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Abstract

In the first chapter of this dissertation, I propose a novel and tractable structural model for
ascending auctions with both common and private value components in which heterogeneous
bidders exhibit loss aversion. Importantly, I find that loss averse bidders bid noticeably lower
than risk neutral ones. I also consider a more general framework in which bidders incorporate
into their strategies the information of those bidders who are present but decide not to participate
after observing the item put up for auction. This results in bidders reducing the aggressiveness of
their bids even further. To empirically assess my model, I use data from storage locker auctions
in the popular cable TV show Storage Wars, finding that the behavior of most of its bidders is
consistent with loss aversion. Thus, I document for the first time the presence of loss aversion

in actual ascending auctions.

In Chapter 2, I report the results of a (quasi) field experiment in the training grounds of
a professional soccer team to check if individuals, when repeatedly facing the same opponents,
satisfy the main mixed strategy equilibrium predictions in soccer penalty kicks, a real-life ex-
ample of strategic play. This is the first time that the implications of mixed strategy equilibria
are tested in the field using repeated observations on specific heterogeneous pairs of players, a
situation that rarely repeats in real life. In this respect, I also study the effects of the usual
practice of treating heterogeneous rivals as if they all came from the same pair because of the
lack of repeated observations for specific pairs. In particular, I show that false rejections may
arise when heterogeneous pairs are treated as homogeneous and suggest valid aggregate tests
that combine statistics from different opponents. My empirical results suggests that the behav-
ior of most soccer players, when repeatedly facing the same opponents, is consistent with equal
scoring probabilities across strategies except for the least professional kickers, as well as with
serial independence of player’s actions. However, I find dependence between the kicker’s and
goalkeeper’s actions. I also find that the least professional goalkeepers tend to replicate each

other’s actions. In contrast, players do not seem to follow a reinforcement learning model.

In the third chapter, I prove the numerical equivalence for general categorical variables
between many seemingly unrelated independent tests. Specifically, I prove that the Pearson’s
independence test in a contingency table is numerically equivalent to the Lagrange Multiplier test

in several popular linear and non-linear regression models: the multivariate linear probability

111



model, the conditional and unconditional multinomial model, the multinomial logit and probit
models; as well as the overidentifying restrictions test in GMM. Therefore, different researchers
using different econometric procedures will reach exactly the same conclusions if they use any
of those tests. Additionally, I show that the asymptotically equivalent Likelihood Ratio tests
in the non-linear regression models are numerically identical, and that the heteroskedasticity-
robust Wald tests in the multivariate linear probability model and GMM coincide with the
Wald test in the conditional multinomial model. All these equivalences also apply to tests of
serial independence in a discrete Markov chain, which can be regarded as a time series analogue
of the multinomial model. Finally, I use these tests to analyze if professional soccer players
follow optimal mixed strategies in penalty kicks. For some players, my empirical results are
not consistent with equal scoring probabilities across strategies. In contrast, I find that player’s

actions are serially independent.
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Chapter 1

Loss Aversion in Storage Locker Auctions

1.1 Introduction

The standard framework in most of the empirical and theoretical auction literatures has
been expected utility, often with risk neutral bidders. However, Kahneman and Tversky (1979)
criticized expected utility because they found that individuals derive their utility from gains
and losses relative to some reference point, rather than from absolute levels of wealth as per-
fectly rational agents do. They presented a new model of decision making under risk known as
"Prospect Theory" whose key feature, loss aversion, is that individuals are much more sensitive
to reductions than to increases in wealth. Given that bidders often suffer losses as well as gains
in the auctions they participate, it is important to explore whether loss aversion might better
reflect their bidding behavior.

In this chapter, I propose a novel tractable structural ascending auction model that re-
places risk neutrality with loss aversion in the well-known framework with symmetric bidders
in Milgrom and Weber (1982) and its asymmetric extension in Hong and Shum (2003). Like in
standard models, the utility of a bidder depends only on the difference between his own valuation
of the object auctioned and his bid, but in this new specification, the bidder is more sensitive
to reductions in wealth than to increases of the same magnitude (see Kahneman and Tversky
(1979)). In addition, my proposed model allows for both common and private value components
in the bidder’s valuations, as well as heterogeneous bidder’s characteristics. Importantly, I find
that, ceteris paribus, loss averse bidders bid substantially lower than risk neutral ones.

I also consider a more general framework in which bidders incorporate into their strategies
the information of those bidders who are present but decide not to participate after observing
the item put up for auction. In this respect, I find that bidders reduce the aggressiveness of
their bids even further as the number of non-bidding participants increases.

To empirically assess my model, I focus on storage locker auctions, which have gained a lot

of popularity in recent years, with 155,000 of them taking place each year in the US alone at an



average price of $425.! Specifically, I exploit a unique dataset of 254 actual auctions from the
first three seasons of the popular cable TV show Storage Wars, which follows a core group of
individual bidders who take part in storage locker auctions throughout the State of California.
As shown in numerous empirical studies (see List (2006), Post et al (2008), Belot et al (2010)
and van Dolder et al (2015) for examples), TV shows provide an environment with substantially
larger economic incentives than lab experiments. Therefore, analyzing the behavior of bidders
in these auctions seems especially relevant.

An interesting unique feature in storage locker auctions is that the contents of the locker are
unknown to both the auctioneer and potential buyers before and throughout the entire auction.
This situation has the ideal characteristics for bidders to exhibit loss aversion, a feature that often
arises when comparing sure outcomes (not participating in the auction) with a risky prospect
(participating and making an uncertain positive or negative profit) (see Kahneman and Tversky
(1979) for more details).

Empirically, I find that most Storage Wars bidders are loss averse in a model in which there
are heterogeneous bidder’s characteristics. However, the behavior of the most professional bidder
is in line with risk neutrality. Not surprisingly, he is the bidder who bids most aggressively.

Additionally, loss aversion persists when bidders incorporate into their strategies the infor-
mation of those bidders who are present but decide not to participate after observing the locker
to be auctioned. Moreover, my findings confirm the empirical relevance of taking into account
the presence of non-bidding participants in ascending auctions.

Previous papers have provided experimental evidence of loss aversion in sealed-bid auctions
(see for example Lange and Ratan (2010), Banerji and Gupta (2014), Rosato and Tymula (2019)
and Eisenhuth and Grunewald (2020) for the case of independent private values and Balzer and
Rosato (2020) for interdependent ones). In contrast, there is little work in ascending auctions.
An exception is von Wangenheim (2017), who theoretically showed that under independent pri-
vate values the second-price sealed-bid auction yields strictly higher revenues than the ascending
auction when bidders are expectation-based loss averse (see K&szegi and Rabin (2006) for more
details). Therefore, the first chapter of my thesis makes not only a methodological contribution
by incorporating loss aversion to a structural ascending auction model with both private and

common value components, but also a substantive one by documenting for the first time the

'See <https://www.statisticbrain.com /self-storage-industry-statistics/> for more details.



presence of loss aversion in actual ascending auctions.?

The rest of this chapter is organized as follows. Section 1.2 describes the TV show in greater
detail and provides a summary of the dataset. In Section 1.3, I discuss my proposed structural
model of ascending auctions under loss aversion. Then, in Section 1.4 I introduce a framework
that incorporates the signals of the bidders present at the auction who decide not to participate.
Finally, in Section 5, I discuss the empirical results. This is followed by the conclusions and

several appendices where proofs and additional details can be found.
1.2 Storage Wars

The TV show Storage Wars, developed by A&E cable network, first aired on December 2010
and soon became the most watched program in the network’s history.

Each episode starts with potential bidders gathering outside a storage facility in the State of
California. These facilities have the right to put up for auction the contents of the locker when
the rent is not paid for three consecutive months. Before bidders are allowed into the storage
facility and see the lockers, the auctioneer explains the rules. The auctions are cash only sales,
with all sales being final and the winner the highest cash bidder. But more importantly, bidders
can only bid on the entire contents of the locker, not on an item-to-item basis.

The lock of the locker is then broken and bidders have exactly five minutes to look around
without stepping inside or opening any boxes. During that time, bidders effectively receive
a private noisy signal of the unknown contents, and therefore of the valuation of the locker
put up for auction. After those five minutes, the auctioneer announces a suggested opening
bid for the locker on sale and starts accepting increasingly higher bids from the bidders in the
auction.? Unlike sealed-bid auctions, there exists "information transparency", in the sense that
the identity of all the bidders and their bids are known during the entire auction. The highest
bidder at any given moment has the standing bid, which can only be displaced by a higher bid
from another bidder. Throughout the auction, every bidder is given the opportunity to outbid

the standing bid.* Failure to do so results in the end of the auction, with the locker being sold

2Some previous papers have looked at other behavioral biases in ascending auctions. Specifically, Dodonova
and Khoroshilov (2005, 2009) argue that bidders with independent private values may feel a quasi-endowment
effect toward the object for which they are bidding, so that after making an initial bid of $x followed by a
competitor’s bid of $(z + 1), they prefer to pay $(x + 2) to keep the object even though they would never buy the
auctioned object for this amount when facing a simple buying decision.

3In storage locker auctions there are no reserve prices, i.e. the lowest price at which the seller is willing to sell
the item, so in principle, the locker could be sold for $1.

4There is no predetermined ending time as in eBay. As a consequence, the practice of sniping, i.e. bidding in
the very last seconds (see Roth and Ockenfels (2002)), is irrelevant in this auction.



to the winner at a price equal to his bid.

After all the auctions of the day are completed, the winning bidders go through their lockers
sorting the "valuable" content from the rest. When they encounter an unusual, potentially very
valuable item, bidders consult with experts to find out the actual value of the item.

Although the private valuation might differ from bidder to bidder because they may have
different interests, such as collectibles or household items, there is also a clear common compo-
nent. For example, if a locker contained a standard but very valuable item such as a brand new
motorcycle, its value would be very much the same across bidders.

For all those reasons, a model which allows for both common and private values seems

adequate to capture the behavior of bidders in these auctions.
1.2.1 The main bidders and the auctioneers

The first three seasons of the show follows four main regular bidders throughout the auctions:
Dave Hester (a professional buyer who operates his own auction house), Darrell Sheets (a less
experienced storage auction bidder who makes his living by selling in swap meets and through
his online store), Jarrod Schulz (an even less experienced storage auction bidder who owns a
thrift store) and Barry Weiss (a lifelong antiques collector who had never participated in storage
auctions before). Additionally, during the auctions there are other bidders present whose identity
are not shown publicly, but whose bids are.’

The auctioneers on the show are Dan and Laura Dotson, who have run their own business
since 1983: American Auctioneers. Their retribution scheme comes from a small percentage of
the locker sale they receive from the storage unit company. Therefore, it is in their interest that
the locker is sold at a high price.

One of their key roles is to engage bidders. To accomplish this, they have to start the
auction by announcing a suggested opening bid low enough to be immediately accepted by one
of the bidders. The regression results in Table 1.1 suggest that the opening bid is set taking
into account the location and size of the locker, not surprisingly since it is the only available
information.

(Table 1.1)

5Given that there is no identifying information on those bidders, I treat them as homogeneous when estimating
the empirical model in section 1.5.



1.2.2 Description of the data

As explained in the introduction, I examine the bidding behavior of Storage Wars partici-
pants in 254 actual auctions, which covers seasons 1 (59), 2 (103) and 3 (92) of the TV show.°
The dataset contains the identity of the bidders, including the four main regular ones, the num-
ber of regular bidders present at the auction, as well as the total number of bidders bidding per
auction (ranging from 2 to 7), the location of the auction, the size of the locker, whether the
main regular bidders decide in real time (live) to bid or not after visually inspecting the locker
and before the auction starts, the entire bid sequence and the ex-post value of the locker. I
have also collected per capita income data of the municipality where the locker is located, as
one would expect a priori that richer neighborhoods have more valuable locker contents.

There are three types of lockers in the auctions: small (10 x 10 ft.) fitting household items
from 3 rooms, medium (10 x 20 ft.) fitting household items from 5 rooms and large (10 x 30 ft.)
fitting household items from 7 rooms.

Table 1.2 offers a basic description of the data.
(Table 1.2)

For each season, it shows the number of times a small, medium and large locker has been
auctioned, the average profit each bidder makes, the average ex-post value of the locker auc-
tioned, the average median household income of the municipalities where the lockers are located
and the total number of bidders participating per auction.

The most frequent auctions involve 3, 4 and 5 active bidders, with 50, 72 and 63 auctions,
respectively. Additionally, there are many more small and medium size lockers auctioned than
large ones. However, after running a standard OLS regression, I find that the order in which the
lockers are put up for auction each day is independent of the ex-post value of the locker. This
result is not surprising given that the value of the locker is unknown to both the auctioneer and
bidders before and throughout the entire auction.

Table 1.3 describes the participation rates of the main bidders in Storage Wars.
(Table 1.3)

As can be seen, none of the four main bidders has actually participated in all of the auc-

%Video clips of each episode are widely available on the Internet, for example, through the A&E website
<https://www.aetv.com/shows/storage-wars>.



tions. Jarrod is the bidder who has participated the most, followed by Darrell, Dave and Barry.
However, all four of them only coincide 11.42% of the time. Given that the main bidders often
publicly indicate whether they will participate in the auction after looking at the locker and
before the auctioneer announces the opening bid, I assess whether their actual participation is
in line with their claims using a standard independence test (see section 3.2 for details). The
results show that the null hypothesis of independence between their actual participation and
their claims is massively rejected for all the main bidders with a p-value of 0, confirming that
their participation decisions are coherent with their announcements. This fact motivates the
extension of the model in section 1.4, in which bidders incorporate into their strategies the
information of those bidders who are present but decide not to participate after observing the

item put up for auction.
1.3 The Model with Loss Aversion

The theoretical auction model studied in this chapter resembles the Japanese "button" auc-
tion in Milgrom and Weber (1982), in which prices raise continuously, bidders keep pressing a
button to remain active, and once a bidder drops out, he cannot reenter the auction at a higher

price.” More formally, consider an auction of a single item with N potentially heterogeneous

bidders, indexed 7 = 1,..., N, for whom the value of the item auctioned is V;. However, at the
beginning of the auction, they only observe a private noisy signal X; of their own valuation V;.

The auction proceeds in rounds, indexed £ = 0,..., N — 2, in which active bidders submit
bids. A new round starts whenever a bidder drops out and bidders are indexed by the round in
which they drop out. Thus, bidder N drops out in round 0 at price Py and bidder N — k drops
out in round k at price P, with bidder 1 winning the auction at the final observed dropout
price Py_o.%

In ascending auctions, a Bayesian-Nash equilibrium consists of bid functions ﬂf(Xi;Qk)
for each bidder 7 and round k, where €); is the available information set at the beginning
of round k containing the previously observed dropout prices. Effectively, the bidding func-

tion ﬂf(Xi;Qk) determines the price at which bidder ¢ should quit the auction at round k

as a function of his signal and the available information set. The collection of bid functions

"This standard model has been widley used by most of the subsequent literature (see Athey and Haile (2002),
Hong and Shum (2003) and Aradillas-Lopez et al (2013) for examples).

8Given that continuous bidding does not take place in practice, I assign the dropout price of a bidder to the
bid of the next bidder who outbids him.



BY(Xi; ), ... ,ﬁfV_Q(Xi; Qn_2) are common knowledge, with Qg = ().

Like Milgrom and Weber (1982), I assume that the utility of bidder i depends only on the
difference between his own valuation of the item put up for auction and his bid. More precisely,
let u[V; — B%(X;; Q)] denote bidder i’s utility at round k, where u(-) is continuous, nondecreasing
in its argument and satisfies u(0) = 0. But instead of an expected utility framework, as in the
standard literature, I draw inspiration from the work in Kahneman and Tversky (1979) by

assuming the following functional form:

V= B ey = ] FTAXER Vi B X% an
AilVi = BF (X )] Vi < BF(Xi; )

where A\; > 1 captures loss aversion, i.e. the tendency of individuals to prefer avoiding reductions
in wealth than equivalent gains. This piecewise linear specification, which has a kink at the
origin,” has been used by many authors in a variety of economic situations (see Barberis et al
(2001), Készegi and Rabin (2006) and Sprenger (2015) for examples). The reason is that loss
aversion at the kink is very relevant for gambles that can lead to both gains and losses, such
as in single item auctions, where "gains" and "losses" correspond to the difference between the

value of the item auctioned and the final price.!”

(Figure 1.1)

Figure 1.1 illustrates the effects of varying the loss aversion parameter A on the underlying
utility function (1.1). As expected, A = 1 implies risk neutrality, i.e. same marginal utility for
both gains and losses (the standard model). However, for any other value of A > 1, bidders are
more sensitive to reductions in wealth than to increases of the same magnitude, preferring not
to lose $10 rather than to gain $10.

The structure of the Bayesian-Nash equilibrium of this asymmetric ascending auction in
increasing bidding strategies (i.e. 8F(Xi; Q) is increasing in X; for k = 0,..., N — 2) extends
the equilibrium described in Milgrom and Weber (1982) and Hong and Shum (2003) to loss

aversion as follows. For bidders ¢ = 1,..., N active in round 0, the bid functions are implicitly

?As in Kahneman and Tversky (1979), the primary reference level is the status quo, which in this case is 0,
i.e. not participating in the auction.

0Kahneman and Tversky (1979) also propose that the utility function should be mildly concave over gains
and convex over losses. However, this is most relevant when choosing between prospects that involve only gains
or only losses (see Barberis et al (2001) for further discussion of this point).



defined by the equilibrium condition
Ef{ulV; — B7(X5;Q0))[T7} = u (0) = 0,

where T? = {X;; X, = @?[ﬁg(Xi;Qo);Qo]} for 7 = 1,...,N and j # i, with cpf(,Qk) be-
ing the inverse bid function at round k = 0,..., N — 2 mapping prices into signals, so that
PF (85 (Xi; ) Ul = X
In turn, the analogous condition for bidders i =1,..., N —k activeinround k =1,..., N —2
will be given by
E{ulV; — 87 (Xs; W)]|TF} = u(0) =0, (1.2)

where TF = {Xi; X; = OF[BF(X5; Q); ), Xn = @) " (Py—n; Qn_n)}, for j = 1,...,N — k,
j#iand h=N —k+1,...N, with X}, denoting the signals of the bidders who have dropped
out prior to round k.Since the equilibrium bid functions are common knowledge, an active
bidder in round k can infer the private information possessed by the previous dropout bidders
by inverting their bid functions, so that X = cpflv_h(PN_h; Qn_p)-

Finally, it is worth mentioning that if several bidders were to quit simultaneously, the equi-

librium conditions in (1.2) would still hold (see Milgrom and Weber (1982) for more details).
1.3.1 The stochastic setup

Following Hong and Shum (2003), I use a parametric approach by assuming that bidder’s
signals and valuations (X1,...,Xn, V1,...,Vxn) are log-normally distributed. This assumption
allows me to derive tractable closed-form formulas for the expectations in (1.2), from which I
can then obtain analytic expressions for the equilibrium bid functions 85 (X;; Qx).!!

Let V; be defined as V; = A; x V, where A; is a bidder-specific private value component and
V' a common value component to all bidders in the auction. Although A; and V| or indeed V;,

are not directly observed by the bidders, they are assumed to be independently log-normally

distributed as follows:

InV =v=m+e ~N(m,r3),

InA; =a;=a; + €a; ™~ N((_Ii,t?),

"' Two other empirical studies have previously used Hong and Shum’s (2003) auction model. Dionne et al
(2009) studied Mauritanian slave auctions in the 19th century, finding evidence of heterogeneity in the quality of
the information between bidders, which in turn led to adverse selection. In turn, Koptyug (2016) found that in
online car auctions, resellers are better than consumers at appraising the value of the cars they are bidding on.



so that

InV,=v; =InV +1n A; ~N(m+di,r8+t?).

In practice, bidder ¢ only observes a private noisy signal X; of his own valuation V;, which
will be effectively revealed to the other bidders after he drops out. Given the log-normality
assumption,

InX; =z =v; +& ~ N(m+a;,rg + 7 +s7),

where &, ~ N (0, s?), and s? captures the amount of information any bidder has about the true
value of the item being auctioned (see Dionne et al (2009) and Koptyug (2016) for more details).
The common knowledge assumption implies that all the model parameters 6 = (a;, m, t?, r%, 512)
are known among the bidders.

In this log-normal setup, the conditional expected value of V; can be written as:

1
E(VilXy, ..., Xn) = exp[E(vilz) + 5 Var(vilz)],

where © = (z1,...,2N),
_ _ / *—1
E(vi|z) = Gyye = vi + 04,2 (2 = V)
and
_ 2 / *—1
V(I’I“(Ui|ZL‘) = Wyl = Oy — O'UﬂE Ov;z)
with
2 !/
o o
v; ;X
pi=(v; W) and X;=
Ovx 2
denoting the unconditional mean vector and variance-covariance matrix of (v;,z1,22,...,ZN)

for bidder 7 (see section 1.7.2 for further details).
The following proposition, which I prove in section 1.7.1, establishes sufficient conditions to

ensure the existence of an equilibrium under loss aversion in this stochastic framework.

Proposition 1.1 Let n, > 0 be the unique solution to

Woile
- [()\i —1)erf (;Wm) + (N +1)

Wy, |z
— T
A /2(4)1)”9C

where erf(.) is the error function. Then

exp(n;) [(1 — \;)erf < ) + (14 XN)

BY(Xi; Q) = exp(—n;) E(Vi|TT) (1.3)



18 an increasing-strateqy Bayesian-Nash equilibrium under loss aversion in the log-normal sto-
chastic setup.

(Figure 1.2)

Figure 1.2 compares the equilibrium bidding function under risk neutrality (the standard
model) with loss aversion when A = 2.25, a value based on the experimental findings in Tversky
and Kahneman (1992). This graph shows that, ceteris paribus, loss aversion leads to a substantial
reduction in the bids as a function of the signal X;. As a consequence, the expected seller revenue
will decrease relative to risk neutrality. However, the only difference between an equilibrium
under risk neutrality and loss aversion is the multiplicative factor exp(—m;) (see section 1.7.3 for
more details).

To define the equilibrium log-bid functions for round k, I use the same notation as Hong and
Shum (2003). Let ¥ = (21,...,2x_%)" denote the vector of (log) private noisy signals of the
bidders active in round k, and 2% = (zx_g41,...,2n) the vector of (log) signals of the dropped
out bidders before round k. In addition, partition the inverse of the variance-covariance matrix
of the private noisy signals as

=0t ot
where 2231 is a (N — k) x N matrix corresponding to the remaining active bidders in round &,
and E;;_Ql is a k x N matrix corresponding to the bidders who have dropped out prior to round
k.

Moreover, let

Fk: = ( 0'72}1 0-’121N—k ),7
Ak - ( Ovizx Oun_iT )la
pe = (v UN—k )/7

and ¢ a (N — k) x 1 vector of ones.

Additionally, let A* and C* be two (N — k) x 1 vectors, and DF a (N — k) x k matrix, with

AP = (M) T, (1.4)
1 *— — . *— *—

ck = 5(Akzml’) YTy — diag(Ap X 1 AY) 4 2p, — 2(ARS* 1)), (1.5)

DF = (M) (ARTESM) (1.6)
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where diag (.) is a matrix whose entries outside the main diagonal are all zero.
With this notation, the log-bidding function for the bidders active in round k under loss

aversion will be

1
bE (45 28) = log[B¥ (Xi; )] = ﬁ(mi + Dk cky -, i=1,...,N -k, (1.7)

where 7; captures the effects of loss aversion in (1.3), A¥ and C¥ denote the ith elements of the
vectors (1.4) and (1.5), and DF denotes the ith row of the matrix (1.6). Note that (1.7) depends
on a bidder’s own private signal x;, as well as the signals of those bidders who have dropped out
prior to round k xlj, except for round 0, where D° and 1:2 are obviously undefined.

Intuitively, by observing the dropout prices in previous rounds, the remaining active bidders
can make inferences about the private information possessed by the bidders who have dropped
out. In other words, they can obtain an unbiased estimate of bidder j’s valuation from observing
his private signal z;. In common value auctions in which there is correlation across bidders’
valuations (V;), this information allows the remaining active bidders to update their beliefs
about their own valuation, causing the prices at which bidders intend to exit to change as
the auction progresses. In contrast, Vickrey (1961) showed that in private value auctions this
updating does not occur, and each bidder has a weakly dominant strategy which is to bid up
to his valuation (see Athey and Haile (2002) and section 1.7.4 for a more detailed discussion on

private and common values auctions).
(Figure 1.3)

Figure 1.3 plots the equilibrium log-bid functions of a representative bidder in an auction
with 5 loss averse bidders. The log-signal x; is plotted on the x axis, while the log-bid functions
in (1.7) for each round k£ = 0, ..., 3 are plotted on the y axis. As depicted in the figure, the slope
of the log-bid function decreases for subsequent rounds, implying that, for a given realization of
x;, the targeted dropout price of the representative bidder decreases as the auction progresses.
This occurs because bidders can update their bidding functions accordingly each round after
incorporating the private noisy signal of the bidders who have previously drop out, thereby

mitigating the chance of suffering the so-called winner’s curse (see section 1.7.5 for more details).

11



1.3.2 Econometric methodology

Even though the model parameters 6 = (di,m,t?,rg, 822) are assumed to be known by the

bidders, their values are unknown from an econometrician’s point of view. In that regard, Hong
and Shum (2003), Dionne et al (2009) and Koptyug (2016) employ the simulated non-linear
least squares (SNLS) estimator of Laffont et al (1995), but with an independent probit kernel-
smoother as in McFadden (1996). However, this estimation method does not always identify the
parameters of the model for a small number of bidders. In contrast, Maximum likelihood (ML)
identifies all the parameters even when there are only two bidders.

Furthermore, when the structural auction model is correctly specified, ML is more efficient
than SNLS, but when it is misspecified, SNLS is not more robust than ML given that one must
draw prices from the assumed model (see Dridi et al (2007) for more details). For example,
suppose one estimates an independent private value model when in fact the true model is a pure
common value one. In that case, both the log-bidding functions and the simulated drop out
prices will be incorrect, which affects ML. and SNLS.

Finally, Hong and Shum (2003) crucially show that the support of the (log) private signals
(z) does not depend on # in the log-normal stochastic setup in section 1.3.1, so the usual ML
regularity conditions hold and standard asymptotic theory applies. For all these reasons, I will
use ML to estimate the model.

In each auction, an econometrician only observes the vector of dropout prices for bidders
2,..., N, the order in which bidders drop out and their identities. As a consequence, Hong and
Shum (2003) make clear that one must condition on the observed dropout sequence to derive
the log-likelihood function. In practice, this means that the underlying log-signals (x1,...,zx)
must be constrained to some region 7;(#) € RY, which I describe in section 1.7.6. Furthermore,
they also show that as the winner’s dropout bid is not observed, the winner’s log-signal x;
is constrained to some other region T3(z2,...,zn|0) C R!, which is consistent with bidder 1
winning the auction. Therefore, if P = (po, ...,pn_2)" denotes the vector of log-dropout bids,

the log-likelihood function for a given auction must be computed as:
L(P|6) = log f(PI9) + log Pr[Ty(ws, . .., wx]0)] - log Pr{Ti (6)]6], (1)

which resembles the log-likelihood function of a truncated and censored multivariate normal,

with f(P|0) reflecting the continuous component corresponding to the likelihood of the observed
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drop out prices, Pr[7a(xa,...,xn|0)] the conditional probability associated to the censored win-
ning bid, and Pr[77(6)|0] the truncation probability that reflects the order in which the different
bidders drop out (see Hong and Shum (2003) and section 1.7.6 for more details on Pr[7;(6)|6],
Pr[Z3(za,...,zN|0)] and f(P]0)).

Since the auctions take place independently, the sample log-likelihood function is the sum of
the log-likelihood function of each auction. Thus, it is straightforward to combine auctions with
different number of bidders.

From a practical point of view, the main difficulty in computing the log-likelihood function
(1.8) is the multivariate integral Pr[77(0)|0] (see again section 1.7.6 for details). Nevertheless,
this is certainly feasible with up to 7 active bidders, although it slows down the numerical
optimization. Still, given that the likelihood function is highly non-linear, it is convenient to

consider multiple initial values.

1.4 The Information of Active Non-Bidding Participants
1.4.1 The model

A standard assumption in auction theory is that the bidders present at the auction coincide
with all the potential bidders willing to participate (see Paarsch (1997), Krasnokutskaya and
Seim (2011), Athey et al (2011) and Gentry and Li (2014) for examples).'? Nevertheless, not
all the bidders who are present in an ascending auction end up participating after observing the
item put up for auction. In fact, some bidders decide not to participate when the auctioneer
announces the opening bid. Therefore, it is important to distinguish between active bidders and
active non-bidding participants in the following sense: active bidders are the ones who bid in the
auction and either win or dropout at some point; in contrast, active non-bidding participants
are the ones who are present in the auction but effectively drop at the opening bid.

All potential bidders observe each other when they assess the valuation of the item before the
auction starts. Therefore, it seems reasonable to assume that at the beginning of the auction,
active bidders can recover the private information active non-bidding participants possess and
update their bidding functions accordingly.'?

To define the equilibrium log-bid functions in this more general framework, let g denote the

number of active non-bidding participants and N the number of active bidders, with N + ¢ being

"2 This assumption is not plausible in eBay auctions, as shown in Song (2004).
In fact, the main bidders in Storage Wars usually publicly indicate their willigness to participate after
oberving the locker to be auctioned.
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the total number of potential bidders. At round -1, i.e. before the auction starts, let

F_l - ( 0'12)1 12)N+q ),7
Ar = (o4 Tonpqr ),
H_1 = ( (%1 UN+q )/7

and {_; a (N + q) x 1 vector of ones.

Additionally, let A~! and C~! be two (N + q) x 1 vectors, with

A—l _ (A—lz*_ll)_lé—l,

C' o= S(ALXT) T — diag(A X TTALY) 4+ 2y — 2(A X))

1
2
With this notation, the log-bidding function for the bidders in round —1 is given by:

. 1 . .
by ! (zs) = log[B; (X Q1)) = F(f'?i +C ) —mi=1,...,N+q,

i
which again reflects loss aversion, captured by 7, in expression (1.3), and depends only on
bidder’s ¢ own private signal z;. In fact, b, 1(%) is equivalent to the log-bidding functions in
round 0 without active non-bidding participants in (1.7).

In this context, the active non-bidding participants will be the ones who on the basis of this
log-bidding function decide not to participate when the auctioneer announces the opening bid
P_y.

Since the equilibrium bid functions are common knowledge, at round 0 active bidders can
use the information the ¢ active non-bidding participants possessed to infer their own private

signals by inverting the log-bid functions of the active non-bidding participants. Thus,
rg=InX, = bq_l(ﬁq)/'lq_l - C’q_l.

Let #0 = (z1,...,2y)" denote the vector of private noisy signals of the active bidders in round
0, and fv'?l = (TN41,---,TN+q) the vector of signals of the active non-bidding participants who
effectively dropped out in round -1. In addition, partition the inverse of the variance-covariance

matrix of the private noisy signals as
T
2 - ( 23,1 23,2 )’
where igjl is a N x (N + ¢) matrix corresponding to the active bidders in round 0, and 53’651
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is a ¢ X (N + ¢g) matrix corresponding to the active non-bidding participants who dropped out
in round -1.

