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Abstract—This paper investigates the impact of intelligent
reflecting surface (IRS) enabled wireless secure transmission.
Specifically, an IRS is deployed to assist multiple-input multiple-
output (MIMO) secure system to enhance the secrecy per-
formance, and artificial noise (AN) is employed to introduce
interference to degrade the reception of the eavesdropper. To
improve the secrecy performance, we aim to maximize the
achievable secrecy rate, subject to the transmit power constraint,
by jointly designing the precoding of the secure transmission,
the AN jamming, and the reflecting phase shift of the IRS. We
first propose an alternative optimization algorithm (i.e., block
coordinate descent (BCD) algorithm) to tackle the non-convexity
of the formulated problem. This is made by deriving the transmit
precoding and AN matrices via the Lagrange dual method
and the phase shifts by the Majorization-Minimization (MM)
algorithm. Our analysis reveals that the proposed BCD algorithm
converges in a monotonically non-decreasing manner which leads
to guaranteed optimal solution. Finally, we provide numerical
results to validate the secrecy performance enhancement of the
proposed scheme in comparison to the benchmark schemes.

Index Terms—Intelligent reflecting surface, physical-layer se-
crecy, multiple-input multiple-output (MIMO), phase shift.

I. INTRODUCTION

The fifth-generation (5G) communication networks and be-
yond have been evolving towards machine-centric driven by a
vast range of requirements such as massive connectivity, ultra-
low latency, and ultra-high spectral efficiency and throughput.
In particular, ultra-high data rates can be supported by a
variety of contemporary techniques, e.g., massive multiple-
input multiple-output (massive MIMO), relaying, millimeter
wave (mmWave) communications, as well as ultra-dense net-
works (UDNs) [1]–[3]. Although these techniques can sub-
stantially boost the spectral efficiency, one needs to deal with
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the increase of computational complexity and hardware cost
due to large amount of radio frequency (RF) chains over
a high frequency band. In addition, the operation of these
techniques often come at a cost of high power consumption
due to the increased amount of transmitted data and emission
of radio waves [4]. This motivates a novel and promising
paradigm, called smart radio environment, which has attracted
tremendous research attention in recent years. Smart radio
environment offers a seamless wireless connectivity and the
capability of processing and transmitting data via recycling
the existing radio waves instead of generating new ones [4].

On the other hand, for various civilian and military ap-
plications, it has become increasingly important for secured
wireless networks to safeguard the private/important informa-
tion such as credit card transaction, on-line personal data, and
military intelligent transmissions [5]. As a matter of fact, wire-
less security has become an indispensable part of 5G wireless
networks. Conventionally, a reliable wireless transmission is
secured via traditional cryptographic techniques operating in
the network layer. However, this tends to incur large overhead
as well as various challenges in terms of key distribution and
management to build reliable link due to the nature of wireless
transmission [6]. As an alternative approach, physical layer
security has been developed to provide the secrecy capacity
metric by exploiting information-theoretical fundamentals [5].
In recent years, a variety of resource allocation algorithms have
been developed in physical layer security scenarios to improve
the secrecy capacity. Additionally, physical layer security has
also been studied in multi-antenna scenario [7]–[9].

Intelligent reflecting surface (IRS), as an enabler for smart
radio environments, has been proposed as a novel transceiver-
like technique to offer significant performance enhancement in
terms of spectrum and energy efficiencies [10], [11]. An IRS
is generally consisted of a planar array structure with a large
number of reconfigurable passive reflecting elements, which
are controlled by a communication-oriented software (e.g. IRS
controller) [4], [10]. IRS unlocks a novel wireless device (WD)
to achieve three-dimensional (3D) passive beamforming gains
by adaptively varying the phase shifts of the reflected signals
in time-varying environments [12]. IRS reflecting arrays are
generally made of multiple components with small-sized, very
low-cost, and low-energy consumption features in which an
appropriate phase shift can efficiently improve the reflection of
the intended signal without a dedicated RF signal processing,
en/de-coding, or re-transmission [10].



A. State-of-the-Art

There has been a rich body of literature on the IRS assisted
wireless communication networks [10], [12]–[16]. In [10], an
IRS assisted multiple-input single-output (MISO) system was
proposed, where the desired signals are passively received and
reflected by the reflecting elements of the IRS to align the
reflection link with the direct link. In [13] a class of active
intelligent surface based massive MIMO was investigated
by employing an array architecture to passively receive and
reflect the desired signals to maximize the total received
power targeting to a specific user. Also, multiple IRSs may be
flexibly deployed to provide high data rates in the near-field
transmission such as indoor environments [14]. In [15], [16],
a series of resource allocation algorithms have been developed
to jointly design transmit precoding and phase shift matrices in
various MIMO scenarios, by maximizing the achievable rate
via dynamically adjusting the phase shift at the IRS. From the
perspective of security, IRS-aided secrecy system has recently
attracted increasing attentions [17]–[20]. IRS, deployed near
the legitimate users, dynamically adjusts the phase shifts to
optimize the secrecy performance. In [17], [18], an IRS-aided
multi-antenna secrecy system has been investigated, where the
achievable secrecy rate is maximized by joint optimization
of the secrecy transmit beamforming and reflecting phase
shift. The power efficiency optimization problem has been
formulated to meet the secrecy rate requirement in [19]. The
application of artificial noise (AN) was studied to enhance
the achievable secrecy rate in an secure IRS assisted system
[20]. Specifically, the integration of AN with IRS can achieve
a higher secrecy performance improvement compared with
the benchmark schemes. This is due to the fact that an IRS
assisted secure system is typically lack of sufficient spatial
secure degrees of freedom (DoF) with increasing number of
eavesdroppers, such that AN can be an effective means for
secrecy performance improvement. In addition, we are inter-
ested to compare the IRS aided secure system to other existing
secure counterparts, e.g., information-jamming-assisted secure
system [21] and the relaying-assisted secure system [22]. Al-
though these conventional transmission systems can enhance
the secrecy performance, extra power consumption is needed
for jamming and relaying techniques which are considered
as external transceivers. The IRS assisted secure system does
not need to employ an external transmitter (i.e., information
jammer or relay) to generate the new or same radio wave to
enhance (degrade) the received power at the legitimate user
(eavesdropper) [19]. The existing state-of-the-art only focuses
on single-antenna cases at the receive nodes (i.e., legitimate
users and eavesdroppers). The formulated problems can be
generally relaxed into the semi-definite programming (SDP)
to obtain the sub-optimal transmit beamforming and the phase
shift via the alternative optimization algorithm. Similar method
however may not be applied in IRS aided MIMO secrecy
scenario. Besides, there has been few of existing work which
exploits the IRS aided MIMO secrecy system, which motivates
our work in this paper.

This paper unveils the impact of the IRS on an AN aided
MIMO secure system, where the secure transmit precoding,

AN jamming as well as the reflecting phase shift matrix of the
IRS are jointly designed to enhance secrecy performance. The
main contributions of this paper are summarized as follows:

1) We find the optimal joint design of secure transmit pre-
coding matrix, AN jamming matrix and IRS phase shift
matrix, to maximize the achievable secrecy rate, subject
to transmit power and unit modulus constraints.To deal
with its non-convexity, we first transform the original
problem into its equivalent form via weighted minimum
mean square error (WMMSE). Then the problem is
further split into three sub-problems by introducing aux-
iliary variable matrices. We propose a block coordinate
decent (BCD) algorithm to alternatively optimize the
auxiliary matrices, the transmit precoding, the AN jam-
ming matrix, and the phase shift matrix. In addition, the
convergence behaviour of the proposed BCD algorithm
is characterized and shown to converge to the Karush-
Kuhn-Tucker (KKT) point of the original problem.

2) We solve the sub-problems with respect to auxiliary
variable matrices for the given transmit precoding, AN
matrix and phase shift matrix, where their closed-form
expressions are derived by taking into consideration the
first-order derivatives of these sub-problems.

