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Abstract

In the �rst chapter of this dissertation, I propose a novel and tractable structural model for

ascending auctions with both common and private value components in which heterogeneous

bidders exhibit loss aversion. Importantly, I �nd that loss averse bidders bid noticeably lower

than risk neutral ones. I also consider a more general framework in which bidders incorporate

into their strategies the information of those bidders who are present but decide not to participate

after observing the item put up for auction. This results in bidders reducing the aggressiveness of

their bids even further. To empirically assess my model, I use data from storage locker auctions

in the popular cable TV show Storage Wars, �nding that the behavior of most of its bidders is

consistent with loss aversion. Thus, I document for the �rst time the presence of loss aversion

in actual ascending auctions.

In Chapter 2, I report the results of a (quasi) �eld experiment in the training grounds of

a professional soccer team to check if individuals, when repeatedly facing the same opponents,

satisfy the main mixed strategy equilibrium predictions in soccer penalty kicks, a real-life ex-

ample of strategic play. This is the �rst time that the implications of mixed strategy equilibria

are tested in the �eld using repeated observations on speci�c heterogeneous pairs of players, a

situation that rarely repeats in real life. In this respect, I also study the e¤ects of the usual

practice of treating heterogeneous rivals as if they all came from the same pair because of the

lack of repeated observations for speci�c pairs. In particular, I show that false rejections may

arise when heterogeneous pairs are treated as homogeneous and suggest valid aggregate tests

that combine statistics from di¤erent opponents. My empirical results suggests that the behav-

ior of most soccer players, when repeatedly facing the same opponents, is consistent with equal

scoring probabilities across strategies except for the least professional kickers, as well as with

serial independence of player�s actions. However, I �nd dependence between the kicker�s and

goalkeeper�s actions. I also �nd that the least professional goalkeepers tend to replicate each

other�s actions. In contrast, players do not seem to follow a reinforcement learning model.

In the third chapter, I prove the numerical equivalence for general categorical variables

between many seemingly unrelated independent tests. Speci�cally, I prove that the Pearson�s

independence test in a contingency table is numerically equivalent to the Lagrange Multiplier test

in several popular linear and non-linear regression models: the multivariate linear probability
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model, the conditional and unconditional multinomial model, the multinomial logit and probit

models; as well as the overidentifying restrictions test in GMM. Therefore, di¤erent researchers

using di¤erent econometric procedures will reach exactly the same conclusions if they use any

of those tests. Additionally, I show that the asymptotically equivalent Likelihood Ratio tests

in the non-linear regression models are numerically identical, and that the heteroskedasticity-

robust Wald tests in the multivariate linear probability model and GMM coincide with the

Wald test in the conditional multinomial model. All these equivalences also apply to tests of

serial independence in a discrete Markov chain, which can be regarded as a time series analogue

of the multinomial model. Finally, I use these tests to analyze if professional soccer players

follow optimal mixed strategies in penalty kicks. For some players, my empirical results are

not consistent with equal scoring probabilities across strategies. In contrast, I �nd that player�s

actions are serially independent.
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Chapter 1

Loss Aversion in Storage Locker Auctions

1.1 Introduction

The standard framework in most of the empirical and theoretical auction literatures has

been expected utility, often with risk neutral bidders. However, Kahneman and Tversky (1979)

criticized expected utility because they found that individuals derive their utility from gains

and losses relative to some reference point, rather than from absolute levels of wealth as per-

fectly rational agents do. They presented a new model of decision making under risk known as

"Prospect Theory" whose key feature, loss aversion, is that individuals are much more sensitive

to reductions than to increases in wealth. Given that bidders often su¤er losses as well as gains

in the auctions they participate, it is important to explore whether loss aversion might better

re�ect their bidding behavior.

In this chapter, I propose a novel tractable structural ascending auction model that re-

places risk neutrality with loss aversion in the well-known framework with symmetric bidders

in Milgrom and Weber (1982) and its asymmetric extension in Hong and Shum (2003). Like in

standard models, the utility of a bidder depends only on the di¤erence between his own valuation

of the object auctioned and his bid, but in this new speci�cation, the bidder is more sensitive

to reductions in wealth than to increases of the same magnitude (see Kahneman and Tversky

(1979)). In addition, my proposed model allows for both common and private value components

in the bidder�s valuations, as well as heterogeneous bidder�s characteristics. Importantly, I �nd

that, ceteris paribus, loss averse bidders bid substantially lower than risk neutral ones.

I also consider a more general framework in which bidders incorporate into their strategies

the information of those bidders who are present but decide not to participate after observing

the item put up for auction. In this respect, I �nd that bidders reduce the aggressiveness of

their bids even further as the number of non-bidding participants increases.

