Clarke et al. (2020), who found simi-
lar test–retest reliability [.63–.86] The new, lower correlation seen
in the present study is likely due to the experimental manipulation
between one block and the next, given that the correlation between
block 1 and block 2 in the flat payment condition alone was stron-
ger (r = .90, CI [.77, .97]).

Exploratory Time Course Analysis

In the two experiments described above, neither the time pressure
nor the reward manipulation reliably improved search strategies. What
did emerge were small but consistent effects of practice. The improve-
ment from block 1 to block 2 in search efficiency in Experiment 2
(also observed in Experiment 1, as discussed below) suggests a gradual

Figure 4
Accuracy and Median Reaction Times for the Three Target Conditions in the First and Second
Block for Flat and Reward Groups

Note. Block 1 was identical for both groups, so the differences in Block 1 seen here are baseline group differ-
ences. See the online article for the color version of this figure.
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process whereby classes of eye movements associated with faster
search (those directed toward the heterogeneous side) become more
likely, and less efficient eye movements (those directed toward the ho-
mogeneous side) become less likely. Participants were unable to
implement better strategies when they were incentivized, suggesting
these improvements must instead be gradually acquired through
practice.
Practice effects are important because they offer a possible ex-

planation for the large individual differences observed between
participants in this and previous experiments (Clarke et al., 2020;
Nowakowska et al., 2017, 2019); perhaps these differences are, at
least in part, a consequence of sampling each participant at a dif-
ferent stage of learning, rather than (or in addition to) being a sta-
ble indicator of cognitive style or personality (i.e. Lonnqvist et al.,
2020). While some personality and cognitive characteristics (such
as conscientiousness and working memory capacity) seem likely
to contribute to certain types of search skills, this has proven diffi-
cult to demonstrate empirically (e.g., for a recent review see Leber
& Irons, 2019). Differences in experience with search and in learn-
ing rates for particular skills and tasks are also likely to contribute
to individual differences in search, and the practice effects
observed in the current experiments offer an opportunity to quan-
tify and understand their contribution.
In this final section, we therefore combine the results from the

two experiments to explore the effects of practice on search strat-
egy. Four specific questions can be addressed in this analysis. The
first relates to a possible limitation of Experiment 1, which is that

we counterbalanced the conditions without regard to possible
effects of the order of exposure. If restricted exposure to the search
array leads to more efficient search strategies, participants who
performed the brief condition first may utilize a more efficient
strategy not only in the timed condition, but also in the long condi-
tion that follows it. This would have reduced the differences
between conditions for this group. A second question is the rate of
change over time; do participants gradually improve their strat-
egies, or is there a step-change between blocks 1 and 2 in the
experiment where a more efficient approach is discovered? Third,
is the rate of learning similar across the different conditions (i.e.
with time constraints or reward), or do differences emerge with a
more nuanced comparison?

A fourth and final question explored in this analysis is how
search strategies unfold over each trial. In this study and previous
ones, we have restricted our analysis of search strategy to the first
six fixations on target absent trials in part because these are the
most diagnostic; by the end of each trial all participants tend to
direct the majority of their fixations to the heterogeneous side by
necessity. What differs between participants is the earlier stages of
the trial, in which some participants direct fixations to the hetero-
geneous side from the start, and others seem to check the homoge-
neous side first, or make more distributed eye movements, before
focusing on the locations that yield new information. In the analy-
sis below, we look at practice effects separately for each of the
first six fixations on each trial to better understand whether prac-
tice effects are making all fixations uniformly more efficient or if

Figure 5
(a) Proportion of Fixations to Heterogeneous Side on Target Absent Trials Only, (b) The Prior
Predictions of Our Model, (c) The Posterior Predictions After Fitting the Model to Our Data

Note. (a) The left panel shows participants who received flat payment, and right panel those who were
offered a reward for improving performance. Most participant improve their strategy (make more eye move-
ments to the heterogeneous side) in the second block, regardless of the payment condition. Both (b) and (c)
show predictions for the average participant, i.e. assuming that all random effects are set to zero. The x axis
shows the difference in efficiency (Block 2 - Block 1). See the online article for the color version of this
figure.
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they are improving earlier or later fixations exclusively. These
analyses are exploratory: Our goal is to describe the pattern of
practice effects and quantify their size and stability, not to test any
particular hypothesis.