3) We then solve the corresponding sub-problem over trans-
mit precoding with AN matrix via the Lagrange dual
method, which is derived with the semi-closed-form
expressions for given phase shift matrix and auxiliary
variable matrices. Also, we perform a bisection search
to find the optimal dual variable.

4) Moreover, the main novelty of our work lies in the
optimal design of the phase shift matrix at the IRS.
To be specific, for the given transmit precoding, AN
matrix and auxiliary variable matrices, we transform
the sub-problem with respect to phase shift matrix
into a quadratically constrained quadratic programming
(QCQP) with unit-modulus constraint via several ma-
trix/vector manipulations. Due to the non-convex nature
of the QCQP problem, we propose a novel method based
on the Majorization-Minimization (MM) algorithm [23]
to iteratively find the optimal phase shift of the IRS
with a closed-form expression. In addition, we prove the
proposed MM algorithm converges to the KKT point.

5) Finally, numerical evaluations validate the benefits of
the proposed algorithm in comparison to the benchmark
schemes, with an emphasis on the impact of the IRS
on secrecy performance enhancement in the AN aided
MIMO secure system. We show that the higher transmit
power and larger number of reflecting elements of
the IRS will lead to a higher achievable secrecy rate.
Additionally, we reveal that the number of antenna at
each node and IRS-related link plays an important role
in enhancing the secrecy performance.

The rest of this paper is organized as follows. The secrecy
system model is described in Section II, followed by the
algorithm design for the IRS aided MIMO secrecy com-
munication with AN in Section III. The IRS aided MIMO
secrecy communication without AN is described in Section



Fig. 1: An IRS aided MIMO secrecy communication.

IV. Numerical results are presented in Section V. Finally, we
conclude this paper in Section VI.

Notations: We use upper case boldface letters for matrices
and lower case boldface letters for vectors. (·)∗, (·)T and
(·)H denote the conjugate, transpose and conjugate transpose,
respectively. Tr(·) is the trace of a matrix. ∇xf(x) represents
the gradient of the function f with respect to the vector x
and � is the Hadamard product. A � 0 indicates that A is a
positive semi-definite matrix. I and (·)−1 denote the identity
matrix and the inverse of a matrix, respectively. diag(A) is
the diagonalization operation of the matrix A. |A| denotes
the determinant of A and [x]+ represents max{x, 0}.

II. SYSTEM MODEL

In this paper, we consider a generic IRS assisted MIMO
secrecy system as shown in Fig. 1, where a BS intends to es-
tablish a reliable communication link with a legitimate user in
the presence of single eavesdropper. Also, an IRS is deployed
to passively reflect the confidential information from the BS to
the receivers (i.e., legitimate user/eavesdropper), each of which
generally probes two path superimposed signals from both
BS-user/eavesdropper and BS-IRS-user/eavesdropper links. In
comparison to the traditional secrecy communication, in our
paper, an AN embedded signal is generated by the BS to
introduce additional interference to degrade the reception of
the eavesdropper by exploiting the IRS-induced extra DoF
with the necessity of the AN aided transmit beamformer. Thus,
the intended signal to be transmitted at the BS can be written
as

x = Ws + z, (1)
where s ∼ CN (0, I) denotes the desired signal to be trans-
mitted, W ∈ CNT×Nd is the transmit precoding matrix,
Nd ≤ min(NT , NS) denotes the data streams observed for
the user, z ∼ CN (0,Z) is the AN matrix, i.e., Z ∈ CNT×NT .
We assume that the BS is equipped with NT ≥ 1 transmit
antennas, the IRS with NR ≥ 1 reflecting units, the user with
NS , and the eavesdropper consists of NE receive antennas. We
denote Hbr ∈ CNR×NT , Hs ∈ CNT×NS , He,k ∈ CNT×NE ,
Gs ∈ CNR×NS , and GE ∈ CNR×NE as the channel coef-
ficients between the BS and the IRS, the BS and the user,
the BS and the eavesdropper, the IRS and the user, as well
as the IRS and the eavesdropper, respectively. In this paper,
we assume that the channel state information (CSI) of the
eavesdropper is available at the BS. This can be achieved

through different methods such as the CSI feedback method
[24] or even the local oscillator power leakage from the
eavesdropper receivers RF frontend [25]. The IRS elements
collect all multi-path signals at a physical element, and reflect
these combined signals via IRS reflecting array. We denote
Θ = diag (exp(jα1), exp(jα2), ..., exp(jαNR

)), as the diag-
onal matrix associated with the effective phase shifts in all
IRS elements, where αn ∈ [0, 2π],∀n ∈ [1, NR] is the phase
shift at the n-th IRS element. Thus, the received signal at the
legitimate user and the eavesdropper can be written as

ys =
(
HH
s + GH

s ΘHbr

)
(Ws + z) + ns,

ye =
(
HH
e + GH

e ΘHbr

)
(Ws + z) + ne,

respectively, where ns ∼ CN (0, σ2
sI) and ne ∼ CN (0, σ2

eI).
The achievable rates at the legitimate user and the eavesdrop-
per are given by [26], [27]

Rs = log

∣∣∣∣I + H̃sWWHH̃H
s

(
I + H̃sZH̃H

s

)−1∣∣∣∣ ,
Re = log

∣∣∣∣I + H̃eWWHH̃H
e

(
I + H̃eZH̃H

e

)−1∣∣∣∣ ,
where H̃s = 1

σs
H̄s, H̃e = 1

σe
H̄e H̄s = HH

s + GH
s ΘHbr,

and H̄e = HH
e +GH

e ΘHbr. Thus, the achievable secrecy rate
can be written as

Rsec = [Rs −Re]+, (2)

III. IRS AIDED MIMO SECRECY COMMUNICATION WITH
AN

A. Problem Formulation

In order to evaluate the secrecy performance of the IRS
assisted MIMO secrecy network, we aim to maximize the
achievable secrecy rate subject to the transmit power con-
straint, where the transmit precoding, the AN matrix and
the reflecting beamforming are jointly designed. Thus, this
optimization problem is formulated as follows:

max
W,Z�0,Θ

Rs −Re,

s.t. Tr(WWH+Z)≤P, | exp(jαn)|=1,∀n=1, ..., NR. (3)
By defining Z = VVH , V ∈ CNT×NT , problem (3) is
equivalently expressed as

max
W,V,Θ

log

∣∣∣∣I + H̃sWWHH̃H
s

(
I + H̃sVVHH̃H

s

)−1∣∣∣∣︸ ︷︷ ︸
A1

+ log
∣∣∣I + H̃eVVHH̃H

e

∣∣∣︸ ︷︷ ︸
A2

− log
∣∣∣I + H̃eWWHH̃H

e + H̃eVVHH̃H
e

∣∣∣︸ ︷︷ ︸
A3

,

s.t. Tr(WWH + VVH) ≤ P,
| exp(jαn)| = 1,∀n = 1, ..., NR. (4)

Problem (4) is non-convex and intractable. In order to cir-
cumvent this non-convex property, we first employ the idea of
WMMSE, transforming the objective function in (4) into the
equivalent counterpart, which can be designed iteratively via
the BCD method [28]. To proceed, we introduce the auxiliary
matrices (Xi, (i ∈ {1, 2, 3}), Zj , (j ∈ {1, 2})) to reformulate



A1, A2, and A3 in the objective function in problem (4),
respectively. First, let us consider the MSE matrix function
of A1 as follows:

E1(Z1,W,V) = (I− ZH1 H̃sW)(I− ZH1 H̃sW)H

+ ZH1 (I + H̃sVVHH̃H
s )Z1, (5)

thus, A1 is equivalently modified as
A1 = max

X1�0,Z1

log |X1| − Tr [X1E1(Z1,W,V)] +Nd. (6)

Similarly, A2 is given by
A2 = max

X2�0,Z2

log |X2| − Tr [X2E2(Z2,V)] +NT , (7)

where E2(Z2,V) = (I−ZH2 H̃eV)(I−ZH2 H̃eV)H + ZH2 Z2.
The following lemma is required to deal with A3,

Lemma 1: [26] Denoting E ∈ CN×N as any positive
definite matrix, we have the following function