To empirically assess my model, I focus on storage locker auctions, which have gained a lot

of popularity in recent years, with 155,000 of them taking place each year in the US alone at an
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average price of $425.1 Speci�cally, I exploit a unique dataset of 254 actual auctions from the

�rst three seasons of the popular cable TV show Storage Wars, which follows a core group of

individual bidders who take part in storage locker auctions throughout the State of California.

As shown in numerous empirical studies (see List (2006), Post et al (2008), Belot et al (2010)

and van Dolder et al (2015) for examples), TV shows provide an environment with substantially

larger economic incentives than lab experiments. Therefore, analyzing the behavior of bidders

in these auctions seems especially relevant.

An interesting unique feature in storage locker auctions is that the contents of the locker are

unknown to both the auctioneer and potential buyers before and throughout the entire auction.

This situation has the ideal characteristics for bidders to exhibit loss aversion, a feature that often

arises when comparing sure outcomes (not participating in the auction) with a risky prospect

(participating and making an uncertain positive or negative pro�t) (see Kahneman and Tversky

(1979) for more details).

Empirically, I �nd that most Storage Wars bidders are loss averse in a model in which there

are heterogeneous bidder�s characteristics. However, the behavior of the most professional bidder

is in line with risk neutrality. Not surprisingly, he is the bidder who bids most aggressively.

Additionally, loss aversion persists when bidders incorporate into their strategies the infor-

mation of those bidders who are present but decide not to participate after observing the locker

to be auctioned. Moreover, my �ndings con�rm the empirical relevance of taking into account

the presence of non-bidding participants in ascending auctions.

Previous papers have provided experimental evidence of loss aversion in sealed-bid auctions

(see for example Lange and Ratan (2010), Banerji and Gupta (2014), Rosato and Tymula (2019)

and Eisenhuth and Grunewald (2020) for the case of independent private values and Balzer and

Rosato (2020) for interdependent ones). In contrast, there is little work in ascending auctions.

An exception is von Wangenheim (2017), who theoretically showed that under independent pri-

vate values the second-price sealed-bid auction yields strictly higher revenues than the ascending

auction when bidders are expectation-based loss averse (see K½oszegi and Rabin (2006) for more

details). Therefore, the �rst chapter of my thesis makes not only a methodological contribution

by incorporating loss aversion to a structural ascending auction model with both private and

common value components, but also a substantive one by documenting for the �rst time the

1See <https://www.statisticbrain.com/self-storage-industry-statistics/> for more details.
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presence of loss aversion in actual ascending auctions.2

The rest of this chapter is organized as follows. Section 1.2 describes the TV show in greater

detail and provides a summary of the dataset. In Section 1.3, I discuss my proposed structural

model of ascending auctions under loss aversion. Then, in Section 1.4 I introduce a framework

that incorporates the signals of the bidders present at the auction who decide not to participate.

Finally, in Section 5, I discuss the empirical results. This is followed by the conclusions and

several appendices where proofs and additional details can be found.

1.2 Storage Wars

The TV show Storage Wars, developed by A&E cable network, �rst aired on December 2010

and soon became the most watched program in the network�s history.

Each episode starts with potential bidders gathering outside a storage facility in the State of

California. These facilities have the right to put up for auction the contents of the locker when

the rent is not paid for three consecutive months. Before bidders are allowed into the storage

facility and see the lockers, the auctioneer explains the rules. The auctions are cash only sales,

with all sales being �nal and the winner the highest cash bidder. But more importantly, bidders

can only bid on the entire contents of the locker, not on an item-to-item basis.

The lock of the locker is then broken and bidders have exactly �ve minutes to look around

without stepping inside or opening any boxes. During that time, bidders e¤ectively receive

a private noisy signal of the unknown contents, and therefore of the valuation of the locker

put up for auction. After those �ve minutes, the auctioneer announces a suggested opening

bid for the locker on sale and starts accepting increasingly higher bids from the bidders in the

auction.3 Unlike sealed-bid auctions, there exists "information transparency", in the sense that

the identity of all the bidders and their bids are known during the entire auction. The highest

bidder at any given moment has the standing bid, which can only be displaced by a higher bid

from another bidder. Throughout the auction, every bidder is given the opportunity to outbid

the standing bid.4 Failure to do so results in the end of the auction, with the locker being sold

2Some previous papers have looked at other behavioral biases in ascending auctions. Speci�cally, Dodonova
and Khoroshilov (2005, 2009) argue that bidders with independent private values may feel a quasi-endowment
e¤ect toward the object for which they are bidding, so that after making an initial bid of $x followed by a
competitor�s bid of $(x+1), they prefer to pay $(x+2) to keep the object even though they would never buy the
auctioned object for this amount when facing a simple buying decision.