Moreover, let

Fo = (o2 -+ o2, ),
AO = ( Ouviz Ounzx )/7
fo = ( v1 -+ UN )Iv

and fp a N x 1 vector of ones.

Additionally, let A% and C° be two N x 1 vectors, and D° a N x k matrix, with

AV = (RS ),

" = S(RoX57") Do — diag(AgS*AG) + 2f1g — 2(AgX M),

1
2
DY = (["\0237_11')*1(["\0237_21').
With this notation, the log-bidding function for the active bidders in round 0 under loss
aversion is:
by (wis &q) = log[B(Xi; Q)] = ﬁ(% +DJig+C) —mgy i=1,..., N,
i
Compared to equation (1.7) for & = 0, which only depends on a bidder’s own signal z;, now
b (x;;29) is also a function of the signals of the active non-bidding participants 9.
For any subsequent round k& = 1,..., N —2, the log-bidding function for the bidders active in
round k are entirely analogous to (1.7), and therefore depends on a bidder’s own private signal
x;, as well as the signals of those bidders who have dropped out prior to round k, including the

active non-bidding participants, i.e.

k l
Ty = (xN—k—l-l?’ « 3 TNy TN+, - - - 733N+q) :
N—k q

(Figure 1.4)

Figure 1.4 compares the equilibrium log-bidding function for a loss averse active bidder in
round 0 with 0, 1 and 2 active non-bidding participants. As expected, bidders reduce the aggres-

siveness of their bids even further as the number of active non-bidding participants increases,
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substantially reducing the chances of suffering the winner’s curse. Intuitively, this occurs be-
cause at round 0 active bidders recover the private information active non-bidding participants

possess, and they update their log-bidding functions accordingly.'*
1.4.2 Econometric methodology

The structure of the log-likelihood function is similar to the one in section 1.3.2. Therefore,
conditional on the vector of active non-bidding participants’ dropout bids, the log-likelihood

function for a given auction can be written as:
L(PI0,T7Y) = log F(PI0, 1) + log Pr[T3(s) =26, T1)] — log Pr{Ti (6) )6, T,

where T~1 = [X; = ¢, 1 (P_1;Q-1)] for | = N+1,...., N+q, with ¢; *(.; Q_1) being the vector of
inverse bid functions at round -1, X; denoting the signals of the q active non-bidding participants,
(P10, T~1) reflecting the (conditional) continuous likelihood of the observed drop out prices,
Pr[To(z} 720, T=1)] the conditional probability associated to the censored winning bid, and
Pr[71(0)|0, T~'] the (conditional) truncation probability that reflects the order in which the
different bidders drop out (see section 1.7.7 for more details on f(P]0, T—1), Pr[’]}(wflv_zw, T-1)]

and Pr[7;(0)|6, T~1]).
1.5 Empirical Application

Figure 1.5 displays the boxplot of the profit/losses in Storage Wars auctions without a few
extreme outliers.

(Figure 1.5)

The central mark in the box indicates the median profit ($890), and the bottom and top
edges indicate the 25th ($-47.5) and 75th ($2,412.5) percentiles, respectively, with the outliers
being plotted using the 4+ symbol. As can be seen, the profit/losses values involved in these
auctions are relatively small. Therefore, the smooth utility functions with moderate risk aversion
commonly considered in the literature under expected utility imply that bidders would be close
to risk neutral when facing such modest stakes. In contrast, loss aversion may be present in
these auctions because the utility in (1.1) captures the well documented fact that over modest

gambles, individuals are noticeably more averse to losses relative to the status quo than they

MWith homogeneous bidders, the log-bidding functions in Figure 1.4 are equivalent to the log-bidding functions
without active non-bidding participants in Figure 1.3 for rounds 0, 1 and 2.
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are attracted by gains (see Barberis et al (2001) for more details).
1.5.1 Model specification

Given that the common public information bidders have during the auction are the locker
characteristics and the municipality in which they are located, I have regressed the (log) ex-post
value of the locker on its size and the per capita income of the municipality. The results are
presented in Table 1.4.17

(Table 1.4)

Not surprisingly, the statistical significance of the results confirm that richer neighborhoods
and larger lockers have more valuable locker contents. Consequently, I specify the mean of the

common value component for a given auction as
m = By+ B,SIZE + ,HHI,

where SIZE is a variable that measures the size of the locker (small (1), medium (2) or large
(3)) and HHI captures the median household income of the municipality where the locker is
located in the State of California.

In contrast, private valuations are usually associated with differences in interests across
bidders, for which I do not observe any proxies. For that reason, I flexibly define the mean of
the private value component of the four main bidders (Barry "Ba", Darrell "Dr", Dave "Dv"

and Jarrod "Jr"), as well as of the other active bidders whose identity is not shown publicly, as

a=( ayg+a1Ba ag+asDr ag+asDv ag+asJr ag -+ g )

where Ba, Dr, Dv and Jr are mutually exclusive dummy variables. For example, Ba takes the
value 1 if Barry is an active bidder in the auction and 0 otherwise. Note that ag is the common
mean of the private value component of those active bidders whose identity is unknown.'®

Furthermore, to guarantee positivity, the variance of the common value component, which is

obviously the same across bidders, is modelled as rg = exp(dp), while the variance of the noise

15 A more flexible non-linear specification that allows for different coefficients for each of the three locker sizes
does not offer any statistically significant gains in fit, which is not surprinsing given that the sequence of locker
sizes corresponds to 3, 5 and 7 rooms (see section 1.2.2 for more details).

'6Given that in all the formulas all that matters is m + @; (see section 1.7.2 for further details), I set B, = 0
without loss of generality because the constant terms of @ and m are not separately identified.
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for each of the bidder’s signals is flexibly defined as

2 _
s"=exp( vy +71Ba v +72Dr v +ysDv v +udr v 0 v )

so that 7, is the baseline variance of the anonymous bidders.
In principle, I also allow for unrestricted heterogeneity in the variance of the private value

component as follows

tQZGXP( To+71Ba To+T2Dr To+73Dv To+TaJr TO -+ To )

Finally, I set the loss aversion parameter A to 2.25, a value initially proposed by Tversky
and Kahneman (1992) on the basis of experimental evidence which has been used by most of
the subsequent literature (see for example Barberis et al (2001), Barberis and Huang (2008) and
Post et al (2008)).

1.5.2 Parameter estimates of the baseline model

The first thing I do is check whether Storage Wars bidders exhibit loss aversion. To do
so, I fit the model with A = 2.25 for all the bidders and compare it to a specification with
risk neutrality (A = 1). Surprisingly, the likelihood is actually worse. However, given that the
model in section 1.3 explicitly allows for heterogeneous bidders’ characteristics, this two extreme
specifications are not the only ones that one could consider. In fact, when I set A = 1 for Dave
and A = 2.25 for all the other bidders, I find that the difference between the log-likelihoods of
the risk neutral model and this alternative specification is 9.41, thus confirming the empirical
relevance of loss aversion in ascending auctions.

As I explained in section 1.2.1, Dave is the most professional bidder in Storage Wars. There-
fore, my finding is not entirely surprising in view of the results in List (2004), who found that
professional traders did not exhibit loss aversion.'” In this respect, it is worth mentioning that
Dave suffers the smallest median loss when he losses and enjoys the largest median profit when
he wins, regardless of the size of the locker.

The maximum likelihood estimates of the model parameters for this specification are shown
in Table 1.5.

(Table 1.5)

"Tn contrast, Pope and Schweitzer (2011) found that even the best golfers seem loss averse in the non-pecuniary
context of golf putts.
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The results indicate that the coefficients of the size of the locker (3;) and the per capita
income of the municipality (55) are both positive and statistically significant, which agrees
with the findings in Table 1.4 regarding the specification of the mean of the common value
component (m). Additionally, there is strong evidence of asymmetry in terms of the mean of
the private value components (p-value of 0 for LR test of Hy : a1 = a3 = a3 = a4 = 0) and
weaker evidence of heterogeneity in the accuracy of the signals (p-value of 0.07 for LR test of
Hy : v, =79 =73 =74 = 0). However, there is no evidence of heterogeneity in the importance
of the private value component when #2 is heterogeneously modelled as in section 1.5.1 (p-value
of 0.43 for LR test of Hy: 71 =79 =73 =74 =0).

The variance of the common value component (r3) explains 74% of the variance of the
valuation V; (see section 1.3.1 and section 1.7.2), which reflects that the model is neither a pure
common value nor an independent private value model, but a mixture of both. To confirm this

claim, I formally compare my estimated model to those two extreme versions:

LR Test p-value

Independent Private Value  404.23 0
Pure Common Value 77.24 0

Although the pure common value model provides a better match of the results in Table 1.5, it
is still rejected by a long margin.

(Figure 1.6)

Figure 1.6 plots the estimated equilibrium log-bidding functions at round 0 of Storage Wars
bidders, all of whom are loss averse except for Dave, who is risk neutral. As can be seen, Dave,
whose marginal utility is the same for both gains and losses, is the most aggressive bidder for
most signal values, although his bidding function has the lowest slope. At the opposite extreme,
Barry is the least aggressive bidder. As an illustration, suppose both of them had the same
log-signal x; = 8.5 ($4,914), which is approximately the average ex-post value of all the lockers
in Storage Wars. Then, we can read off the graph that Dave’s targeted log-dropout price in
round 0 would be 8.48 ($4,821), while it would be 6.91 ($1,007) for Barry.

1.5.3 Parameter estimates with active non-bidding participants

Following the evidence in the previous section, I continue to set A = 1 for Dave (the most

professional bidder in the sample) and A = 2.25 for all the other bidders. In this case, the
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improvement in the log-likelihood function relative to the risk neutral model is 12.73, which is
even greater than in section 1.5.2. Therefore, loss aversion is again empirically relevant in this
more general framework.
The maximum likelihood estimates of the model parameters for this specification are shown
in Table 1.6.
(Table 1.6)

As in section 1.5.2, the values of 5, and (5 are statistically significant. Additionally, I find
that there is strong evidence of heterogeneity in the precision of the signals (p-value of 0 for
LR test of Hy : 74 = 73 = 73 = 74 = 0) and of asymmetry in the mean of the private value
component (p-value of 0 for LR test of Hy : oy = g = a3 = aq = 0). However, once again I
find no evidence of heterogeneity in the importance of the private value component 2 (p-value

of 0.77 for LR test of Hy: 71 = 79 = 73 = 74 = 0), as in Table 1.5.
(Figure 1.7)

Figure 1.7 illustrates the estimated equilibrium log-bidding functions of Storage Wars bidders
in round 0 with 1 active non-bidding participant, in this case Darrell. This graph shows that the
slope of the log-bidding functions for the remaining bidders decreases substantially compared
to their round 0 log-bidding functions in Figure 1.6. Intuitively, this reflects the fact that
they effectively take into account the private information of the bidder who decided not to
participate, thereby confirming the empirical relevance of active non-bidding participants in

ascending auctions.
1.6 Conclusions

In this chapter I propose a novel tractable structural model with both private and common
value components for ascending auctions in which heterogeneous bidders may exhibit loss aver-
sion. Importantly, I find that, ceteris paribus, the bidding functions of a loss averse bidder are
significantly lower than under risk neutrality.

Additionally, I consider a more general framework in which active bidders incorporate into
their strategies the information of those bidders who are present but decide not to participate
after observing the item put up for auction when the auctioneer announces the opening bid.

In this respect, I find that bidders reduce the aggressiveness of their bids even further as the
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number of non-bidding participants increases.

To empirically asses my model, I use data from the popular TV show Storage Wars, which
follows some recurrent individual bidders who take part in storage locker auctions throughout
the State of California.

My empirical results document for the first time the presence of loss aversion in actual
ascending auctions. More precisely, I find that the behavior of most bidders is consistent with
loss aversion in a model in which there is heterogeneity in both the mean of the private value
component and the precision of the signals. At the same time, I find that the most professional
bidder seems to be risk neutral.

I also find that loss aversion persists when bidders incorporate into their strategies the
information of those bidders who are present but decide not to participate after observing the
item to be auctioned. Moreover, my findings confirm the empirical relevance of taking into
account the presence of non-bidding participants in ascending auctions.

Although the empirical analysis of this chapter provides reliable evidence of the importance
of loss aversion in ascending auctions, there is still much to learn about the behavioral biases

that arise in auctions from the field, lab and real life situations.
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1.7 Proofs and Auxiliary Results
1.7.1 Equilibrium proof

For notational simplicity, I suppress the arguments of the bid functions so that
B (X ) = BEC).

Following the discussion in (1.2), for any round k,

E{ulV; — BE()]T4} = / Vi — BEO)] % FIVi — BECITE}dIV; — BEC)]

oo - pk -k k - pk
+ [ RO < SV = SO - B
Bi()

Since f[V; — BE()|TE] = f(Vi|TF), then E{u[V; — BF()]|TF} can be written as

Bk
E{ulV — BE()] T4} = / N[Vi — BEC)] % FOVITR)yav;

+o0
+ / {[Vi = BEO)] x F(ViITE)yav;.
B (+)

Given that V; = exp(v;), where v; ~ N[E(v;), Var(v;)], the density of V; is

los19) - ECJF]

V V2 Var(v;) [ 2Var(v;)

FVilTE) =

Moreover,

Pr[0 < V; < B¥()]
Pr(0 < Vi < BF(")]

BE() BE()
/0 Vi = BEO)] % F(ViITR) YV, = /O {NlVi = BE()] x F(ViTF)}dVi

or equivalently

BE ()
/0 {NilVi = BE()] x F(VIXE)}dV; = {\[PrO < V; < BF ()}

O Vix fXH] RO k) :
’ [/o rn <<l ML mrev <™

)

with fO ViR P[0 < V; < BE()|}dV; = 1.
Note that Pr[0 < V; < 8%(-)] = Pr[In(0) < v; < In(B¥(-)], so

o (IO = e ) 1 (B ()] = Su,la

Therefore,

[Vi x fATH)] dv}
e

/ O Vi B % TR = {3 Pl0 < < B} / "
0 ilVi— P ilti g g ! ! 0 Pr[0 < V; < BF(-

22



Following Zaninetti (2017),

BEC) v Vi|Tk
/ [fo( Z| z)] d‘/i:ETla
0

Pr[0 < V; < BF()]

where
exp[%Var(vi)] exp|E(v;)] [erf(a1) + erf(az)]
lerf(as) + erf(ay)]

with a1 = [_OO — Wylz — gvi|z]/\/ 2‘*)117;\36’ az = {wv7;|$ + Swvilz — ln[ﬁf()]}/\/ 2wvi|xv
az = [_OO - §Ui|x]/\/ 2(‘"]vi|:1: and aq = {§Ui|x - ln[ﬁf()]}/\/ 2wvi|x'

Er =

)

Hence,
Fon — €xp (%wvlm) exp(gvi\x) [erf(az) - 1]
T1 [erf(ay) — 1] ’
because erf(a;) = erf(as) = —1.
Therefore,

BE()
/0 NV — 85O0 % FVIER)}dV: = (A[Pr0 < Vi < B8} B — B50))

Similarly,
+oo
/ﬂ (Vi — B5C)] % F(ViITE)dV; = Pr(BE() < Vi < +od]

E()
o [Vix fVIYH] e [P0 f(vilTh |
" {/ﬁf(-) Prl0 < Vi< 3] @»()/0 o< Vi< i) [

But since Pr[8¥(:) < V; < 400] = Pr{ln[B¥(-)] < v; < 400}, then

k . —_
Pr{BH() < Vi < +oo] = & <1 . {erf 1[3;;{% }) |

Hence,

[0~ 85O0 < AT Y = Pr(HC) < Vi < +ou) avi| .
B8

40!

/+°° (Vi x f(Vi|TD)]
i) Prl0 < V; < BE()]

Again, following Zaninetti (2017),

/+oo (Vi x f(Vi|TH)] dV; = Epo
B

sy Prio < V; < B7()]
where
exp[%VaT(vZ-)] exp|E(v;)] [erf(b1) + erf(ba)]
lerf(b3) + erf(by)] ’

with by = —ag, by = [Wy, |z + Su,e — 0)/1/2Wy, |z b3 = —aq and by = [y, |, — ]/ / 2w, |-

Ers =
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Hence,
€xXp (%wvzkt) eXp(gvi|x) [_ erf(a2) - 1]
[—erf(aq) — 1] ’

Ers =

because erf(by) = erf(by) = —1.

Therefore,

/;:m — B x FVITH}YAV; = PrBi() < Vi < +o0l[Brz — B1()]

so E{u[V; — BF()]|T¥} is then

E{ulVi = i ()]ITF} = A Pr[0 < Vi < 7 ()]} [Er1 — B ()]
+{Pr[B(-) < Vi < +00}[Era — BE()]-
In equilibrium,
(NP0 < Vi < BEOHET — B7 ()] + {Pr[BF() < Vi < +oc]}[Ers — B7(-)] =0,

which simplifies to

Wy, e — 11D k .
exp <;inx> exP(Sy,|a) [(1 - \) {erf wlr & % 50 } +(1+N)

ln(Pk) = Su;lz

~ exp{In[84()]} [(Ai e |t | (1| =0,
A /Zwvm
When \; > 1 and A; # 1, by "Guess and Verify", it is clear that the solution is:
k 1
Swvi|le = 111[,32 ()] - iwvﬂz + i
with 7, solving

=3+ =3

; 1—\)erf | 2—2 T+ X)) — |\ = Derf | 2—=—= Ai+1)| =0.
expng) (1= Nt (Tt (100 | = | = ert (T Ok )
(1.9)

If there exists an 7; that solves (1.9), then the above solution solves the original system. To

confirm this claim, let

Wy, |z
— T

Y(n;,) =exp(n;) (1 —X)erf | ——=
(n;) = exp(n;) [( ) (m

>+(1+>\i)

Wy, |z

(A — 1) exf (H) +(\i+1)

=0.
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To check whether 7, is a solution to Y (n;) = 0, one can exploit the fact that
1) lim, o Y(n;) <0
2) lim;) 400 Y(1;) >0

Specifically, given that 0 < w,,; < oo and A; > 1, then

lim Y(n;) =—-2\; <0 and lifﬂ Y (n;) = 400 > 0.
1;——00 m;—+00

As a special case,

Wy, |z
hm Y(n;) =21 = \)erf | —=2— | <0.
ni— \ 2wvi|w

The continuity of Y (7;) guarantees that there exists an 7, that solves Y'(n;) = 0.
If in addition 9Y(n;)/0n; > 0 for any —oo < m; < oo, the solution will be unique. In
particular,

Wy, |z Wy, | 2
— 2(1-N) — T
Y (n;)/0n;=exp(n;) § (1=N)erf | —2—=" | +(1+\)+————=exp |- | 2=
V2Wy, [z V2TWy V2We, |z

2
(AN — 1) 5 =
—F—CeXp | — | —YF//— > 0,
A /27“’0%\90 A /2wvi‘x

or equivalently

(14 X) Seilr 4o
—~ —erf | =-——] >0,
()\i — 1) A /2wvi‘x

which is true for any value of ; and 0 < w,,, |, < oo because [(1+;)/(Ai—1)] > 1for 1 < \; < o0
and erf[(%wmm + 1)/ /2wy, 2] € [—1,1]. As an aside, it is worth mentioning that 7;, despite
being heterogeneous, does not depend on the round of the auction or on the bidder’s own private
signal.

Therefore, given the existence and uniqueness of 7;,
_ / *—1 / *—1_k *—1
Svilz = (v; — Y U) + JUME,{J Ty + ol Z‘ :Ed,

where ¥* 71 = = (2% 1 DI 51). Solving for z¥ yields:

k

Ly = ( U,x

E* 1) [gvi\m + (U;ixz*_l‘lj - Ui) - Z* k,2 xd]

Given that in the log-normal setup w,,|, is constant and ¢, is linear in the log of z;, then
E(Vi|X1,...,Xn) is monotonically increasing in Xj.

For a proof of the existence of an increasing-strategy Bayesian-Nash equilibrium see Milgrom
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and Weber (1982) theorem 10 and Hong and Shum (2003, pp. 352). Specifically, they show that
if all bidders j # ¢ follow their equilibrium strategies ﬁ? (), bidder i’s best response is to play
ﬁf() because this guarantees that bidder ¢ will win the auction if and only if his expected net

payoff is positive conditional on winning.
1.7.2 Mean, variances and covariances of values and signals

Noting that v; = E(v;) = E(a;+v) = m+a;, thenv = (vq,...,vn) = (m+ay,...,m+an)".

Similarly, E(z;) = E(v; + s:§;) = E(v;) = m+a;, so ¥ = E(z) = (m+ay,...,m+ay)". Also,
Var(v;) = Var(a; + v) = Var(a;) + Var(v) + 2Cov(a;,v) = 7’% + tl2

and

Cov(vi,vj) = E(viv;) — E(v;)E(vj) = E(’UZ) — [E(v)]2 =Var(v) = 7’8

for all 4,5 € N and ¢ # j, so

In addition,

Cov(vi, ;) = Elvi(vi + :€,)] — E(vi)E(2;) = E(v}) — [E(v:)]? = Var(v;)
and
Cov(vi,z;) = Elvi(vj + 5;8;)] — E(vi) E(z5) = E(viv;) — E(vi)E(vj) = Cov(vi, vj)
for all 4,7 € N and i # j. As a consequence,

7’8—#75% 7’(2)
O-’U,L'\I/:
2 2 2
rH eorg ity

Finally, since

Var(z;) = Var(v; + s:i&;) = Var(v;) + s2Var(€;) + 25;Cov(v;, &) = 12 + t2 + 57
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and

Cov(z;,z;) = E(xizj) — E(x;)E(z;) = E(vivy) — E(vi) E(vj) = Cov(vs, vj)
for all 4,7 € N and ¢ # j, we have that

rg—i-t%—ksf 7'8

r% 7“%4-15?\[4-8?\7
1.7.3 Difference between loss aversion and expected utility

When \; = 1, one gets the standard risk neutral case (see Hong and Shum (2003)), so
1
expl5 Var (v 17)] exp[E (v} 17)] = exp[In(5 ()]

or equivalently

BHTE) = mgh()] — 5 Var(eh|eh),

with 2 = (o7, D57 BHE) + (0,518 — v;) - ol Dpg k.
Hence, the difference between loss aversion (LA) and expected utility (EU) in this ascending
model is simply:

B (]| T5) — BPY(uf [XF) = ;.

Moreover, since 2 = (o), S5 ") THE@F|TF) + (0, 2710 — v;) — o, X7, 2k], then at

round 0,

0,EU

! *—1
Ly

0,PR -1
T, - = (Gvixzhl ) Mis

while in subsequent rounds,
-1
k,PR k,EU __ / x—1 / x—1_k,PR / x—1_k,EU
Ly - Xy - <Uvixzk,1 ) (77@ - avizzk,Q Ty + Uvixzkg Ty )
1.7.4 Special cases

There are three important special cases of the model under prospect theory proposed in
section 1.3: the independent private value model, the pure common value model and Wilson’s

(1998) model. In addition, any heterogeneous model may simplify to a fully homogeneous one.

Independent private value model

In this model there is no correlation in the valuations, so that V; = A;, which effectively
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requires that V =1 (m = r§ = 0), implying that the only information bidders care about is
their own valuation. The log-bidding functions for each bidder in the initial round only depend
on their own private signal. As the auction progresses, the bidding functions do not change
in subsequent rounds. Therefore, Vickrey (1961) revenue equivalence theorem result applies.
Specifically, Vickrey (1961) showed that in a sealed-bid second price independent private value
auction, the bidders’ optimal strategies are to truthfully bid their valuations. As the valuation
of each bidder is independent of the others, observing someone else’s valuation has no impact on
the valuation of anyone else, making the bids independent of the number of bidders participating
in the auction. Therefore, as all bidders will drop out when the price reaches their privately
known values, the outcome is Pareto optimal because the bidder with the highest value will win

the item.

Pure common value model

In this special case, V; = V, which requires that 4; = 1 for all i (a; = t? = 0). As in the
independent private value model, the log-bidding functions for each bidder in the initial round
only depend on their own private signal. However, as the auction progresses, bidders lower their

bids. Intuitively, any information possessed by the bidders who drop out significantly influences

the beliefs of the other bidders because the value of the object is the same across bidders.

Wilson auction model

Wilson (1998) allowed each bidder to observe two signals: his private component A; as well
as his noisy estimate of the common component E;. In contrast, the model in section 1.3 only
allows bidder 7 to obsere the composite signal X; = A; x F;. Nevertheless, given that he made
a diffuse prior assumption on the distribution of the common value component, in practice, one
can achieve the same with 72 = oo. As usual, the log-bidding functions for each bidder at the
initial round only depend on their own private signals, but as the auction progresses, the effects
of the private signal on the log-bidding functions of the remaining bidders is greater than in both
the pure common value and independent private value models. The reason is that the diffuse

nature of the prior makes bidders pay more attention to all the signals they observe.

Fully homogeneous model

In the fully homogeneous model, all the parameters are common, implying that they do
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not depend on the bidders’ characteristics, i.e. 6 = (é,m,tz,rg,sz). In this case, the bidder
with the lowest signal will be the first one to drop out in round 0 because all bidders are
homogeneous. Given that the winner is the bidder with the highest bid, in a homogeneous set

up this corresponds to the one with the highest signal.
1.7.5 Winner’s curse

In first and second price sealed bid common value auctions, there may exist winner’s curse,
i.e. overpaying due to incomplete information. Suppose there are 3 bidders and the item for
auction has an actual value of $5. Assume bidder A bids $2, bidder B bids $6 and bidder C
$9. Even though bidder C won the auction, he ended up overpaying by $4. If bidders take this
problem into consideration, they should shade their bids, leading the average bid to decrease
with the number of bidders, as in Athey and Haile (2002) and Bajari and Hortagsu (2003).
However, ascending auctions have the unique feature of "information transparency", so bidders
can make inferences about the private information possessed by the bidders who have dropped
out. As shown in Milgrom and Weber (1982), this feature reduces the effects of the winner’s
curse, allowing bidders to bid more aggressively than in a sealed-bid auctions.

To shed some light on the existence of winner’s curse in Storage Wars, the following table

reports the average profit for the regular bidders:

Winners Estimate Std. Error
Barry 920.78 2407.01
Darrell 9473.71 2676.39
Dave 3949.31 2779.37
Jarrod 1721.38 2481.08

Anonymous  915.91 5984.59

Notes: *Indicates rejection of the null at the 10% significance level, ** 5% level, *** 1% level.

As in Hong and Shum (2002) and Bajari and Hortagsu (2003), I find that bidders took into
account the possibility of overpaying and shaded their bids in order to avoid winner’s curse.
These results suggest that professional bidder behavior is based on previous experiences, which

is in line with the experimental evidence in Kagel and Levin (1986).
1.7.6 Calculating the likelthood of baseline model

Continuous component

Using the log-bidding function in Section 1.3.2, the bid functions of bidders dropping out in
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round & will be given by (1.7). Let

be an (N — 1) x 1 vector,
G — ( 0,...,0 1/A% . Dy .JAY_, )
N—i—2
alx (N —1) vector and

G=(¢g) -+ Gh_y)

an (N — 1) x (N — 1) matrix. Thus, the vector of dropout bids can be written as
P=G(xa....,2n) +F. (1.10)

Let 14(0) be the N — 1 subvector of ¥ and ¥%(0) the (N — 1) x (N — 1) submatrix of ¥*
corresponding to bidders 2,..., N. Then, equation (1.10) implies that the mean and variance of

the vector of dropout bids will be

1p(0) = F(0) + G(0)vo(0)
Sp(0) = G(0)23(0)G(0)

Therefore, the continuos part of the (N — 1)-variate normal log-likelihood function for a given

auction 1s

I

log f(P56) = —3 (N — 1) log(2m) — 5 1og([5,(6)]) ~ 5 {[P — m, (0] 5,(6) [P — i, (0)]}.

Characterization of T5(0) and its probability

In an ascending auction, one does not observe the winner’s dropout bid, only the price at which
the second highest bidder stops. As a result, the signal of the winning bidder is constrained to
a region To(xa,...,zn;0) C R'. Hong and Shum (2003) show that the set Z3[G~ (P — F); 0]

consist of the following conditions:
{z1: bll(xl;xil,e) >py, foralll=0,...,N —2}.

This implies that for any dropout order, the winning bidder will never regret having remained

active in all prior rounds. However, given the ascending nature of the auction, the only binding
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constraint will be

b (152 72,0) > py_a. (1.11)

Unfortunately, there is a mistake in the expression for the probability of 73 after the formula
(24) that Hong and Shum (2003) provide. Specifically, they seem to have used unconditional
moments when they should have used conditional ones instead because Pr{Z3[G~*(P — F); 0]}
denotes the probability that z1 € 73() conditional on P.

To illustrate the calculation, consider an auction with N = 3 bidders. Without loss of
generality, suppose bidder 3 had the lowest bid in round 0, so at round 1 only bidders 1 and 2
remain active. Then,

b%(xla x3, 9) Z P1,

which can then be simplified to
Ty > A%pl—c% — D%xg + "4%771‘
Therefore,

Pr{T[G (P — F)[6]} = Pr

21— E(z|z,23) Alp1—Ci — Dixs + Afn; — E($1|$27$3)]

Var(ry|ze, z3) — Var(xzi|zo, 3)

or equivalently

Pr{T[G P - F)|o]} =

E(z1|z2,23) + C] + Dias — Ajpr — Ain,
Var(xy|ze, x3) ‘

To obtain E(x1|rg) = ¥ and Var(z|zg) = X, first partition the vector = as

r=[z1 (T2,73)]
——

N-1
and then partition ¥ and ¥* accordingly:
1x(N-1)

~ =

>3 B
11 1d

U= [, E//U' and X" =
X Xd
N-1

~—~ ~—~

(N=1)x1 (N—=1)x(N—1)

Then, the distribution of 1 conditional on (z2,z3) is multivariate normal

z1|z2, 23 ~ N(¥,5*%), where U = Uy + B*, (24,) (g, ..., on1q) — Ug] and
D =34 — 214 (Eéd)’l X
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Characterization of Pr[11(0);0]

For the dropout to occur in the correct order (CO), it must be the case that
bf(wi;xljﬂ) > b’fv_k(xN_k;:z:fj,H) =pg, forallkandi=0,..., N —k— 1.

The truncation region 77(6) for a given value of 6 is defined as the values of the log-signals

such that C'O is satisfied. More formally,
T1(0) = {x1,...,zn : CO is satisfied|6} .