− log |E| = max
Y�0

δ(Y), (8)

where δ(Y) = log |Y| − Tr(YE) + N . Then, the optimal
solution to problem (8) can be expressed as Yopt = E−1.
According to Lemma 1, A3 is given by
−A3 = max

X3�0
log |X3| − Tr [X3E3(W,V)] +NE , (9)

where E3(W,V) = I + H̃eWWHH̃H
e + H̃eVVHH̃H

e .
Remark 1: It can be verified that A1, A2, and A3 are

concave functions with respect to each matrix of W, V,
Xi(i ∈ {1, 2, 3}), and Zj(j ∈ {1, 2}) given the other matrices.
Also, combining A1, A2 and A3 provides the lower bound of
the achievable secrecy rate Rsec in (2).
We substitute (6)-(9) into (4), which is equivalently rewritten
as

max
Ω

log |X1| − Tr
[
X1

(
(I− ZH1 H̃sW)(I− ZH1 H̃sW)H

+ZH1 (I + H̃sVVHH̃H
s )Z1

)]
+ log |X2|

− Tr
[
X2

(
(I− ZH2 H̃eV)(I− ZH2 H̃eV)H + ZH2 Z2

)]
+ log |X3|−Tr

[
X3(I+H̃eWWHH̃H

e +H̃eVVHH̃H
e )
]
,

s.t. Tr(WWH + VVH) ≤ P,
| exp(jαn)| = 1,∀n = 1, ..., NR,

Ω={W,V,X1�0,X2�0,X3�0,Z1,Z2,Θ}. (10)
Problem (10) is still non-convex with respect to the transmit
precoding matrices (W, V), the auxiliary matrices (Xi, (i ∈
{1, 2, 3}), Zj , (j ∈ {1, 2})), as well as the phase shift matrix
Θ. In the sequel, we propose the BCD algorithm to iteratively
update these variable matrices in problem (10). Specifically,
problem (10) is separated into the three sub-problems (or sub-
iterations), each of which aims to obtain the optimal one (or
a group) of variable matrices given others, respectively.

B. Sub-iteration 1: Optimizing Zj and Xi

In this subsection, we first solve (10) to optimize Zj , (j ∈
{1, 2}) and Xi, (i ∈ {1, 2, 3}) given W, V, and Θ. First, (10)
is equivalently modified into the following sub-problems over
Zj , (j ∈ {1, 2}) as

Z1 = arg min
Z1

Tr [X1E1(Z1,W,V)] , (11a)

Z2 = arg min
Z2

Tr [X2E2(Z2,W,V)] . (11b)

In order to solve (11a) and (11b), we take into consideration
their own first-order derivative, respectively, and the closed-
form solution of Zj(j ∈ {1, 2}) is given by

Z1 =
(
I+H̃sVVHH̃H

s +H̃sWWHH̃H
s

)−1
H̃sW, (12a)

Z2 =
(
I + H̃eVVHH̃H

e

)−1
H̃eV. (12b)

Next, we solve (10) to optimize Xi, (i ∈ {1, 2, 3}) given W,
V, Zj , (j ∈ {1, 2}), and Θ. It is observed that the matrices
Xi, (i ∈ {1, 2, 3}) are independent with each other in the
objective function of (10). Thus, by exploiting Lemma 1, the
closed-form solutions of Xi, (i ∈ {1, 2, 3}) is derived as

X1 =
[
(I−ZH1 H̃sW)(I−ZH1 H̃sW)H+ZH1 (I

+H̃sVVHH̃H
s )Z1

]−1
a
= I + WHH̃H

s (I + H̃sVVHH̃H
s )−1H̃sW, (13a)

X2 =
[
(I− ZH2 H̃eV)(I− ZH2 H̃eV)H + ZH2 Z2

]−1
b
= I + VHH̃H

e H̃eV, (13b)

X3 =
(
I + H̃eWWHH̃H

e + H̃eVVHH̃H
e

)−1
, (13c)

where a
= and b

= denotes that (12a) and (12b) substitute into
(13a) and (13b), respectively.

C. Sub-iteration 2: Optimizing W and V

In this subsection, we solve problem (10) to optimally
design W and V given Xi, (i ∈ {1, 2, 3}), Zj(j ∈ {1, 2}),
and Θ. To proceed, problem (10) is equivalently rewritten with
respect to W and V, as

min
W�0,V�0

Tr
(
X1Z

H
1 H̃sWWHH̃H

s Z1

)
+Tr

(
X1Z

H
1 H̃sVVHH̃H

s Z1

)
−Tr

(
X1Z

H
1 H̃sW

)
−Tr

(
X1W

HH̃sZ1

)
−Tr

(
X2Z

H
2 H̃eV

)
−Tr

(
X2V

HH̃H
e Z2

)
+ Tr

(
X2Z

H
2 H̃eVVHH̃H

e Z2

)
+ Tr

(
X3H̃eWWHH̃H

e

)
+ Tr

(
X3H̃eVVHH̃H

e

)
s.t. Tr(WWH) + Tr(VVH) ≤ P. (14)

Problem (14) is a convex problem with respect to W and V,
which can be solved via Lagrange dual problem. Let us write
the Lagrangian function to problem (14) as follows:
L(W,V, µ) = Tr

(
X1Z

H
1 H̃sWWHH̃H

s Z1

)
+ Tr

(
X1Z

H
1 H̃sVVHH̃H

s Z1

)
− Tr

(
X1Z

H
1 H̃sW

)
− Tr

(
X1W

HH̃sZ1

)
− Tr

(
X2Z

H
2 H̃eV

)
− Tr

(
X2V

HH̃H
e Z2

)
+ Tr

(
X2Z

H
2 H̃eVVHH̃H

e Z2

)
+ Tr

(
X3H̃eWWHH̃H

e

)
+ Tr

(
X3H̃eVVHH̃H

e

)
+ µ[Tr(WWH) + Tr(VVH)− P ], (15)

and its dual problem is given by
max
µ≥0

min
W�0,V�0

L(W,V, µ). (16)

In order to solve the dual problem (16), we consider a
two-level algorithm. Particularly, the inner-level problem is



considered to optimize W and V for given µ > 0, and the
outer level problem is a single-variable optimization problem
with respect to µ, which is obtained via one-dimensional
search (i.e., bisection method). To proceed, we first solve
the inner-level problem to optimize W and V, which can
be derived in terms of closed-form expression by taking into
consideration the first-order derivative of (15) as

W=
(
µI+H̃H

s Z1X1Z
H
1 H̃s+H̃H

e X3H̃e

)−1
H̃H
s Z1X1, (17)

V =
(
µI+H̃H

s Z1X1Z
H
1 H̃s+H̃H

e Z2X2Z
H
2 H̃e

+H̃H
e X3H̃e

)−1
H̃H
e Z2X2. (18)

We further simplify the solutions of W and V via eigen-
decomposition. Specifically, let Σ = H̃sZ1X1Z

H
1 H̃s +

H̃eX3H̃
H
e and ∆ = H̃H

s Z1X1Z
H
1 H̃s + H̃H

e Z2X2Z
H
2 H̃e +

H̃H
e X3H̃e, we have the following eigen-decomposition:

Σ = RΛRH , ∆ = SΞSH , (19)
where R (or S) denotes a unitary matrix consisting of the
orthonormal eigenvectors of Σ (or ∆) and Λ (or Ξ) is
a diagonal matrix, each diagonal element of which is the
eigenvalue of Σ (or ∆). Thus, for given µ > 0, the optimal
solution of W and V can be re-expressed as

W = R(µI + Λ)−1RHH̃H
s Z1X1, (20a)

V = S(µI + Ξ)−1SHH̃H
e Z2X2. (20b)

Then, we solve the outer-level problem to achieve the optimal
solution of dual variable µ. With (20a) and (20b), the optimal
solution to problem (14) can be obtained by searching the
optimal dual variable µ such that the complementary slackness
condition holds

µ[Tr(WWH) + Tr(VVH)− P ] = 0. (21)
The optimal solution to dual variable µ can be obtained
by performing a bisection search, as it can be shown that
the term f(W(µ),V(µ)) = Tr(WWH) + Tr(VVH) is a
monotonically non-increasing function with respect to µ [26].
The detailed procedure to solve problem (14) is summarized
as Algorithm 1. It has been proven in [27] that Algorithm 1
monotonically converges to a KKT point of problem (14).