3 In storage locker auctions there are no reserve prices, i.e. the lowest price at which the seller is willing to sell
the item, so in principle, the locker could be sold for $1.

4There is no predetermined ending time as in eBay. As a consequence, the practice of sniping, i.e. bidding in
the very last seconds (see Roth and Ockenfels (2002)), is irrelevant in this auction.
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to the winner at a price equal to his bid.

After all the auctions of the day are completed, the winning bidders go through their lockers

sorting the "valuable" content from the rest. When they encounter an unusual, potentially very

valuable item, bidders consult with experts to �nd out the actual value of the item.

Although the private valuation might di¤er from bidder to bidder because they may have

di¤erent interests, such as collectibles or household items, there is also a clear common compo-

nent. For example, if a locker contained a standard but very valuable item such as a brand new

motorcycle, its value would be very much the same across bidders.

For all those reasons, a model which allows for both common and private values seems

adequate to capture the behavior of bidders in these auctions.

1.2.1 The main bidders and the auctioneers

The �rst three seasons of the show follows four main regular bidders throughout the auctions:

Dave Hester (a professional buyer who operates his own auction house), Darrell Sheets (a less

experienced storage auction bidder who makes his living by selling in swap meets and through

his online store), Jarrod Schulz (an even less experienced storage auction bidder who owns a

thrift store) and Barry Weiss (a lifelong antiques collector who had never participated in storage

auctions before). Additionally, during the auctions there are other bidders present whose identity

are not shown publicly, but whose bids are.5

The auctioneers on the show are Dan and Laura Dotson, who have run their own business

since 1983: American Auctioneers. Their retribution scheme comes from a small percentage of

the locker sale they receive from the storage unit company. Therefore, it is in their interest that

the locker is sold at a high price.

One of their key roles is to engage bidders. To accomplish this, they have to start the

auction by announcing a suggested opening bid low enough to be immediately accepted by one

of the bidders. The regression results in Table 1.1 suggest that the opening bid is set taking

into account the location and size of the locker, not surprisingly since it is the only available

information.

(Table 1.1)

5Given that there is no identifying information on those bidders, I treat them as homogeneous when estimating
the empirical model in section 1.5.
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1.2.2 Description of the data

As explained in the introduction, I examine the bidding behavior of Storage Wars partici-

pants in 254 actual auctions, which covers seasons 1 (59), 2 (103) and 3 (92) of the TV show.6

The dataset contains the identity of the bidders, including the four main regular ones, the num-

ber of regular bidders present at the auction, as well as the total number of bidders bidding per

auction (ranging from 2 to 7), the location of the auction, the size of the locker, whether the

main regular bidders decide in real time (live) to bid or not after visually inspecting the locker

and before the auction starts, the entire bid sequence and the ex-post value of the locker. I

have also collected per capita income data of the municipality where the locker is located, as

one would expect a priori that richer neighborhoods have more valuable locker contents.

There are three types of lockers in the auctions: small (10� 10 ft.) �tting household items

from 3 rooms, medium (10� 20 ft.) �tting household items from 5 rooms and large (10� 30 ft.)

�tting household items from 7 rooms.

Table 1.2 o¤ers a basic description of the data.

(Table 1.2)

For each season, it shows the number of times a small, medium and large locker has been

auctioned, the average pro�t each bidder makes, the average ex-post value of the locker auc-

tioned, the average median household income of the municipalities where the lockers are located

and the total number of bidders participating per auction.

The most frequent auctions involve 3, 4 and 5 active bidders, with 50, 72 and 63 auctions,

respectively. Additionally, there are many more small and medium size lockers auctioned than

large ones. However, after running a standard OLS regression, I �nd that the order in which the

lockers are put up for auction each day is independent of the ex-post value of the locker. This

result is not surprising given that the value of the locker is unknown to both the auctioneer and

bidders before and throughout the entire auction.

Table 1.3 describes the participation rates of the main bidders in Storage Wars.

(Table 1.3)

As can be seen, none of the four main bidders has actually participated in all of the auc-
6Video clips of each episode are widely available on the Internet, for example, through the A&E website

<https://www.aetv.com/shows/storage-wars>.
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tions. Jarrod is the bidder who has participated the most, followed by Darrell, Dave and Barry.

However, all four of them only coincide 11.42% of the time. Given that the main bidders often

publicly indicate whether they will participate in the auction after looking at the locker and

before the auctioneer announces the opening bid, I assess whether their actual participation is

in line with their claims using a standard independence test (see section 3.2 for details). The

results show that the null hypothesis of independence between their actual participation and

their claims is massively rejected for all the main bidders with a p-value of 0, con�rming that

their participation decisions are coherent with their announcements. This fact motivates the

extension of the model in section 1.4, in which bidders incorporate into their strategies the

information of those bidders who are present but decide not to participate after observing the

item put up for auction.