Given the ascending nature of the auction and that the log-bidding functions for rounds &
and k — 1 intersect when they are equal, Hong and Shum (2003) show that the CO condition

can be simplified to the following N — 1 inequalities
vy o i(@N k1 xh 0) > b5 (o g2k, 6), forallk=0,..., N — 2,

which implies that the log-bidding functions of the bidders remaining in round k£ have to be
greater than the log-bidding functions of all the ones who have dropped out.
To illustrate the calculations for Pr[71(6); 0], suppose that, for example, N = 3. The only
binding constraints are:
b9 (w2;0) > b3(3;0)
bl(x1,23;0) > bi(xa, 3;0)

which can be written in matrix form as

9 9 1 1 T
0 S a0~ ag + (12— m3) 0 —a ag
“ |l e o + pl  pi T2 |
0 £2 4 L 2
a1~ ar t (11— 1) —ar Al AL Al
2 1 1 2 2 1 €T
3
Z h H N——

The probability that Z < 0 is simply a multivariate normal cdf with F(Z) = h + HVU and
V(Z) = HY*H' because z ~ N (¥,¥*). To calculate this multivariate normal cdf, T use a
numerical quadrature procedure for bivariate and trivariate distributions, and a quasi-Monte
Carlo integration algorithm for four or more dimensions (see Matlab (2019) muvncdf entry for
more details).

As an aside, it is worth mentioning that the CO condition in Pr[7;(#)|6] in the fully homoge-

neous case (see section 1.7.4) implies that the log-signal of the winner has to be greater than the
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log-signal of the second highest bidder, and similarly the log-singal of the third highest bidder,

etc. For example, when there are only three bidders,
Pr[7:(0)|0] = Pr(z1 > xo;x2 > 23]0) = Pr(z1 > 0; 22 > 0]0),

where z1 = ©1 — 22 and 2o = x2 — x3. But notice that this is the probability that a bivariate
normal with zero means, unit variances and some correlation coefficient between z1 and 23 (p,, .,)

lies in the first quadrant. In this case, it is easy to prove that
Pr[71(0)|0] = 1/N!

because there are N! possible orderings, which are all equally likely in the fully homogeneous
case. Consequently, Pr[77(0)|f] does not depend on the model parameters.

1.7.7 Calculating the likelihood with active non-bidding participants

Continuous component

Define
~ ¢t ¢t co cN-2
F = Ntq _ .. N+ ‘N R S
AL "IN+q AL, IN+1 A9 —'IN Ay-? M2

as an (N 4+ g — 1) x 1 vector, with ¢ being the number of non-bidding participants and N the

number of active bidders. Similarly, let

- -1
gj:<0,...,0 1/AN_j O""’0>,forj:—q,...,—1
N—j—2 q+j

~ 1 % 7
G = (,O""7O, 1/ AN DN—i/‘AN—i),fori—O,...,N—Q.

N—i—2 g+i

denote two 1 x (N + ¢ — 1) vectors and
G=(G, o Gy G o Gy)

an (N 4+¢q—1) x (N 4 ¢ — 1) matrix. As before, the vector of dropout bids can be written as

P=G(x2...,xn1q) +F. (1.12)
This equation describes the mapping from the unobserved log-signals

J— /
Tar = (T2, TN, TN415 - -+ TN4q)
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-y P—1,P05- - - 7PN—2)/-

to the observed log-bids P =(p_1, .
q
Let 95(0) be the N +¢— 1 subvector of ¥ and 3%(6) the (N + ¢ — 1) x (N 4 ¢ — 1) submatrix

of ¥* corresponding to the signals of bidders 2,..., N 4+ ¢. Then, equation (1.12) implies that

the mean and variance of the vector of dropout bids will be
fi,(0) = F(0) + G(0)15(0)
£,(0) = G(0)S3(0)G(9)

Similarly, partition the price vector P as:
., PN-2))

75: ((p—17"'7p—1) (p()?"
q N-1
and then partition fi,,(¢) and %,(0) accordingly:

axq gx(N-1)

—= —=

_ _ _ , ~ Ep,ll Zp,12

fip(0) = (fp1 Fp2)” and Ep(0) = | .
~~ Ep,Ql Ep,gg
q -1 ~—— ~——
(N-1)xq (N—-1)x(N-1)
.,P—1) is multivariate normal

,pPN—2) conditional on (p_1,

Then, the distribution of (py,
[(Pos - - s oN—2) | (D=1, - s P-1)] ~ N (R, Ep), where fi,, = fi, 0+ Sp21 5 11 [(p-1, - p—1) = fip1]
and ip = ip’QQ — ip,gli;’hinlg.
Therefore, the continuos part of the (N — 1 — ¢)-variate normal log-likelihood function for a

given auction conditional on the initial dropout bidders is
1 1 = 1 _ = 1 _
log f (P, |P-1,68) = —5 (N—1—q) log(2m)—5 log(1Z,(0)) =5 { [Pa — A (6)) Z5(0) [P — ()]}

where Py, = (po, ...,pN_2)"

Characterization of T5(0) and Pr[11(0);0|P-1]
In this case, the probability of 73 will be the same as (1.11). To illustrate how the Pr[T}(0); 6]

looks like in this context suppose that, for example, N = 3 and ¢ = 2.
At round -1, bidders 5 and 4 drop out simultaneously at price p_j. Therefore, the only
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binding constraints will be:

bgl (z3|z4, 25) > bzl (z4|z4, T5)
b3 (2|wa, T5) > Y (23]24, 75)

bl (z1; 24|74, 25) > b3 (125 24|24, T5)

which can be written in matrix form as

c;toert [ 1 |
0 AT =21 + (N3 — N4) ALl 0
At A DO DY DO DY x
co co 3,1 ~21 32 22 4
012 A at (my—m3) | T AS A A3 A
x5
0 ﬁ _ i 4 (77 - ) D%,z _ D%,z D%,s _ Di,s
AL T AT 1 2 |\ A Al Al AL )] be
Z ~"
h
1
0 0 Z T
1 1
+ 0 7./478 Tg ) 5
1 1 D%,l _ D%J T
Al Al Al Af 3
L P L ——
H Za

Note that this characterization is equivalent to by * (z3|z4, w5) > by ' (w524, T5).

Then, partition the vector x as

r= (‘Tfmxg)), = [(:1:17 s 7xN) (:I:NJrla s 755N+q)]/;

~
q

N

and then partition ¥ and ¥* accordingly:

NxN Nxq
N /=
2* *
, " aa ab
U= (T, ¥,) and ¥*=
* *
Ny Lba  Sbb
~— =~
gxN  gxq

The distribution of z, conditional on z; is multivariate normal z4|z, ~ N(¥, %), where
U =T, + 55 (55) " [(@Nt1, - TNg) — Up) and 3F = 55, — 2%, (35,) 7 55,
The probability that Z < 0 conditional on z; is simply a multivariate normal cdf with

ElZ|(xN+1s-- - TN1q)] = h+ HU and V[Z| (xn41, .-, TN1q)] = HEH'.
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1.8 Tables Chapter 1

Table 1.1: Auctioneer Behavior

Estimate Std. Error

HHI** 0.012 0.005
S17 E*** 0.472 0.103
Constant 1.829 0.395

Notes: Multiple regression of (log) opening bid. HHI captures the median household income of the
municipality where the locker is located in the State of California, SIZF is a variable that measures the
size of the locker (small (1), medium (2) or large (3)). Additionally, * indicates rejection of the null at
the 10% significance level, ** 5% level, *** 1% level.

Table 1.2: Summary Statistics

Variable #0bs. Season 1 Season 2 Season 3
Auction characteristics
Small locker 100 23 37 40
Medium locker 117 27 54 36
Large locker 37 9 12 16
Average HHI 78 57641 61473 58750
Average Ex-post 250 4797 3954 6319
Average Profit 250 3949 2282 4821
Number of auctions 254 59 103 92

Number of bidders per auction

N =2 14 3 6 5
N=3 50 9 13 28
N =1 72 20 29 23
N =5 63 13 34 16
N=6 36 8 16 12
N=T7 19 6 5 8

Notes: HHI denotes the median household income of the municipality where the locker is located in
the State of California, Ez-post denotes the ex-post value of the locker and profit denotes the difference
between the ex-post value of the locker and the winner’s bid.
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Table 1.3: Bidder’s Frequency Participation

# Obs. First Bidder J Dr Dv J-Dr J-Dv Dr-Dv J-Dr-Dv
Barry 139 66 82 86 76 52 44 50 29

# Obs. First Bidder J B Dv J-B J-Dv DB-Dv J-B-Dv
Darrell 161 25 96 86 98 52 57 50 29

# Obs. First Bidder J Dr B J-Dr J-B Dr-B J-Dr-B
Dave 151 10 99 98 76 57 44 50 29

# Obs. First Bidder B Dr Dv B-Dr B-Dv Dr-Dv B-Dr-Dv
Jarrod 165 31 82 96 99 52 44 57 29

Notes: The four main bidders are Barry "B", Darrell "Dr", Dave "Dv" and Jarrod "Jr". Additionally,
"J-Dv" means that Jarrod and Dave were the only two main bidders out of the four who were active
bidding participants, i.e. they participated in the auction.

Table 1.4: Mean Common Value

Estimate Std. Error

HHI** 0.012 0.005
S17 E*** 0.368 0.123
Constant 6.242 0.408

Notes: Multiple regression of (log) Exz-post value. HHI captures the median household income of the
municipality where the locker is located in the State of California and SIZFE is a variable that measures

the size of the locker (small (1), medium (2) or large (3)). Additionally, * indicates rejection of the null
at the 10% significance level, ** 5% level, *** 1% level.
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Table 1.5: Maximum Likelihood Estimates Baseline Model

Estimate p-value

BE0.381 0

0 0.009 0.01
8o 0.014 -
ag 5.534 -
ot 20185 0
ad™*  0.198 0
o 0.101 0.06
ay 0.039 0.51
To -1.081 -
Yo 0.371 -
" -0.059  0.85
Yo 0.053 0.77
NE 0923 0
v 0717 0.09

Notes: The mean of the common value component for a given auction is m = 8, + 8,SIZE + ,HHI,
where SIZF is a variable that measures the size of the locker (small (1), medium (2) or large (3)) and
H H captures the median household income of the municipality where the locker is located in the State of
California. Additionally, the mean of the private value component of the four main bidders (Barry "Ba",
Darrell "Dr", Dave "Dv" and Jarrod "Jr"), as well as of the other active bidders whose identity is not
shown publicly, is @ = (ag + a1 Ba, ag + as Dr, ag + a3 Dv, ag + ag J7, g, - - ,00), where Ba, Dr, Dv and
Jr are mutually exclusive dummy variables. Furthermore, the variance of the common and private value
component is modelled as 73 = exp(dy) and t? = exp(7o), respectively, while the variance of the noise for
each of the bidder’s signals is s = exp(7o + 71 Ba, Yo + V2D, vo + v3Dv, Yo + Y4 d T, Yos- - - Vo)~ D-values
correspond to the likelihood ratio. Finally, * indicates rejection of the null at the 10% significance level,
** 5% level, *** 1% level.
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Table 1.6: Maximum Likelihood Estimates With Active Non-Bidding Participants

Estimate p-value

. 0.291 0
By 0.009 0
o -0.002 -
ag 5.926 -
a*™™  -0.439 0
Qo -0.007 0.55
az™  -0.126 0
oy 0.001 0.59
7o 0.001 -
Yo 1.628 -
i -0.427 0.08
Y2 -0.022 0.79
v 1.024 0
V4 0.058 0.76

Notes: The mean of the common value component for a given auction is m = 3, + 8,SIZE + ,HHI,
where SIZFE is a variable that measures the size of the locker (small (1), medium (2) or large (3)) and
H H captures the median household income of the municipality where the locker is located in the State of
California. Additionally, the mean of the private value component of the four main bidders (Barry "Ba",
Darrell "Dr", Dave "Dv" and Jarrod "Jr"), as well as of the other active bidders whose identity is not
shown publicly, is @ = (g + a1 Ba, ag + s Dr, ap + a3 Dv, ag + ag J7, g, - . ,00), where Ba, Dr, Dv and
Jr are mutually exclusive dummy variables. Furthermore, the variance of the common and private value
component is modelled as 73 = exp(dp) and t* = exp(7y), respectively, while the variance of the noise for
each of the bidder’s signals is s? = exp(yy + 71 Ba, Yo + Y2 D1, Yo + V3DV, Yo + Y47, Yos- - - Y0)- p-values
correspond to the likelihood ratio. Finally, * indicates rejection of the null at the 10% significance level,
** 5% level, *** 1% level.
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1.9 Graphs Chapter 1

Figure 1.1: Loss Aversion Utility Function

10 T T

Utility

-10 / .
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Loss/Gains

Notes: This graph displays the shape of the utility function (1.1) plotted against gains and losses for
A =1 (risk neutrality) and A = 2.25 (loss aversion), with the marginal utility of losses being A times the

marginal utility of gains.
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Figure 1.2: Bidding Functions
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Notes: This graph displays the equilibrium bid functions for A = 1 (risk neutrality) and A = 2.25 (loss
aversion), with bidders bidding substantially lower under loss aversion.
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Figure 1.3: Log-Bid Functions in Multiple Rounds
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Round 0
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Notes: This graph displays the log-bid functions of a representative bidder for each round in an auction
with 5 loss averse bidders.
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Figure 1.4: Log-Bid Functions with Active Non-Bidding Participants

11 T
Round 0
10 F |~ — — — Round O with 1 drop
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Notes: This graph displays the log-bid function of a representative loss averse bidder when he takes into
account the private information active non-bidding participants have in round 0.
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Figure 1.5: Distribution of Storage Wars Profit/Losses
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Notes: This graph displays the boxplot of the profit/losses in storage locker auctions, without a few
extreme outliers.
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Figure 1.6: Log-Bid Functions of Storage Wars Bidders Baseline Model

Log-Bidding

8 9 10
Log-Signal

Notes: This graph displays the round 0 log-bid functions of Storage Wars bidders under loss aversion,

except for Dave who is risk neutral.
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Figure 1.7: Log-Bid Functions of Storage Wars Bidders With Active Non-Bidding Participants

10
- Anonymous after Darrell
9 - |——— — Barry after Darrell i
—— Dave after Darrell
————— Jarrod after Darrell

Log-Bidding
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Notes: This graph displays the log-bid functions of Storage Wars bidders in round 0 with 1 active
non-bidding participant, which in this case is Darrell.
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Chapter 2

Heterogeneous Pairs Play Mixed Strategies in the Soccer Field

2.1 Introduction

Mixed strategies are a fundamental component of game theory that allows us to theoretically
understand strategic situations which involve unpredictability and mutual outguessing. However,
the empirical evidence is still mixed when it comes to assessing whether players actually play
consistently with equilibrium predictions.

Experimental situations provide a controlled environment to assess the behavior of players,
but they are sometimes criticized because labs might be too aseptic and detached from a real
life situation. In contrast, behavior in the field is more likely to reflect real life because of its
natural setting, which might provide higher external validity.

The main purpose of this chapter is to check if individuals, when repeatedly facing the
same opponents, really behave as game theory predicts by using data from a natural example
of strategic play: soccer penalty kicks. A penalty kick can be regarded as a zero-sum game
between two players, one kicker and one goalkeeper, because the rules of the game forbid any
other player to intervene. They provide a notable advantage over many other real life situations
because soccer players are experts at their game and the outcome (goal or miss) is immediately
observed after the players choose their strategies.

To test the main implications of mixed strategy equilibrium within pairs, I conducted a
(quasi) field experiment in the training grounds of AD Alcorcén, a team from the Spanish
Second Division League (also known as Laliga SmartBank). The dataset I collected includes
very detailed information on all relevant aspects of the penalty kicks, specifically the choices
taken and the outcome of the kick. The players in my dataset take part in regular competitive
leagues in amateur divisions.!

Given that in real life situations the same pair of players is rarely observed, previous empir-

! Apart from training several hours every day of the working week and playing matches every weekend, they
devote a significant fraction of their time and effort to become professional experts in their field.
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ical papers using penalty kicks assumed homogeneity of opponents (see Chiappori et al (2002)
and Palacios-Huerta (2003, 2017) for examples). In this chapter, I study the consequences of
ignoring heterogeneity in empirical work, which arises when pooling observations across rivals.
Specifically, I show that assuming homogeneity might lead to false rejections when the different
rivals of a given player behave differently. Apart from providing necessary and sufficient condi-
tions for this problem to be irrelevant, I suggest a simple way of combining the test statistics
of a player across opponents to obtain a valid aggregate test without making any additional
assumptions.

The first testable implication I check is whether the scoring probabilities of a player are
identical across strategies, as the theory states they should be. To the best of my knowledge,
this is the first time that this hypothesis is tested in the field using repeated observations on
specific pairs of kickers and goalkeepers. Empirically, I cannot reject the equality of the scoring
probabilities, except for the kickers from the least professional team.

The second testable implication I check is that the actions of the player at each penalty kick
should be serially independent, because equilibrium play also requires that each player’s choices
are independent draws from an i.7.d. process. Once again, an important advantage of my dataset
is that there are repeated observations for the same pair of players. As in the existing literature,
I find that the behavior of most players is consistent with the theory.

The main objective of the next two hypotheses I test is to detect possible interactions between
players because a standard assumption in non-cooperative game theory is that players’ actions
are independent. Specifically, the third hypothesis I check is whether there exists dependence
between the strategies of the two players within a given pair at each penalty kick. This hypothesis
was already tested by Chiappori et al (2002), who did not reject the null, but they had to pool
observations across different, possibly heterogeneous, players because they did not have repeated
observations on pairs of kickers and goalkeepers. In contrast, I find dependence between kickers’
and goalkeepers’ actions for most pairs. The validity of this hypothesis is very important in
practice since teams would like to sign goalkeepers that have positive correlation with strikers
because it would mean that they can sometimes anticipate where the kicker is going to shoot. At
the same time, teams would like to sign strikers who had negative correlation with goalkeepers
because it would imply that they are able to deceive them.

In addition, given that in my (quasi) experiment the players participated in a penalty
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shootout in the training grounds, which is a sequence of penalty kicks in which both kickers and
goalkeepers take turns, I also test whether the strategy chosen by consecutive kickers/goalkeepers
within teams is influenced by the previous player’s strategy. One of the possible alternatives to
this hypothesis is that there could exist herd behavior. For example, if the previous kicker

2 In

shoots to the left, then the next kicker might also decide to shoot to the left, and so on.
this respect, I observe that the goalkeepers of the least professional team tend to replicate each
other’s actions.

Finally, the availability of repeated observations for each pair of kickers and goalkeepers
also allows me to check whether players exhibit some form of learning in the training grounds.
In particular, I assess the reinforcement learning model of Erev and Roth (1998), whose main
implication is that players respond to negative or positive stimuli by using actions that have
worked well for them in the past. However, I find that players do not seem to follow such a
reinforcement learning model.

Given that my work contributes to the empirical literature on strategic interactions in two
person zero-sum games, | will briefly survey next the existing evidence in professional sports.

Walker and Wooders (2001) tested whether professional tennis players played according to
mixed strategies when serving and receiving. Unfortunately, their dataset only contained the
server’s action and the winner of the point. Still, they found that their data was consistent with
the implication of equal payoffs across actions. However, they found negative serial correlation
between the actions of a player, i.e. switched actions to often. In contrast, Hsu et al (2007)
found that tennis players played consistently with the two implications of the theory using a
broader dataset, which included men’s, women’s, and juniors’ matches.

Chiappori et al (2002) offered evidence on the application of mixed strategies to penalty kicks
in soccer by testing whether the strategy chosen by the rival forecasts the other player’s action
in the penalty kick. However, they found no relationship between the kicker’s and goalkeeper’s
actions. Additionally, they could not reject the null hypothesis of equal winning probabilities for
the players in their sample. They also tested if there is serial correlation in actions, but they
found none. Although their paper represents one of the first attempts to test mixed strategy

behavior using data from real soccer games, the nature of their data meant that they looked at

2In fact, this type of behavior was observed during the penalty shootout of the 2016 Champions League Final
between Real Madrid and Atletico de Madrid, where the kickers from both teams exactly replicated the action of
the previous kicker.
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the behavior of players aggregating across multiple, possible heterogeneous players rather than
at the level of specific kicker-goalkeeper pairs.

One of the contributions of Palacios-Huerta (2002) was to compile a larger dataset, which
allowed him to observe repeatedly many individual players. However, he again aggregated across
potentially heterogenous opponents because he had little data on repeated interactions of specific
pairs. As Chiappori et al (2002), he found that winning probabilities were identical across
strategies and that choices were serially independent.

In subsequent work, Palacios-Huerta and Volij (2008) used a 2 x 2 laboratory experiment bor-
rowed from O’Neill (1987) which mimics penalty kicks. In their simplified lab game, a "kicker"
and a "goalkeeper" choose between two actions simultaneously several times. They found that
in their lab games professional soccer players played consistently with the mixed strategy equi-
librium predictions, with some modest deviations and some serial correlation. In contrast, the
rest of the participants did not. However, Levitt et al (2010) found that professional poker,
bridge and American soccer players were not able to transfer their professional skills acquired in
the field to the lab because they did not behave consistently with equilibrium predictions. This
chapter tries to shed light on this conflicting evidence.

The rest of the chapter is organized as follows. Section 2.2 discusses the theoretical setting
and its equilibrium. In section 2.3, I discuss the problems that arise from pooling observations
of heterogeneous pairs of players as well as suggesting a valid aggregate test. Next, in section 2.4
I describe the dataset that I compiled to test the equilibrium predictions of mixed strategies in
the training grounds. The results of the empirical analysis are presented in section 2.5. Finally,
section 2.6 studies whether there is evidence of learning. This is followed by the conclusions and

several appendices where proofs and additional details can be found.

2.2 Penalty Kicks in Football and Game Theory
2.2.1 The rules

According to Federation Internationale de Football Association (FIFA) in the Official Laws
of the Game (FIFA, 2018) "in soccer, a penalty kick is awarded against a team which com-
mits one of the ten punishable offenses inside its own penalty area while the ball is in play".?

Additionally, there are penalty shootouts (mostly used in knockout tournaments), which are

3The ball is placed on the penalty mark. The goalkeeper remains on his goal line facing the kicker between
the goalposts until the ball has been kicked. The rest of the players are located outside the penalty area and they
cannot interfere in the kick.
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used for determining the winning team in a match that cannot end in a draw after both the
regulation and extra playing time have expired.*

In a given penalty kick, the ball takes approximately 0.3 seconds to travel the distance
between the penalty mark and the goal line. Thus, if the goalkeeper decides his action after the
kick, he will not be able to stop the shot (unless, of course, it is aimed at him), so in theory
both players must choose their strategies simultaneously.” This is one of the hypothesis that I

will test in section 2.5.
2.2.2 The formal setting

A formal setting of the penalty kick game can be written as follows: one goalkeeper and
one kicker are facing each other at a penalty kick. The kicker preferences are to score while the
goalkeeper has the opposite preferences, as in all strictly competitive games. Specifically, the
kicker’s payoff is the probability of scoring while the goalkeeper’s payoff is the complementary
probability. The kicker may choose to kick to his right (R), to his left (L), or to the center (C').
Similarly, the goalkeeper may choose to jump to his left, to his right or remain at the center.
When both players choose the same side (L, C, or R) the outcome is less likely to be a goal. In
addition, there is usually a natural side for a kicker to shoot, so that the probability of scoring,
when kicking to that side, is higher than when kicking to the center or the opposite side, both
when the goalkeeper guesses it and when he does not. In contrast, goalkeepers do not have a
natural side, but their ability to stop the goal may vary widely across opponents, as I document
in detail in section 2.5.

As an example, suppose that the player is right-footed and shooting to his left is his natural

side. The payoff matrix, which consists of scoring probabilities, is then:

4Each team take turns to shoot five penalty kicks, which must be taken by different kickers. The winning
team is decided on the best of five kicks basis. However, if both teams are tied in the number of scored penalties
after these five penalty kicks, then the shootout progresses into additional "sudden death" rounds (see Apesteguia
and Palacios-Huerta (2010) for more details).

>Miller (1998) reports evidence on the fact that both players must choose their strategies simultaneously using
data from all the penalty kicks in four World Cups.
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Goalkeeper
Left Center  Right

Left |a,1—a | b,1—0b]| b,1—0

Kicker Center | e,1—¢ | c¢,1—c | e 1—e

Right | e,1—€e | e, 1—¢e |d,1—d

where the first payoff corresponds to the kicker and the second payoff to the goalkeeper.

In terms of the payoff matrix, a is the probability that a goal is scored when both players
choose the kicker’s natural side. But if the kicker is the only one who chooses it, a goal is scored
with probability b. Therefore, it makes sense to assume that b > a. For any action other than
the kicker’s natural side, e is the probability that a goal is scored when the actions of both
players differ. Similarly, if both players choose action C, a goal is scored with probability ¢, but
if they both choose R, the probability is d. Given that the goalkeeper is more likely to save if
he remains at the center, it makes sense to assume that d > c¢. Additionally, as the kicker has
a natural side when kicking, then a > d. It also makes sense to assume that b > e because the
kicker’s probability of scoring a goal when kicking to his natural side (in this case left) is higher
than when kicking anywhere else, regardless of the actions of the goalkeeper. Finally, it is also
reasonable to expect that e > a, which means that the kicker is more likely to score when the
actions of both players differ.

Under these reasonable conditions, namely b > e > a > d > ¢, there is no pure strategy
Nash equilibrium in this game (see section 2.8.2 for a proof). However, there exists a unique
mixed strategy Nash equilibrium involving all three strategies where the kicker will choose L, C'

and R with probabilities

oy = (e—d)A(e—c)’ o = (e—d)A(b—a) and pp = (b—a)A(e—c)7

where A = (b+e—a—c)(e—d)— (e —c)(a—>b). In turn, the goalkeeper will choose the same

actions with probabilities

0 = (e—d)(b—c)z(c—e)(e—b)’ o = (e—a)A(e—d) and gp (e—a)A(e—c)’

respectively (see section 2.8.3 for more details). These values guarantee that in expected terms,

the probability of the kicker scoring a goal is the same regardless of the strategy chosen (L, C
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or R). The same reasoning applies to the goalkeeper.’

Given that in my dataset each kicker-goalkeeper pair played the penalty kick game several
times, these multiple observations imply that the game was in fact a finite two-person repeated
zero-sum game. However, the only subgame perfect equilibrium stipulates to play the Nash
equilibrium obtained above in every period (see Osborne (2003) chapter 14 for more details).

From an empirical point of view, the tests would be much simpler if all pairs were alike
because one could pool all the observations together. However, this is not the case in practice
because the parameters a, b, ¢, d and e of the payoff matrix depend on the relative abilities of the
kicker and goalkeeper, so in general, there will exist pair-specific heterogeneity in the strategies
played. For that reason, it is convenient to have repeated observations for each pair. I discuss

this issue in more detail next.
2.3 Heterogenous Opponents

The problem of heterogeneity arises when the observations of two or more different pairs of
players, each having different abilities or characteristics, are treated as if they all came from
the same pair. This is done very frequently in empirical work because of the lack of repeated
observations for specific pairs. For example, despite its size, Palacios-Huerta’s (2003, 2017)
dataset on penalty kicks in actual soccer matches has very few repeated observations for the
same pair of kicker-goalkeeper.

In this section, I study the consequences of assuming that the sample observations come
from a homogeneous population when in fact it is heterogeneous. For simplicity of exposition,
I consider a version of the model in section 2.2.2 with only two actions, although the problem

applies more generally. The payoff matrix of this simplified game is the following:

Goalkeeper
Left Right

Left |a,1—a | b,1—0

Kicker
Right | e,1—¢e | d,1—d

where the first payoff corresponds to the kicker and the second payoff to the goalkeeper. As

before, the parameters a, b, d and e depend on the relative abilities of the kicker and goalkeeper,

SChiappori et al (2002) discussed a simplified 3 x 3 payoff matrix which can sometimes give rise to an
equilibrium with only two strategies.
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so in general, there will exist pair-specific heterogeneity in the strategies played. It is easy to
see that there is no pure Nash equilibrium in this game. In this case, the unique mixed strategy

Nash equilibrium is such that the kicker will choose L and R with probabilities

e—d b—a
— d = - 2.1
= e —a—d M PR T e —a—a’ (2.1)
while the goalkeeper will choose them with probabilities
b—d e—a
— dgp= ——— 2.2
Ly e _—a—ad™ BTy e —a—a (22)

respectively.” Again, if the same pair of kicker and goalkeeper play the game repeatedly a
finite number of times, the only subgame perfect equilibrium stipulates to play the same Nash
equilibrium in every period.

Suppose now the same player faces two different opponents, which gives rise to different
parameters values a, b, d and e for each pair, and therefore different equilibrium values. As an

illustration, suppose that the payoff matrices for pairs A and B are the following:

Pair A
Goalkeeper
Left Right
Left | 0.03,0.97 | 0.98,0.02
Kicker
Right | 0.99,0.01 | 0.02,0.98
Pair B
Goalkeeper
Left Right
Left | 0.73,0.27 | 0.93,0.07
Kicker

Right | 0.92,0.08 | 0.89,0.11

where I have chosen these values in such a way that if I choose 20% of the observations from
pair A and 80% from pair B, then the average payoff matrix corresponds to the one in Palacios-

Huerta (2017). For each of these two pairs, there exists a unique mixed strategy Nash equilibrium

T A special case arises when a = d = 0 and b = e = 1, which leads to a mixed strategy Nash equilibrium where
both the kicker and the goalkeeper choose L and R with probability 1/2.
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in which the kicker and goalkeeper of pair A play L and R with probabilities pf = 0.51 and
pg = 0.49, and qf = 0.50 and ql‘% = 0.50, respectively; while the kicker and goalkeeper of pair B
will choose L and R with probabilities pf =0.13 and pg = 0.87, and qf =0.17 and qg = 0.83,
respectively.

The joint probability distribution in the population for the kicker-goalkeeper pair i, for

i1=A,B,is
Direction/Outcome | Left Right Sum
Success TFiSL T%R 7ng
Failure W%L W%R 7r’1§
Sum 772 7'['% 1

where ﬂiL denotes the marginal probability of the left strategy and ﬂfg the marginal probability
of scoring.

Suppose now that an empirical researcher erroneously treats all the observations as though
they came from the same pair. Let’s define a heterogeneous player H as drawn with probability A
from pair A and with probability 1 — A from B. The following proposition establishes necessary
and sufficient conditions that allow researchers to ignore heterogeneity (see section 2.8.1 for

proof).

Proposition 2.1 If both pairs of kicker and goalkeeper play consistently with the equilibrium
predictions of mized strategies, the scoring probabilities of a "heterogemeous"” player will dif-

er across strategies unless X = 0 or A = 1 (no heterogeneity in the sample), 7 = 78 (no
q g Y pie), T, L

heterogeneity in the strategies) or Wé = W? (no heterogeneity in the outcome).

As a special case, this proposition justifies the sufficient condition of identical goalkeepers
in Chiappori et al (2002), who stated that if goalkeepers are indeed homogeneous, the kicker’s
strategy will be independent of the goalkeeper he is facing. In contrast, the result in Proposition
2.1 is both necessary and sufficient. In this sense, it is important to emphasize that it is not
enough that one of the players is the same across pairs; even in that case, what matters is
whether 7r‘£1 = Wf or ﬂé = W?.

To investigate the effects of heterogeneity, I study the correlation between the actions of
a supposedly homogeneous player with his scoring probability, which should be equal to zero
under the null Hy : 77%,3‘ =t x 7r§-, for h =S, F and j = L, R, where S (success), F' (failure), L
(left) and R (right) are dummy variables with ' =1—.5 and R =1 — L.