Algorithm 1: Bisection search to solve problem (14)

1) Initialization: κ is a small value to denote the algorithm
accuracy; lower bound µlow and upper bound µup.

2) Calculate µ = µlow + µup.
3) Obtain the optimal solution of W and V.
4) If Tr(WWH + VVH) ≥ P , µlow = µ, otherwise,

µup = µ.
5) If |µup − µlow| ≤ κ, terminate, otherwise, go to Step

2.
6) Ouput: W and V.

D. Sub-iteration 3: Optimizing Θ

In this subsection, we solve problem (10) to optimize Θ for
given W, V, Xi(i ∈ {1, 2, 3}), and Zj(j ∈ {1, 2}). We first

equivalently rewrite problem (10) as follows:
min
Θ

Tr
(
X1Z

H
1 H̃sWWHH̃H

s Z1

)
+Tr

(
X1Z

H
1 H̃sVVHH̃H

s Z1

)
︸ ︷︷ ︸

B1

−
[
Tr
(
X1Z

H
1 H̃sW

)
+Tr

(
X1W

HH̃sZ1

)]
︸ ︷︷ ︸

B2

+ Tr
(
X2Z

H
2 H̃eVVHH̃H

e Z2

)
︸ ︷︷ ︸

B3

−
[
Tr
(
X2Z

H
2 H̃eV

)
+Tr

(
X2V

HH̃H
e Z2

)]
︸ ︷︷ ︸

B4

+ Tr
(
X3H̃eWWHH̃H

e

)
+Tr

(
X3H̃eVVHH̃H

e

)
︸ ︷︷ ︸

B5

,

s.t. | exp(jαn)| = 1,∀n = 1, ..., NR, (22)
where H̃s = 1

σs
H̄s, H̃e = 1

σe
H̄e H̄s = HH

s +GH
s ΘHbr, and

H̄e = HH
e +GH

e ΘHbr. Problem (22) is a non-convex problem
and intractable with respect to Θ due to its unit modulus con-
straint, which cannot be solved directly. In order to tackle this
non-convexity, we propose an MM algorithm to approximately
derive the optimal solution of phase shift. To facilitate the
MM algorithm, we first take into consideration the equivalent
transformation of the objective function in (22). Let γs = 1

σ2
s

,
γe = 1

σ2
e

, W̄ = WWH , and V̄ = VVH , B1, B2, B3, B4,
and B5 in problem (22) can be transformed via exploiting a
series of mathematical manipulations, respectively,

• B1:
B1 = γsTr

(
ΘHGsZ1X1Z

H
1 GH

s ΘHbrW̄HH
br

)
+ γsTr

(
ΘHGsZ1X1Z

H
1 HH

s W̄HH
br

)
+ γsTr

(
HbrW̄HsZ1X1Z

H
1 GH

s Θ
)

+ γsTr
(
X1ZH1 HH

s W̄HsZ1

)
+ γsTr

(
ΘHGsZ1X1Z

H
1 GH

s ΘHbrV̄HH
br

)
+ γsTr

(
ΘHGsZ1X1Z

H
1 HH

s V̄HH
br

)
+ γsTr

(
HbrV̄HsZ1X1Z

H
1 GH

s Θ
)

+ γsTr
(
X1ZH1 HH

s V̄HsZ1

)
= Tr

(
ΘHRsΘT1,s

)
+ Tr

(
ΘHQH

1,s

)
+ Tr (ΘQ1,s) + Tr

(
ΘHRsΘT2,s

)
+ Tr

(
ΘHQH

2,s

)
+ Tr (ΘQ2,s) + cs, (23)

where
Rs = γsGsZ1X1Z

H
1 GH

s , T1,s = HbrW̄HH
br,

Q1,s = γsHbrW̄HsZ1X1Z
H
1 GH

s ,

cs = γsTr
(
X1Z

H
1 HH

s W̄HsZ1

)
+ γsTr

(
X1Z

H
1 HH

s V̄HsZ1

)
,

T2,s = HbrV̄HH
br, Q2,s = γsHbrV̄HsZ1X1Z

H
1 GH

s .



• B2:
B2 =

√
γsTr

(
ΘHbrWX1Z

H
1 GH

s

)
+
√
γsTr

(
X1Z

H
1 HH

s W
)

+
√
γsTr

(
ΘHGsZ1X1W

HHH
br

)
+
√
γsTr

(
X1W

HHsZ1

)
= Tr (ΘQ0,s) + Tr

(
ΘHQH

0,s

)
+ c0,s, (24)

where
Q0,s =

√
γsHbrWX1Z

H
1 GH

s ,

c0,s =
√
γsTr

(
X1Z

H
1 HH

s W
)
+
√
γsTr

(
X1W

HHsZ1

)
,

q0,s =
[
(Q0,s)(1,1) , ..., (Q0,s)NR,NR

]T
.

• B3:
B3 = γeTr

(
ΘHGeZ2X2Z

H
2 GH

e ΘHbrV̄HH
br

)
+ γeTr

(
ΘHGeZ2X2Z

H
2 HH

e V̄HH
br

)
+ γeTr

(
HbrV̄HeZ2X2Z

H
2 GH

e Θ
)

+ γeTr
(
X2Z

H
2 HH

e V̄HeZ2

)
= Tr

(
ΘHR0,eΘT0,br

)
+ Tr

(
ΘHQH

0,e

)
+ Tr (ΘQ0,e) + c0,e, (25)

where
R0,e = γeGeZ2X2Z

H
2 GH

e , T0,br = HbrV̄HH
br,

Q0,e = γeHbrV̄HeZ2X2Z
H
2 GH

e ,

c0,e = γeTr
(
X2Z

H
2 HH

e V̄HeZ2

)
.

• B4:
B4 =

√
γeTr

(
ΘHbrVX2Z

H
2 GH

e

)
+
√
γeTr

(
X2Z

H
2 HH

e V
)

+
√
γeTr

(
ΘHGeZ2X2V

HHH
br

)
+
√
γeTr

(
X2V

HHeZ2

)
= Tr (ΘQe) + Tr

(
ΘHQH

e

)
+ se, (26)

where Qe =
√
γeHbrVX2Z

H
2 GH

e , se =√
γeTr

(
X2Z

H
2 HH

e V
)

+
√
γeTr

(
X2V

HHeZ2

)
.

• B5:
B5 = γeTr

(
ΘGeX3G

H
e ΘHbrW̄HH

br

)
+ γeTr

(
ΘHGeX3H

H
e W̄HH

br

)
+ γeTr

(
HbrW̄HeX3G

H
e Θ

)
+ γeTr

(
X3H

H
e W̄He

)
+ γeTr

(
ΘGeX3G

H
e ΘHbrV̄HH

br

)
+ γeTr

(
ΘHGeX3H

H
e V̄HH

br

)
+ γeTr

(
HbrV̄HeX3G

H
e Θ

)
+ γeTr

(
X3H

H
e V̄He

)
= Tr

(
ΘHReΘT1,br

)
+ Tr

(
ΘHQH

1,e

)
+ Tr (ΘQ1,e) + Tr

(
ΘHReΘT2,br

)
+ Tr

(
ΘHQH

2,e

)
+ Tr (ΘQ2,e) + c1,e, (27)

where
Re = γeGeX3G

H
e , T1,br = HbrW̄HH

br,

Q1,e = γeHbrW̄HeX3G
H
e , T2,br = HbrV̄HH

br,

Q2,e = γeHbrV̄HeX3G
H
e ,

c1,e = γeTr
(
X3H

H
e W̄He

)
+ γeTr

(
X3H

H
e V̄He

)
.