1.3 The Model with Loss Aversion

The theoretical auction model studied in this chapter resembles the Japanese "button" auc-

tion in Milgrom and Weber (1982), in which prices raise continuously, bidders keep pressing a

button to remain active, and once a bidder drops out, he cannot reenter the auction at a higher

price.7 More formally, consider an auction of a single item with N potentially heterogeneous

bidders, indexed i = 1; : : : ; N , for whom the value of the item auctioned is Vi. However, at the

beginning of the auction, they only observe a private noisy signal Xi of their own valuation Vi.

The auction proceeds in rounds, indexed k = 0; : : : ; N � 2, in which active bidders submit

bids. A new round starts whenever a bidder drops out and bidders are indexed by the round in

which they drop out. Thus, bidder N drops out in round 0 at price P0 and bidder N � k drops

out in round k at price Pk, with bidder 1 winning the auction at the �nal observed dropout

price PN�2.8

In ascending auctions, a Bayesian-Nash equilibrium consists of bid functions �ki (Xi; 
k)

for each bidder i and round k, where 
k is the available information set at the beginning

of round k containing the previously observed dropout prices. E¤ectively, the bidding func-

tion �ki (Xi; 
k) determines the price at which bidder i should quit the auction at round k

as a function of his signal and the available information set. The collection of bid functions

7This standard model has been widley used by most of the subsequent literature (see Athey and Haile (2002),
Hong and Shum (2003) and Aradillas-Lopez et al (2013) for examples).

8Given that continuous bidding does not take place in practice, I assign the dropout price of a bidder to the
bid of the next bidder who outbids him.
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�0i (Xi; 
0); : : : ; �
N�2
i (Xi; 
N�2) are common knowledge, with 
0 = ;.

Like Milgrom and Weber (1982), I assume that the utility of bidder i depends only on the

di¤erence between his own valuation of the item put up for auction and his bid. More precisely,

let u[Vi��ki (Xi; 
k)] denote bidder i�s utility at round k, where u(�) is continuous, nondecreasing

in its argument and satis�es u(0) = 0. But instead of an expected utility framework, as in the

standard literature, I draw inspiration from the work in Kahneman and Tversky (1979) by

assuming the following functional form:

u[Vi � �ki (Xi; 
k)] =

8><>: Vi � �ki (Xi; 
k)

�i[Vi � �ki (Xi; 
k)]
for

Vi > �ki (Xi; 
k)

Vi � �ki (Xi; 
k)
; (1.1)

where �i � 1 captures loss aversion, i.e. the tendency of individuals to prefer avoiding reductions

in wealth than equivalent gains. This piecewise linear speci�cation, which has a kink at the

origin,9 has been used by many authors in a variety of economic situations (see Barberis et al

(2001), K½oszegi and Rabin (2006) and Sprenger (2015) for examples). The reason is that loss

aversion at the kink is very relevant for gambles that can lead to both gains and losses, such

as in single item auctions, where "gains" and "losses" correspond to the di¤erence between the

value of the item auctioned and the �nal price.10

(Figure 1.1)

Figure 1.1 illustrates the e¤ects of varying the loss aversion parameter � on the underlying

utility function (1.1). As expected, � = 1 implies risk neutrality, i.e. same marginal utility for

both gains and losses (the standard model). However, for any other value of � > 1, bidders are

more sensitive to reductions in wealth than to increases of the same magnitude, preferring not

to lose $10 rather than to gain $10.

The structure of the Bayesian-Nash equilibrium of this asymmetric ascending auction in

increasing bidding strategies (i.e. �ki (Xi; 
k) is increasing in Xi for k = 0; : : : ; N � 2) extends

the equilibrium described in Milgrom and Weber (1982) and Hong and Shum (2003) to loss

aversion as follows. For bidders i = 1; : : : ; N active in round 0, the bid functions are implicitly

9As in Kahneman and Tversky (1979), the primary reference level is the status quo, which in this case is 0,
i.e. not participating in the auction.

10Kahneman and Tversky (1979) also propose that the utility function should be mildly concave over gains
and convex over losses. However, this is most relevant when choosing between prospects that involve only gains
or only losses (see Barberis et al (2001) for further discussion of this point).
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de�ned by the equilibrium condition

Efu[Vi � �0i (Xi; 
0)]j�0i g = u (0) = 0;

where �0i = fXi;Xj = '0j [�
0
i (Xi; 
0); 
0]g for j = 1; : : : ; N and j 6= i, with 'kj (:; 
k) be-

ing the inverse bid function at round k = 0; : : : ; N � 2 mapping prices into signals, so that

'ki [�
k
i (Xi; 
k); 
k] = Xi.