Method

Data

Data from the first two experiments were pooled together. The
control conditions (long [block 1] and flat) were merged into a
new condition named baseline. Block 2 of the long condition in
Experiment 1 was renamed transfer, as, due to counterbalancing,
participants who completed this condition had previously com-
pleted the brief condition in block 1, allowing for potential transfer
effects. Unlike in Experiments 1 and 2, which used the proportion
of fixations averaged over multiple trials, the analysis in this sec-
tion uses a binary variable, indicating for each fixation whether it
landed on the heterogeneous side of the display or not.

Analysis

A Bayesian fgeneralized multilevel linear model (family = bino-
mial) was used, following the same general approach as above.
Fixation number (2–6), block (1–2) and condition (baseline, brief,
reward, transfer) were included in the model as categorical varia-
bles, while trial number (1–196) was scaled and centered to have
mean 0 and standard deviation 1 and included as a continuous
variable. Model comparisons will be made using approximate
leave-one-out (loo) cross-validation (Vehtari et al., 2017).

Results

The results of the model including all four variables and their
interactions are shown in Figure 6. From this figure we can see
that there is a steady improvement in search efficiency for fixa-
tions 5 and 6 over the course of the experiment (trials 1 to 196).
Interestingly, this learning does not appear to be present for the
initial first few fixations. (As we have noted elsewhere, eventually,
all participants spend the majority of their time fixating the hetero-
geneous side of the display if they have not yet found the target,
and so ceiling effects on higher fixation numbers [i.e. . 10] limit
the opportunity to learn.)

While it is clear from Figure 6 that fixation number and trial
have an effect on the likelihood of a fixation to be directed toward
the heterogeneous side of the display, it is less clear whether block
has an effect above and beyond what can be accounted for by trial
and whether there are any differences between our experimental
manipulations. To investigate this, we fit four, simpler versions of
the model, each dropping one of our four factors, along with all
related interactions.

The model weights are shown in Table 1. We can see that, in
line with our conclusions based on Figure 6, the models with trial
and fixation number removed perform poorly. We can also see
that the model that ignores block performs poorly, suggesting that
a steady improvement from one trial to the next is not enough to
account for the rate of learning seen in our participants. The two
models that contain block, trial number, and fixation number
receive over 80% of the weight, split approximately equally
between the two of them. Given that the model without the condi-
tion variable is nested within the full model, this is equivalent to
halving the model coefficients for condition and all related

Figure 6
The Proportion of Fixations 2 Through 6, Made to the Heterogeneous Side of the Display for the
Four Conditions in Our Experiments

Note. The wiggly line shows a rolling average of the empirical data, while the shaded regions show the 50%
and 90% HPDI regions for the regression lines. The vertical gray line shows the split between the first and sec-
ond block. See the online article for the color version of this figure.
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interactions. As the full model (see Figure 6) already shows little
difference between conditions, and in the interest of parsimony
(the addition of condition and its interactions requires over 50 new
coefficients to be estimated from the data), we conclude that there
is little evidence that the introduction of the short time limit, or the
financial incentive that we used, had sizable impact on the rate of
which participants improved their search efficiency over time.

Saccadic Latency Analysis

A plausible explanation for inefficient fixation behavior we also
considered is that the homogeneous side may appear more visually
salient and out-compete the heterogeneous side for control of
attention. In this case, a failure to inhibit a reactive saccade to the
homogenous side could explain why participants look here, despite
the fact that it provides no information. If this is the case, the la-
tency of initial saccades to the homogeneous side should be faster
than to the heterogeneous side. To evaluate this, we examined the
latency of the first saccade on each trial as a function of where that
saccade was directed (homogeneous or heterogeneous side). We
excluded one observer who had a median latency greater than
1100ms (although the results are essentially the same whether this
person is included or not).
The mean of the median latencies showed no difference with

the direction of the saccade: Across long, brief, flat and reward
conditions, no differences between homogeneous and heterogene-
ous latencies larger than 5ms were observed. A table with the
results across conditions is presented in the online supplementary
materials. Saccades to the homogeneous side are not executed
faster than saccades to the heterogeneous side.