By exploiting (23)-(27), problem (22) is equivalently mod-

ified by omitting the constant terms cs, c0,s, c0,e, se, and c1,e
as

min
Θ

Tr
[
ΘHRsΘTs

]
+ Tr

[
ΘHQH

s

]
+ Tr [ΘQs]

+ Tr
(
ΘHR0,eΘT0,br

)
+ Tr

[
ΘHQH

e

]
+ Tr [ΘQe] + Tr

[
ΘHReΘTbr

]
,

s.t. | exp(jαn)| = 1,∀n = 1, ..., NR. (28)
where Ts = T1,s + T2,s, Qs = Q1,s + Q2,s −Q0,s, Qe =
Q0,e + Q1,e + Q2,e−Qe, and Tbr = T1,br + T2,br. Problem
(28) is still hard to solve, thus, we resort to the following
lemma to address the objective function in (28).

Lemma 2: [29] Let C1 ∈ Cm×m and C2 ∈ Cm×m be
matrices, and 1 = [1, ..., 1]T be a m × 1 vector. Assuming
that D ∈ Cm×m is a diagonal matrix D = diag(d1, ..., d2),
and d = D1, we have the following matrix identities:

Tr(C1DC2D
H) = dH(C1 �CT

2 )d,

Tr(DC2) = 1T (D�CT
2 )1 = dT c2,

Tr(DHCH
2 ) = cH2 d∗,

where c2 = [(C2)(1,1), ..., (C2)(m,m)]
T .

By exploiting Lemma 2, (28) is equivalent to
min
θ

θH
(
Rs �TT

s

)
θ+θHq∗s+qTs θ+θH

(
R0,e �TT

0,br

)
θ

+ θHq∗e + qTe θ + θH
(
Re �TT

br

)
θ

s.t. |θn| = 1, n = 1, ..., NR, (29)
where θ = [θ1, ..., θNR

]T , θn = exp(j ∗ αn), and

qs =
[
(Qs)(1,1) , ..., (Qs)(NR,NR)

]T
,

qe =
[
(Qe)(1,1) , ..., (Qe)(NR,NR)

]T
.

To proceed, some mathematical manipulations are employed
to equivalently transform (29) into the following form

min
θ

θHΦθ + 2<{θHq∗} (30a)

s.t. |θn| = 1, n = 1, ..., NR, (30b)

where Φ =
(
Rs �TT

s

)
+
(
R0,e �TT

0,br

)
+
(
Re �TT

br

)
,

q = qs + qe. Problem (30) is still non-convex and intractable
due to unit modulus equality constraint (30b). In order to
tackle this issue, the MM algorithm is employed, and a se-
quence of tractable sub-problems are considered to iteratively
solve problem (30) via approximating its objective function
and constraint set [23]. Now, let us first take into consideration
the following problem:

min
t

f0(t), s.t. fi(t) ≤ 0, i = 1, ..., L. (31)
We approximate both the objective function and the feasible
constraint set of problem (31) at each iteration.1 Thus, the
following convex sub-problem can be solved at the m-th
iteration.

min
x

g0(x|x(m)), s.t. gi(x|x(m)) ≤ 0, i = 1, ..., L, (32)

where gi(∗|x(m)), ∀m = 0, ..., L denotes a convex function
which guarantees the following conditions:

gi(x
(m)|x(m)) = fi(x

(m)),

gi(x|x(m)) ≥ fi(x), (33)

∇gi(x(m)|x(m)) = ∇fi(x(m)).

1Here we assume that fi is differential [23].



The sequence x(m) incur a monotonically decreasing f0(x)
which converges to a KKT point [23]. In other words, the
sub-problem (32) is introduced based on the upper bound of
the objective function in (31) via a convex surrogate function,
and feasible set in (31) is approximated via convexifications.

Proposition 1: [30] The objective function (30a) is approxi-
mated in the following for any given θ(m) at the m-th iteration
and for any feasible θ.
f(θ)=θHΦθ+2<{θHq∗}
≤ θHΥθ−2<{θH(Υ−Φ)θ(m)}

+
(
θ(m)

)H
(Υ−Φ)θ(m)+2<{θHq∗}=g(θ|θ(m)), (34)

where Υ = λmaxINR
and λmax denotes the maximum

eigenvalue of Φ.
Proposition 1 constructs a surrogate function of (30a), and it is
easily verified that g(θ|θ(m)) in (34) guarantees the conditions
in (33).

Problem (30) can be approximated at the m-th iteration as
min
θ
g(θ|θ(m)), s.t. (30b). (35)

Define θHθ = NR and θHΥθ = NRλmax, problem (35)
is equivalent to

min
θ
−2<{θH

(
(λmaxINR

−Φ)θ(m) − q∗
)
},

s.t. (30b). (36)
The optimal solution of problem (36) at the (m+1)-th iteration
is expressed in the following closed-form,

θ(m+1) = exp
(
j arg[(λmaxINR

−Φ)θ(m) − q∗]
)
. (37)

Algorithm 2: Proposed MM algorithm to solve (30)

1) Initialization: L is the maximum iteration number , δ
is a small number for accuracy, θ(0) denotes feasible
solution.

2) Repeat: m
• Obtain f(θ(m)) via (30).
• Obtain θ(m+1) via (37).
• Obtain f(θ(m+1)).

3) if |f(θ
(m+1)−f(θ(m))|
f(θ(m+1) ≤ δ or m > L, end loop,

4) Otherwise: m = m+ 1, go to Step 2.
5) Output: Calculate θopt via (37).

On the basis of the above method to solve problem (22),
we proceed to analyze the properties of Algorithm 2 via the
following theorem.

Theorem 1: The objective value in (30), denoted as f(θ),
has a non-increasing trend and guaranteed convergence, and
the converged solution generated via Algorithm 2 is a KKT
point of problem (22).

Proof: Refer to Appendix A.

E. Block Coordinate Descent Algorithm

In this subsection, we present the BCD algorithm to solve
problem (4) on the basis of above analyses in Section III-B,
III-C, and (III-D), which is summarized in Algorithm 3.

Algorithm 3: Proposed BCD algorithm to solve problem (4).

1) Initialization: Maximum iteration number L1; Precod-
ing W(0) and V(0); Obtain X

(0)
i , (i ∈ {1, 2, 3}),

Z
(0)
j , j ∈ {1, 2} via (13a)-(13c) and (12a), (12b), respec-

tively; κ is a small value to denote algorithm accuracy.
2) Repeat:

a) Given X
(n)
i (i ∈ {1, 2, 3}), Z

(n)
j (j ∈ {1, 2}),

Θ(n), obtain W(n+1) and V(n+1) via Algorithm
1.

b) Given X
(n)
i (i ∈ {1, 2, 3}), Z

(n)
j (j ∈ {1, 2}),

W(n+1), and V(n+1), obtain θ(n+1) via Algorithm
2. Calculate Θ(n+1) = diag(θ(n+1))

c) Given W(n+1), V(n+1), and Θ(n+1), obtain
Z

(n+1)
j (j ∈ {1, 2}) via (12a) and (12b), respec-

tively.
d) Given W(n+1), V(n+1), Θ(n+1), and Z

(n+1)
j (j ∈

{1, 2}), obtain X
(n+1)
i (i ∈ {1, 2, 3}) via (13a),

(13b), and (13c), respectively.

3) If |Rsec(W
(n+1),V(n+1),Θ(n+1))−Rsec(W

(n),V(n),Θ(n))|
Rsec(W(n+1),V(n+1),Θ(n+1))

<
κ or achieve to the maximum iteration number L1,
terminate; Otherwise, n = n+ 1 and go to step 2.

4) Output: (Wopt,Vopt,Xopt
i ,Z

opt
j ,Θ

opt) and
Rsec(W

opt,Vopt,Θopt).

To proceed, the following theorem is required to analyze the
properties of the convergence and the optimal solution shown
in Algorithm 3.

Theorem 2: The objective function value sequence
Rsec(W

(n),V(n),Θ(n)), (n = 1, 2, ..., L1) produces a non-
descending trend and can guarantee its solution convergence.
Also, the converged solution of the iterative sequences gener-
ated via Algorithm 3 is a KKT point of problem (4).