In turn, the analogous condition for bidders i = 1; : : : ; N�k active in round k = 1; : : : ; N�2

will be given by

Efu[Vi � �ki (Xi; 
k)]j�ki g = u (0) = 0; (1.2)

where �ki = fXi;Xj = 'kj [�
k
i (Xi; 
k); 
k]; Xh = 'N�hh (PN�h; 
N�h)g; for j = 1; : : : ; N � k;

j 6= i and h = N � k + 1; : : : N , with Xh denoting the signals of the bidders who have dropped

out prior to round k. Since the equilibrium bid functions are common knowledge, an active

bidder in round k can infer the private information possessed by the previous dropout bidders

by inverting their bid functions, so that Xh = 'N�hh (PN�h; 
N�h).

Finally, it is worth mentioning that if several bidders were to quit simultaneously, the equi-

librium conditions in (1.2) would still hold (see Milgrom and Weber (1982) for more details).

1.3.1 The stochastic setup

Following Hong and Shum (2003), I use a parametric approach by assuming that bidder�s

signals and valuations (X1; : : : ; XN ; V1; : : : ; VN ) are log-normally distributed. This assumption

allows me to derive tractable closed-form formulas for the expectations in (1.2), from which I

can then obtain analytic expressions for the equilibrium bid functions �ki (Xi; 
k).
11

Let Vi be de�ned as Vi = Ai � V; where Ai is a bidder-speci�c private value component and

V a common value component to all bidders in the auction. Although Ai and V; or indeed Vi;

are not directly observed by the bidders, they are assumed to be independently log-normally

distributed as follows:

lnV = v = m+ �v s N(m; r20);

lnAi = ai = �ai + �ai s N(�ai; t
2
i );

11Two other empirical studies have previously used Hong and Shum�s (2003) auction model. Dionne et al
(2009) studied Mauritanian slave auctions in the 19th century, �nding evidence of heterogeneity in the quality of
the information between bidders, which in turn led to adverse selection. In turn, Koptyug (2016) found that in
online car auctions, resellers are better than consumers at appraising the value of the cars they are bidding on.
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so that

lnVi = vi = lnV + lnAi s N(m+ �ai; r
2
0 + t

2
i ):

In practice, bidder i only observes a private noisy signal Xi of his own valuation Vi, which

will be e¤ectively revealed to the other bidders after he drops out. Given the log-normality

assumption,

lnXi = xi = vi + �i s N(m+ �ai; r
2
0 + t

2
i + s

2
i );

where �i � N
�
0; s2i

�
, and s2i captures the amount of information any bidder has about the true

value of the item being auctioned (see Dionne et al (2009) and Koptyug (2016) for more details).

The common knowledge assumption implies that all the model parameters � � (�ai;m; t2i ; r20; s2i )

are known among the bidders.

In this log-normal setup, the conditional expected value of Vi can be written as:

E(VijX1; : : : ; XN ) = exp[E(vijx) +
1

2
V ar(vijx)];

where x = (x1; : : : ; xN ),

E(vijx) � &vijx = �i + �
0
vix�

��1 (x�	)

and

V ar(vijx) � !vijx = �2vi � �
0
vix�

��1�vix;

with

�i = ( �i 	 ) and �i =

0B@ �2vi �
0
vix

�vix ��

1CA
denoting the unconditional mean vector and variance-covariance matrix of (vi; x1; x2; : : : ; xN )

for bidder i (see section 1.7.2 for further details).

The following proposition, which I prove in section 1.7.1, establishes su¢ cient conditions to

ensure the existence of an equilibrium under loss aversion in this stochastic framework.

Proposition 1.1 Let �i � 0 be the unique solution to

exp(�i)

"
(1� �i) erf

 !vijx
2 + �ip
2!vijx

!
+ (1 + �i)

#
=

"
(�i � 1) erf

 !vijx
2 � �ip
2!vijx

!
+ (�i + 1)

#
;

where erf(.) is the error function. Then

�ki (Xi; 
k) = exp(��i)E(Vij�ki ) (1.3)
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is an increasing-strategy Bayesian-Nash equilibrium under loss aversion in the log-normal sto-
chastic setup.

(Figure 1.2)

Figure 1.2 compares the equilibrium bidding function under risk neutrality (the standard

model) with loss aversion when � = 2:25, a value based on the experimental �ndings in Tversky

and Kahneman (1992). This graph shows that, ceteris paribus, loss aversion leads to a substantial

reduction in the bids as a function of the signalXi. As a consequence, the expected seller revenue

will decrease relative to risk neutrality. However, the only di¤erence between an equilibrium

under risk neutrality and loss aversion is the multiplicative factor exp(��i) (see section 1.7.3 for

more details).