If both pairs of kicker and goalkeeper play consistently with equilibrium predictions, then
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the marginal probability of their actions (7% ) is equal to the mixed strategy equilibrium (p%, ¢%)
for each pair ¢ in (2.1) and (2.2). Additionally, given independent actions between players, the

marginal probability of scoring can be easily computed as
. R . .
T, = ZPr(h = 1]j,m) * p; * q,,,, where m = L, R.
j=L

However, the marginal probability of scoring and the marginal probability of the actions
of the heterogeneous "player" H will be 7r§{ = )\773-4 +(1- )\)77]3 and 7l = Aril 4+ (1 — N)7B,
respectively. Therefore,

ot g
pu \/Var(hH)Var(jH)’

Corr(h, ;1) (2.3)

where
Cov(h, 1) = N1 = )\) (TF?? - 77}?) (773'4 - ﬂ?)
Var(hl) = 77{1{(1 — F{l{)

H

J

(see section 2.8.1 for more details).

(Figure 2.1)

Figure 2.1 shows the effects of varying the fraction of observations from pair A (A) on
the correlation between the actions of the supposedly homogeneous player with his scoring
probability. As expected, A = 0 or A = 1 (no heterogeneity in the sample) implies that player
H is indeed homogeneous. However, for any other value of A, there is an apparent dependence

between a player’s actions and his scoring probabilities when in fact there is none.
(Figure 2.2)

Figure 2.2 shows the theoretical rejection rates obtained with Pearson’s independence test
statistic with 2 actions and 1 degree of freedom for 20, 38 (Palacios-Huerta (2003) median
sample size) and 200 observations as a function of X\. As can be seen, when A = 0 or A = 1,
the rejection rate is the nominal (5%) size, while for any other value of A, it exceeds 5%.
This occurs even though both underlying pairs of players play consistently with the theory.
Therefore, the homogeneity assumption misleadingly increases the rejection rate of the test

statistics because the non-centrality parameter of the distribution of the statistic is np%{, where
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py is the correlation between the actions of the supposedly homogeneous player with his scoring
probability defined in (2.3). As is well known, the distribution of a non-central X? shifts to the
right as the non-centrality parameter np%{ increases, which implies an increase in the rejection
rate (see Mood et al (1974) for more details). Additionally, in section 2.8.4 I confirm that the
same conclusions hold in Monte Carlo simulations. However, it is important to note that the
rejection rate is rather low unless the sample size is large (see Figure 2.2 for more details).

So in summary, under heterogeneity, researchers may mistakenly reject the null when testing

the implications of mixed strategy even though the null is true.
2.3.1 Allowing for heterogeneity of opponents

I propose a simple solution to the heterogeneity problem in those situations in which there
are multiple observations for all the pairs involving a given player. The intuition is as follows.
For a given pair of players, all the independence test statistics converge to a X2 under the null
when the number of observations goes to infinity.® Therefore, I can compute an aggregate test
for a given player as the sum of the independent X'? statistics across all his opponents, which
results in another X2 with degrees of freedom equal to the sum of degrees of freedom for each
pair test.

Specifically, suppose that the same kicker plays against N different goalkeepers. Alge-

braically, his aggregate X? test statistic will be:

N
v=yw,
i=1
where W;, for i = 1,..., N, is his X2 independence test statistic obtained from the observations

he shares with his i** opponent.

From an empirical point of view, this simple aggregate test statistic allows both the optimal
mixed strategies and the scoring probabilities to be different for different opponents. In addition,
it allows the theoretical results to be tested player by player, thereby using more observations
for each player than each specific pair test. Obviously, if there is a single observation per pair,
this procedure cannot be applied. But as the number of observations per pair increases, its
reliability will increase.

Heterogeneity also affects the tests of serial correlation and action independence, but the

8 As is well known, those tests which converge to an F distribution with v; and vy degrees of freedom can be
converted into X?,l by multiplying the F statistic by v;.
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problems are very similar, so I will not discuss them separately.

2.4 (Quasi) Field Experiment

2.4.1 Soccer subjects

As T explained in the introduction, I conducted a (quasi) field experiment in the training
grounds of AD Alcorcén, a team from the Spanish Second Division League (also known as
LaLiga SmartBank), for periods of 15 minutes each day over a three week period in April 2016.
The players came from AD Alcorcén youth teams, which were taking part in regular league
competitions in amateur divisions. Those leagues have the same structure, calendar schedule
and rules as professional leagues (FIFA, 2018).

There are two types of players, who differ in seniority: "Cadetes" and "Juveniles". The players
from the Cadete teams are 15 and 16 years old and the players from the Juvenil team 17, 18
and 19 years old. AD Alcorcén has three Juveniles teams. The players I recruited from that
category come from the Juvenil A team which plays in the Honor Division, the top level of the
Spanish soccer league system for youth players. Those players are in their last formative stages
and aspire to climb the last step that leads them to Alcorcén B, the reserve team of the first
team. Moreover, there are three Cadete teams. The players I recruited from this age group play
in the Primera Division Autonomica and Preferente Cadete, which are the highest and second

highest divisions in that category, respectively.
2.4.2 FExperimental setup

Once all the players were recruited, I was able to create several pairs of kickers and goalkeep-
ers within each team. Since there are more defenders, midfielders and forwards than goalkeepers,
the latter were paired at least four times. In particular, every goalkeeper was matched with one
left and right-footed penalty kick specialist with substantial experience in kicking penalties, as
well as with left and right-footed inexperienced penalty kickers.” There are a total of 14 kickers
and 6 goalkeepers in the dataset.'’

After the pairs of kickers and goalkeepers were formed, they played a penalty shootout in

the training grounds, which is simply a sequence of penalty kicks where players take turns,

with a random initial order. This was done so as to have approximately the same number

9The selection was made by the managers of the different teams who knew the players’ abilities well. This
selection should in principle increase the heterogeneity within pairs.

"Due to the confidentiality agreements I signed with the players’ agents, I cannot reveal any personal identi-
fying information.
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of observations for each pair. Both kickers and goalkeepers regularly alternated to maintain a
high level of concentration in each practice session. Given that penalty kicks decide matches,
qualifications for next rounds in tournaments and even titles, soccer teams devote considerable
resources to analyze and improve strategies for their players. For that reason, coaches told
players that the penalty shootouts in my (quasi) experiment were an integral part of their

training.
2.4.3 Descriptive statistics

There is a total of 8 pairs from Cadete A with 16 penalty kicks each on average. Moreover, in
Cadete C, there are also 8 pairs with approximately 13 penalties each. In Juvenil A, there are 10
pairs with 10 penalties each on average. For each of these pairs, the observations in the dataset
include all the penalties they participated, in chronological order. Given that the different teams
played the penalty kick game over non-consecutive days, I have taken these breaks into account
in some of the tests.

The dataset includes the date and time at which the penalty kick took place, the identifying
codes of the kicker and goalkeeper for each penalty kick, the choices taken (L, C' and R), the
foot used by the kicker (left or right), and the outcome of the kick (goal or miss). There were
two independent measurements taken for each penalty kick to eliminate measurement error.'!

Table 2.1 offers a basic description of the data. It shows the relative proportions of choices
made by both kickers and goalkeepers from the different AD Alcorcén youth teams (L, C or R).
The first letter refers to the choice made by the kicker and the second one to the choice made
by the goalkeeper, always from the point of view of the goalkeeper. For instance, R-L means
that the kicker chooses to kick to the right hand side of the goalkeeper (the natural side of a
right-footed player) and the goalkeeper chooses to jump to his left. The last column shows the
scoring rate for a given team.

(Table 2.1)

The strategy followed by goalkeepers coincides with that followed by kickers in 47.84% of all
penalties in the dataset. Kickers do not usually kick to the center (11.71% of all kicks), whereas
goalkeepers remain in the middle less often (8.78%). The percentage of kicks where the actions

of the players do not coincide is mostly divided between L-R (18.76%) and R-L (19.35%). A

1 One measurement was taken from the point of view of the kickers while the other one from the goalkeepers.
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goal is scored in 75.66% of all penalty kicks. The scoring rate is over 88.84% when the kicker
choice differs from the goalkeeper, but it is just over 51.41% when it coincides.

Moreover, the scoring rate of penalties of Juvenil A, Cadete A and Cadete C are 76.92%,
72.86% and 77.77%, respectively. It may seem surprising that the scoring rate of the Cadete C,
which has the least professional players in the sample, is the highest of all the teams. This is
because the goalkeepers saving rate from Cadete C team is under 40% in all of their strategies,

the worst of the three teams (see section 2.5.1.1 for more details).

2.5 Empirical Analysis
2.5.1 Test of equal scoring probabilities

The first testable implication I check is whether the scoring probabilities for a player are
identical across strategies. Following the discussion in sections 2.8.5 and 2.8.6 regarding the size
and power of the different tests proposed in the literature, I use the F-test version of the Linear
Probability Model (LPM) (see Wooldridge (2002) chapter 7 for more details).?

Let S take the value 1 if the penalty is scored and 0 otherwise. Given that each player
(kicker/goalkeeper) has three strategies available (Left "L", Center "C", and Right "R"), the
LPM can be written as:

S=0rL+06cC+IdrR+ u, (2.4)

where L, C' and R are mutually exclusive dummy variables and u has zero conditional mean,
i.e. E(u|L,C,R) = 0. For example, L takes the value 1 if the penalty is shot in that direction
and 0 otherwise.

The regression coefficients of the LPM have a direct interpretation as conditional scoring
probabilities. For instance, ¢; is the proportion of left kicks scored. Thus, the estimated
probabilities are always non-negative and they add up to 1, which avoids a common criticism of
the LPM (see again Wooldridge (2002)).

The null hypothesis of equal scoring probabilities states that §; = g = d¢c = . In practice,

it is easier to test this hypothesis by estimating the following modification of model (2.4):

S=Py+ 6L+ ByR+u, (2.5)

2There are many econometric procedures to test this hypothesis. However, Proposition 3.1 of chapter 3 proves
the numerical equivalence between Pearson’s contingency table test for independence and the Lagrange Multiplier
(LM) and overidentifying restrictions test in several popular linear and non-linear regression models. Therefore,
the results that I will present are largely insensitive to the methodology used.
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where 5, = d¢, f; = 01 — ¢ and By = 0r — d¢. In (2.5), the coefficients of the dummy
variables are the differences between the scoring probabilities of the corresponding strategy and
the baseline, which in this case is C. The fit of this beta regression is identical to the fit of the
regression in (2.4), but it has the advantage that the null hypothesis of equal scoring probabilities
can be expressed as ; = 5 = 0. This can be tested using an F-test with 2 degrees of freedom
in the numerator and n — 3 degrees of freedom in the denominator, where n is the number of

observations.!® The exact formula of this F-test is:

(R2/k)
(1-R)/(n—k—1)

where R? measures the proportion of the variability of the dependent variable explained by
the k& non-constant explanatory variables. Therefore, the F-statistic would be 0 if the scoring
probability is exactly the same across strategies (single outcome) and/or if the player is only
employing one strategy (single choice). However, the F-statistic would be infinity when the
regressors provide a perfect fit, i.e. R2 =1 (see section 2.8.5 for more details).

The LPM has one potentially important disadvantage. Under the alternative, it violates the
homoskedasticity assumption because the conditional variance of the error term u will change
depending on the values of the explanatory variables (see Wooldridge (2002)). However, the
variance of u given the dummy regressors is constant under the null hypothesis of equal scoring
probabilities (5y(1 — By)). This implies that the homoskedasticity assumption holds and the
F-test is valid.
2.5.1.1 Pair tests

As I mentioned before, an important advantage of my dataset is that for the first time I
have repeated observations for each and every pair of kickers and goalkeepers. Therefore, I can
carry out separate tests that check whether each member of the pair within a team is playing
consistently with equilibrium outcomes. There is a total of 26 pairs in the dataset, and for each
pair, there is a test statistic for the kicker and another one for the goalkeeper. However, it
is important to note that the pair tests alone may have low power because of the relative low
number of observations (see section 2.8.6 for more details). The results of all those tests are

shown in Tables 2.2, 2.3 and 2.4. Table 2.2 corresponds to Cadete A, Table 2.3 to Cadete C and

3Some of the players in the training grounds never employed one of the three strategies (either L, C' or R).
When that occurs, the F-test will have 1 degree of freedom in the numerator and n — 2 degrees of freedom in the
denominator.

61



Table 2.4 to Juvenil A.

(Table 2.2)
(Table 2.3)

(Table 2.4)

The rejections I find only come from the kickers and goalkeepers from the Cadete A and
Cadete C team. Therefore, my evidence is trivially consistent with the first implication for all
the players from the Juvenil A team.

It is worth mentioning that the scoring rates vary substantially across pairs of the three
teams, which confirms the empirical relevance of the discussion in section 2.3. An interesting
observation I found was that kicker 3 of Juvenil A, who is a left-footed penalty kick specialist,
had a test statistic of 0 in all of the pair tests. This is because his scoring probabilities are
100% regardless of the strategy chosen, so not only is he a great performer, but he also behaves
perfectly according to the theory.
2.5.1.2 Tests allowing for heterogeneity of the opponents

Given that the pair tests do not exploit the fact that a player is matched several times, I
compute an additional test that checks whether each player behaves as the theory predicts when
aggregating all his observations but without assuming homogeneity of his opponents. This test
should have substantially more power than each specific pair test. The results are shown in
Table 2.5.

(Table 2.5)

Panel A describes the results for individual players for the Cadete A team. The null hypoth-
esis is rejected for one kicker and one goalkeeper at the 5% significance level and one additional
kicker at the 10% level. Panel B shows the results for the Cadete C team. The null hypothesis is
rejected for two kickers at the 5% significance level and one goalkeeper at the 1% level. Finally,
Panel C includes the results for the Juvenil A team. The hypothesis is only rejected for one
kicker at the 10% level.

Hence, the evidence obtained by aggregating each player’s opponents is consistent with the
first implication for the goalkeepers from the Juvenil A team. As for the kickers from the
Cadete A team, if I take into account that there are multiple tests (see section 2.8.7), the

binomial probability of one or more kickers out of 4 rejecting the null at the 5% level when the
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null is true is 0.185, so the evidence suggests that as a group, those players do not reject the null
hypothesis either. Additionally, the evidence I find for the kickers from the Juvenil A team is
also consistent with the theory because the probability of one or more kickers out of 6 rejecting
the null at the 10% level is 0.468.

However, given that the probability that two or more kickers out of 4 rejecting the null at
the 5% level is 0.014, I can claim that the scoring probabilities of the kickers from the Cadete
C team differ depending on the action. As for the goalkeepers from the Cadete A and Cadete
C teams, the evidence is more mixed because the probability of at least one goalkeeper out of 2
rejecting the null at the 5% and 1% level is 0.097 and 0.02 respectively.

In contrast, I find that the null hypothesis of equal scoring probabilities is rejected for the
kickers from the Cadete A team when I incorrectly treat all their opponents as if they were a
single homogeneous one because the probability of two or more kickers out of 4 rejecting the
null at the 5% level is 0.014. This false rejection confirms the importance of recognizing the

heterogeneity of opponents.
2.5.2 Test for serial independence

The second testable implication I check is that the actions of the player at each penalty
kick should be serially independent. In that regard, note that the players’ strategies will not
be serially independent if they switch actions too often (negative serial correlation) or if they
choose not to switch their actions regularly (positive serial correlation). Following the discussion
in sections 2.8.5 and 2.8.6 regarding the size and power of the different tests proposed in the
literature, I use the F-version of the Lawley-Hotelling trace test (LH) in the multivariate version
of the LPM to test if the player’s strategies are serially independent (see Stewart (1995) for more
details). '

The multivariate regression I have used to detect possible departures from serial independence

is similar to a first-order vector autoregressive process for dummy variables (see Wooldridge

1 The numerical equivalence results Proposition 3.1 of chapter 3 also applies to tests of serial independence of
a discrete Markov chain, which can be regarded as an analog to the multinomial model, although in a time series
context. Therefore, the results that I present should be largely insensitive to the methodology.
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(2002) chapter 18, section 5 for more details). Specifically,

Ly 0rr, Ocr ORL Li ULt
Cy | = | dc dcc dre Cior |+ | wer |
Ry 0rr Ocr ORR R4 URt

where L;, Cy and R; are the dependent variables, L; 1, Cy_1 and R;_1 are lagged regressors,
d¢, measures the probability of L; being equal to 1 given that C;_; is equal to 1, etc. In this
multivariate regression with three lagged explanatory variables, but no constant, the coefficients
of the lagged variables are the probability of choosing a strategy at time ¢ conditional on the
previous action. These are sometimes called transition probabilities. The sum of d;, drc
and dpp is equal to 1, and the same applies to the other columns in the matrix. Therefore, the
coefficients in equation C} can be obtained from the other two equations because Cy = 1—L; — R;.
For that reason, I can eliminate this equation from the system of equations without loss of
generality to avoid the singularity (see Judge et al (1985) chapter 12, section 5 for more details).

The null hypothesis of serial independence implies that é;;, = dcr, = 0rr, and dpgp = dor =

drr- In practice, it is easier to test this hypothesis by estimating the following model:

Ly =Bro+Brrli—1+ BrrRi—1 +urns
Ry = Bro + BrrLi—1 + Brrii—1 + ur:

where 8o = dcr and Brg = 6cr , B = 6L — dcr, Brr = OrL — dcL, Brr = 0Lr — 6cr and
Brr = 0rRr—IcR- In the regression with only two lagged variables and a constant, the coefficients
of the lagged variables are the differences between the probabilities of the corresponding strategy
and the baseline, which is the lagged variable C;_1. The adjustment of these regressions is
identical to the adjustment of the regressions written in terms of §’s, but they have the advantage
that the null hypothesis of serial independence can be expressed as
Brr = Brr = Brr = Brr = 0. In addition, homoskedasticity will again hold under the null, so
the usual regression tests remains valid.
2.5.2.1 Pair tests

Asin section 2.5.1.1, given that I have repeated observations on each pair of kicker-goalkeeper,
I can compute a test for the kicker and another one for the goalkeeper to check whether the
null hypothesis of serial independence holds using multiple observations for each and every pair.

But as I mentioned in section 2.4, the different teams played the penalty shootout over non-
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consecutive days, so there were long breaks between some of the observations. For that reason,
instead of assuming that the players remembered what they did at the very end of the previous
day, I test for serial correlation within each practice session, but combine the different sessions
for a given pair. In practice, this means dropping the first observation from each day. This
allowed me to have a larger sample for each pair, which enables the test to have more power to

reject the null. The results of the tests are shown in the following tables:

(Table 2.6)
(Table 2.7)

(Table 2.8)

The null hypothesis of serial independence is only rejected for the kickers in pair 4 and 9
from the Juvenil A team at the 5% and 1% level respectively, which is surprising because they
are both two penalty kick specialists. In fact, the actions of pair 9 kicker provide a perfect fit
(see section 2.8.5.1 for more details).
2.5.2.2 Tests allowing for heterogeneity of the opponents

Following the discussion in section 2.5.1.2, I also check whether the behavior of each indi-
vidual player is consistent with this second implication when aggregating all his observations
but without assuming homogeneity of his opponents. Again, the solution is to add up the A2

versions of the pair tests. The results are shown in Table 2.9.
(Table 2.9)

Panel A describes the results for individual players from the Cadete A team while Panel B
shows the results for the Cadete C team. The hypothesis of serial independence is not rejected
for any of those players, implying that they are indeed able to generate random sequences even
though they are not the most professional players in the sample. Finally, Panel C includes the
results for the Juvenil A team. The null hypothesis is only rejected for two kickers at the 10%
level.

In this context, one could therefore argue that most of the evidence obtained by aggregating
each player’s opponents is consistent with the second implication for all of the players in the
sample, including the kickers in the Juvenil A team because the probability of two or more

kickers out of 6 rejecting the null at the 10% level is 0.114 (see again section 2.8.7). Thus,
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they seem truly able to generate random sequences; they do not appear to switch strategies too
regularly or to seldom. This differs from the evidence of negative serial dependence in Walker
and Wooders (2001), who tested whether professional tennis players played according to the

theory when serving and receiving.
2.5.3 Test for action independence

In a penalty kick, both players must choose their strategies simultaneously due to the nature
of the game (see the discussion in Miller (1998) and footnote 4, section 2.2.1 for more details).
Therefore, an important implication of their randomizing behavior is that there should be no
dependence between the strategies played by the two players. Thanks to the repeated nature of
my data, I can follow a similar approach as in the previous section to test for possible interactions
for each pair of players from the three teams. In fact, the econometric procedure is analogous
to the one used for testing serial independence described in section 2.5.2, except that here
regressands and regressors correspond to the same time period and the explanatory variables
correspond to the actions of his opponent (see section 2.8.6 for more details).!> Obviously, this
test can only be done at the pair level. The results for the three teams are displayed in Tables

2.10, 2.11 and 2.12.

(Table 2.10)
(Table 2.11)

(Table 2.12)

The results show that of the 26 existing pairs, the null hypothesis is rejected for one pair
from the Cadete A team, and two pairs from the Cadete C team at the 10% level, one pair from
the Juvenil A at the 5% level, and finally two pairs from the Cadete C team and one pair from
Juvenil A team at the 1% level. In fact, in the Cadete C team, the regressors for pairs 5 and 6
provide a perfect fit. These two pairs correspond to both goalkeepers playing against the same
inexperienced left-footed kicker.

If T take into account that there are multiple tests (see section 2.8.7), the probability that two
or more pairs out of 8 from the Cadete C team rejecting the null at the 1% level is 0.002, so there

seems to be dependence between the kicker’s and goalkeepers actions in a penalty kick. This is

151t is worth mentioning that the results in Proposition 3.1 of chapter 3 imply that I would get the same results
if I exchanged regressors and regressands in these regressions.
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not very surprising because they are the least experienced players in the sample. Similarly, as
the probability that at least one pair out of 10 from the Juvenil A team rejecting the null at the
1% level is 0.095, there is marginal evidence of dependence between the kicker’s and goalkeeper’s
actions. In contrast, I can conclude that the kickers’ and goalkeepers’ actions are not correlated
for the Cadete A team players because the probability of one or more pairs out of 8 rejecting
the null at the 10% level is 0.569. This differs from the evidence in Chiappori et al (2002), who
did not rejected the null, but they did not have repeated observations. However, my finding is

in line with the results in Belot et al (2013).
2.5.4 Test for sequential independence

Finally, I test that the strategy chosen by consecutive kickers/goalkeepers within teams is
independent of the previous player’s strategy. Recall that players played a penalty shootout in
the training grounds with an initial random order, so that both kickers and goalkeepers regularly
alternated to maintain a high level of concentration in each practice session. This hypothesis
will be rejected if there is herd behavior. For example, if the previous kicker shoots to the left,
then the next kicker might also decide to shoot to the left, and so on. Once again, instead of
assuming that the players remembered what they did at the very end of the previous day, I test
for sequential independence by combining the different sessions for a given team without the
first observation from each day.

The econometric procedure is analogous to the one described in section 2.5.2 except that now
the lagged variables represent the action of different kickers/goalkeepers from the same team.

The results of the test are shown in Table 2.13.
(Table 2.13)

The main result in this analysis is that the null hypothesis is only rejected for the goalkeepers
from the Cadete C team at the 5% significance level. Apparently, the goalkeepers from that
team tended to replicate the strategy of the previous goalkeeper. This may occur because these
players have less years of experience and play in the least competitive league of the three teams
in the sample. On this basis, one could say that those players exhibited some form of herd
behavior. In contrast, players with substantial experience tend to rely on their own actions and

not on the previous players actions.
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2.6 Reinforcement Learning

Although many economic theories rely on the analysis of Nash equilibria in games, they
do not necessarily require fully rational players. In fact, Nash equilibrium might arise as a
result of less than fully rational players learning over time. For that reason, I study if the
reinforcement learning model of Erev and Roth (1998), whose main implication is that players
respond to negative or positive stimuli by using actions that have worked well in the past, might
be relevant for the players in my dataset.

Assume that at t = 1, each player ¢ has an initial propensity to play his m!" pure strategy
(L, C or R), given by ¥;,(1). For simplicity, assume that to begin with, each player 7 will have
equal propensities for each of his pure strategies, so ¥;1(1) = J;c(1) = ¥ir(1) = 1/3. After
each play, propensities are updated using a reinforcement function. Specifically, assume that if
player i plays his m!”" pure strategy at time t and obtained a payoff x, then his propensity to

play strategy m at time ¢ + 1 is updated by setting

Yim(t) + R(z) if m = my
Dim (t) otherwise

for some increasing function R(-). The idea is that if m; was successful, the player is more likely

to use that strategy again. However, if it was unsuccessful, he will be less likely to play it.
Propensities are mapped into choices using a probabilistic choice rule. For instance, letting

vim (t) denote the probability that player ¢ will choose action m at time ¢, a simple rule would

be:
Vim (1)
Zm:L,O,R Vim ()’

where the sum is taken over all player i’s pure strategies (L, C' and R).

Uim (t) =

Therefore, a testable implication of the reinforcement learning model is that a player’s strat-
egy depends on the outcome of his previous action. On the other hand, if kickers and goalkeepers
play according to mixed strategies, then they will not modify the probabilities of their actions
regardless of the outcome of their previous actions.'%

To test if players use such a learning mechanism, I will use the multivariate version of the

LPM in section 2.5.2 but this time using as regressors interaction terms between the lagged

outcome (success (S;—1) and failure (Fi_; = 1 — S;_1)) and the lagged regressors (L;—1, Cy—1

16This hypothesis is somewhat related to the implication of serial independence but it is substantially different.
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and R;_1). Specifically, I consider

LS; 1
CSi—1
Ly érLs Pcrs Prrs PLLr PcLr  PRLF RS ULt
-1
Ct | = | ¢rcs bccs Pres Prer Pocr Pror . + | uer |
-1
Ry ¢Lrs Pcrs Prrs PLrr PCcRF PRRF URt
CFi_1
RF; 4

where L;, Cy and R; are the dependent variables, mh;_1, for m = L,C, R and h = C, F', is an
interaction term between the lagged regressors and the lagged outcome, and ¢; ;¢ measures the
probability of L; being equal to 1 given that LS; i is equal to 1, etc. As usual, the coefficients
in equation C} can be obtained from the other two equations because Cy = 1 — L; — R;. For
that reason, I eliminate this equation from the system of equations without loss of generality to
avoid the singularity.

The null hypothesis of no learning implies that ¢ ;5 = ¢cj5 = Orjs = Orjr = Pcjr = PrjF

for j = L, R. In practice, it is easier to test this hypothesis by estimating the following model:

Ly =wro +wrrsLSi—1 +wersCSi—1 + wrrsRSi—1 +wrrrLFi—1 + wrrrRF—1 +upe

Ry = wro + wrrsLSi—1 +wcrsCSi—1 + wrrsRSt—1 +wWrLrrLF_1 + WrrFRF}_1 + uRs

where wro = dopp, WRO = PcRFs WLLS = $LLs — PoLFy WLRS = ®Lrs — Pcrps ete. In these

regressions with only five variables and a constant, the coefficients of the lagged explanatory vari-
ables are the differences between the probabilities of the corresponding strategy’s outcome and
the baseline, which corresponds to C'F;_q. Otherwise, the econometric procedure is analogous

to the one used to test for serial independence described in section 2.5.2.
2.6.1 Pair tests

Given that there are multiple observations for each pair of kickers and goalkeepers, I check
whether the null hypothesis of lack of learning holds. As usual, for each pair there is a test

statistic for the kicker and another one for the goalkeeper. The results of the tests are shown in

69



Tables 2.14, 2.15 and 2.16.

(Table 2.14)
(Table 2.15)

(Table 2.16)

In the Cadete A team, pair 3 kicker rejects the null hypothesis of lack of learning at the 10%
significance level. Additionally, in the Cadete C team, the null is only rejected for pair 3 kicker
at the 5% level and for pair 6 goalkeeper at the 10% level. Similarly, in the Juvenil A team,
pair 4 kicker and pair 8 goalkeeper reject the null at the 10% level. Despite these rejections,
only a few of the players showed clear evidence of reinforced learning. For instance, the kickers
from pair 3 from the Cadete A and Cadete C teams seemed to change strategies when they
missed and remain playing the same strategy if they scored. In contrast, pair 4 kicker and pair
8 goalkeeper from the Juvenil A team did not play according to the implications of reinforced
learning because surprisingly they switched strategies too often whenever at ¢t — 1 the outcome

was a goal.
2.6.2 Tests allowing for heterogeneity of the opponents

Once again, I compute an additional test that checks whether each player behaves consis-
tently with learning by aggregating all his observations but without assuming homogeneity of

his opponents. The results are shown in Table 2.17.
(Table 2.17)

Panel A describes the results for individual players for the Cadete A team. The null hypoth-
esis of lack of learning is not rejected for any of the players. Panel B shows the results for the
Cadete C team. The null hypothesis is rejected for one kicker and one goalkeeper at the 10%
level. Finally, Panel C includes the results for the Juvenil A team. The hypothesis is rejected
for one kicker at the 10% level.

Nevertheless, if I take into account that there are multiple tests (see section 2.8.7), most of
the evidence obtained by aggregating each player’s opponents does not suggest the presence of
reinforced learning because the probability of one or more kickers out of 4 from the Cadete C

team rejecting the null at the 10% is 0.344 while the probability of one or more kickers out of 6
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from the Juvenil A team rejecting the null at the 10% level is 0.468.
2.7 Conclusions

In this chapter I conducted a (quasi) field experiment in the training grounds of AD Alcorcén
to test if individuals satisfy the main implications of mixed strategy equilibrium in soccer penalty
kicks. An important advantage of my dataset is that it contains multiple observations on specific
heterogeneous pairs of players, a situation that rarely repeats in real life. I also study the effects
of ignoring heterogeneity in empirical work, which arises when pooling observations because of
the lack of repeated observations for specific pairs. I find that if researchers ignore heterogeneity
when it is present, they may often reject the null when in fact the null is true. For that reason,
I suggest a simple way of combining the test statistic of a player across opponents to obtain a
valid aggregate test without making any additional assumptions.

From the empirical point of view, I find that the behavior of most soccer players, when
repeatedly facing the same opponents, is consistent with the implications of mixed strategy
equilibrium, in the sense that winning probabilities are identical across strategies, except for
the kickers from the least professional team, and that player’s actions are serially independent.
In contrast, I find dependence between the kicker’s and goalkeeper’s actions. Moreover, the
goalkeepers of the least professional team tended to replicate each other’s action during the
penalty shootout. Nevertheless, I also find that players do not seem to follow a reinforcement
learning model.

Although the empirical analysis of this chapter provides reliable evidence on some funda-
mental implications of game theory, paying particular attention to the effects of the different
years of experience and the level of professionalism of the different teams, there is still much to
learn about the competitive behavior that arises in zero-sum games from the field, lab and real

life situations.

71



2.8 Proofs and Auxiliary Results
2.8.1 Proof of Proposition 2.1

Recall from section 2.3 that under the null, wﬁlj = 77}'1 X 7r§» for h = S,F and j = L, R,
where S, F', L and R are dummy variables with /' =1 — 5 and R = 1 — L. The payoffs of a

heterogeneous player H will be:

me =P =1, = 1) = P(h" = 1,5 = 1| Pair A) x P(Pair A)

+ P(hf! =1, = 1| Pair B) x P(Pair B)

or equivalently

W% = Ffj)\ + ij(l = \).
Similarly,

= p(mf = 1| Pair A) x P(Pair A) + P(m" =1 Pair B) x P(Pair B)

m

or equivalently
o = 7AXN 4 7B(1—N), for m = j, h.

m =

i.