Proof: Refer to Appendix A.
Theorem 2 indicates that the proposed algorithm monotoni-
cally converges to a stationary point of problem (4). The mono-
tonic convergence guarantees an improved objective value with
random initialization. Moreover, the computational complexity
of the proposed BCD algorithm is analyzed. In Sub-iterations
1, the computational complexity of computing Z1, Z1, X1, X2

and X3 is O(2N3
T + 3N3

E). The computational complexity of
Algorithm 1 in Sub-iterations 2 is O

(
(N3

T +N3
E) log2(1/κ)

)
,

where O(log2(1/κ)) is the complexity of dual variable µ.
The computational complexity of the MM algorithm in Sub-
iteration 3 is O(N3

R+TN3
R), where T is the iterative number.

Finally, the overall computing complexity of the proposed
BCD algorithm is O(L1(2N3

T + 3N3
E +N3

R + TN3
R + (N3

T +
N3
E) log2(1/κ))).

F. Feasibility Conditions For Positive Secrecy Rate

In this subsection, we check the feasibility conditions that
the optimization problem (3) can be solved when it can achieve
a positive achievable secrecy rate to validate (3). Hence, we
first check whether problem (3) is feasible by taking into
consideration the AN jamming matrix Z � 0 satisfying
Z = ηP

NT
I and Tr(Z) = ηP ,2 where η ∈ [0, 1]. To this end,

2Note that the AN power is uniformly distributed to each symbol, which
has been shown to be the best solution for the BS [31].



we conduct the following power minimization problem
min

W̄�0,Θ
Tr(W̄),

s.t. log
∣∣∣I+ĤsW̄ĤH

s

∣∣∣−log
∣∣∣I+ĤeW̄ĤH

e

∣∣∣≥R̄,
Tr(W̄) ≤ (1− η)P, (38)

where Ĥi = CH
i H̄i, CiC

H
i = (I+H̄iZH̄H

i )−1, ∀i ∈ {s, e},
and R̄ > 0 denotes the target secrecy rate for the system.
Provided problem (38) is feasible, the positive achievable
secrecy rate can be obtained. Now, let us solve problem (38)
to optimize W̄ and Θ alternatively to achieve a sub-optimal
solution. To proceed, we divide (38) into the two following
subproblems to optimize W̄ and Θ separately,

1) Optimize W̄ for given Θ:
min
W̄�0

Tr(W̄),

s.t. log
∣∣∣I+ĤsW̄ĤH

s

∣∣∣−log
∣∣∣I+ĤeW̄ĤH

e

∣∣∣≥R̄,
Tr(W̄)≤(1−η)P. (39)

The sub-problem (39) is readily solved via the First-
order taylor approximation [6].

2) Optimize Θ for given W̄: The sub-problem can be
equivalently reformulated as problem (30) [10], which
can be solved via the MM algorithm shown in Section
III-D.

Thus, we solve problems (39) and (30) alternatively until
convergence.

IV. BENCHMARK SCHEME: IRS AIDED MIMO SECRECY
COMMUNICATION WITHOUT AN

In this section, we consider a benchmark scheme, i.e., IRS
aided MIMO secrecy communication without AN. In this
scenario, the intended signal is expressed as x = Ws, and
the achievable secrecy rate is given by

R̄sec(W,Θ) =
[
log
∣∣∣I + H̃sWWHH̃H

s

∣∣∣
− log

∣∣∣I + H̃eWWHH̃H
e

∣∣∣]+ . (40)
Thus, its secrecy rate maximization problem is written as

max
W,Θ

R̄sec,

s.t. Tr(WWH)≤P, | exp(jαn)|=1,∀n=1, ..., NR. (41)
According to the idea of WMMSE transformation and Lemma
1 shown in Section III-A, problem (41) can be equivalently
modified as

max
W,X1

X2,Z1,Θ

log |X1|−Tr
[
X1

(
(I−ZH1 H̃sW)(I−ZH1 H̃sW)H

+ZH1 Z1

)]
+log |X2|−Tr

[
X2(I+H̃eWWHH̃H

e )
]
. (42)

Similar to the mathematical manipulations shown in Section
III-B-Section III-D, we can derive the optimal solutions for
Z1, Xi(i ∈ {1, 2}), W, and Θ. The BCD algorithm in
Algorithm 3 is similarly considered to deal with problem (42).
Specifically, at each iteration, W is first updated for given
Xi(i ∈ {1, 2}), Z1, and Θ which is obtained via solving
problem (42) similar to Algorithm 1. Next, Θ is updated for
given W, Xi(i ∈ {1, 2}), and Z1 via the MM algorithm
similar to Algorithm 2. Then, Xi(i ∈ {1, 2}) and Z1 are
updated, respectively, in terms of closed-form expressions for

Fig. 2: System deployment

given W and Θ. It can be shown that the objective value
sequence generated by the BCD algorithm employed to solve
problem (42) produces a monotonically non-decreasing trend
and its solution is guaranteed to converge to satisfy the KKT
conditions of problem (41).

V. SIMULATION RESULTS

In this section, the simulation results are presented to
demonstrate the performance of the proposed algorithm. The
system deployment is shown in Fig. 2, where the 3-D coordi-
nates of the BS, the IRS, the legitimate user, and the eaves-
dropper are (0, 5, 10), (100, 0, 2), (100, 3, 0), and (90, 2, 0) in
meter (m), respectively. It is assumed that the BS is equipped
with NT = 5 transmit antennas , the number of the reflecting
elements at the IRS is NR = 30, and the legitimate user and
the eavesdropper consist of NS = 4 and NE = 3 receive
antennas, respectively, unless otherwise specified. All small-
scale channel coefficients are generated as the identical and
circularly complex Gaussian random variable with zero mean
and unit variance. Moreover, the large-scale path loss depends
upon the distance between any two nodes, which is expressed

as PL = A
(
d
d0

)−β
, where A = −30 dB denotes the path loss

at the reference distance d0 = 1 m, and d denotes the distance
of the communication link between the BS and the IRS (i.e.,
dBS−IRS), the BS and the legitimate user (i.e., dBS−user), the
BS and the eavesdropper (i.e., dBS−eve), the IRS and the legit-
imate user (i.e., dIRS−user), and the IRS and the eavesdropper
(i.e., dIRS−eve), all of which can be calculated based on the
coordinates shown in Fig. 2. In addition, the path loss expo-
nents of the BS-IRS link, the BS-user link, the BS-eve link, the
IRS-use link and the IRS-eve link are set to βBS−IRS = 2.5,
βBS−user = βBS−eve = 4, and βIRS−user = βBS−eve = 2,
respectively, unless otherwise specified. The noise power are
set to be σ2

s = σ2
e = −105 dBm, unless otherwise specified.

First, we evaluate the convergence properties of the BCD
algorithm with different transmit powers P and different
reflecting elements NR in Fig. 3 and Fig. 4, respectively. From
these two figures, it is observed that the achievable secrecy



rate has an non-decreasing trend with iteration, and the BCD
algorithm achieves the convergence less than 10 iterations in
most cases, which validates Theorem 2. In addition, larger
transmit power or larger size reflecting elements plays a
positive role to increase the achievable secrecy rate.
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Fig. 3: Convergence performance of proposed BCD algorithm with
different target transmit power.
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Fig. 4: Convergence performance of proposed BCD algorithm with
different reflecting elements NR.

To demonstrate the advantage of the proposed scheme (de-
noted by “MIMO IRS with AN” in the simulation results), we
include the following three baseline schemes for comparison:

1) Baseline 1 [32]: We consider an IRS aided MIMO
secrecy system without the aided of AN, (i.e., Z = 0)
where the secure precoding and the phase shift matri-
ces are jointly optimized via the BCD algorithm. This
scheme is denoted as “MIMO IRS without AN”.

2) Baseline 2 [26], [27]: The secrecy precording and the
AN precoding are jointly designed without the aided of
the IRS in the MIMO secrecy system, which is denoted
as “MIMO with AN and without IRS”.