To de�ne the equilibrium log-bid functions for round k, I use the same notation as Hong and

Shum (2003). Let xkr = (x1; : : : ; xN�k)
0 denote the vector of (log) private noisy signals of the

bidders active in round k, and xkd = (xN�k+1; : : : ; xN )
0 the vector of (log) signals of the dropped

out bidders before round k. In addition, partition the inverse of the variance-covariance matrix

of the private noisy signals as

���1 = ( ���1k;1 ���1k;2
);

where ���1k;1 is a (N � k)�N matrix corresponding to the remaining active bidders in round k,

and ���1k;2 is a k �N matrix corresponding to the bidders who have dropped out prior to round

k.

Moreover, let

�k = ( �2v1 � � � �2vN�k
)0;

�k = ( �v1x � � � �vN�kx )
0;

�k = ( �1 � � � �N�k )
0;

and `k a (N � k)� 1 vector of ones.

Additionally, let Ak and Ck be two (N � k)� 1 vectors, and Dk a (N � k)� k matrix, with

Ak = (�k�
��10
k;1 )

�1`k; (1.4)

Ck =
1

2
(�k�

��10
k;1 )

�1[�k � diag(�k���1�0k) + 2�k � 2(�k���1	)]; (1.5)

Dk = (�k�
��10
k;1 )

�1(�k�
��10
k;2 ); (1.6)
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where diag (:) is a matrix whose entries outside the main diagonal are all zero.

With this notation, the log-bidding function for the bidders active in round k under loss

aversion will be

bki (xi;x
k
d) = log[�

k
i (Xi; 
k)] =

1

Aki
(xi +Dki xkd + Cki )� �i; i = 1; : : : ; N � k; (1.7)

where �i captures the e¤ects of loss aversion in (1.3), Aki and Cki denote the ith elements of the

vectors (1.4) and (1.5), and Dki denotes the ith row of the matrix (1.6): Note that (1.7) depends

on a bidder�s own private signal xi, as well as the signals of those bidders who have dropped out

prior to round k xkd, except for round 0, where D0 and x0d are obviously unde�ned.

Intuitively, by observing the dropout prices in previous rounds, the remaining active bidders

can make inferences about the private information possessed by the bidders who have dropped

out. In other words, they can obtain an unbiased estimate of bidder j�s valuation from observing

his private signal xj . In common value auctions in which there is correlation across bidders�

valuations (Vi), this information allows the remaining active bidders to update their beliefs

about their own valuation, causing the prices at which bidders intend to exit to change as

the auction progresses. In contrast, Vickrey (1961) showed that in private value auctions this

updating does not occur, and each bidder has a weakly dominant strategy which is to bid up

to his valuation (see Athey and Haile (2002) and section 1.7.4 for a more detailed discussion on

private and common values auctions).

(Figure 1.3)

Figure 1.3 plots the equilibrium log-bid functions of a representative bidder in an auction

with 5 loss averse bidders. The log-signal xi is plotted on the x axis, while the log-bid functions

in (1.7) for each round k = 0; : : : ; 3 are plotted on the y axis. As depicted in the �gure, the slope

of the log-bid function decreases for subsequent rounds, implying that, for a given realization of

xi, the targeted dropout price of the representative bidder decreases as the auction progresses.

This occurs because bidders can update their bidding functions accordingly each round after

incorporating the private noisy signal of the bidders who have previously drop out, thereby

mitigating the chance of su¤ering the so-called winner�s curse (see section 1.7.5 for more details).
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1.3.2 Econometric methodology

Even though the model parameters � � (�ai;m; t
2
i ; r

2
0; s

2
i ) are assumed to be known by the

bidders, their values are unknown from an econometrician�s point of view. In that regard, Hong

and Shum (2003), Dionne et al (2009) and Koptyug (2016) employ the simulated non-linear

least squares (SNLS) estimator of La¤ont et al (1995), but with an independent probit kernel-

smoother as in McFadden (1996). However, this estimation method does not always identify the

parameters of the model for a small number of bidders. In contrast, Maximum likelihood (ML)

identi�es all the parameters even when there are only two bidders.

Furthermore, when the structural auction model is correctly speci�ed, ML is more e¢ cient

than SNLS, but when it is misspeci�ed, SNLS is not more robust than ML given that one must

draw prices from the assumed model (see Dridi et al (2007) for more details). For example,

suppose one estimates an independent private value model when in fact the true model is a pure

common value one. In that case, both the log-bidding functions and the simulated drop out

prices will be incorrect, which a¤ects ML and SNLS.