Discussion

These experiments tested the hypothesis that the suboptimal fix-
ation strategies observed in previous studies arose because partici-
pants did not consistently prioritize fast search. That is, we
considered the possibility that a persistent tendency to fixate loca-
tions that provide no new information could occur because most
individuals were not trying to search efficiently. Were this true,
stronger incentives to search quickly should have been effective in
reducing individual variation, bringing all individuals closer to an
efficient strategy. We replicated the previous pattern of wide indi-
vidual differences in search strategy, and in two experiments, we
found that experimentally inducing incentives to search more
quickly did not have a substantial effect on fixation strategies. We
can therefore rule out insufficient motivation as the explanation
for inefficient fixations. Whether the participants were already

motivated in previous studies in the first place, or whether increas-
ing motivation just has no bearing on efficiency, we cannot dis-
criminate from these experiments. Still, we saw consistent gradual
increases in fixation efficiency with practice, irrespective of
whether we put time pressure on participants or rewarded them for
faster performance. Exploring these timecourse effects further
revealed that the first few fixations in each trial were impervious
to practice and that it was the efficiency of the fourth to sixth fixa-
tion that gradually improved. These observations provide some
preliminary insights into how search strategies evolve over time.

The SHLS task employed in these experiments provides a
straightforward metric of fixation efficiency that can be easily
compared across conditions. In previous studies, we verified that
participants can easily spot the target using peripheral vision when
it appears on the homogeneous side, demonstrating that fixations
directed to this side are superfluous and can only slow search
(Nowakowska et al., 2017). We have also shown that the tendency
to fixate the homogeneous side of the search array is nonetheless a
common behavior among the majority of individuals and that it
persists over multiple testing sessions (Clarke et al., 2020; Nowa-
kowska et al., 2019). In the two experiments reported here, we
show a similarly wide range of behaviors in this task, with some
participants highly inefficient, some intermediate, and some highly
efficient. The existence of individual differences in strategy sug-
gests eye movements are not driven preferentially to locations that
produce the most information, as Najemnik and Geisler (2005)
would suggest. However, a stochastic model (Clarke et al., 2016)
also cannot explain human search because it would suggest both
sides of the search array should be equally likely to be fixated.
What is required is a model that can account for variation between
individuals and over time.

The current results provide some groundwork for this more
comprehensive model of visual search by ruling out one set of pos-
sible explanations for individual differences: those based on moti-
vation and differences in speed/accuracy trade-offs. Although
these manipulations of motivation did not lead to changes in strat-
egy, more efficient strategies did gradually emerge with practice:
Participants improved in the second session regardless of the pres-
ence of a response deadline or offer of additional incentive. Using
a task with a similar rationale, we previously tested the same 20
participants each day for five days and found gradual improve-
ments in strategy and high correlation between performance on
each consecutive day (Nowakowska et al., 2019). The current
study takes this further by documenting the size and progression
of these practice effects in a larger set of data. It is possible that
some observers use a model-based search that calculates the cost
in terms of time or effort against the expected value (Gershman
et al., 2015) and, in the context of the current studies, use their
knowledge of their own acuity to calculate the most efficient eye
landing position, in other words, using computations like those in
Najemnik and Geisler (2005) model. Such a strategy could be con-
trasted with a more error-prone but inexpensive look-up table
mechanism (Gershman et al., 2015) whereby fixations are deter-
mined by visual and motor constraints, biases, and low-level prop-
erties of the visual scene, similar to the stochastic model (Clarke
et al., 2016). Increasingly efficient search behavior could occur
through a transition from a look-up table mechanism to a model-
based strategy. Alternatively, the look-up table mechanism could
simply become better adapted to the search conditions over time.