3) Baseline 3 [6]: We consider a classic MIMO wiretap
channel without the aided of the AN and the IRS, which

is denoted by “MIMO without AN and without IRS”.
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Fig. 5: Achievable secrecy rate versus transmit power.
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Fig. 6: Achievable secrecy rate versus the number of BS antenna
NT .

Next, we evaluate the achievable secrecy rate performance
versus the maximum transmit power P in Fig. 5. One can
observe from the figure that achievable secrecy rate increases
with the maximum transmit power P , which confirms the
property shown in Fig. 3. Also, we observe that the proposed
scheme outperforms the other three baseline schemes, 3 man-
ifesting the positive role played by the IRS to enhance the
achievable secrecy performance. 4 Moreover, the scheme with
AN and without IRS slightly outperforms that without AN and
IRS. This is due to the fact that the power allocation of AN
may not be sufficient to significantly improve the achievable
secrecy rate such that the AN only introduce a slight secrecy
performance improvement. However, it is evident that IRS

3“MIMO IRS without AN” ,“MIMO with AN and without IRS”, and
“MIMO without AN and without IRS”.

4The AN has been considered as one of most effective schemes to improve
the achievable secrecy performance [27].



achieves a better secrecy performance than its counterpart
without AN.

Fig. 6 shows that the achievable secrecy rate performance
versus the number of the BS transmit antenna NT , where
it can be easily observed that a larger number of the BS
transmit antenna leads to a higher achievable secrecy rate.
Additionally, similar behaviour and conclusion from Fig. 5 are
also observed here with different BS transmit antennas NT .
Fig. 7 describes the impact of the number of eavesdropper
antenna NE on the achievable secrecy rate performance. As
expected, the achievable secrecy rate has a decreasing trend
with the number of eavesdropper antenna NE . Moreover, the
proposed scheme has an better performance than other three
baseline schemes due to the positive impact from the AN and
the IRS.
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Fig. 7: Achievable secrecy rate versus the number of eavesdropper
antenna NE .

10 20 30 40 50 60

Reflecting elements (N
R
)

3

4

5

6

7

8

9

10

A
c
h

ie
v
a

b
le

 s
e

c
re

c
y
 r

a
te

 (
b

p
s
/H

z
)

MIMO IRS with AN

MIMO IRS without AN

MIMO with AN and without IRS

MIMO without AN and without IRS

Fig. 8: Achievable secrecy rate versus reflecting elements NR.

In Fig. 8, we evaluate the achievable secrecy rate perfor-
mance versus the reflecting elements at the IRS NR. With
the help of IRS, the achievable secrecy rate exhibits an
increasing behaviour with the reflecting elements NR, whereas

the schemes without IRS remains constant with NR in terms
of the achievable secrecy rate. This is due to the fact that
a larger number of reflecting elements brings a higher DoF
to optimize secrecy performance, and a more constructive
reflecting signal is produced to enhance the reception at the
legitimate user. In addition, the performance gain between the
IRS-aided schemes 5 and the schemes without IRS 6 becomes
larger, which highlights the advantage of the IRS via joint
optimization of the secure transmit precoding, the AN matrix
and the phase shift matrix.

Finally, we evaluate the impact of the path loss exponent of
the reflecting link (i.e., the IRS-user/eve link) at the IRS on the
achievable secrecy rate performance. It aims to investigates the
impact of the large-scale fading channel in the reflecting link
on the secrecy system performance. Fig. 9 shows the achiev-
able secrecy rate versus the path loss exponent of the IRS-user
link βIRS−user. It is apparent from the figure that the achiev-
able secrecy rate exhibits a decreasing trend with βIRS−user,
owing to the fact that a larger-scale fading will result in a
weaker signal reflected from the IRS, diminishing the benefits
of the IRS. Additionally, the achievable secrecy rate versus
the path loss exponent of the IRS-eve link βIRS−eve is shown
in Fig. 10, where we observe that the achievable secrecy rate
increases with βIRS−eve. This follows from the fact that the
weaker reflecting signal is introduced to degrade the reception
at the eavesdropper with large-scale fading channel between
the IRS and the eavesdropper. Actually, these two figures
reveal an engineering insights that the IRS should be carefully
deployed to enhance the system’s secrecy performance with
less blocking objects in the legitimate link or more blocking
objects in the eavesdropping link.

VI. CONCLUSION

This paper investigated the IRS aided secure MIMO wire-
less networks, where the secure precoder, the AN jamming
precoder and the phase shift matrix at the IRS have been
jointly designed to maximize the achievable secrecy rate with
the required transmit power budget. Due to the non-convexity
of the formulated problem, we proposed a BCD algorithm to
alternatively optimize the secure precoder, the AN jamming
precoder and the phase shift matrix. Specifically, we derived
the closed-form expression of the secure precoder and the
AN jamming precoder via the WMMSE algorithm and KKT
conditions, and the phase shift has been derived via the MM
algorithm to obtain its closed-form solution. We also analyzed
the convergence property of the proposed BCD algorithm.
Finally, simulation results have been presented to demonstrate
the superiority of the proposed scheme over the baseline
schemes, which highlights the positive role of the IRS for
the secrecy performance enhancement in the MIMO wireless
communication systems.

5“MIMO IRS with AN” and “MIMO IRS without AN”.
6“MIMO with AN and without IRS”, and “MIMO without AN and without

IRS”.
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Fig. 9: Achievable secrecy rate versus the path loss exponent of the
IRS reflecting link.

2 2.5 3 3.5 4

The pathloss exponent of IRS-eve link ( β
IRS-eve

)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

A
c
h

ie
v
a

b
le

 s
e

c
re

c
y
 r

a
te

 (
b

p
s
/H

z
)

MIMO IRS with AN

MIMO IRS without AN

MIMO with AN and without IRS

MIMO without AN and without IRS

Fig. 10: Achievable secrecy rate versus the path loss exponent of
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APPENDIX

PROOF OF Theorem 1

First, we show that the objective value in (30), denoted
as f(θ), has a non-increasing trend and guaranteed conver-
gence. Also, θ(m) is also the optimal solution to problem
(35) due to the equivalence between (35) and (36). Thus,
g(θ(m+1)|θ(m)) ≤ g(θ(m)|θ(m)) holds. In addition, by ex-
ploiting these three conditions in (33) to easily achieve the
inequality f(θ(m)) ≥ f(θ(m+1)). Moreover, the unit modulus
constraint incurs a lower bound of f(θ(m)), which ensures the
convergence of Algorithm 2. The first part of Theorem 1 has
been completed.

On the other hand, we will show that the converged solution
generated via Algorithm 2 is a KKT point of problem (22). It
means that its optimal solution, denoted by θopt, has to satisfy
the KKT conditions of problem (35). Thus, the following

Lagrange function is considered:

L(θ,λ) = g(θ|θ(m)) +

NR∑
n=1

λn(|θn| − 1), (43)

where λ = [λ1, ..., λNR
] denotes the dual variables associated

with the unit modulus constraint. It can be verified that there
exists an optimal λopt to guarantee that the following KKT
conditions hold:
∇θoptL(θ,λ)|θ=θopt

= ∇θoptg(θ|θopt) +

NR∑
n=1

λn(∇θopt |θn|)θ=θopt = 0, (44a)

λn(|θopt
n | − 1) = 0,∀n. (44b)

By applying the second condition in (33),
∇θoptg(θ|θopt)|θ=θopt = ∇θoptf(θ)|θ=θopt . (45)

Denote the objective value of (22) as ρ(θ), it can be easily ver-
ified that ∇θoptρ(θ)|θ=θopt = ∇θoptf(θ)|θ=θopt due to a series
of equivalent mathematical manipulations employed from (22)
to (30). To proceed, ∇θoptg(θ|θopt)|θ=θopt = ∇θoptρ(θ)|θ=θopt

holds. Therefore, we have
∇θoptL(θ,λ)|θ=θopt

= ∇θoptρ(θ)|θ=θopt +

NR∑
n=1

λn(∇θopt |θn|)θ=θopt = 0, (46)

which integrates with (44b) to guarantee the KKT conditions
of problem (22). The second part of Theorem 1 has been
completed.