Finally, Hong and Shum (2003) crucially show that the support of the (log) private signals

(x) does not depend on � in the log-normal stochastic setup in section 1.3.1, so the usual ML

regularity conditions hold and standard asymptotic theory applies. For all these reasons, I will

use ML to estimate the model.

In each auction, an econometrician only observes the vector of dropout prices for bidders

2; : : : ; N , the order in which bidders drop out and their identities. As a consequence, Hong and

Shum (2003) make clear that one must condition on the observed dropout sequence to derive

the log-likelihood function. In practice, this means that the underlying log-signals (x1;. . . ; xN )

must be constrained to some region T1(�) � RN , which I describe in section 1.7.6. Furthermore,

they also show that as the winner�s dropout bid is not observed, the winner�s log-signal x1

is constrained to some other region T2(x2;. . . ; xN j�) � R1, which is consistent with bidder 1

winning the auction. Therefore, if P =(p0; : : : ; pN�2)0 denotes the vector of log-dropout bids,

the log-likelihood function for a given auction must be computed as:

L(Pj�) = log f(Pj�) + log Pr[T2(x2; : : : ; xN j�)]� log Pr[T1(�)j�]; (1.8)

which resembles the log-likelihood function of a truncated and censored multivariate normal,

with f(Pj�) re�ecting the continuous component corresponding to the likelihood of the observed
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drop out prices, Pr[T2(x2;. . . ; xN j�)] the conditional probability associated to the censored win-

ning bid, and Pr[T1(�)j�] the truncation probability that re�ects the order in which the di¤erent

bidders drop out (see Hong and Shum (2003) and section 1.7.6 for more details on Pr[T1(�)j�],

Pr[T2(x2;. . . ; xN j�)] and f(Pj�)).

Since the auctions take place independently, the sample log-likelihood function is the sum of

the log-likelihood function of each auction. Thus, it is straightforward to combine auctions with

di¤erent number of bidders.

From a practical point of view, the main di¢ culty in computing the log-likelihood function

(1.8) is the multivariate integral Pr[T1(�)j�] (see again section 1.7.6 for details). Nevertheless,

this is certainly feasible with up to 7 active bidders, although it slows down the numerical

optimization. Still, given that the likelihood function is highly non-linear, it is convenient to

consider multiple initial values.

1.4 The Information of Active Non-Bidding Participants

1.4.1 The model

A standard assumption in auction theory is that the bidders present at the auction coincide

with all the potential bidders willing to participate (see Paarsch (1997), Krasnokutskaya and

Seim (2011), Athey et al (2011) and Gentry and Li (2014) for examples).12 Nevertheless, not

all the bidders who are present in an ascending auction end up participating after observing the

item put up for auction. In fact, some bidders decide not to participate when the auctioneer

announces the opening bid. Therefore, it is important to distinguish between active bidders and

active non-bidding participants in the following sense: active bidders are the ones who bid in the

auction and either win or dropout at some point; in contrast, active non-bidding participants

are the ones who are present in the auction but e¤ectively drop at the opening bid.

All potential bidders observe each other when they assess the valuation of the item before the

auction starts. Therefore, it seems reasonable to assume that at the beginning of the auction,

active bidders can recover the private information active non-bidding participants possess and

update their bidding functions accordingly.13

To de�ne the equilibrium log-bid functions in this more general framework, let q denote the

number of active non-bidding participants and N the number of active bidders, with N+q being

12This assumption is not plausible in eBay auctions, as shown in Song (2004).
13 In fact, the main bidders in Storage Wars usually publicly indicate their willigness to participate after

oberving the locker to be auctioned.
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the total number of potential bidders. At round -1, i.e. before the auction starts, let

_��1 = ( �2v1 � � � �2vN+q
)0;

_��1 = ( �v1x � � � �vN+qx )
0;

_��1 = ( �1 � � � �N+q )
0;

and _̀�1 a (N + q)� 1 vector of ones.

Additionally, let _A�1 and _C�1 be two (N + q)� 1 vectors, with

_A�1 = ( _��1�
��10)�1 _̀�1;

_C�1 =
1

2
( _��1�

��10)�1[ _��1 � diag( _��1���1 _�0�1) + 2 _��1 � 2( _��1���1	)]:

With this notation, the log-bidding function for the bidders in round �1 is given by:

b�1i (xi) = log[�
�1
i (Xi;

_
�1)] =
1
_A�1i
(xi + _C�1i )� �i; i = 1; : : : ; N + q;

which again re�ects loss aversion, captured by �i in expression (1.3), and depends only on

bidder�s i own private signal xi. In fact, b�1i (xi) is equivalent to the log-bidding functions in

round 0 without active non-bidding participants in (1.7).