5 is true for the heterogeneous player H given that

We want to check if Wﬁlj = 77}'1 X T

A _ A A B _ _B B
Thj = Ty X T andwhj—ﬂh Xy

If we regress hl on a constant and j, for example, the regression coefficient is
Cov(h,j1)/Var(j),

where

Cov(h®,j) = E(h"57) — BT E(T) and Var(j7) = E[(G7)?] - [EG™)]®.

Here,
E(hj1) = E(hj4 | Pair A\ + E(WPjB | PairB)(1 — ),

but under independence of (R4, j4) and (B, jB), then E(hTj7) = (TrfL‘TrjA)/\ + (ﬂ'Eﬂ'jB)(l —-A)
because E(hij! | Pair i) = E(h' | Pair i) x E(j' | Pair ).
Similarly,

E(m™) =x2Xx+ 781 -\, for m = j, h.
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Therefore,

C’ov(hH,jH) = (7‘(2‘7‘(}4))\ + (ﬂfﬂ?)(l —A) — [7r34)\ + 7r§3(1 - )] [ﬂf)\ + Wf(l — )\)} ,

which simplifies to

Cov(hf, 7)) = X\(1 — \) x (Wf—ﬂf) X (7r3~4 —Wf).

As a consequence, the regression coefficient will be zero if and only if A = 0 or A = 1 (no
heterogeneity in the sample), or 77 = 72 (no heterogeneity in the outcome) or 773-4 = 7T]-B (no

heterogeneity in the strategies), as stated.
2.8.2 Proof of lack of pure strategies

Note that the penalty kick game in section 2.2.2 is strictly competitive because the kicker
wants to score while the goalkeeper has opposite preferences (see Osborne (2003) chapter 11,
section 3 for more details).

Let’s find out the best response function of the goalkeeper to the actions of the kicker. If the
kicker plays left, the goalkeeper best response is to play left because 1 — a > 1 — b. Similarly, if
the kicker plays center, the goalkeeper best response is to play center as 1 —¢c>1—e > 1—0.
Lastly, if the kicker plays right, the goalkeeper best response is to also play right. Therefore,
the goalkeeper’s best response is to play the same action as the kicker.

Now, let’s derive the best response function of the kicker. If the goalkeeper plays left, the
kicker best response is to play either center or right because e > a. Similarly, if the goalkeeper
plays center, the kicker best response is to play left as b > e > ¢. Lastly, if the goalkeeper plays
right, the kicker best response is to play left. Therefore, the kicker’s best response is to play the

opposite action of the goalkeeper.
2.8.3 Existence and uniqueness of equilibrium

Suppose that in the penalty kick game in section 2.2.2 the kicker believes that the goalkeeper
plays L with probability qr, R with probability qr and C with probability g0 = 1 — qr, — qr.
Similarly, suppose the goalkeeper believes that the kicker plays L with probability pr, R with
probability pr and C with probability pc =1 — pr, — pg.

The expected payoff of the kicker’s pure strategies against the goalkeeper’s mixed strategies

73



(o¢) for the payoff matrix in section 2.2.2 are:

Eluk(L,0c)] = aqr + b(qc + qr)
Eluk(C,0q)] = e(qr + qr) + cqc

Elug(R,06)] = e(qL + qc) + dgr

Since in equilibrium Flug (L,0q)] = Elukx(C,0q)] = Elukx (R, 0¢)], then

aqr, +b(qc +qr) = elqr +4qr)+ cqc

aqr +b(gc +qr) = elqr +qc) +dar

or equivalently
(b+e—a—-c)qr+(e—c)gr=b—c
(a—b)gr+(e—d)gr=e—b

which can be written in matrix form as
b+e—a—c e—c qr, b—c
a—1b e—d qRr e—b

Solving for gy, and gqpr yields:

-1

qr, b+te—a—c e—c b—c
qR a—>b e—d e—b
qr, 1 e—d c—e b—c¢
qR A b—a b+e—a—c e—b

where A= (b+e—a—c)(e—d)—(e—c)(a—0b) >0 given that b > e >a >d > c.
Hence,
w) 1| -De-ot-ele-b
aw | ® (e—a)(e—0)
Similarly, the expected payoff of the goalkeeper’s pure strategies against the kicker’s mixed

strategies (o) are:

Elug(L,0k)] = (1 —a)pr + (1 — €)(pc + pr)
Elug(Cyok)] = (1 =b)pr + (1 —e)pr + (1 — ¢)pc
Elug(R,0k)] = (1 —-bpr + (1 —e)pc+ (1 —d)pr
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Since in equilibrium, Elug(L,0k)] = Eluc(C,ok)] = Elug(R,0k)], then

(1 =a)pr + (1 —e)(pc +pr) = (1 = b)pr + (1 — e)pr + (1 — ¢)pc
(I —a)pr + (1 —e)(pc +pr) = (1 = b)pr + (1 — e)pc + (1 — d) pr
or equivalently
(e+b—a—c)pL+(e—c)pr=e—c
(a—b)pr+(e—d)pr=0
which can be written in matrix form as
e+tb—a—c e—c DL e—c

a—1b e—d DR 0

Solving for pr, and pg yields:

DL 1 e—d c—e e—c
PR A b—a e+b—a—c 0
Hence,
pr | 1 (e —d)(e—c)
e ) A\ b-ae-o

When b > e > a > ¢ but ¢ = d, then qr, > qc = qr and p;, > pc = pr if 2b — d > 2e — a,
which implies that both players will choose more frequently the natural side of the kicker than
any other side. In turn, the kicker will only choose R and the goalkeeper L when b > e but
e = a = d because pr, = pc = qc = qr = 0. Similarly, when b > e and a > d > ¢ but e = a, the
goalkeeper will only choose L because qo = qg = 0. Additionally, when b = e = a but a > d,
both players will only play L because pc = pr = qc = gqr = 0. Finally, whena=b=c=d =e,
both the kicker and the goalkeeper are indifferent between playing pure or mixed strategies,
since the expected payoff from choosing L, C' or R gives the exact same payoff. However, all
these equilibria are ruled out by assumption.

Hence, the game has no pure strategy Nash equilibrium, as stated.
2.8.4 Finite sample behavior under heterogeneity

The p-value plots of the tests, which contain the empirical cumulative distribution func-
tion (cdf) of the asymptotic p-values in the Monte Carlo simulations for 200 observations (see

Davidson and MacKinnon (1998)), are depicted in Figures 2.3.a to 2.3.f. The advantage of this
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sample size is that the asymptotic p-values are reliable. As can be seen, the empirical cdf of the
asymptotic p-values is well above the 45° line even though both pairs of players play according
to the theory. Hence, under heterogeneity, we will often mistakenly reject the null even though
the null is true, as shown in Figure 2.2.

I also consider the case for 20 observations, where I get analogous results but with lower

rejection rates. Thus, my Monte Carlo results confirm the result in Proposition 2.1.
2.8.5 Size experiments

Even in experimental studies, few observations for each pair of kicker-goalkeeper are likely
to be the rule rather than the exception. Therefore, it is important to investigate the behavior
of the tests described in section 2.5 in small samples because the asymptotic X2 distribution
of those test procedures may be unreliable when the number of observations is small. Part of
the problem is that given that all the variables used are discrete, the number of states of the
world is finite (3 possible actions per player x 2 possible outcomes per combination of kicker
and goalkeeper actions). In addition, the number of values of the estimators and test statistics
will be repeated in many of those states of the world.

As we will see in chapter 3, there are only seven possible tests: the LM in the multivariate
regression, which coincide with Pearson’s independence test and the LM test in a multinomial
model, multinomial logit and multinomial probit models as well as the J-test for overidentifying
restrictions; the LR and Wald tests in the multivariate regression, Wald’s heteroskedasticity-
robust version, which coincides with the Wald test in the multinomial model, and the Wald and
LR tests in the multinomial logit model, the last one being equal to the LR test in the probit
and multinomial model. I will also consider the F-test of the univariate regression as the penalty
kick has only two outcomes.
2.8.5.1 Problematic cases

Sometimes the calculations for some of the tests mentioned above breakdown. Although this
is unlikely to happen with real data, I discuss here those situations in the 2 x 2 as an illustration
because they occur in the simulations.

Perfect classification

As an example suppose that when the kicker shoots to the left, he never scores, whereas when
he shoots in any other direction he may score or not. Hence, 6, =0 but 0 < dp < 1. In this

case, 77, — —oo and the computation of the logit model breaks down (see Ruud (2000) section
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27.1 for more details). The logit LR test is well defined although the unrestricted likelihood may
also lead to numerical errors. For instance, when 61, — 0 the limit of the logit log-likelihood

function becomes:

L nSL ~  npy; PSR " m n “n .
lim log [0," (1—6z) = 85" (1—0g) iR] = log [5RSR(1—5R)RFR
6r,—0

In this context, Stata removes the perfectly classified observations and computes again the
MLE from the remaining ones. However, it fails to provide a Wald test. In that regard, I can
prove that the limit of the logit Wald test goes to zero when one of the 4;, for i = L, R, goes to
plus or minus infinity.

Perfect fit

In this case, the variables L and R explain perfectly the model, i.e. R? = 1. This requires
6, =1 and 6 = 0 or vice versa. In this context, I can show that the LM test in the LPM is
exactly equal to the number of observations, while the usual Wald, F and LR test as well as the
heteroskedasticity-robust version of the Wald test of this regression model diverge to infinity. In
the logit model, the LR can still be computed and it is not generally infinity, but the limit of
the Wald test is surprisingly equal to 0.

The fact that the logit Wald test is 0 while the robust and non-robust versions of the Wald
test in the LPM diverge to infinity confirms that this type of test is not numerically invariant
to non-linear transformation of the restrictions (see again Ruud (2000) section 17.4 for another
example in which two Wald tests based on transformation of the restrictions diverge).

Single outcome

This case arises when the estimated probability of scoring (7g) is either 0 or 1. This implies
that the residual sum of squares of both the restricted and unrestricted model (SSRg and
SSRy) are 0, which in turn implies that o = SR =0ord, = 33 = 1 depending on the value
of 7g.

When this occurs, I set all the tests for the LPM and logit models to 0, so that their p-values
are 1.

Single choice

This occurs when the estimated probability of choosing left (71 ) is either zero or one, which
means that the player is only employing one strategy. When this case arises, I again set all the

tests to 0 because the single choice situation is like the single outcome situation in the regression

77



of L on a constant and g. Although, the theoretical results in section 2.3 show that =7 = 0
would not be optimal, 77 = 0 can happen despite w7 > 0 if n is small.

Finally, there exists also the possibility that both the Single Choice and Single Outcome
cases occur simultaneously, in which case I again set all the tests to 0.
2.8.5.2 Comparison asymptotic and Monte Carlo size in 2x3 and 3x3 Cases

I compare Monte Carlo and asymptotic p-values using p-value plots (see Davidson and MacK-
innon (1998)), which display the empirical cdf of the asymptotic p-values in the Monte Carlo
simulations.

I have simulated 10,000 replications of the 3 x 3 model explained in section 2.2.2 with n = 20
and parameter values a = 0.03, b = 0.99, ¢ = 0.019, d = 0.02 and e = 0.98 to check if the
p-value plots are close to the 45° degree line. Given that there are many values for the tests,
I focus on p-values below 15%, which are the most relevant ones. The confidence intervals
for the rejection rates at the 1, 5 and 10% levels under the null are (0.80,1.20), (4.57,5.43)

and (9.41,10.6), respectively. In fact, the formula for calculating the confidence interval is

a £ 1.961/a(1 — a)/(No. Replications), where « is the significance level.

Scoring equality

The graphs for the null hypotheses of equal scoring probability are presented in Figures 2.4.a
to 2.4.g. Empirical researchers that rely on asymptotic p-values should probably use the LR,
LM and F-test of the LPM and avoid the rest of the tests. In particular, the Wald test in the
LPM over rejects the null considerably.

Serial independence

The p-value plots corresponding to the null hypothesis of serial independence are presented
in Figures 2.5.a to 2.5.h. Researchers that rely on asymptotic p-values should probably use
F-versions of the Lawley-Hotelling (LH) and Wilks’ test in the multivariate LPM, although the
former is slightly better. At the same time, they should avoid the remaining tests. Again, the
Wald test in the LPM and the multinomial logit LR test show considerable over rejections, while
the Wald test in the multinomial logit hardly ever rejects.

Action independence

The graphs for the null hypotheses of action independence are presented in Figures 2.6.a to
2.6.h. The results suggest that empirical researches should probably use the LM test as well as

the F-version of the Wilks, Lawley-Hotelling and Pillai tests in the multivariate LPM, with the
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Wilks’ test being almost perfect, and avoid the rest. In particular, the Wald and LR tests in the
LPM and the multinomial logit LR test over reject the null considerably, while the Wald test in

this model hardly rejects.
2.8.6 Power experiments

When choosing the significance level of a test, one sets the probability of rejecting the null
when in fact it is true (Type 1 error). In the previous subsection, I studied which tests are more
reliable when one chooses this level to be small, say 5%. At the same time, one would like to
reject the null with high probability when the null is false. This is known as the power of the
test. In what follows, I use Monte Carlo simulations to investigate the power of the different
tests in some reasonable designs which do not satisfy the null.
2.8.6.1 Alternatives to equal scoring probabilities in 2x3 case

The alternative of the implication of equal scoring probabilities is that the player’s probability
of scoring depends on the strategy chosen. Here, I consider two alternatives because in reality,
players do not necessarily know how to solve for the mixed strategy Nash equilibrium. At the
same time, I have assumed serial independence to concentrate only in these two alternatives.

Alternative 1

In the case of the model with three actions, I assume that the kicker plays left with probability
0.7 and center and right with 0.15, while the goalkeeper plays left and center with probability
0.15 and right with 0.7. I have chosen these probabilities because, under the assumption that
the kicker is left-footed, his natural side is to shoot to the left-hand side of the goalkeeper.
Therefore, one could think that a naive kicker is more likely to shoot to the left, which justifies
the kicker’s probability of 0.7. However, the goalkeeper may believe that the obvious reasoning
of a right-footed kicker is that the goalkeeper will jump to the left and therefore the probability
of scoring will be low, so he will change the direction and kick to the right. That is why the
chosen goalie’s probability is 0.15.

Alternative 2

This alternative is similar to the previous one but now I assume that the kicker plays left and
center with probability 0.15 and right with 0.7 while the goalkeeper plays left with probability
0.7 and center and right with 0.15.

Power of tests

I have only looked at the power of the LM and F tests of the null hypothesis of equal scoring
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probabilities in the LPM because they are the only ones whose asymptotic p-values are reliable
under the null.
The following table shows the percentage of times that these tests reject the null at the 1, 5

and 10% significance level under alternatives 1 and 2.

F-test LM test

%  Alternative 1  Alternative 2 Alternative 1  Alternative 2

1 22.42 24 18.25 19.64
5 36.56 38.63 36.28 38.2
10 44.89 47.27 45.47 47.86

These results suggest that empirical researchers should use the F-test of the LPM because
it is the most powerful test under the two alternatives. The power here is higher than with only
two actions because the alternatives are further away from the null.
2.8.6.2 Alternatives to serial independence in 3x3 contingency tables

The alternative of the hypothesis of serial independence is that the players actions at time ¢
depend on the action chosen at time ¢ — 1. To propose a specific alternative, I use a standard
Markov Chain (see section 3.4.1 for more details, and Shachat et al (2015) for a more complicated

hidden Markov model). The transition matrix P of the Markov chain in this case is:

Prr Pre Prr
P=1 Por Poc Per |-
Prr, Prc Prr
with states i = L,C, R, where Pjc =1 — P;;, — P;p.
Note that I can write the multivariate LPM to detect serial dependence as the following

vector autoregression:
Ly —mp =brp(Li—1 — 7)) + brr(Ri—1 — TR) + urs
Ry —mr = brp(Lt—1 — 7L) + brr(Ri—1 — TR) + Uy

where E(L;) = 7m; and E(R;) = mg are the average probabilities of kicking left and right
respectively. Assume for simplicity that bry, = by g = 0 under the alternative. Hence I get that

PRL = PCL = PLL - bLL and PLR — PCR 5 PRR — bRR~ These assumptions imply that the
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transition matrix is:

Prr, 1 — Prr — Prr + brr Prr — brr
P=1 Py, —by, 1—Pr,—Prr+brr+brr Prr —brr
Prr, —brr 1—Prr, — Prr+0br1L Prr

The stationary distribution in this Markov Chain is defined by the vector 7 = (7wp, 7c, 7R),
where ¢ =1 — ny, — 7R, such that 7P = 7.
This yields:

P —brp Prr — brr
7 = ———~ and —_— =

1—brr 1—brr

Under the null hypotheses, br;, and brr are equal to zero. Here, I propose different alterna-
tives depending on the values of by ; and brr. However, I have assumed simultaneous moves and
fixed the stationary probabilities of the Markov chain equal to the probabilities of the optimal
strategy in the Nash equilibrium, so that the only discrepancy from the null is serial dependence.

Power of tests

I have only looked at the power of the F-version of the Lawley-Hotelling and Wilks’ tests of
the null hypothesis of serial independence in the multivariate LPM because they are the only
ones whose asymptotic p-values are reliable under the null.

The following tables show the percentage of times that these tests reject the null at the
1, 5 and 10% significance level under the following alternatives: (1) brr = brr = 0.5, (2)
brr =brr = —0.5, (3) b = brr = 0.05 and (4) by, = brr = —0.05.

Wilks’” F-test Lawley-Hotelling F-test

nomo @ B n @ 6
1 2330 50.67 1.08 149 2455 50.82 1.37 1.84

5 40.37 9231 442 5.64 40.92 86.03 4.79 6.03
10 50.65 97.48 8.48 10.60 51.25 97.09 8.74 10.92

These results suggest that empirical researchers should use the F-version of the Lawley-
Hotelling test in the multivariate LPM because it is the most powerful test under the four
alternatives, although it does not have much power under alternatives 3 and 4, as expected.
2.8.6.3 Alternatives to action independence in 3x3 case

Taking into account the discussion in section 2.5.3, I can test the null hypothesis by estimat-
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ing the following model:

Lot =80+ &Lt +EppBKe + ury

Rat = &po + & Llit + ErrBRKt + URe

where Lg; and Rgy is the direction chosen by the goalkeeper at time ¢ and Ly and Ry is the
direction chosen by the kicker at time ¢.

Note that this model can be written as:

Lei —mar =& (Lt — mrn) + Epp(Rrt — TrR) + urt

Rot —mar =E&pp(Lrt — kL) + Epp(Rit — TKR) + URt

where 7y;, for h = K,G and j = L, R, denote the average probabilities of a player’s strategy
and §;;, for ¢,j = L, R denotes a correlation measure between the actions of the kicker and
goalkeeper. If the £ coefficients are not 0, then either the goalie anticipates the action of the
kicker or the kicker misleads the goalkeeper. I set the values of mx; = p; and 7g; = g; so that
on average the players satisfy the implications of mixed strategy equilibrium but not at any
particular penalty kick.

Under the null hypotheses, {11, £1r, Err, and {grp are equal to 0. For simplicity, I assume
that {7, = £, = 0 and consider different alternatives depending on the values of £;; and {pp.

Power of tests

I have only looked at the power of the LM test as well as the F-versions of the Wilks, LH,
Pillai tests in the multivariate LPM because they are the only ones which performed well under
the null.

The following table shows the percentage of times that the above tests reject the null at

the 1, 5 and 10% significance level under the following alternatives: (1) {;; = £xrp = 0.5, (2)

§op =E&rr=—0.5, (3) {1p = Epr =0.05 and (4) {1, = {pp = —0.05.
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LM test Lawley-Hotelling F-test

I O R )R G OO o 2 6 @

1 4045 2834 0.67 0.66 48.10 43.58 2.05 1.87

5 66.10 95.14 520 4.64 66.62 86.75 6.50  6.41

10 76.43 98.10 11.04 11.02 75.39 9751 11.08 11.16

Pillai F-test Wilks F-test
% (1) 2 3 (4) n @ G (4)
1 4456 36.32 0.99 0.88 47.16 4224 1.61 1.38

5 66.01 9498 515 4.59 66.37 92.19 599  5.58

10 75.43 9799 10.27 10.14 75.60 97.67 10.84 10.79

These results suggest that empirical researchers should use the F version of the Lawley-
Hotelling trace test in the multivariate LPM because it is the most powerful test under the four

alternatives, although as expected, it does not have much power under alternatives 3 and 4.
2.8.7 Multiple testing issues

With N players in my sample, there will be N aggregate test statistics, and some of those
tests could reject the null by chance even when the null is true for all of them. In fact, the

probability of k& of N tests rejecting the null is given by the following binomial distribution:
N
Pr(X =k) = <k>pk(1—p)Nk. for k=0,...,N, (2.6)

where (]]X) = N!/[k! (N — k)], N is the total number of players considered, k is the number of
rejections and p is the significance level of the tests.

In empirical work, researchers often compare the actual number of rejections to the expected
number of rejections, but this rule is only reliable when the number of players N is very large.
For that reason, I will use the binomial probabilities (2.6) to confirm whether players treated as

a group behave consistently with the theory.
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2.10 Graphs Chapter 2

Figure 2.1: Correlation of a "Heterogenous" Player
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Notes: This graph displays the correlation between the actions of a supposedly homogeneous player with
its scoring probability as a function of the fraction of observations from the first pair ()).
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Figure 2.2: Rejection Probabilities
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Notes: This graph displays the rejection rate at the 5% nominal level of the non-central chi-square for
20, 38 (Palacios-Huerta (2003) median sample size) and 200 observations as a function of the fraction of
observation from the first pair (\).
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Figure 2.3: p-value Plots of Tests for Independence with 2 Actions Under Heterogeneity
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Figure 2.3.c: LPM F-test Figure 2.3.d: LPM Wald
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Figure 2.3.e: Logit LR
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Notes: These graphs display the empirical distribution functions of the asymptotic p-values (dashed line)
in the Monte Carlo simulations for 200 observations for the following test statistics: LM test in the
multivariate regression, the F-test, LR and Wald test in the multivariate regression, and the Wald and

LR tests in the multinomial logit model (see Davidson and MacKinnon (1998)).
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Figure 2.4.a: LPM LM Test
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Figure 2.4.e: LPM Het. Rob. Wald Test
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Notes: These graphs display the empirical distribution functions of the asymptotic p-values (dashed line)
in the Monte Carlo simulations for 200 observations for the following test statistics: LM test in the multi-
variate regression, the F-test, LR and Wald test in the multivariate regression, Wald’s heteroskedasticity
robust version, and the Wald and LR tests in the multinomial logit model (see Davidson and MacKinnon

(1998)).
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Figure 2.4: p-value Plots of Test of Equal Scoring Probabilities with 3 Actions

Figure 2.4.b: LPM LR Test
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Figure 2.4.d: LPM Wald Test

Figure 2.4.f: Logit LR Test
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Figure 2.5: p-value Plots of Serial Independence Tests with 3 Actions

Figure 2.5.a: LPM LM Test Figure 2.5.b: LPM Pillai Test
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Figure 2.5.c: LPM LR Test

Figure 2.5.d: LPM Wilks’ Test
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Figure 2.5.e: LPM Wald Test
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Figure 2.5.f: LPM L-H Test
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Figure 2.5.g: Logit LR Test Figure 2.5.h: Logit Wald Test
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Notes: These graphs display the empirical distribution functions of the asymptotic p-values (dashed line)
in the Monte Carlo simulations for 200 observations for the following test statistics: LM test in the
multivariate regression, Pillai trace, LR, Wilks’ lambda, Wald and Lawley’s-Hotelling trace test in the
multivariate regression, and the Wald and LR tests in the multinomial logit model (see Davidson and
MacKinnon (1998)).
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Figure 2.6: p-value Plots of Tests for Action Independence with 3 Actions

Figure 2.6.a: LPM LM Test  Figure 2.6.b: LPM Pillai Test
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Figure 2.6.c: LPM LR Test  Figure 2.6.d: LPM Wilks Test

0.1! 0.15 T
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Figure 2.6.g: Logit LR Test  Figure 2.6.h: Logit Wald Test
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Notes: These graphs display the empirical distribution functions of the asymptotic p-values (dashed line)
in the Monte Carlo simulations for 200 observations for the following test statistics: LM test in the
multivariate regression, Pillai trace, LR, Wilks’ lambda, Wald and Lawley’s-Hotelling trace test in the
multivariate regression, and the Wald and LR tests in the multinomial logit model (see Davidson and
MacKinnon (1998)).
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Chapter 3

Tests For Independence Between Categorical Variables

3.1 Introduction

Economic theories are usually confronted with data to assess their validity. This is often
done by deriving hypotheses implied by a theory and testing them with econometric procedures.
In many important cases, such as testing the implications of mixed strategy equilibrium or the
efficient market hypothesis, those hypotheses imply the independence between two categorical
variables. There are multiple procedures in the literature one can use to conduct such tests,
which leads to the crucial question of which approach to use for testing independence between
categorical variables. Anatolyev and Kosenok (2009) showed the asymptotic equivalence between
Pearson’s independence test and the usual Wald test in a multivariate Linear Probability Model
(LPM). However, this equivalence does not prevent that those tests lead to different conclusions
in finite samples. In fact, it is even possible that researchers could report contradictory results
with the same dataset. In addition, econometricians often prefer probit or logit models instead
of LPMs.

The first contribution of this chapter is to prove the numerical equivalence for general cate-
gorical variables between (i) Pearson’s independence test in a contingency table, (ii) the LM test
in several popular regression models: the multivariate LPM, the conditional and unconditional
multinomial model, the multinomial logit and probit models; and (iii) the corresponding J-test
statistic for overidentifying restrictions in the Generalized Methods of Moments (GMM). There-
fore, different researchers using different econometric procedures will reach the same conclusions
if they use any of those tests.

Additionally, I show that the asymptotically equivalent LR tests of independence in the con-
ditional and unconditional multinomial model, multinomial logit and probit models numerically
coincide too. Finally, I prove that the heteroskedasticity-robust Wald tests in the multivariate
LPM and GMM are numerically identical to the Wald test in the conditional multinomial model.

Given that the LM test is numerically the same in all those models, all the other independence

tests will also be asymptotically equivalent. Therefore, the only reason why researchers might
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reach different conclusions in empirical applications is because they use either LR or Wald

versions, not because they use different models. Table 3.1 summarizes the theoretical results.

Table 3.1: Numerical and Asymptotic Equivalence Results

Models\ Tests LM (Gradient) LR (Distance) Wald Wald Robust J-test
Multivariate LPM

Unconditional Multinomial Model
Conditional Multinomial Model
Multinomial Probit

Multinomial Logit

GMM

OO0000O0
orp>>>J
444094
o444 4 O

Specifically, it presents by rows the different models that empirical researchers have employed
to test independence between categorical variables, while each column contains the various tests
that they have at their disposal for a given model. The symbol () corresponds to Pearson’s test
and all its numerically equivalent versions, while A and [ represent the LR and Wald tests in
the multinomial model. Finally, 57 stresses the asymptotic equivalence among them.

Another related contribution of this chapter is to show that all these equivalences also apply
to tests of serial independence of a discrete Markov chain, which can be regarded as a time series
analog to the multinomial model.

A real life example of independence between categorical variables arises in soccer penalty
kicks, which capture the theoretical setting of a two-person zero-sum game with no pure strategy
Nash equilibria extremely well due to the clarity of the rules and the detailed structure of the
simultaneous one-shot play. As is well known, in games with no pure strategy Nash equilibria,
one fundamental theoretical implication is that the probability of winning should be the same
regardless of the strategy chosen. Effectively, this requires independence between a dummy
variable which indicates winning and a categorical variable that describes the strategies of the
player. In addition, when the game is finite with a unique Nash equilibrium, the only subgame
perfect equilibrium stipulates to play the same Nash equilibrium in every period (see chapter
14 of Osborne (2003) for more details). As a result, a second implication of the theory with a
temporal dimension is that the actions of the players should be serially independent.

In the existing empirical literature, different researchers have used different econometric
procedures to test the independence implications mentioned above. For example, Palacios-

Huerta (2003) tested the first independence implication by means of a contingency table, while
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Chiappori et al (2002) used Wald tests in a LPM. A third possibility is to test that the winning
probabilities implied by a probit or logit model do not depend on the action taken by the
players, as in Brown and Rosenthal (1990), who relied on the LR test instead. Similarly, for the
second implication, one could use Wilks’ lambda, Pillai trace or the Lawley-Hotelling trace tests
frequently employed in multivariate analysis of variance (see Stewart (1995) for more details),
as well as dynamic multinomial probit or logit models. In contrast, I eliminate the possibility of
obtaining conflicting empirical conclusions by using my numerical equivalence results to assess
if professional soccer players, who are among the highest paid sportsmen, satisfy these two
independence implications using penalty kicks in actual professional soccer games. Specifically,
I collected a dataset of 549 penalty kicks that include the names of the teams and players
involved for each penalty kick, the choices taken and the outcome of the kick. Given that soccer
players are experts at their game, my dataset provides a notable advantage over lab experiments
because it is virtually impossible for lab individuals to be proficient at unfamiliar games in a
limited timeframe. Empirically, I find that the behavior of some players is inconsistent with
the implications of mixed strategy equilibrium, in the sense that winning probabilities are not
identical across strategies. In contrast, I find that the second testable implication (players’
actions are serially independent) holds for all the players. The first result differs from the
existing evidence on mixed strategies in professional sports (e.g., Walker and Wooders (2002),
Chiappori et al (2002), Palacios-Huerta (2003), Hsu et al (2007)), while the second result is
consistent with the literature.

Sports provide an ideal setting to empirically test economic theories because the players are
experienced professionals and the stakes are high (see e.g. Garicano et al (2005), Miklés-Thal
and Ulrich (2016) and the references therein). Nevertheless, in other economic situations the
theoretical predictions of a model also imply independence between categorical variables, so my
analysis applies rather more generally. Important examples include tests of strict exogeneity of
the movements in the price of a firm’s product for the observed excess demand/supply (Bouissou
et al (1986)), testing the efficient market hypothesis (Pesaran and Timmermann (1994)) and
testing independence between donating blood and the levels of monetary compensation (Mell-
strom and Johannesson (2008)). Details of how these tests can be mapped to my setting can be
found in section 3.3.2.

The rest of the chapter is organized as follows. Section 3.2 explains the different econometric
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methods. In section 3.3, I discuss several empirical applications of independence tests. Section
3.4 presents my numerical equivalence results as well as their time series extensions, while section

3.5 contains the empirical results. This is followed by the conclusions.
3.2 Econometric Methodology

There are several approaches in the literature that one can use to test for independence
between two categorical variables. Before explaining the exhaustive list of different econometric
procedures, I briefly define the notation used across the analysis. Let « be a K x 1 categori-
cal variable that takes values (A1, -, Ax), where Ay,..., Ax are K exhaustive and mutually
exclusive dummy variables which fully characterize the categorical variable. Similarly, let g
be another H x 1 categorical variable that takes values (Bi,...,Bp). Both Ay and By, for
k=1,...,Kand h=1,..., H, are dummy variables equal to 1 if its corresponding categorical
value is equal to its k*" or A" value, respectively.