PROOF OF Theorem 2

In order to prove Theorem 2, we denote the objective
function of problem (10) as R̃sec(W,V,Xi,Zj ,Θ). Also,
let us denote (W(n+1),V(n+1),X

(n+1)
i ,Z

(n+1)
j ,Θ(n+1)) as

the updated solution at the (m+ 1)-th iteration, which can be
obtained via Step 2 of Algorithm 3. It can be verified that the
following relation holds

Rsec(W
(n),V(n),Θ(n))

= R̃sec(W
(n),V(n),X

(n)
i ,Z

(n)
j ,Θ(n))

≤ R̃sec(W(n+1),V(n+1),X
(n)
i ,Z

(n)
j ,Θ(n))

≤ R̃sec(W(n+1),V(n+1),X
(n)
i ,Z

(n)
j ,Θ(n+1))

≤ R̃sec(W(n+1),V(n+1),X
(n+1)
i ,Z

(n+1)
j ,Θ(n+1))

= Rsec(W
(n+1),V(n+1),Θ(n+1)). (47)

where the first and last equalities are due to (13a)-(13c), the
first inequality is due to Step 2-a of Algorithm 3, the second
inequality is on the basis of Step 2-b of Algorithm 3, and the
third inequality follows Step 2-c and 2-d of Algorithm 3, re-
spectively. In addition, each solution sequence (W(n),V(n)),
(n = 1, 2, ..., L1) is the feasible solution to problem (10).
Thus, (47) incurs a monotonically increasing trend of the
objective value sequence Rsec(W(n),V(n),Θ(n)). Moreover,
Rsec(W

(n),V(n),Θ(n)) is upper-bounded due to the transmit
power constraint in (10).

Next, we will show that the converged solution
(Wopt,Vopt,Xopt

i ,Z
opt
j ,Θ

opt) secures the KKT conditions of
problem (4). It can be readily shown that the optimal solution
(Wopt,Vopt) satisfies the KKT conditions of problem (14)



[27]. We denote the objective function of problem (14) as
C(W,V,Θopt), and write the Lagrangian function of (14) as
follows:

L(W,V, τ) = C(W,V,Θopt) + τ
(
Tr(WWH)

+Tr(VVH)− P
)
, (48)

where τ ≥ 0 denotes the dual variable associated with the
transmit power constraint. The Slater’s condition holds (14)
and (Wopt,Vopt) is a KKT point of (14) [33]. Thus, there exists
an optimal τ opt to guarantee the following KKT conditions:

∇WoptL(W,V, τ)

∣∣∣∣
W=Wopt

= ∇WoptC(W,V,Θopt)

∣∣∣∣
W=Wopt

+ 2τ optWopt = 0, (49)

∇VoptL(W,V, τ)

∣∣∣∣
V=Vopt

= ∇VoptC(W,V,Θopt)

∣∣∣∣
V=Vopt

+ 2τ optVopt = 0, (50)

τ opt (Tr(WWH) + Tr(VVH)− P
)

= 0. (51)
We can also verify the following relations:

∇WoptR̃sec(W,V,Xopt
i ,Z

opt
j ,Θ

opt)

∣∣∣∣
W=Wopt

= ∇WoptC(W,V,Θopt)

∣∣∣∣
W=Wopt

, (52)

∇VoptR̃sec(W,V,Xopt
i ,Z

opt
j ,Θ

opt)

∣∣∣∣
V=Vopt

= ∇VoptC(W,V,Θopt)

∣∣∣∣
V=Vopt

. (53)

To proceed, we exploit the left hand side (LHS) of (52) and
(53) via taking the first-derivatives of W = Wopt and V =
Vopt. Now, we consider the first derivative of R̃sec with respect
to W = Wopt as follows:

∇WoptR̃sec(W,V,Xopt
i ,Z

opt
j ,Θ

opt)

∣∣∣∣
W=Wopt

= −Tr
[
X1

(
∇WoptE1(Zopt

1 ,W,V,Θopt)

∣∣∣∣
W=Wopt

)]
− Tr

[
X3

(
∇WoptE3(W,V,Θopt)

∣∣∣∣
W=Wopt

)]
. (54)

Substituting the closed-form expressions of X1 and X3 shown
in (13a) and (13c) into (54), yields

∇WoptR̃sec(W,V,Xopt
i ,Z

opt
j ,Θ

opt)

∣∣∣∣
W=Wopt

=−Tr
[
E1(Zopt

1 ,W,V,Θopt)−1∗(
∇WoptE1(Zopt

1 ,W,V,Θopt)

∣∣∣∣
W=Wopt

)]
− Tr

[
E3(W,V,Θopt)−1

(
∇WoptE3(W,V,Θopt)

∣∣∣∣
W=Wopt

)]
,

(55)

By applying matrix differentiation identity, we have

∇WoptR̃sec(W,V,Xopt
i ,Z

opt
j ,Θ

opt)

∣∣∣∣
W=Wopt

= −∇Wopt log
∣∣C1(Zopt

1 ,W,V,Θopt)
∣∣
W=Wopt

−∇Wopt log
∣∣E3(W,V,Θopt)

∣∣
W=Wopt

,

= ∇Wopt log
∣∣X1(Zopt

1 ,W,V,Θopt)
∣∣
W=Wopt

+∇Wopt log
∣∣X3(W,V,Θopt)

∣∣
W=Wopt

= ∇WoptRsec(W,V,Θopt)

∣∣∣∣
W=Wopt

. (56)

Similarly, we have

∇VoptR̃sec(W,V,Xopt
i ,Z

opt
j ,Θ

opt)

∣∣∣∣
V=Vopt

= ∇VoptRsec(W,V,Θopt)

∣∣∣∣
V=Vopt

, (57)

∇θoptR̃sec(W
opt,Vopt,Xopt

i ,Z
opt
j ,Θ)

∣∣∣∣
θ=θopt

= ∇θoptRsec(W
opt,Vopt,Θ)

∣∣∣∣
θ=θopt

. (58)

Thus, combining with (52) and (53), we obtain

∇WoptRsec(W,V,Θopt)

∣∣∣∣
W=Wopt

= ∇WoptC(W,V,Θopt)

∣∣∣∣
W=Wopt

, (59)

∇VoptRsec(W,V,Θopt)

∣∣∣∣
V=Vopt

= ∇VoptC(W,V,Θopt)

∣∣∣∣
V=Vopt

. (60)

We substitute (59) and (60) into (49) and (50), respectively,

∇WoptL(W,V, τ)

∣∣∣∣
W=Wopt

= ∇WoptRsec(W,V,Θopt)

∣∣∣∣
W=Wopt

+2τ optWopt =0, (61)

∇VoptL(W,V, τ)

∣∣∣∣
V=Vopt

= ∇VoptRsec(W,V,Θopt)

∣∣∣∣
V=Vopt

+ 2τ optVopt = 0. (62)

On the other hand, we have proved that θopt can satisfy the
KKT conditions of problem (22) such that (44b) and (46) hold,
and we can readily obtain

∇θoptR̃sec(W
opt,Vopt,Xopt

i ,Z
opt
j ,Θ)

∣∣∣∣
θ=θopt

=∇θoptρ(θ)

∣∣∣∣
θ=θopt

.

(63)
Combining (63) with (58), the following relation holds

∇θoptRsec(W
opt,Vopt,Θ)

∣∣∣∣
θ=θopt

= ∇θoptρ(θ)

∣∣∣∣
θ=θopt

. (64)

We substitute (64) into (46), it is easily verified that

∇θoptL(θ,λ)|θ=θopt = ∇θoptRsec(W
opt,Vopt,Θ)

∣∣∣∣
θ=θopt

+

NR∑
n=1

λn(∇θopt |θn|)θ=θopt = 0. (65)

Therefore, the KKT conditions (44b), (51), (61), (62), and
(65) are exactly the KKT conditions of problem (4), which



has completed the proof of Theorem 2.
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