Table 1
Model Stacking Weights

Model N of parameters Model weights

All 80 0.424
Ignore trial 40 ,0.001
Ignore block 40 0.063
Ignore condition 20 0.430
Ignore fixation 16 0.083

Note. These show the weight we should put on each model’s prediction
to generate the best average prediction.
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Our results showing a gradual improvement with practice, which
is insensitive to manipulations of time pressure or reward, suggest
the latter account is more likely.
The practice effects observed in the current experiments are par-

tially consistent with previous findings demonstrating that partici-
pants can learn to direct eye movements to relevant stimuli in their
environment and adjust eye movement statistics to adapt to scenes,
fixating sooner and longer on dynamic and potentially hazardous
sources of information (e.g., Jovancevic-Misic & Hayhoe, 2009;
Sullivan et al., 2012). These studies have provided support for a
set of promising models of visual exploration during complex and
naturalistic tasks like walking and driving, in which eye move-
ments are related to the subtasks of ongoing sequences of actions.
Reward is an important component in driving efficient informa-
tion-gathering in these models (e.g., Hayhoe & Ballard, 2014),
however, and it is inconsistent with these models that the reward
in Experiment 2 did not accelerate the learning of effective eye
movement strategies. Like in those experiments, the current stud-
ies rewarded efficient eye movement behavior intrinsically, by
rewarding the faster search times that efficient eye movements
would engender. A potentially important distinction between our
approach and many others, however, is that “efficient” eye move-
ment behavior in our experiment is not as directly defined by the
visual context. That is, in many studies, eye movements gathered
rewarding information by targeting specific events, locations, or
object classes, such as anticipating the bounce-point of a cricket
ball and thereby reaching this source of information in time to pro-
cess the event (Land & McLeod, 2000). In our studies, the eye
movements accrue evidence for a decision, and some locations are
a richer source of information than others. This distinction
between better and worse sources of information in the visual
environment can clearly be learned over time, as our results sug-
gest, but additional reward does not facilitate this learning or lead
participants to adopt more efficient strategies.
Previous research from Paeye et al. (2016) provides converging

evidence that effective reinforcement of eye movements requires a
contingent mapping between an eye movement and an event. Their
participants did not spontaneously learn or capitalize on changes
in the probability of the target appearing in a particular quadrant
of the search area. In contrast, when instead the contingency
between the eye movement and the information was made more
direct by having the target appear after a saccade to a particular
region, or in a particular direction, participants quickly began
repeating saccades of this type at a higher frequency. The condi-
tions of our experiment were more similar to the first manipulation
(of the target’s likely quadrant) in that there was no direct contin-
gency between the saccade and the presentation of the target.
Nonetheless, unlike the probability manipulation, the visual infor-
mation in our scenes is not uniform, which may have permitted
the small but steady improvements we observed over time in our
experiments. Our results suggest this less direct learning might
occur through small, gradual trial-and-error adjustments in scan-
ning behavior.
The timecourse analysis revealed that the first few fixations on

each trial were impervious to the effects of practice and that the
improvements over time could be largely attributed to the fourth
fixation onward. This is an interesting pattern worthy of confirma-
tion and further exploration because of the potential links with
existing literature looking at the timecourse of stimulus-driven

versus goal-driven overt attention. Several previous visual search
studies have shown that saccades executed soon after the search
array appears are driven more by visual salience than those exe-
cuted later (e.g., Donk & van Zoest, 2008; Hunt et al., 2007; for
reviews see Hunt et al., 2010; van Zoest et al., 2010). Eye move-
ments during extended search provide snapshots of dynamic vis-
ual, cognitive, and decision processes as they emerge and develop
from the onset of the search array to when the response key is
pressed. That early fixations are not influenced by practice is con-
sistent with the characterization of early visual processing as
“reflexive” and therefore more rigid and predictable than later
stages. However, it is also important to note that the large individ-
ual differences observed across individuals apply to early as well
as later fixations. By the end of each trial, most fixations are
directed to the heterogeneous side of the search array; RT is deter-
mined in a large part by how quickly participants are able to start
focusing fixations on this side, and this is what seems to improve
with practice. An important implication is that whether eye move-
ments during search can be characterized as “ideal” could depend
not only on the individual but also on the extent of their experience
with the task and on which timepoint of a single trial is being
considered.
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