A contingency table summarizes the sample information as follows:

g\ | Ay -+ Ax  Sum
By | nin -+ mkg nie
By | ng1 -+ npx  nme
Sum | ne 0 Mak n
where npg, for h = 1,...,H and k = 1,..., K, denotes the observed joint frequency; for

example, nis is the number of times that By and Ay are simultaneously 1 in the sample. Also,
Nho = Zszl npk denotes the number of times that By, is 1, ny, = Z,Il{:l np, the number of times

Apis1land n = Zszl Nl = Zthl npe the total number of observations.
3.2.1 Pearson’s contingency test

This is the original and best known test for independence, which is given by:

Pearson = Zle Zle[nhk — (n*lmho/n)]2 (n/NsgNpo) - (3.1)

Under the null hypothesis, this statistic follows a X2 distribution with (H — 1) x (K — 1) degrees

of freedom in large samples under appropriate regularity conditions (see Mood et al (1974)).!

'9pecifically, in addition to random sampling, it requires all joint frequencies px, h = 1,...,Hand k =1, ..., K,
to be strictly positive and fixed, so that the observed joint frequencies np, will increase asymptotically at the
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Unlike most other statistics, the X2 statistic in (3.1) has an easy to interpret expression, which
provides information on exactly which estimated joint frequencies account for its value.
It is worth mentioning that if np, and nyg, for A =1,...,H and k = 1,..., K, were fixed,

(3.1) would then become Fisher’s (1922) exact test (see section 3.7.4).
3.2.2 Multivariate regression

This is a technique that combines several regression equations with the same regressors, one
for each dependent variable. Multivariate regression is useful here because one can write the
relationship between the dummy variables By, and Ay for h=1,...,H and k=1,..., K as the

following multivariate LPM:

B =011Au + -+ 01k Axri +ui
(3.2)

Bri =0mAu + -+ 0k Aki + uHi
Given that both regressors and regressands are dummy variables, the coefficients of the

explanatory variables are the probability of the different values of the multinomial variable g

given the other multinomial variable z. For instance,
Ok = E(Bp|A1=0,..., A, =1,..., Ak =0) =Pr(B, =141 =0,..., A, =1,..., Ax = 0).

Hence, the sum of ép; for h = 1,..., H is equal to 1 for all the columns in the matrix of
regression coefficients. Therefore, the coefficients in the equation for By, can be obtained from
the other H — 1 equations because Bg; = 1 — Zth_ll By;. For that reason, I can cross out the
last equation without loss of generality to avoid a singular covariance matrix (see Judge et al
(1985) chapter 12, section 5 for more details).

Define B}, = (Bp1,- -+, Bun), up, = (Up1, -+ ,unn) and 6, = (6p1,- -+ ,0px) forh=1,..., H—

Also, define the matrices
An - Ara Bi1 -+ Bp-1:
X = T : and Y =

Aln AKn Bln BH—l,n

same rate as the sample size n.
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Finally, define the matrix of regression coefficients

611 e 61K

0H—11 -+ OH-1K

with 6 = vec (Il') and Xy = E(uu

) = Var (u;). In this way, the multivariate regression model

in (3.2) can be written as Y = XII' 4 w.

Under the assumptions of the classical regression model, the parameters of the model can
be efficiently estimated by OLS equation by equation. The reason is that 5G 5 SOLS because
the regressors in all the H — 1 equations are identical.

¥ = (X'X)"'X'By, where

The OLS estimator of the parameters of the ht" equation is SSL
X'X = diag(n,...,n«x) and X'By, = (np1,. .., npi) because Y 1" | A = nyg, and
St AkiBri =npp for k=1,...,Kand h=1,...,H — 1.

This yields 5SLS = (np1/Ms1y- - -, MK /Mxkc )’ SO equation by equation OLS gives the natural
estimator of ;. Thus, the estimated probabilities are always non-negative and add up to 1,
which avoids a common criticism of LPMs (see Wooldridge (2002)).

The null hypothesis of independence implies that dpy = -+ =dpxg =0y for h=1,..., H — 1,
so that the conditional and unconditional probabilities of By, = 1 are the same. The restricted
model can be estimated efficiently by OLS equation by equation because GLS is once more equal
to OLS. The restricted OLS estimators are trivially SSLS =npo/n, for h=1,..., H — 1.

The multivariate LPM has one potentially important disadvantage. Under the alternative,
it violates the homoskedasticity assumption because the conditional variance of the error term u
will change depending on the values of the explanatory variables rather than being the assumed
constant matrix Xy (see Wooldridge (2002)). However, ¥ g, which is the covariance matrix of u
given the dummy regressors under the null hypothesis of independence, is constant. This implies
that the homoskedasticity assumption holds under the null, and hence all the usual regression
tests are asymptotically valid.

The three classical multivariate regression tests are the Wald, LR and LM. Note that for
any dataset, the relationship between these tests in a multivariate regression model is Wald >
LR > LM despite being asymptotically equivalent (see Berndt and Savin (1977) and Engle
(1983) for more details). Moreover, they are monotonic transformations of the regression F-test

in the H = 2 case only but not in general (see section 3.7.5 for the case of H = 3).
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These three tests can be easily transformed into the Pillai trace, Wilks’ lambda and Lawley-
Hotelling trace tests used in multivariate analysis of variance (see Stewart (1995) for more
details). More precisely, the Pillai trace test can be written as V = n~'LM, while Wilks’
lambda is A = exp (—nilLR) and the Lawley-Hotelling trace test is LH = n~'Wald.

Finally, I consider a robust test which is still valid if the homoskedasticity assumption is
violated. Specifically, I use the heteroskedasticity-robust Wald test in a multivariate regression,

which I derive in section 3.7.3 using the results in Hansen (1982).
3.2.3 Conditional multinomial model

The LPM is usually regarded as a linear approximation to the true conditional probabilities.
For that reason, define Py = Pr(Bp, = 1|A1 =0,..., 4y, =1,...,Ax =0) for k=1,..., K and
h=1,...,H — 1, so that the joint probability of B, = 1 and Ay = 118 mpr = Ppr X T4k, where

ek = Pr(Ag = 1). Hence, the log-likelihood of the sample becomes:

K H-1 H-1 H-1
Inf = Zk:l Kn*k - Zh:l nhk) In (1 N Zh:l Phk) . Zh:l (7 I Phk)}
K-1 K-1
o In <1 -y M) S o, (3:3)

because the number of times Ay = 1 and ApBp, = 1 is n.; and npg, respectively.
Maximizing the log-likelihood with respect to Py and 7, yields Phk = npi/N and
ek = Nk /Mxk, SO that phk: = ghk forh=1,...,H—1land k=1,... K.

Under the null, which states that Ppy = Ppo for k=1,..., K and h=1,..., H — 1, then
H-1 H-1 H-1
Inl = (n — Zh:l ’I’Lh<>> In <1 — Zh:l Ph<>> + Zh:l Nho In Ph<>
K-1 K-1
+n4x In <1 - Zk:l W*k) + Zk:l Ny IN Ty

which yields Py, = Nho/Nn and T, = Nk /Nuk, SO that Py =6, for h=1,...,H — 1. Note that
74k Will coincide under the null and alternative, so I can ignore these parameters.

As in the multivariate regression, I consider the LM, LR and Wald tests (see section 3.7.1).
It is worth mentioning that the information matrix evaluated under the null is block diagonal

between P and 7., which simplifies those expressions.
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3.2.4 Unconditional multinomial model

Following the traditional treatment in Mood et al (1974) section 3.5.4, I can write the joint
likelihood in terms of the joint probabilities 7wy = Pr(Bj, = 1; Ay = 1) rather than Py and 7y,
with 7, = Phr X m4k. The null hypothesis states that there is independence between 4 and x,

so the joint probability should be the product of their marginal probabilities. In other words:
Ho:7pp =The X Tk s h=1,..., Hand k=1,... K.

For this reason, it is convenient to write the joint probabilities under the alternative as the
product of two sets of parameters: (i) mpe, for h=1,..., H — 1, and 7y, for k=1,..., K — 1,
which denote the parameters of the marginal probability distribution for § and z respectively,
and (ii) (K — 1) x (H — 1) additional parameters ¥ which should be 0 under the null (see again
Mood et al (1974)).

In particular, in the 3 x 3 case I can write the joint probabilities as

T = T1oTs1 + V11, T12 = T1oTs2 + V12
m13 = Tio (1 — Ma1 — Ta2) — V11 — Y12, To1 = Moo + V21
o9 = MooTs + Va2 , a3 = Moo (1 — M1 — Ty2) — V21 — V22 5

31 = (1 — Mo — T20) a1 — V11 — V21 , T32 = (1 — Mo — Tao) T2 — V12 — Va2

733 = (1 — Mo — T2o) (1 — M1 — Tu2) + P11 + V12 + V21 + D22

where the additional free parameters 911, ¥12, ¥21 and Y92 become 0 under the null.?

The same procedure can be applied to the general H x K case. Analogous derivations to
the ones in the previous section show that the estimators of the marginal probabilities are the
same under the null and the alternative, and that the information matrix evaluated under the

null is block diagonal between 7y, T4 and the ¥’s.
3.2.5 Multinomsial probit model

Following section 27.3 of Ruud (2000), consider the following "random utilities" model:

Bl; = anAu+ - +aikAki + e

B = amiAvi + - + ek Aki + €Hi

’In the 2 x 2 case, the joint probabilities will be 711, m12, 721 and m2a, which depend on 716, 7«1 and only
one other parameter, namely ¥ = w12 — T«1720, which should be 0 under the null.
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where ep|z ~ i.i.d. N(0,w), with = being defined at the beginning of section 3.2.
Let the observation rule be By; = 1 {B,*;Z = max;—1, H B;-ki}, where 1{} is the indicator
function, so that By; = 1 if h is the preferred choice. In other words, one chooses the action h

that maximizes one’s utility. The conditional log-likelihood function is

n H
L@O)= >,  BulnPr(By=1z),

where 6 contains the model parameters ay, (slope coefficients) and w (covariance matrix).?

Under the null hypothesis, apy = - = apxg = ap, for h=1,... H.
This log-likelihood function coincides with the conditional component of the log-likelihood
function of the multinomial model in (3.3) but expressed in terms of a’s. However, the proba-

bilities involve multiple normal integrals of dimension H — 1.
3.2.6 Multinomzial logit model

As is well known (see section 27.4 of Ruud (2000)), we will get the multinomial logit model if
in the random utility model above, ¢j;, instead of being normal, is drawn from an .7.d. extreme

value distribution. Define the conditional probability matrix P as:

Py Pig

Py, -+ Phg

with Pjj being the same as in the conditional multinomial model. This model ensures the non-
negativity of Py, for all h, k, as well as the adding up constraint Zthl Pri = 1, by assuming

the following functional form:

Pr(thl\Al,...,AK):(l—i—D)_lexp(Zf:lfyhkAki), h=1,...,H -1
Pr(By=1|Ay,...,Ag)=(1+D)!

where D = Zf:_ll exp <Z§:1 ’th;Aki>, and v, for h=1,...,H—1and k=1,..., K, are the
model parameters. Therefore, like in the multinomial probit, the multinomial logit is effectively
a reparametrization of the matrix P which ensures non-negative probabilities that add up to 1
by columns.

This log-likelihood function is analogous to the conditional component of the likelihood in

3The independent probit model without dependence across ep;’s is the most flexible model that one can
identify in this case.
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(3.3) but expressed in terms of 7, instead of Ppy’s.
The null hypothesis of independence states that Ho : v, =...= v,x = ), for
h=1,...,H—1.

3.2.7 GMM

Given that Pp, = Pr(By, = 1|41 = 0,..., Ay = 1,..., Ax = 0), we can express all those

parameters in terms of the following set of moment conditions
E(yi — z;) @ 2] = 0, (3.4)

where ® denotes Kronecker product and y is a categorical variable that takes values

(Bi,...,Br_-1), so that it coincides with the first H — 1 elements of §. These moment conditions
coincide with the normal equations, which are the first order conditions of the multivariate
LPM, as well as with the scores of the conditional multinomial model. The null hypothesis of
independence implies that Hy : wpp = 7, for k=1,..., K and h =1,..., H — 1. Under Hy, 1I
is unrestricted while under Ho, II = vl}, where [ is a vector of K ones. Note that under Hy,
I can write II'(v) = v’ I 1, which implies that §(v) = vec(Il'(v)) = (Ig—1 ® I )v.

The GMM estimator is defined as:

o=agmin (137 -0 n ) 1 (S (- w8 0.

where Y is a symmetric positive definite [K x (H — 1)] x [K x (H — 1)] weight matrix.

With random sampling, the optimal GMM estimator is the one which minimizes the GMM
criterion function when T is equal to [Sp ® Y ;" | (z;2})], where X is the covariance matrix of
the multivariate LPM under the null.

The J-test statistic for overidentifying restrictions is just the value of the GMM objective
function evaluated at the efficient GMM estimator (see Hansen (1982) for more details). Alge-
braically, J =n x g(9)Y1g(0), where g(0) = n=1 3" {{yi — IL(d)z;] ® x;}.

3.3 Practical Applications

3.3.1 Applications to mixzed strategies in soccer penalty kicks

Next, I illustrate the two main implications of mixed strategy equilibrium for a game with
two players and three actions with the most popular econometric methods in section 3.2. First,

consider the null hypothesis of equal scoring probabilities:
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LPM Let B = 1 if the penalty kick is scored. The LPM under the alternative is defined as
B=61Ar +6cAc + drAR + u, where Ay, for k = L,C, R, are dummy variables. For example,
AR takes the value 1 if the penalty is shot in that direction and 0 otherwise. As we saw in
section 3.2, the regression coefficients are conditional scoring probabilities. I can estimate the
model by OLS. In turn, the LPM under the null hypothesis states that é;, = d¢ = dg = 9.

The LM test is LM = nR?> = n x [1 — (6%/6%)], where 6% is the unrestricted variance
estimator, &% the restricted variance estimator, n the number of observations and R? the R-

squared of the regression (see Wooldridge (2002) chapter 8.3).

Logit model The Logit model for the penalty kick game is described as follows:

B=1ifB*>0
B* =y AL +vcAc +VRAR + €
where ¢ is logistically distributed, so that Pr(B = 1|X) = D/(1 + D), where

D = exp(v AL +vcAc + vrAR). Therefore, in this model
Pr=Pr(B=1|AL =0,Ac =0,Ar = 1) = exp(vg)/ (1 + exp(vgr)),

so Yp = In[Pr/(1 — Pr)]. The Logit model under the null states that v; = vo =vp = 7.

The LM test statistic is LM = nx [s(7)'Z(7)"*s(7)], where s(¥) is the unrestricted gradient
evaluated at the restricted estimators ¥ and Z(7) is the unrestricted information matrix evaluated
at the restricted estimators (see section 3.7.1).

Now, I turn to the serial independence hypothesis:

Multivariate LPM The multivariate regression one can use to detect possible departures
from serial independence is similar to a first-order vector autoregressive process (see Wooldridge

(2002) chapter 18, Section 5 for more details). Specifically:

Apt =0 Ari—1 +crAci—1 + ORLAR—1 + ULt

Acit = 0rcALi—1 +dccAci—1 + OrRCAR—1 +uct (

Art =0rRALt—1 +dcRACI—1 + ORRAR -1 + UR:
where Ap, for £ = L,C, R, are the dependent variables and A; ¢, for k¥ = L,C, R, are
lagged regressors. In this multivariate regression with three lagged explanatory variables, but

no constant, the coefficients of the lagged variables are the probability of choosing a strategy at
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time ¢ conditional on the previous action. These are sometimes called transition probabilities.
For instance, 0 r;, measures the probability of Az ; being equal to 1 given that Ar;_1 is equal
to 1, etc.

The null hypothesis of independence implies that the d’s have to be the same across rows.

The formula for the LM test in this model is:

1. 2 . 4.
LM:(H_l)XtTKZ—ZXZE"l)X(Z—lXER_Z—1XZU>]

where X g and X7 are the restricted and unrestricted estimates of the residual variance covariance

matrices and n the number of observations (see section 3.7.1).

Multinomial logit model Let z; denote the action chosen by the player at time ¢. The

multinomial logit model for the penalty kick game is described as follows:

Pr(zy = Ap | #1—1) = exp(vp AL,y + YocAc s + YirAR, 1)/ (1+ D)
PI’(Z’t =5 AC ‘ Z't_1> = 1/(1 + D) )
Pr(zy = Ag | 21-1) = exp(Ypr AL,y + YroAC,_, + YrRAR,_,)/ (1 + D)

with

D =exp(Yo AL,y +VrcAc . +VLrAR ) +exP(Yrr AL, + YrRoAC 1 + VRRAR, 1)

Under the null hypothesis, vr, = vrc = vr = 7 and Yrr = Yre = YRR = VR-

3.3.2 Other empirical applications

Price changes and excess supply Bouissou et al (1986) used a panel of French firms to
investigate the relationship between movements in the price of their products and their observed
excess demand /supply. Specifically, they used data across firms to test whether the sign of the
price changes of a product over the last quarter could be regarded as strictly exogenous for the
existence of excess demand or supply for that product.

The procedures that I explained in section 3.2 to test independence between categorical
variables can be easily used here as follows. Let B = 1 if a firm’s product exhibits excess supply
and 0 otherwise. Similarly, let A;, Ac and Ap denote three dummy variables indicating whether
the price of that product has increased, remained constant or decreased in the last quarter. In
this example, the LPM under the alternative would be defined as B = §;A;+dcAc+0pAp +u,
so that §y = Pr(B=1,A4,=1)/Pr(Ax=1), for k = I,C, D, represents the corresponding
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conditional probabilities.

Efficient market hypothesis Another interesting empirical example is Pesaran and Tim-
mermann (1994), who were interested in testing the efficient market hypothesis in financial
markets. They showed that lack of directional predictability of asset returns can be interpreted
as stochastic independence between the sign of the actual returns and the sign of the predictions
made by asset managers who want to time the market (see also Henriksson and Merton (1981)
and Swanson and White (1997)).

Let B be a dummy variable that indicates if the realized value of the excess return on asset is
positive or negative, and let Ap, Az and Ay denote three dummy variables indicating whether
its forecast is positive, zero or negative. In this case, the LPM under the alternative would be

defined as B =0pAp+ dzAz + ONAN + u.

Blood donations Mellstrom and Johannesson (2008) conducted a field experiment with three
different treatments to test whether the probability of becoming a blood donor is independent
of the monetary compensation offered in each of those treatments.

Once again, let B = 1 if the subject agrees to become a blood donor and Ayp, Ap and
Apc denote three dummy variables indicating whether the subject receives no payment, a single
monetary payment or a payment with a charity option, respectively. As expected, the LPM

under the alternative would be defined as B = §ypAnp + dpAp + dpcApc + u.
3.4 Numerical Equivalence Results

The main theoretical result in this chapter is that the LM tests in all the popular linear
and non-linear regression models discussed in section 3.2 coincide with Pearson’s test for in-
dependence as well as with the J-test statistic for overidentifying restrictions. The following

proposition, which I prove in section 3.7.1, contains the precise result:

Proposition 3.1 For general H and K, the Lagrange Multiplier test statistic for independence
i a multivariate linear probability model, multinomial logit, multinomial probit and the condi-
tional and unconditional multinomial models, computed using the information matriz, are nu-
merically identical to Pearson’s contingency table test statistic for independence and the J-test
statistic for overidentifying restrictions in GMM. Additionally, the same numerical equivalence
result holds if one exchanges regressors and regressands in all those models.

This means that different researchers using different econometric procedures will reach ex-

actly the same conclusions if they use LM tests. From the computational point of view, the
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easiest test is Pearson’s statistic, which has the very simple closed-form expression in (3.1). In
contrast, the multinomial logit and especially probit models should be avoided because they
require numerical optimization and multiple integrals in the second case.

Another implication of Proposition 3.1 is that there will only be one finite sample distribution
for all those different tests (see section 3.7.4 for more details). Additionally, the Monte Carlo
experiments previously reported in the literature on Pearson’s test also apply to all the other
different tests, so they could be combined in a meta study.

Proposition 1 also says that if we exchange x and 4 so that x now takes values Bi,..., By
and 7 takes values A1, ..., Ag, then the corresponding test statistics will not change. While this
is obvious for the Pearson’s test (3.1) because the contingency table in section 3.2 will simply
be flipped, it is far from obvious for all the other models.

For example, one obtains numerically the exact same LM statistic if one regresses ¢; on x; or
x; on g; in the multivariate LPM. Similarly, imposing independence on Pr(Bj, = 1| Ay,..., Ak)
for all h yields the same LM statistic in a conditional multinomial model as imposing it on
Pr(Ay = 1| Bi,...,Bp) for all k. As an illustration, one could test the independence of the
kicker’s action from the outcome of the kick and obtain exactly the same result.

It is worth mentioning that the numerical result in Proposition 3.1 is substantially different
from the famous numerical inequality in Berndt and Savin (1977), which implies that
Wald > LR > LM in the multivariate linear probability model.* In contrast, I show that the
LM test is numerically identical across models.

Additionally, four of the models in section 3.2 are essentially the same. Specifically, the log-
likelihood function under the null and alternative of the multinomial logit and probit models are
analogous to the corresponding conditional component of the log-likelihood of the multinomial
model. In addition, the unconditional multinomial model can be regarded as an alternative
reparametrization of the joint probabilities. Therefore, I also prove in section 3.7.2 the following
equality:

Proposition 3.2 For general H and K, the Likelihood Ratio test statistic for the null hypothesis
of independence in the multinomial logit, multinomial probit and the conditional and uncondi-
tional multinomial models are numerically identical.

This means that even though one can use any of those four different econometric models,

the conclusions and implications will also be the same if one uses LR tests.

*See Dastoor (2001) for alternative inequalities in other models.

120



Although the Wald tests in all the models in section 3.2 will generally differ, the numerical
equivalence between the OLS estimator of the regression coefficients in the multivariate LPM,
the ML estimators of the conditional probabilities, and the unrestricted GMM estimators suggest
a close relationship. It turns out that the crucial difference is the homoskedasticity assumption
in the standard Wald test of the multivariate LPM. Specifically, if one decided to carry out a
robust test which would remain valid when the homoskedasticity assumption is violated, the
following numerical equality, which I prove in section 3.7.3, will hold:

Proposition 3.3 For general H and K, the heteroskedasticity-robust Wald test statistic for in-
dependence in the multivariate LPM and GMM is numerically identical to the Wald test statistic
of the conditional multinomial model.

This implies that any of those tests will yield the same results and implications.

Furthermore, Table 3.1 in the introduction uses symbols to highlight the numerical equiva-
lence results in Propositions 3.1-3. It also indicates that all the other remaining independence
tests are not numerically identical. For example, LRrpyr # LRpjuitinomial Decause the true
conditional distribution of the LPM is not normal, so the (pseudo) likelihood function of the
multivariate regression is different from the likelihood of the multinomial model even under the
null (see section 3.7.1). Similarly, the Wald test of the multinomial logit model is different
from the multinomial version in the conditional multinomial model, and the same applies to the
multinomial probit model because Wald tests are not invariant to non-linear transformations of
the restrictions, despite having the same log-likelihood functions under the null and alternative.

Nevertheless, all the tests in Table 3.1 are asymptotically equivalent within each model, as
shown in section 17.3 of Ruud (2000). Given that the LM test is numerically equivalent in all
those models, all the other tests in Table 3.1 will also be asymptotically equivalent. Therefore,
the only reason why researchers might reach different conclusions in empirical applications is

precisely because they use Wald or LR versions rather than LM tests.
3.4.1 Serial independence tests for Markov chains

Next, I extend the numerical equivalence results in Propositions 3.1-3 in %.i.d contexts to
serial independence tests for discrete Markov chains.
Let us summarize the K strategies for each player (Ay,..., Ax) at time ¢ by means of the

vector x¢, which has the Markov property if for all £k > 1 and all ¢

Pr($t+1\$t, T 1,T4-2,. .. Tp—k) = Pr(xe41|24).
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In this context, the Markov chain is fully characterized by the K x K transition matrix

P -+ Pig

Prg1 -+ Pgk
where Ppy, = Pr(z;41 = xp|z; = z1) are the one step transition probabilities with states
k=1,...,K, where Pgp=1— 1" Py, forall kand h=1,..., K — 1.
Let nyy be the number of times that there occurs a one period transition from state k to state
h, with Ag; = 1 if the first observation belongs to state k& and zero otherwise. The likelihood

function of the Markov chain can be written as:

L(6) = P(x1) [T TP

h=1k=1

K
where P(z1) = [] Tr?’“l and 6 = (Pi1,...,Pxk) (see Lee et al (1968) for more details). Hence,
k=1

the log-likelihood function is:

K-1 K-1
. [nm In <1 > Phk) + (npeln Phk)]
K-1 K-1
+Ag11In <1 — Zh:l 7Tk> + Zk:l Ap Inmy,.

Note that this log-likelihood function is different from (3.3) because the marginal model is
based on a single observation while the conditional model is recursive.

In contrast, if the Markov chain is serially independent, the matrix P will be:

P:lKX(ﬂ—l S MR- 1_252_1171-]6)

I can achieve this by imposing the null hypothesis Hy : Py = Py, for k = 1,..., K and
h=1,...,K —1 because Px =1 — ZhK;f P;,. I can then obtain the restricted estimators from

the following log-likelihood:

K K-1 K—1
ﬁ(qb) = Zk:l [Zhl (nhk In Ph) + nggln (l — Zh:l Ph> + Ny In 7Tk:| ,

K
where ¢ = (P1,..., P, ) and npg =Y 1| Nk
Serial independence can then be assessed by means of the usual Wald, LR and LM tests.
Therefore, I can easily show that despite the apparent differences, the numerical equivalence

results in Propositions 3.1-3 also apply to test for serial independence in Markov chains.
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3.5 Empirical application to penalty kicks

Soccer is one of the most important sports in the world. In fact, professional soccer players
are among the highest paid sportsmen. For instance, the 2018 average annual pay for Barcelona
and Real Madrid players exceeded those of all the US baseball (MLB), football (NFL) and
basketball (NBA) teams. The main purpose of this section is to check if soccer players really
behave as game theory predicts in such a high stakes context.

It is well known that penalty kicks decide matches, qualifications for next rounds in tour-
naments and even titles. Therefore it is not surprising that soccer teams devote resources to
analyze and improve strategies for their players. Although most players and coaches do not know
this, penalty kicks are a relevant example of a two-person zero-sum game due to the clarity of
the rules and the detailed structure of the simultaneous one-shot play.

In this section, I use the econometric methods previously described to test if the empirical
results obtained by Chiappori et al (2002) and Palacios-Huerta (2003) are still valid. Given that
their datasets are not publicly available, I construct a similar but more recent dataset which
contains 549 penalty kicks.” Moreover, I have expanded the actions of the players to six for a
presumably tougher test of the predictions of mixed strategy equilibrium. In my dataset, there
are 12 kickers with more than 20 penalty kicks and another 11 kickers with at least 10 penalties.
Similarly, there are 10 goalkeepers with more than 10 observations. The identities of goalies and
kickers are shown in section 3.7.6.

The penalty kick data I have collected covers the period 2005-2015 from professional games in
Spain, Italy, England and other European countries. The information comes from the following
Spanish TV programs and internet pages: Estudio Estadio (TVE), GOL TV, Canal + Liga, El
Dia Después (Movistar Plus), Deportes Cuatro, As.com and Marca.com. These TV programs
and internet pages systematically review the best games played during the weekend, including
all penalty kicks that take place in those games.

The data include the names of the teams involved in the match, the date, the names of the
kicker and goalkeeper for each penalty kick, the choices taken: Left down (LD), Left up (LU),
Center down (CD), Center up (CU), Right down (RD) and Right up (RU), the time and score

at the time of the penalty, the final score of the game, the foot used by the kicker (left or right)

>There is no reason to expect substantive differences in the datasets despite covering different time spans
because the rules governing penalty kicks have been the same for decades and team managers have always been
aware of their importance.
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and the outcome of the kick (goal or miss). The following table offers a basic description of the
data with three actions.

(Table 3.2)

In particular, it shows the relative proportions of different choices made by both kickers and
goalkeepers (see section 2.4.3 for more details).

The strategy followed by goalkeepers coincides with that followed by kickers in 42.8% of all
penalties in the dataset. Kickers do not usually kick to the center (7.1% of all kicks), whereas
goalies remain in the middle less often (4.55%). The percentage of kicks where the actions of
the players do not coincide is mostly divided between LR (26.78%) and RL (20.95%). A goal is
scored in 86.34% of all penalty kicks. The scoring rate is over 90% when the kicker choice differs

from the goalie, and it is just over 65% when it coincides.
3.5.1 Test of equal scoring probabilities

The first testable implication I check is whether the scoring probabilities for a player are
identical across strategies.® To compare my results with the results obtained by Palacios-Huerta
(2003), I initially consider only the actions he took into account (Left and Right). To do so,
I eliminate C for all players.” The results of the tests are described in Table 3.3. The null
hypothesis of equal scoring probabilities across those two strategies is rejected for only one
goalkeeper at the 5% level. But since the binomial probability of one or more goalkeepers out
of 10 rejecting the null hypothesis at the 5% level when the null is true is 0.401, I do not reject
the null hypothesis for those players when treated as a group (see section 2.8.7 for additional
details on multiple tests). This finding agrees with Palacios-Huerta (2003).

A remarkable result is a 0 test statistic for kicker 3 because his scoring probabilities are the
same regardless of the strategy chosen, so he behaves perfectly according to the theory. Similarly,
goalkeeper 4 had a test statistic of 0, but this is due to the fact that his scoring probabilities are
100% regardless of the strategy chosen. From the point of view of his team, this result implies
that he is not a very good performer when it comes to saving a penalty kick. Ironically, though,
he chooses his strategies "optimally" from a game theoretical point of view.

Given that the empirical description in Table 3.2 suggest that a model with three strategies

SGiven that in real life situations the same pair of players is rarely observed, I am forced to assume homogeneity
of opponents.

"In contrast, Palacios-Huerta (2003) merges C' with the natural side of the kicker for both kicker and goal-
keeper.
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is empirically more relevant, next I test the first implication using also action C, as Chiappori
et al (2002) did. The results are shown in Table 3.4. These results show that the null hypothesis
is rejected for two kickers at the 1% level and one kicker and two goalkeepers at the 5% level.
Given that the probability that three or more kickers out of 9 rejecting the null at the 5% level
is 0.008, I can claim that the scoring probabilities of some kickers differ depending on the action.
Similarly, the goalkeepers do not behave as the theory predicts either because the probability of
two or more goalkeepers out of 6 rejecting the null at the 5% is 0.033 (see again section 2.8.7).

Next, I decided to carry out a stronger test by expanding the actions of the players to LD,
LU, CD, CU, RD and RU. I can only do it for kickers because goalkeepers do not seem to jump
LU or RU, so that they only follow the three strategies already considered. This may happen
because it is virtually impossible for a goalkeeper to jump sufficiently high when a penalty is
shot in the LU or RU directions. The results, which I present in Table 3.5, show that the
p-values of the LM test for kickers slightly increase compared to the ones I obtained with three
actions. But qualitatively, the results obtained with six and three actions are similar, with one
more kicker rejecting the null at the 10% level.

In summary, the empirical evidence on professional penalty kicks is not consistent with the
implication of equal scoring probabilities for some players. In contrast, when I exclude C from
the analysis, they seem to behave as the theory predicts. This means that including C' seems

crucial to detect possible departures from the equilibrium implications.
3.5.2 Test for serial independence

As I mentioned earlier, the second implication that I check is that the actions taken by the
players must not be serially dependent. Palacios-Huerta (2003) uses a so-called "runs test" to
evaluate this hypothesis (see Bradley (1968) for more details). A run is a sequence of consecutive
identical values. If there are too many or too few runs then the serial independence hypothesis
will be rejected. Too few runs means that the player does not change the action chosen often
enough, which implies positive serial correlation. In contrast, too many runs means negative
serial correlation.® However, given that runs tests do not generalize to three or more actions, I
rely instead on the methods described in section 3.4.1. The results with two actions are shown in
Table 3.6. This table shows the null hypotheses of serial independence with two actions is rejected

for three goalkeepers at the 10% significance level, but none at the 1% or 5% levels. Hence, if

8The hidden Markov model in Shachat et al (2015) can also generate persistent action changes in lab games.
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I rely on the usual 5% level, the evidence I obtained seems consistent with the implication of
serial independence for all the kickers and goalkeepers in the sample.

As in section 3.6.1, T also expanded the actions of the players to L, C' and R. The results
of the numerically invariant LM tests are shown in Table 3.7.° In this case, the null hypothesis
is not rejected for any of the players, implying that the results seem again in line with the
theory. Therefore, the evidence on penalty kicks is consistent with the implication of serial
independence, which is perhaps not surprising because actual penalty kicks usually take place
weeks if not months apart. These findings suggest that professional soccer players seem truly
able to generate random sequences; they do not appear to switch strategies too often or too
seldom. This differs from the evidence of negative serial dependence in Walker and Wooders
(2001), who tested whether professional tennis players played according to mixed strategies when

serving and receiving.
3.6 Conclusions

In this chapter I study independence tests between two categorical variables, which only take
a finite number of values H and K, respectively.

From the econometric point of view, I prove the numerical equivalence between Pearson’s
independence test statistic in contingency tables, the Lagrange Multiplier test statistic in several
popular regression models: the multivariate LPM, the conditional and unconditional multino-
mial model, the multinomial logit and probit models; and the corresponding J-test statistic for
overidentifying restrictions in GMM. In fact, the same results holds if one exchanges regressors
and regressands in all these models. Therefore, different researchers using different econometric
procedures will reach exactly the same conclusions if they use any of the aforementioned tests.

Additionally, I show that the Likelihood Ratio test statistic of independence in the condi-
tional and unconditional multinomial model, multinomial logit and probit models are numer-
ically identical, and that the heteroskedasticity-robust Wald test statistic in the multivariate
LPM and GMM coincide with the Wald test statistic in the conditional multinomial model.

Given that the LM test statistic is numerically equivalent in all those models, all the other
independence tests will also be asymptotically equivalent. Therefore, the only reason why re-

searchers might reach different conclusions in empirical applications is because they use LR or

T compute the asymptotic critical values of the LM tests using the F-approximation recommended by Stata,
which is supposed to be more reliable in finite samples (see section 3.7.7 for more details).
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Wald versions rather than LM tests, not because they use different models.

All these equivalences also apply to tests of serial independence of a discrete Markov chain,
which can be regarded as a time series analog to the multinomial model.

From the empirical point of view, I check if professional soccer players satisfy the indepen-
dence implications of mixed strategy equilibrium. To do so, I collected a dataset of 549 penalty
kicks in professional soccer games that include very detailed information on many relevant as-
pects of the play, and specifically actions and outcomes. I find that some professional soccer
players do not behave consistently with the implication of equal scoring probabilities across
strategies. In contrast, I find that the second testable implication (player’s actions are serially
independent) holds for all of the players in the sample.

Anatolyev and Kosenok (2009) showed that Pearson goodness of fit test is also asymptotically
equivalent to a multivariate regression Wald test. Additionally, Bouissou et al (1986) explain
how the LR test can be used to test that a discrete Markov chain is of order k rather than
k 4+ 1. Extending the numerical equivalence results of this chapter to the tests considered by

those authors, provides interesting avenues for subsequent research.
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3.7 Proofs
3.7.1 Proof of Proposition 3.1

Contingency table test For my purposes, the test statistic (3.1) can be conveniently written

as:
K H-1 9 K H-1 )
Nk Mho 1 NxkMho
Pearson =n g — +n g Nhk —
Nk n Nk n
k=1 h—1 *kTtho k=1 h—1 *kTCHo
K H-1 H-1 1 S -
*kTlho *kTtmo
+2n E [ (nhk - ) (nmk - )] ; (3.5)
Nk N Ho n n

K H H-1 H-1
where npe = Y g Nhks Msk = D peq Mhk> NHo =M1 — Y pq Tho and Mgy = Nyg — Y j_1 Npyk for

alk=1,..., Kand h=1,...,H — 1.

Multivariate regression The contribution from observation ¢ to the log-likelihood function

of the multivariate regression model in (3.2) is:

N 1 1
Ing; = - In27 — §ln 12| — 5[(% — z;)' 71 (y; — Ty)).

Following Magnus (2007), the score of the full sample can be written in matrix notation as
Ss(ILY) = (XY — X'XIT') 1. (3.6)

Note that Y'Y = diag(nie, - ,nmg-1), (X'X)7' = diag(n,--- ,n ;) and X'Y is an
K x (H — 1) matrix with rows of the form (nig, -+ ,ng_14), for k=1,... K.

The null hypothesis of independence implies that dp,; = -+ = dpxg = 6. Using that
Zszl Ap; = 1, the model becomes B, = &;, + up, for h = 1,...,H — 1 with ), = Nho /.

As a result, the estimated residual covariance matrix under the null is:

nio[l — (n1o/n)] - —(n1ong—10/n)
~ 1 1
Sh= (V'Y = V(Y] = = 7
n n
—(nonH-10/1) -+ NH_16[1 — (RH-10/n)]
where [, is an n x 1 vector of ones. Note that Y'l, = (nie, - ,ng—10), I,Y = (Y'l,) and

I/l, =n. Hence, ¥p = n~ ' (G + wr'), where G = Y'Y, w = —=Y"l,, and 7’ = —n~ /. Using the

Sherman-Morrison (1950) formula, I get

-1 _ n{G—l _ [(G_le/G_l) / (1 4 r’G_lw)]},
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so that

| @)+ () n/nie
St = [0ry) ] =

n/ e o (n/na-10) + (n/1ps)

Additionally, given that under the null I, = I (I/1,) 'Y, with lx being a K x 1 vector

of ones, then

ni1 — (neanio/n) -+ np—11 — (MaanH-10/1)

(XY = x'xT1y,) =
nik — (Nexgnig/n) -+ ng_1x — (MegNH-16/1)

Therefore, given (3.6) and the previous expressions, the element k, h of the score for
k=1,...,K and h=1,...,H — 1, evaluated under the null is:

H-1

Nk M ho n n NxkNzo n
S = - 2222) (2 a2
Shik Nhk " <nh<> + nH<>> + Z [ Nk ” -

z=1

= n[(nrk/nhe) — (NEK/MHS)]

H-1 H-1
because D . Mok = Nk — Nk — NEk and Y Nao =N — Nho — NHo-

Given that vec(ABC) = (C' ® A)vec(B), then
vec [55 (ﬁR, 5 R)] - (21;1 ® I) veel X'Y — X' Xl (I 1)~ Y.
The LM test is defined as
LM = ved [5’5 (ﬁR, 23)} j];lvec [S(s (ﬁR,f}Rﬂ ,

where Zp= [f]]_%l ® (X’X)], S0

LM = ved [ X'Y — X' XIg(I1,) "1 Y] [S;; ® (X’X)_l} vec X'Y — X' X1 (I1,) 7 Y]
due to the properties of the Kronecker product. Define F' = X'Y — X' X1y (I!1,) LY, so

LM = ved (F) [i;; ® (X’X)—l} vee (F). (3.7)

If we expand this expression, then it immediately follows that (3.7) is the same as (3.5) for

alk=1,...,Kand h=1,...,H — 1.
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Conditional multinomial model The derivatives of (3.3) under the alternative with respect

to Py and m,p are:

8ln£_%_n*k—ZhH:_llnhk and alnﬁ_n*k_ NyK

0P P 1-H 1Py, Ok Tk m

fork=1,...,Kand h=1,...,H — 1, so the FOC yields Py, = Nhk/ Nk and T = Nk /Mikc -
The conditional component of the log-likelihood function under the null, which states that

HO:Phk:Phoa fOI‘]{ZL...,K, is

H—-1 H-1 H-1
Inl = Z Nho IN Ppe + (n — Z n;w) In (1 - P;w> .
h=1

h=1 h=1

Taking first derivatives with respect to Py yields:

olnL o Nheo n — Zth_ll Nheo

OPho  Pro 11— Zi]:_ll Pho'

Therefore, the FOC yields Py, = Nho /N, SO Py =0pforh=1,...,H — 1.
The Hessian of this conditional multinomial model is H(#) = 0% 1n £(6)/060¢’, for
0= (Pu, -, Pg-1), so H(0) = diag[H:(0), - , Hx(0)], where

9*InL(0)/0P3, <o 02InL(0)/OP1xOPH 1k
Hy(0) =
O*InL(0)/0P10Py_1 - 0?1n E(@)/@Pf]_m
with
0%1n L(0) Ny NHE 0%1n L(0) B NHE
Tfk = —P—}%k - % an OP1OPy_11 B (1 B 2{3;11 Phk)g,

fork=1,..., Kandh=1,...,H— 1.
For a correctly specified likelihood, we have the information matrix equality

Var([s(0)] = —E[H(0)] = Z(0). The information matrix is Z(0) = diag|Z1(0),- - ,Zx(0)], where

(Plk)il + (1 o Zth—ll Phk)_l L. (1 _ Zth—ll Phk)_l
Z(0) = nE(Ayi)

1 —1
(1 - Zth_ll Phk) v (Pyoig) t 4+ (1 — Z}Ij:_ll Phk)
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Hence, using the Sherman-Morrison (1950) formula, its inverse will be given by:

Pp(1—Py) - —P1 P14,
1
To(0) = —— . 3.8
(0) nE (Ar) (3.8)
—Py_11Piy -+ Pa—1,(1 — Py_1y)
Note that the score under the null is () = n(ML — DL ... BIELK MIKY which s the
1o NHo NH=1¢0 NHo

same as the element h, k of the score under the null of the multivariate regression model, except
that these scores are calculated by vectorizing the matrix P by columns while the ones in the
multivariate regression are vectorized by rows.

Thus, one can go from one to another using the commutation matrix (see Magnus and
Neudecker (1988) for more details). The most useful property of such matrix is that it allows the
Kronecker products to commute. For that reason, the information matrix of the multivariate
regression and the one in the multinomial model look as a mirror image of one another, i.e.
7T = [(X'X)®Y ! instead of [X71®(X'X)]. Given that after performing appropriate re-ordering,
the score and information matrix under the null are identical to the score and information matrix

of the multivariate regression, the LM tests will also be numerically equal.

Unconditional multinomial model Ruud (2000) section 17.4 results imply that the LM
test statistic is numerically invariant to non-linear transformations of the restrictions when the
information matrix is used for its calculation instead of the Hessian. Consequently, the LM
test for the null hypothesis Hy : mhr = map X The will also be identical if one parameterizes
the multinomial log-likelihood in terms of the joint probabilities 7y instead of the conditional
probabilities Py, and the marginal ones .. Obviously, the same is true if one uses an alternative
parametrization which expresses the joint probabilities in terms of the two sets of marginal
probabilities my, for k =1,..., K — 1, and mpe, for h=1,...,H — 1, and (K — 1) x (H — 1)
additional parameters ¥ which should be 0 under the null. In particular, in the 2 x 2 case, the

log-likelihood written in this way is just

Inf =nqy ln[(l — 7T*2) (1 — 7T2<>) + 7.9] =+ n12 ln[(l — 7T2<>) T2 — 19]

+n21 In[(1 — myu2) T2o — V] + nog In (meamae + ) .
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The score vector for 6 = (7.2, T2, 1) is defined as

OlnL ni1 (1 — o) nig (1 —me) N21 20 N2 20
Oy (1 =) (1 —ma0) +19 (1 —Toe) a2 — 0 (1 — Tu2) Moo — 0 Tyamoe + 0
OlnL ni1 (1 — ma2) B N12T 42 n21 (1 — ma2) N2 T 42
Omae  (1—ma) (1 —=m20) +0 (1 —moe) T2 =0 (1 —Tya)T2o — 0 TaaMoo + 0
Ol ni1 n12 na1 n22

oY (1 =Tu2) (1 —7m20) + 0 (1 —=moe) a2 — 0 (1 — mya) moo — 0 + Moo + U
so the FOC yields 7o = n.a/n , ae = nge/n and O =n"lng — (Trx2Tr20), where nyo = nig +mnag,
Noe = N1 + Nigo and n = niy + n1s + 191 + noo. Therefore, the unrestricted estimators of the
marginal probabilities (7.2 and 7o) coincide with the restricted ones (7.2 and 7a,).

Moreover, the Hessian of the log-likelihood function for 6 = (7.2, T2, ) is

82 h’l,C - nii (1 — 7r2<>)2 ni2 (1 — 7T2<>)2 nglﬂ'%o 7’L227['%<>
or2, [ =ma) (I —m0) + 9 [(1— 7o) Mz — V> [(1—ma2) M2 — U (magmae + 0)2
82 In ,C n1119 ?11279 n2119 n2219
Omaamao (1 — mag) (1 — ma0) + 0)2 * [(1 — 7o) Tap — V)2 * [(1 — ma2) T20 — V]2 " (meamao +0)?
?InL n11 (1 — m20) L M2 (1—-m0) N217T20 _ noamyo
2

Omia?  [(1—mu2) (L —ma0) + 012 [(1 —mo0) e — ]2 [(1 — Tu2) 20 — V]2 (my0ma0 + 0)>

PInL B nip (1 — 7r*2)2 n12m2, noy (1 — 7r>,<2)2 N2y
om3, [ —ma) (I —m0) + 9 [(1—m20) Mz — V> [(1—mu2) m20 — U (mapmge + ¥)2
9*InL _ ni1 (1 — 7o) B N12T 42 LM (I1-m2)  noama
Omaed  [(1=Tu2) (L= Ta0) + 912 [(1 = m20) Taa =92 [(1 = Tu2) 20 — V|2 (miamao +0)?
0?InL B nii nig nay N9
02 [(1—ma) (1 —ma) 92 [(1—mao) 2 — 9 [(1—m2) Moo — U (myomo0 +0)%

Under the null, which states that ¢ = 0, the information matrix is

I(0) =nx dz’ag{ (1= maa) maa) ™8 [(1 = 7o) Tao) ™! [(1 = maa) (1 — o) Maomao) ! } - (3.9)

The LM test statistic is defined by LM = nx s(6)'1(6)'s(0), where s(0) and I(0) are the un-

restricted gradient and information matrix evaluated at the restricted estimators é, respectively.

Given (3.9), the estimated information matrix 7(#) will be

1(0) = n x diag [ n2 (n*ln*g)_l n2 (nlongo)_l n* (n*ln*gnlongo)_l )

where 1,1 = 1 — nyo and ni, = 1 — no,. Additionally, the score under the null is given by

s(0) =n~1 ( 0 0 s11/s12 )
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where

2 2 2 2 2
S11 =" (n11n22 — N11M12M21 + N11N21N22 + N11N9 — NIoN21 — N12No — n12n21n22)

and

512 = (n11 + n12) (n11 + no1) (n12 + n22) (n21 + no2) .

Therefore, the LM test statistic will be

~2

J

(1 — 7ra2) (1 — 7ro0) Ta2froe

LM =n x

where 9 is defined above. Hence, the LM test, which is exactly the same as (3.5), is like a t—test
for 1, but using the asymptotic standard error computed under the null.

The same procedure can be applied to the general H x K case. For example, in a 3 x 3
contingency table, the joint probabilities can be parameterized in terms of the marginal prob-
abilities mp, and w4, for A,k = 1,2,3, and four additional parameters 911, Y12, 21 and 999,
which should be 0 under the null.

Analogous derivations show that the estimators of the marginal probabilities are the same
under the null and the alternative, and that the information matrix evaluated under the null is

block diagonal between e, T4 and the ¥'s.

Multinomial logit model Recall that the log-likelihood function of this model is:

K [H-1 H-1
InL(v) = Z [Z Nk In Pri + g In (1 - Z Phk>

k=1 Lh=1 h=1

The score is defined as s(vy) = 0L(~y)/0y with

OlnL(y)

gAY OPp exp(Vpp Aki) Ari
0Py

Mne 1+ exp(ypAri) + exp(venAri)]®

Thk NHE
Phk 1-— ZhH:_ll Phk

fork=1,...,Kand h=1,..., H—1. Solving the FOC for Phk yields Phk = npk /N, which is
again the same as the estimate in the multivariate regression, with 4, = In (npx) —In (N — npk)
(see Cameron and Trivedi (2005) chapter 15, section 4 for more details).

The multinomial logit log-likelihood function under the null hypothesis Hy : Pni = P, for
k=1,...,.Kand h=1,...,H — 1, is:

K H-1 H—-1
lnﬁ('y) {Z [(nhk In Ph) + nggIn (1 - th>

h=1 h=1

+n*kln7rk}7
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which yields P}, = npo/n, given that Y5 np, = n. Additionally, P, = exp(5,)/ 3. exp(7y)-

It is worth mentioning that the values of the log-likelihood function under the null and alter-
native of the multinomial logit are equal to the corresponding log-likelihoods of the multinomial
model, which implies that the LM and LR test statistics will be the same (see section 17.4 of

Ruud (2000)).

Multinomial probit model Recall that the observation rule is

7j=1,...,n

where 1{} is the indicator function, so that Bj; = 1 if the h is the preferred choice. Otherwise,
By,; equals zero. Therefore, the log-likelihood function is
n H
L(0) => > BpInPr(By; = 1]z).
i=1 h=1
Like in the multinomial logit, this log-likelihood function coincides with a complicated non-
linear reparametrization of the conditional component of the log-likelihood function of the
multinomial model.
For simplicity of exposition, consider the 2 x K case. The log-likelihood function is:
n
Inl = Z{Bl In® (alAli —+ -+ OKKAKZ‘) + (1 — Bl) ln[l —d (OélAli —+ -+ OzKAKZ‘)}},
i=1

where ®(-) is the standard normal cdf. The score is defined as s(a) = 91n L(«)/da with

Oln E(a) _ Ak[¢ (akAk)](Bl - Pk)
Doy Pp(1— Py) ’

where P, = ® (A1 + -+ + axAgk;), for k = 1,..., K. Solving for Py, yields P, = N/ Tk
which is again the same as in the conditional multinomial model, with & = ®~1 (ng/n.4) -

In turn, the log-likelihood function under Hy : ap =, for k=1,..., K, is:

n
InL =) {BilnPr(B;=1)+ (1 — B;)In[l - Pr(B; = 1)]},
i=1
which yields f’;(B = 1) = nyo/n. As a result, the multinomial probit model under the null is

entirely analogous to the multinomial logit one, so the same numerical equalities hold.
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GMM As explained in section 3.2, the moment conditions are (3.4). Under Hj, II is unre-

stricted while under Hy, II(v) = vl}.. The GMM estimator of v is defined as:

U = arg mvin ( Z{ v)zi| @ %}) ( Z{ V)] ® CUZ}>

where T is a symmetric positive definite [K x (H — 1)] x [K x (H — 1)] weight matrix.
The GMM estimator can also be written as © = arg min,, §'Y~1g, where g = % o {glzi I(v)] ).
Hence, the FOC is 2g’'T~1 (8@/85) =0, with ¥ = [¥r® ) ", (z;2})] being optimal under Hy.
Given that (3.4) are linear, one can rewrite g as § = m, —M,v, with M, = 1 3> | (Iy_1 ® z;)
and m,, = % 2?21 (y; ® ;) , which implies that © = (MHT_an), (MnT—lmn) . Specifically,

n

" —1
Yr® %Z (:czx;)] [iZ(IH—l ® x;)
i—1

=1

U= [i Z Ig-1® x4)

i=1

1 n
= n;yh

whose representative element np,/n is exactly the same as the restricted estimator é5 in the
multivariate regression.

The J-test statistic for overidentifying restrictions is J = n x g(0)'Y~1g(?). Note that
T-!= 21—%1 ® (X’X)_1 is exactly the same as the information matrix in the multivariate regres-

sion. Additionally,
gi = (yi — ;) @ z; = (y; @ 3) lx — (U @ x;) lg = vee(xilgy)) — vee(w;lpziIl')

and since IIg(v) = ’UZIK = (Igv'Ig_1)", then g; = vee(zyh) — (Ig—1 ® zx}) v with
= (Ir-1® ) vec(v) = (Ig—1 ®lg) v, so g; = vec(z;y;) — (Ig—1 @ l) v. This implies that
% Zn:gi = §(2;0) = vec[X'Y — X' Xl (I/,1,) 1, Y],
i=1

which is exactly the same as the normal equations of the multivariate regression (3.7). Therefore,
the J-test statistic for overidentifying restrictions is also numerically equivalent to the LM test.

Finally, given that the model under the alternative is exactly identified, the Distance Differ-
ence test (see Newey and West (1987) for more details) is exactly the same as the J-test statistic.
Hence, following the results in chapter 22 of Ruud (2000), the minimum chi-square test that
compares 11 with II(0) and the GMM version of the LM test will also be numerically identical

to the J-test statistic.
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3.7.2 Proof of Proposition 3.2

The results in section 17.4 of Ruud (2000) imply that the LR test of the conditional and
unconditional multinomial model, the multinomial probit model and the logit model in section
3.2 must coincide because LR tests are numerically invariant to non-linear transformations of

parameters and restrictions.
3.7.3 Proof of Proposition 3.3

Multivariate LPM The covariance matrix of the heteroskedasticity-robust Wald test in the
multivariate regression is defined as Q = (Ig—1 ® X' X)) 'W(Iy_; ® X'X)~!, where
U =3 [(u; @ x;) (u), @ })]. Note that both ¥ and (Iy_y ® X'X)™! = Ig_; ® (X'X)~" are

[(H—1) x K| x [(H—1) x K] matrices.

A3 ApAg
Specifically, U = " [(wju}) @ (z;2})], with @z = : : , where Ag;,
Avdgi - A,
for k =1,..., K, are the mutually exclusive dummy variables defined in section 2 and the u’s

are the regression residuals for equation 7. Hence, when Ay; = 1,

2 2
2 _ . _ Npg _ . _ 2npg Nhk
aho= (Bu— ) =B (1= + (3

. . = . _ Mhk . Mmk — MhEMmk _ Mmk Nhk
UhiUmi = (Bhl ”m) (Bmz Tk ) = T2 Bhl Tk Bmz Tk
*xk

and x,ac; is a matrix of zeros except for a 1 in the " diagonal element because By; and B,,; are

also dummy variables for h,m =1,..., H — 1 and h # m. Therefore,
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K>
Il
2

nh1;1m1 _ Bh'nml _B..M
n*l

+ ...
B . 1 2n'm1 Nm1 2 O
mi (L= 50 ) T (W
0 0
0
0 B 1 2np npK 2
hi T + Ny K
0
0
0 Ty Bk —

Il
A

0

B.<1_M>+(m>2 0
hi M1 Mx1

0 0

0

Np1Mmil Nm1 .h1
w2~ Bri — Bmigy 0

0 0

¥ 1 Mtn,

0 0

0

NhAKNMmK —B MK —B NhK

T'LzK hi NxK mi Ny K

3

0

2n n 2

. _ AlmK mK
Bmz (1 NxK ) _I— (n*K> i
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which can be simplified to

n
nii (1 — Tﬂ) O
0 0
n
0 mx(1-22) 0
U = 0
NIIMH—1,1
Mx1 O
0 0
NIKNH-1,K
i 0 R
_nMH-21MH-1,1 0
MNx1
0 0
0 _ NH_2 KMH—1,K
Ny« K

NH-11 <1 _ M) 0

M1

0 0

0 ng-1k (1 — L’_l’K)

Ny K

because ZA;m:l Bpr = np, and ZAM:I l=ny fork=1,... K.
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Therefore,

i (q]_nu
ni ( ”*1> 0
0 0
MK (]_Mk
0 ”EK( "*K)
QR = (3.10)
NIIMH-1,1
0
*1
0 0
NIKNH-1,K
0 _n37
L * K
NN —
_ };I 1,1 0
T
0 0
0 _ann?{-I—l,K
n*K
nH-11 (q_MPH-11
n}, (1 Tl ) 0
0 0
NH—-1,K NH—-1,K
e (e~
K Nx K .

which has (H — 1) x (H — 1) blocks of size K, each of which is diagonal.

Conditional multinomial model The inverse of the estimated information matrix is given
by (3.8). In practice, we use the unrestricted ML estimator of Py, for £ = 1,..., K and
h =1,...,H —1 to estimate the inverse information matrix. Given that Py = Npk/Nxk and

E(A;) = nug/n, then

Mk (1] _ Dik) ... _ g MH-1,k
, (L= 0y) Pek Tk
()t = m : : )
n .
. _nmigMH-1k nH—l,k( B nH—l,k)
Nxk  Mxk Nxk Nl

which is exactly the same as the heteroskedasticity-robust variance in the multivariate regression
(3.10), except for re-ordering. Therefore, given that both the point estimators and the covariance

matrices are the same, the Wald tests will also be the same.
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GMM As I explained in section 3.2, the moment conditions are given by (3.4). Under Hy, II
is unrestricted, so the GMM estimator is defined as:

/!
. . 1 n 1 n
H:argmr}n{nZ[(yi—H:Ei)@xl} {nz — ;) ®xl]},

=1 =1
where T is a symmetric positive definite [K x (H —1)] x [K x (H — 1)] weight matrix. However,

given that the model is exactly identified under the alternative, T becomes irrelevant. Therefore,

the GMM unrestricted estimator will be the one that sets

*Z —z;) ® ;] = 0.

But this expression is exactly the same as the score (3.6) in the multivariate LPM, which implies
that the GMM unrestricted estimator coincides with OLS.

Finally, the heteroskedasticity-robust estimated variance-covariance matrix will also be ex-
actly the same as in OLS (see section 21.4.3 of Ruud (2000)). Therefore, the Wald test statistic

will coincide.
3.7.4 Finite sample distribution

Even in experimental studies, few observations for each player are likely to be the rule
rather than the exception. Therefore, the asymptotic X2 distribution of the independence tests
described in section 3.2 may be unreliable when the number of observations is small.

Given the discrete nature of the random variables involved, permutation-type tests may seem
to provide a way of conducting exact inference to test for independence. In fact, Fisher’s exact
test (see Fisher (1922)) could be regarded as a permutation test. His test takes the values of
Nl, ..., Nsx and nis,...,NHe as given and therefore, it is equivalent to using the likelihood
in the unconditional multinomial model in section 3.2 but treating the estimated values of 7,
and 7, as if they were the true values of the parameters. However, this test is only exact
if the marginal probabilities of the two categorical random variables are known, as in Fisher’s
famous tea cup classification example. In more realistic situations, those marginal probabilities
are unknown, and the supposedly exact test is only valid asymptotically.

Although Monte Carlo simulations can help us in assessing how good the asymptotic ap-
proximation of a test statistic is, in practice, they are not useful for inferences in a given sample

because we do not know the true values of the parameters.
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For that reason, simulation methods provide an alternative to asymptotic approximations
for obtaining p-values by resampling methods. Next, I explain how to compute the parametric
bootstrap distribution for the penalty kick case.

Note that tests of the first and second implications of mixed strategy equilibrium with two
actions are equivalent in this context because, although the variables involved are different, they
are all based on 2 x 2 contingency tables. For that reason, I focus on the first hypothesis only.

Given that all the variables used are discrete, the number of states of the world is finite (2
possible actions per player x 2 possible outcomes per player’s actions). In addition, the number
of values of the estimators and test statistics will be repeated in many of those states of the
world. For example, for n = 5 and two actions per player, there are (23)° possible states, but
only 56 different contingency tables, while for n = 20 there are (23)2° states, but only 1771
contingency tables (the number of possible contingency tables for n = 5 and n = 20 is obtained
after carefully considering how many different values can ngy, take for each combination of ny,
and ng). For that reason, I simulate the contingency tables directly, which contain all the
information.

Recall that in the contingency table in section 3.2.1 applied to the penalty kick case, where
now g is the outcome (success (S) or failure (F)) and x is the action of the player (L and R),
both ny, = ngr +npr and ng = ngy + ngr have values that go from 0 to n. Given those values,
I only need to choose an additional element to complete the contingency table. Without loss
of generality, I choose ngy. For fixed n; and ng, ngr fluctuates between a maximum and a
minimum. It is easy to see that the minimum value ng;, can take is the maximum of 0 and
nr, +ng — n, while the maximum value it takes is the minimum of n;, and ng.

To find the exact probability of each of those contingency tables and therefore of the corre-
sponding test statistics, first note that under the null hypothesis the number of kicks to the left

(nz) and the number of goals scored (ng) are independent random variables. Therefore,
Pr(ng,ng,nsr|n) = Pr(ng|n) x Pr(ng|n) x Pr(ngr, | nr,ng;n),

where Pr(n;|n), for j = S, L, is binomial, whose values depend on the values of n and E(L) = 7,
or E(S) = mg. In turn, Fisher (1922) showed that Pr(ngsy | nr,ng;n) is hypergeometric, with
values that only depend on n,n; and ng. The binomial distribution gives the probability of

k successes in n trials with replacement, while the hypergeometric distribution does the same

141



thing, but without replacement. Interestingly, the probability of those contingency tables under
the null is identical to the likelihood written in terms of mp, = Py X T as stated in formula
(38) of Mood et al (1974).

For a given sample, I calculate ng; and ng to estimate the marginal probabilities 7, and
Tge. Then I use those estimated values to independently draw the actions of the kicker, as well
as whether or not the goal is scored.

However, I have found that many of those distributions are repeated for different values of

7.1, and Tg,. More precisely, for an even number of observations there are

1 2
(73)

2 2 2

different distributions, while for an odd number of observations there are

1/n—1 n+1
2( 5 X 5 >+1.

This is due to the symmetry relationships that arise because the variables of the model are

mutually exclusive dummy variables. For example, n; = 2 and ng = 3 will give the same
distribution for the test statistics as ny = 3 and ng = 2. As a result, there are only 7 and 56
possible different distributions for Pearson’s test for n = 5 and n = 20 respectively, even though
there are 56 and 1771 contingency tables.

Therefore, the only difference between the Fisher test and the simulated test distribution that
I compute is that the former uses the unknown probabilities while the latter uses the estimated
probabilities.

In the case of three or more actions, I can find the exact probability of each possible contin-

gency table, and therefore the exact probability of the different test statistics, using

Pr(contingency table|n) = Pr(n.,...,nsx|n) X Pr(nie, ..., npoln)

X Pr(npg|nst, - -y Mk Moy -« -y NHo3 M),

because njy, and n,; are independent under the null.
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Given that

nl'nK' nl'nH'
Pr(nhk‘n*ly...,n*K;nIOw"7nH<>;n):( — |, ;I >(K<>7 '? 0)
! T [Teeq mis!
Pr(ns,...,nuk(n) = N1l ! Hk:l Tk
n! H
Loonmln) = ————— T mpke
Pr(niol,... . npo!in) ol nggel A=y The

then

Pr(contingency table|n) = HhH Hf o (szl Wf;f) <Hh:1 WZZ°> .
=1 1 lg=1"5-

As in the 2 x 2 case, the probability of those contingency tables under the null is identical
to the likelihood written in terms of 7 = Pug X 7y as stated in formula (38) of Mood et al
(1974).

However, the number of possible contingency tables is very large, and finding their exact
bootstrap distribution is very tedious. For that reason, I compute the p-value using Monte Carlo
simulations rather than the exact test, using once again the estimated values of the marginal

probabilities.
3.7.5 Relationship Between Test Statistics When H =2 and H =3

Following Stewart (1995), the Wald, LR and LM tests in the multivariate LPM can be written
as functions of the eigenvalues (A1,..., A\g_1) of the matrix GE~1, where G = 2}523 — ﬁ)’Uﬁ]U
and F = ZAJ’UZAJU, with f]U and X r being the unrestricted and restricted MLE of the residual
matrix in the multivariate regression model, respectively.

Specifically, the three tests can be written as:

Wald =13, A
LM =n3 [N/(14+ \)]
exp (LR) = nT](1+XN)

For H = 3, there are only two eigenvalues (A\; and A2), so

Wald = M\ + A
LM = [A1/(1+ M)+ Da/(1+ )] = Yifet2iie
exp(LR) = (1+X)(1+ X)) =M+ A2+ MA2+1

Therefore, the set of values of Wald, LM and LR compatible with the previous expressions is
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a two-dimensional manifold in the three dimensional (Wald, LM, exp(LR)) space, which means
the they are not non-linear transformations of each other.

This is in contrast to the case of tests on the coefficients of a multiple regression involving a
single (H = 2) regressand or tests on the coefficients of a multivariate regression that involve a
single regressor (K = 1), in which case Wald = Ay, LM = X\ /(1 + A1) and
exp(LR) = (14 A1), so that all three tests lie on a line (a unidimensional manifold) in the three

dimensional (Wald, LM, exp(LR)) space.
3.7.6 Kickers and Goalkeepers

Players are divided between kickers and goalkeepers. In brackets is the identification number

used in the empirical analysis, and in parentheses it appears the teams they play for.

Kickers [1] Cristiano Ronaldo (Real Madrid/Manchester United), [2] Messi *(Barcelona),
[3] Falcao (Atlético de Madrid/Monaco), [4] Gerrard (Liverpool), [5] Guiseppe Rossi (Vil-
lareal /Fiorentina), [6] Hulk* (Oporto/Zenit), [7] Ibrahimovic (Inter Milan/Milan/PSG), [8]
Kanoute (Sevilla), [9] Negredo* (Almeria/Sevilla), [10] Soldado (Getafe/Tottenham), [11] Villa
(Valencia/Atlético de Madrid), [12] Xabi Prieto (Real Sociedad), with * denoting the kickers

who are left-footed.

Goalkeepers [1] Aouate (Deportivo La Corunia/Mallorca), [2] Diego Alves (Almeria/Valencia),
[3] Diego Lépez (Villareal/Real Madrid), [4] Iraizoz (Athletic Club Bilbao), [5] Moya (Mal-
lorca/Getafe/), [6] Palop (Sevilla), [7] Ricardo (Osasuna), [8] Roberto (Granada), [9] Ruben
(Rayo Vallecano), [10]Tono (Racing Santander/Granada/Rayo Vallecano).

3.7.7 F approximatlions

As I mentioned in section 3.2.2, the Pillai trace test can be written as V = n~'LM while
Wilks’ lambda is A = exp (—nflLR) and the Lawley-Hotelling trace test is LH = n~'Wald.
The F approximations of the Pillai trace (V), Wilks’ lambda (A) and Lawley-Hotelling (LH)

tests that Stata uses are:
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2n+s+ 1)V

Vi = 2m+s+1)(s—=V)
AF — (]' —1A?)df2
()
Loy 2ent DL

Cs2(2m s+ 1)
where p is the number of columns of y variables, v}, is the hypothesis degrees of freedom, v, is the

error degrees of freedom, s = min(p,vp),m = (Jv, —p| —1) /2, n = (ve —p — 1) /2, df1 = pvp,

dfy = wt+1—pvy /2, w =ve+v, — (p+vp+1)/2 and t = \/(pzv,zl —4)/(p* + v} — 5) (see Stata
(2011), Manova, entry for more details).
In addition, Stata uses a degrees of freedom correction n/(n — K) for the heteroskedastitcy

robust Wald test in the univariate case (see Stata (2011), Robust, entry for more details).
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3.8 Tables Chapter 3

Table 3.2: Distribution of Strategies Combinations and Scoring Rates

#0Obs. L-L L-C L-R C-L C-C C-R RL RC RR
All penalties 549 20.58 2.55 26.78 3.64 1.09 2.37 2095 091 21.13
Scoring rate  86.34  69.91 92.86 97.96 100 0 92.31 95.65 100 78.45

Notes: The first letter refers to the choice made by the kicker (Left (L), Center (C') and Right (R)) and
the second one to the choice made by the goalkeeper, always from the point of view of the goalkeeper.
For instance, L-R means than the kicker chooses to kick to the left hand side of the goalkeeper and the
goalkeeper chooses to jump to his right.
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Table 3.3: Test for Equality of Scoring Probabilities with 2 Actions

Frequency Scoring Rates

Player #Obs. L R L R LM Test p-value
Kicker 1 44 0.36 0.64 1 0.96 0.58 0.44
Kicker 2 29 0.69 0.31 0.90 0.78 0.78 0.38
Kicker 3 16 0.50 0.50 0.88 0.88 0 1
Kicker 4 32 0.59 041 0.95 0.85 0.93 0.33
Kicker 5 21 0.52 0.48 0.91 0.80 0.51 0.48
Kicker 6 22 0.36  0.64 0.79 0.75 0.04 0.85
Kicker 7 41 0.34 0.66 0.93 0.96 0.24 0.63
Kicker 8 9 0.67 0.33 0.67 1 1.29 0.26
Kicker 9 25 0.76 0.24 0.68 1 2.49 0.11
Kicker 10 20 0.25 0.75 1 0.80 1.18 0.28
Kicker 11 20 0.7 0.30 0.93 1 0.45 0.50
Kicker 12 16 0.69 0.31 1 0.80 2.35 0.12
Goalkeeper 1 13 0.62 0.38 0.75 1 1.48 0.22
Goalkeeper 2 16 0.56 0.44 0.56 0.57 0.01 0.95
Goalkeeper 3 10 0.50 0.50 0.60 1 2.50 0.11
Goalkeeper 4 15 0.73 0.27 1 1 0 1
Goalkeeper 5 10 0.10 0.90 1 0.89 0.12 0.73
Goalkeeper 6 10 0.40 0.60 0.50 0.83 1.27 0.26
Goalkeeper 7 9 0.44 0.56 1 0.80 0.90 0.34
Goalkeeper 8 10 0.50 0.50 1 0.80 1.11 0.29
Goalkeeper 9 10 0.60 0.40 0.83 1 0.74 0.39
Goalkeeper 10** 11 0.27 0.73 0.33 1 6.52 0.01

Notes: L (Left) and R (Right) denote the strategies available to the players. Additionally, * indicates
rejection of the null at the 10% significance level, ** 5% level, *** 1% level.
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Table 3.4: Test for Equality of Scoring Probabilities with 3 Actions

Frequency Scoring Rates

Player #0Obs. L C R L C R LM Test p-value
Kicker 1*** 50 0.34 0.10 0.56 1 0.60 0.96 11.63 0
Kicker 2 36 0.58 0.11 0.31 0.90 1 0.82 1.11 0.57
Kicker 3 21 0.43 0.19 0.38 0.89 1 0.87 0.53 0.77
Kicker 4** 33 0.58 0.03 0.39 0.95 0 0.85 8.22 0.02
Kicker 6 26 0.54 0.02 0.31 0.79 1 0.75 1.17 0.56
Kicker 7*** 42 0.33 0.03 0.64 0.93 0 0.96 13.43 0
Kicker 8 20 0.55 0.20 0.25 0.73 1 1 2.89 0.24
Kicker 9 28 0.68 0.11 0.21 0.68 1 1 3.62 0.16
Kicker 12 20 0.55 0.20 0.25 1 1 0.80 3.16 0.21
Goalkeeper 1 14 0.57 0.07 0.36 0.75 1 1 1.75 0.42
Goalkeeper 2 18 0.50 0.11 0.39 0.56 0.50 0.57 0.03 0.98
Goalkeeper 3 12 0.50 0.08 0.42 0.67 1 0.57 2.40 0.30
Goalkeeper 4** 18 0.67 0.11 0.22 1 0.50 1 8.47 0.01
Goalkeeper 5 15 0.13 0.27 0.60 1 0.85 0.89 0.82 0.66
Goalkeeper 10** 13 0.23 0.08 0.69 0.33 1 1 7.88 0.02

Notes: L (Left), C' (Center) and R (Right) denote the strategies available to the players. Additionally, *
indicates rejection of the null at the 10% significance level, ** 5% level, *** 1% level.
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Table 3.6: Test for Serial Independence with 2 Actions

Transition Matrix

Player #Obs. Lt|Lt_1 Rt‘Lt—l Lt‘Rt—l Rt|Rt_1 LM Test p-value
Kicker 1 42 0.40 0.60 0.32 0.68 0.27 0.606
Kicker 2 27 0.73 0.27 0.56 0.44 0.92 0.337
Kicker 3 14 0.50 0.50 0.57 0.43 0.08 0.782
Kicker 4 30 0.50 0.50 0.69 0.31 1.15 0.284
Kicker 5 19 0.50 0.50 0.60 0.40 0.20 0.653
Kicker 6 20 0.62 0.38 0.75 0.25 0.40 0.525
Kicker 7 39 0.21 0.79 0.42 0.58 1.74 0.187
Kicker 8 7 0.67 0.33 0.50 0.50 0.18 0.673
Kicker 9 23 0.78 0.22 0.67 0.33 0.27 0.586
Kicker 10 18 0 1 0.29 0.71 1.81 0.179
Kicker 11 18 0.69 0.31 0.83 0.17 0.42 0.516
Kicker 12 14 0.70 0.30 0.80 0.20 0.17 0.680
Goalkeeper 1* 12 0.33 0.67 0.86 0.14 3.75 0.053
Goalkeeper 2 15 0.60 0.40 0.50 0.50 0.15 0.696
Goalkeeper 3 9 0.60 0.40 0.40 0.60 0.40 0.527
Goalkeeper 4* 14 1 0 0.56 0.44 3.64 0.057
Goalkeeper 5 9 0 1 0.13 0.88 0.28 0.598
Goalkeeper 6 9 0.20 0.80 0.60 0.40 1.67 0.197
Goalkeeper 7 8 0.50 0.50 0.33 0.67 0.23 0.635
Goalkeeper 8 9 0.50 0.50 0.50 0.50 0 1
Goalkeeper 9 9 0.75 0.25 0.50 0.50 0.63 0.429
Goalkeeper 10* 10 0 1 0.50 0.50 3.44 0.064

Notes: L; (Left) and R; (Right) denote the strategies available to the players at time ¢ while L;_; and
R;_1 are its corresponding lagged variables. For instance, L;|R;—1 means that the player chooses L at
time ¢ after the previous player chose R at ¢ — 1. Additionally, * indicates rejection of the null at the
10% significance level, ** 5% level, *** 1% level.

150



TOAR YT sxe ‘TPADT %G sy ‘[PAD] OIUBIYIUSIS %0T O} J& [[NU
1]} JO o101 S9gRITPUI 4, ‘AT[RUOTIPPY ‘T — 7 1@ I 950y Iofeld snoraaid oY) I9jJe 7 oI} Je T S9s00TD Iokeld o1} Jey) sueour [—iyy|#T ‘90UR)SUT 10, "SO[RLIBA
poag3e Sutpuodser1od s31 ore I—#y pue %) ‘I—+7 o[rym 7 o) Je siode[d o) 0} s[qe[resr so18ejeIls oY) 9j0uap (WSTY) # pue (1@JuUs)) %) ‘(3yorT) T :s910N

780 9¢0 09°0 010 0€0 T 0 0 T 0 0 ¢l 0T o1roH
61°0 891 9.0 ¢ro ¢ro 070 09°0 0 060 0 090 4! G o1eoH
9¢0 €Tl 0¥°0 0 09°0 0 0¢0 0¢0 8T°0 60°0 €L°0 LT ¥ orroH
a¥'0 96°0 020 0 08°0 ! 0 0 060 LT°0 €€0 TT € 91eoYH
16°0 €80 6¢°0 6¢°0 ¢y o 060 0 0¢0 770 0 960 LT G O1roH
99°0 19°0 070 020 070 0 0 T 8¢°0 0 90 €l T °1eoH
740 6.0 020 0c0 090 0 0 T €€°0 Ay v o 61 ¢T OO
160 ¥8°0 0 LT°0 €8°0 0 0 T 0€0 010 09°0 LC 6 131y
6€°0 L0°T 0 Gco GL0 0 gco GL0 170 8T°0 170 61 8 IO
170 10°T 860 0 ¢vo T 0 0 €L°0 200 020 v L YOI
¢ro G6°1 0 L€0 €9°0 0S¢0 0 0s0 €70 L0°0 0s0 qc 9 I3y
0¢°0 980 ¥¢'0 8¢°0 8¢°0 €€°0 0 290 0S¢0 010 070 0¢ € IO
1L°0 €40 a0 01°0 ar0 gco 0 GL0 gco 1o 09°0 ve G IOy
¢1o 68T 19°0 810 1¢°0 0¥°0 0 09°0 €40 0 .70 6V T 19313

onea-d 8oL, W7 R TR TRy Tolkg Tl Tl Tokglhg Ui Tk sqO# REVAI I

XLIJRN UOT}ISURIT,

SUOIY ¢ YHm souepuadopu] [eLISS I0J 1S9, :L°€ O[qR],

151



References

Anatolyev, S. and G. Kosenok (2009): "Tests in Contingency Tables as Regression Tests",
Economics Letters, 105, pp. 189-192.

Apesteguia, J. and I. Palacios-Huerta (2010): "Psychological Pressure in Competitive En-
vironments: Evidence from a Randomized Natural Experiment", American Economic Review,
100, pp. 2548-64.

Aradillas-Lépez, A., A. Gandhi and D. Quint (2013): "Identification and Inference in As-
cending Auctions with Correlated Private Values", Econometrica, 81, pp. 489-534.

Athey, S. and P. A. Haile (2002): "Identification of Standard Auction Models", Economet-
rica, 70, pp. 2107-2140.

Athey, S., J. Levin and E. Seira (2011): "Comparing Open and Sealed Bid Auctions: Evi-
dence from Timber Auctions", Quarterly Journal of Economics, 126, pp. 207-257.

Bajari, P. and A. Hortagsu (2003): "The Winner’s Curse, Reserve Prices and Endogenous
Entry: Empirical Insights from eBay Auctions", RAND Journal of Economics, 34, pp. 329-355.

Balzer, B. and A. Rosato (2020): "Expectations-Based Loss Aversion in Auctions with
Interdependent Values: Extensive vs. Intensive Risk", Management Science.

Banerji, A. and N. Gupta (2014): "Detection, Identification, and Estimation of Loss Aver-
sion: Evidence from an Auction Experiment", American Economic Journal: Microeconomics, 6,
pp- 91-133.

Barberis, N., M. Huang and T. Santos (2001): "Prospect Theory and Asset Prices", Quar-
terly Journal of Economics, 116, pp. 1-53.

Barberis, N. and M. Huang (2008): "Stocks as Lotteries: The Implications of Probability
Weighting for Security Prices", American Economic Review, 98, pp. 2066-2100.

Belot, M., V. Bhaskar and J. van de Ven (2010): "Promises and Cooperation: Evidence from
a TV Game Show", Journal of Economic Behavior & Organization, 73, pp. 396-405.

Belot, M., V.P. Crawford and C. Heyes (2013): "Players of Matching Pennies Automatically
Imitate Opponents’ Gestures Against Strong Incentives", Proceedings of the National Academy
of Sciences, 110, pp. 2763-2768.

Berndt, E.R. and N.E. Savin (1977): "Conflict Among Criteria for Testing Hypotheses in

the Multivariate Linear Regression Model", Econometrica, 45, pp. 1263-1277.

152



Bouissou, M. B., J. Laffont and Q. H. Vuong (1986): "Tests of Noncausality Under Markov
Assumptions for Qualitative Panel Data", Econometrica, 54, pp. 395-414.

Bradley, J. V. (1968): "Distribution-Free Statistical Tests", First Edition, Prentice-Hall.

Brown, J. and R. Rosenthal (1990): "Testing the Minimax Hypothesis: A Reexamination of
O’Neill’s Experiment", Econometrica, 58, pp. 1065-1081.

Cameron, A. C. and P. K. Trivedi (2005): Microeconometrics: Methods and Applications,
Cambridge University Press.

Chiappori, P-A, S. Levitt and T. Groseclose (2002): "Testing Mixed-Strategy Equilibria
When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer", American Economic
Review, 92, pp. 1138-1151.

Dastoor, N. K. (2001): "Conflict Among Criteria for Testing Hypotheses: Examples from
Non-Normal Distributions", Econometric Theory, 17, pp. 487-491.

Davidson, R. and J. MacKinnon (1998): "Graphical Methods for Investigating the Size and
Power of Hypothesis Tests", The Manchester School, 66, pp. 1-26.

Dionne, G., P. St-Amour and D. Vencatachellum (2009): "Asymmetric Information and
Adverse Selection in Mauritanian Slave Auctions", Review of Economic Studies, 76, pp. 1269-
1295.

Dodonova, A. and Y. Khoroshilov (2005): "English Auctions with Loss Averse Bidders",
Working paper, University of Ottawa Telfer School of Management.

Dodonova, A. and Y. Khoroshilov (2009): "Behavioral Biases in Auctions: An Experimental
Study", Economics Bulletin, 29, pp. 2223-2231.

Dridi, R., A. Guay and E. Renault (2007): "Indirect Inference and Calibration of Dynamic
Stochastic General Equilibrium Models", Journal of Econometrics, 136, pp. 397-430.

Eisenhuth, R. and M. Grunewald (2020): "Auctions with Loss-averse Bidders", International
Journal of Economic Theory, 16, pp. 129-152.

Engle, R.F (1983): "Wald, Likelihood Ratio and Lagrange Multiplier Tests in Econometrics",
Handbook of Econometrics, vol. 2, eds. Z. Griliches and M.D. Intriligator, chapter 13, pp. 775-
826.

Erev, I. and A. E. Roth (1998): "Predicting How People Play Games: Reinforcement Learn-
ing in Experimental Games with Unique, Mixed Strategy Equilibria", American Economic Re-

view, 88, pp. 848-881.

153



Federation Internationale de Football Association (2018): "Official Laws of the Game",
www.fifa.com/development /education-and-technical /referees/laws-of-the-game.html

Fisher, R. A (1922): "On the Interpretation of X2 from Contingency Tables, and the Cal-
culation of P", Journal of the Royal Statistical Society, 85, pp. 87-94.

Garicano, L., I. Palacios-Huerta and C. Prendergast (2005): "Favoritism Under Social Pres-
sure", Review of Economics and Statistics, 87, pp. 208-216.

Gentry, M. and T. Li (2014): "Identification in Auctions with Selective Entry", Economet-
rica, 82, pp.315-344.

Hansen, L. P. (1982): "Large Sample Properties of Generalized Method of Moments Esti-
mators", Econometrica, 50, pp. 1029-1054.

Henriksson, R.D. and R.C. Merton (1981): "On Market Timing and Investment Performance.
II. Statistical Procedures for Evaluating Forecasting Skills", Journal of Business, 54, pp. 513-
533.

Hong, H. and M. Shum (2002): "Increasing Competition and the Winner’s Curse: Evidence
from Procurement", Review of Economic Studies, 69, pp. 871-898.

Hong, H. and M. Shum (2003): "Econometric Models of Asymmetric Ascending Auctions",
Journal of Econometrics, 112, pp. 327-358.

Hsu, S-H., C-Y. Huang, and C-T. Tang (2007): "Minimax Play at Wimbledon: Comment",
American Economic Review, 97, pp. 517-523.

Judge, G. , W. Griffiths, H. Liitkepohl, T-C. Lee and R. Carter Hill (1985): The Theory and
Practice of Econometrics, Wiley, Second edition.

Kagel, J. H. and D. Levin (1986): "The Winner’s Curse and Public Information in Common
Value Auctions", American Economic Review, 76, pp. 894-920.

Kahneman, D. and A. Tversky (1979): "Prospect Theory: An Analysis of Decision Under
Risk", Econometrica, 47, pp. 263-291.

Koptyug, N. (2016): "Asymmetric Information in Auctions: Are Resellers Better Apprais-
ers?", Working Paper, Research Institute of Industrial Economics (IFN).

Készegi, B. and M. Rabin (2006): "A Model of Reference-Dependent Preferences", Quarterly
Journal of Economics, 121, pp. 1133-1165.

Krasnokutskaya, E. and K. Seim (2011): "Bid Preference Programs and Participation in

Highway Procurement Auctions", American Economic Review, 101, pp. 2653-86.

154



Laffont, J.J., H. Ossard and Q. Vuong (1995): "Econometrics of First-price Auctions",
Econometrica, 63, pp. 953-980.

Lange, A. and A. Ratan (2010): "Multi-dimensional Reference-dependent Preferences in
Sealed-bid Auctions—How (Most) Laboratory Experiments Differ from the Field", Games and
Economic Behavior, 68, pp. 634-645.

Lee, T., G. Judge and A. Zellner (1968): "Maximum Likelihood and Bayesian Estimation of
Transition Probabilities", Journal of the American, Statistical Association, 63, pp. 1162-1179.

Levitt, S., J. List and D. Reiley (2010): "What Happens in the Field Stays in the Field:
Professionals Do Not Play Minimax in Laboratory Experiments", Econometrica, 78, pp. 1413-
1434.

List, J.A. (2004): "Neoclassical Theory Versus Prospect Theory: Evidence from the Mar-
ketplace", Econometrica, 72, pp. 615-625.

List, J.A. (2006): "Friend or Foe? A Natural Experiment of the Prisoner’s Dilemma", Review
of Economics and Statistics, 88, pp. 463-471.

Magnus, J. (2007): "The Asymptotic Variance of the Pseudo Maximum Likelihood Estima-
tor", Econometric Theory, 23, pp. 1022-1032.

Magnus, J. and H. Neudecker (1988): Matrix Differential Calculus with Applications in
Statistics and Econometrics, Wiley.

McFadden, D.L. (1996): “Lectures on Simulation-Assisted Statistical Inference,” Working
Paper, University of California—Berkeley.

Mellstrom, C. and M. Johannesson (2008): "Crowding Out in Blood Donation: Was Titmuss
Right?", Journal of the European Economic Association, 4, pp. 845-863.

Mikl6s-Thal, J. and H. Ullrich (2016): "Career Prospects and Effort Incentives: Evidence
from Professional Soccer", Management Science, 62, pp. 1645-1667.

Milgrom, P. and R.J. Weber (1982): "A Theory of Competiting Bidding", Econometrica,
50, pp. 197-216.

Miller, C. (1998): He Always Puts It to the Right. A concise History of the Penalty Kick,
Edmundsbury Press.

Mood, A., F-A. Graybill and D. Boes (1974): Introduction to the Theory of Statistics, Third
edition, McGraw-Hill.

Newey, W.K. and K.D. West (1987):. "Hypothesis Testing with Efficient Method of Moments

155



Estimation", International Economic Review, 28, pp. 777-787.

O’Neill, B. (1987): "Nonmetric Tests of the Minimax Theory of Two Person Zero Sum
Games", Proceedings of the National Academy of Sciences, 84, pp. 2106-21009.

Osborne, J. (2003): An Introduction to Game Theory, Oxford University Press, First edition.

Paarsch, H.J. (1997): "Deriving an Estimate of the Optimal Reserve Price: an Application
to British Columbian Timber Sales", Journal of Econometrics, 78, pp. 333-357.

Palacios-Huerta, 1.(2003): "Professionals Play Minimax", Review of Economic Studies, 70,
pp. 395-415.

Palacios-Huerta, I. (2017): "Strictly Competitive Strategic Situations", Economia Industrial,
403, pp. 19-28.

Palacios-Huerta, I. and O. Volij. (2008): "Experientia Docet: Professionals Play Minimax
in Laboratory Experiments", Econometrica, 76, pp. 71-115.

Pesaran, M.H and A. Timmermann (1994): “A Generalization of the Non-Parametric
Henriksson-Merton Test of Market Timing”, Economics Letters, 44, pp. 1-7.

Pope, D.G. and M.E. Schweitzer (2011): "Is Tiger Woods Loss Averse? Persistent Bias in
the Face of Experience, Competition, and High Stakes", American Economic Review, 101, pp.
129-57.

Post, T., M.J. van den Assem, G. Baltussen and R.H. Thaler (2008): "Deal or no Deal?
Decision Making Under Risk in a Large-Payoff Game Show", American Economic Review, 98,
pp. 38-T1.

Rosato, A. and A.A. Tymula (2019): "Loss Aversion and Competition in Vickrey Auctions:
Money Ain’t No Good", Games and Economic Behavior, 115, pp. 188-208.

Roth, A.E. and A. Ockenfels (2002): "Last-minute Bidding and the Rules for Ending Second-
price Auctions: Evidence from eBay and Amazon Auctions on the Internet", American Economic
Review, 92, pp. 1093-1103.

Ruud, P. (2000): An Introduction to Classical Econometric Theory, Oxford University Press.

Shachat, J., J.T. Swarthout and L. Wei (2015): "A Hidden Markov Model for the Detection
of Pure and Mixed Strategy Play in Games", Econometric Theory, 31, pp. 729-752.

Sherman, J. and W.J. Morrison (1950): "Adjustment of an Inverse Matrix Corresponding
to a Change in One Element of a Given Matrix", Annals of Mathematical Statistics, 21, pp.
124-127.

156



Song, U. (2004): “Nonparametric Estimation of an E-Bay Auction Model with an Unknown
Number of Bidders,” Working paper, University of British Columbia.

Sprenger, C. (2015): "An Endowment Effect for Risk: Experimental Tests of Stochastic
Reference Points", Journal of Political Economy, 123, pp. 1456-1499.

StataCorp. (2011): Stata 12 Base Reference Manual, Stata Press, College Station, TX.

Stewart, K.G. (1995): "The Functional Equivalence of the W, LR and LM statistics", Eco-
nomic Letters, 49, pp. 109-112.

Swanson, N.R. and H. White (1997): "A Model Selection Approach to Real-Time Macroeco-
nomic Forecasting Using Linear Models and Artificial Neural Networks", Review of Economics
and Statistics, 79, pp. 540-550.

Tversky, A. and D. Kahneman (1992): "Advances in Prospect Theory: Cumulative Repre-
sentation of Uncertainty", Journal of Risk and Uncertainty, 5, pp. 297-323.

van Dolder, D., M.J. van den Assem, C.F. Camerer and R.H. Thaler (2015): "Standing
United or Falling Divided? High Stakes Bargaining in a TV Game Show", American Economic
Review, 105, pp. 402-07.

Vickrey, W. (1961): "Counterspeculation, Auctions, and Competitive Sealed Tenders", Jour-
nal of Finance, 16, pp. 8-37.

von Wangenheim, J. (2017): "English Versus Vickrey Auctions with Loss Averse Bidders",
Working paper, Humboldt University Berlin.

Walker, M. and J. Wooders (2001): "Minimax Play at Wimbledon", American Economic
Review, 91, pp. 1521-1538.

Wilson, R. (1998): "Sequential Equilibria of Asymmetric Ascending Auctions", Economic
Theory, 12, pp. 433-440.

Wooldridge, J. (2002): Introductory Econometrics: A Modern Approach, Second Edition,
South-Western Econometrics.

Zaninetti, L. (2017): "A Left and Right Truncated Lognormal Distribution for the Stars",

Advances in Astrophysics 2, 197.

157



	Loss Aversion in Storage Locker Auctions
	Introduction
	Storage Wars
	The main bidders and the auctioneers
	Description of the data

	The Model with Loss Aversion
	The stochastic setup
	Econometric methodology

	The Information of Active Non-Bidding Participants
	The model
	Econometric methodology

	Empirical Application
	Model specification
	Parameter estimates of the baseline model
	Parameter estimates with active non-bidding participants

	Conclusions
	Proofs and Auxiliary Results
	Equilibrium proof
	Mean, variances and covariances of values and signals
	Difference between loss aversion and expected utility
	Special cases
	Winner's curse
	Calculating the likelihood of baseline model
	Calculating the likelihood with active non-bidding participants

	Tables Chapter 1
	Graphs Chapter 1

	Heterogeneous Pairs Play Mixed Strategies in the Soccer Field
	Introduction
	Penalty Kicks in Football and Game Theory
	The rules
	The formal setting

	Heterogenous Opponents
	Allowing for heterogeneity of opponents

	(Quasi) Field Experiment
	Soccer subjects
	Experimental setup
	Descriptive statistics

	Empirical Analysis
	Test of equal scoring probabilities
	Test for serial independence
	Test for action independence
	Test for sequential independence

	Reinforcement Learning
	Pair tests
	Tests allowing for heterogeneity of the opponents

	Conclusions
	Proofs and Auxiliary Results
	Proof of Proposition 2.1
	Proof of lack of pure strategies
	Existence and uniqueness of equilibrium
	Finite sample behavior under heterogeneity
	Size experiments
	Power experiments
	Multiple testing issues

	Tables Chapter 2
	Graphs Chapter 2

	Tests For Independence Between Categorical Variables
	Introduction
	Econometric Methodology
	Pearson's contingency test
	Multivariate regression
	Conditional multinomial model
	Unconditional multinomial model
	Multinomial probit model
	Multinomial logit model
	GMM

	Practical Applications
	Applications to mixed strategies in soccer penalty kicks
	Other empirical applications

	Numerical Equivalence Results
	Serial independence tests for Markov chains

	Empirical application to penalty kicks
	Test of equal scoring probabilities
	Test for serial independence

	Conclusions
	Proofs
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Finite sample distribution
	Relationship Between Test Statistics When H=2 and H=3
	Kickers and Goalkeepers
	F approximations

	Tables Chapter 3

	References