In this context, the active non-bidding participants will be the ones who on the basis of this

log-bidding function decide not to participate when the auctioneer announces the opening bid

P�1.

Since the equilibrium bid functions are common knowledge, at round 0 active bidders can

use the information the q active non-bidding participants possessed to infer their own private

signals by inverting the log-bid functions of the active non-bidding participants. Thus,

xq = lnXq = b�1q (xq) _A�1q � _C�1q :

Let �x0r = (x1;. . . ; xN )
0 denote the vector of private noisy signals of the active bidders in round

0, and �x0d = (xN+1;. . . ; xN+q)
0 the vector of signals of the active non-bidding participants who

e¤ectively dropped out in round -1. In addition, partition the inverse of the variance-covariance

matrix of the private noisy signals as

���1 = ( ����10;1
����10;2

);

where ����10;1 is a N � (N + q) matrix corresponding to the active bidders in round 0, and ����10;2
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is a q � (N + q) matrix corresponding to the active non-bidding participants who dropped out

in round -1.

Moreover, let

��0 = ( �2v1 � � � �2vN
)0;

��0 = ( �v1x � � � �vNx )
0;

��0 = ( �1 � � � �N )0;

and �̀0 a N � 1 vector of ones.

Additionally, let �A0 and �C0 be two N � 1 vectors, and �D0 a N � k matrix, with

�A0 = (��0 ��
��10
0;1 )

�1 �̀
0;

�C0 =
1

2
(��0 ��

��10
0;1 )

�1[��0 � diag(��0���1��00) + 2��0 � 2(��0���1	)];

�D0 = (��0 ��
��10
0;1 )

�1(��0 ��
��10
0;2 ):

With this notation, the log-bidding function for the active bidders in round 0 under loss

aversion is:

b0i (xi; �x
0
d) = log[�

0
i (Xi;

�
0)] =
1
�A0i
(xi + �D0i �x0d + �C0i )� �i; i = 1; : : : ; N:

Compared to equation (1.7) for k = 0, which only depends on a bidder�s own signal xi, now

b0i (xi; �x
0
d) is also a function of the signals of the active non-bidding participants �x

0
d.

For any subsequent round k = 1; : : : ; N�2, the log-bidding function for the bidders active in

round k are entirely analogous to (1.7), and therefore depends on a bidder�s own private signal

xi, as well as the signals of those bidders who have dropped out prior to round k, including the

active non-bidding participants, i.e.

xkd = (xN�k+1; : : : ; xN| {z }
N�k

; xN+1; : : : ; xN+q| {z }
q

)0:

(Figure 1.4)

Figure 1.4 compares the equilibrium log-bidding function for a loss averse active bidder in

round 0 with 0, 1 and 2 active non-bidding participants. As expected, bidders reduce the aggres-

siveness of their bids even further as the number of active non-bidding participants increases,
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substantially reducing the chances of su¤ering the winner�s curse. Intuitively, this occurs be-

cause at round 0 active bidders recover the private information active non-bidding participants

possess, and they update their log-bidding functions accordingly.14

1.4.2 Econometric methodology

The structure of the log-likelihood function is similar to the one in section 1.3.2. Therefore,

conditional on the vector of active non-bidding participants� dropout bids, the log-likelihood

function for a given auction can be written as:

L(Pj�; _��1) = log f(Pj�; _��1) + log Pr[T2(xN�2d j�; _��1)]� log Pr[T1(�)j�; _��1];

where _��1 = [Xl = '�1l (P�1; 
�1)] for l = N+1; : : : :; N+q, with '�1l (:; 
�1) being the vector of

inverse bid functions at round -1, Xl denoting the signals of the q active non-bidding participants,

f(Pj�; _��1) re�ecting the (conditional) continuous likelihood of the observed drop out prices,

Pr[T2(xN�2d j�; _��1)] the conditional probability associated to the censored winning bid, and

Pr[T1(�)j�; _��1] the (conditional) truncation probability that re�ects the order in which the

di¤erent bidders drop out (see section 1.7.7 for more details on f(Pj�; _��1), Pr[T2(xN�2d j�; _��1)]

and Pr[T1(�)j�; _��1]).

1.5 Empirical Application

Figure 1.5 displays the boxplot of the pro�t/losses in Storage Wars auctions without a few

extreme outliers.

(Figure 1.5)

The central mark in the box indicates the median pro�t ($890), and the bottom and top

edges indicate the 25th ($-47.5) and 75th ($2,412.5) percentiles, respectively, with the outliers

being plotted using the + symbol. As can be seen, the pro�t/losses values involved in these

auctions are relatively small. Therefore, the smooth utility functions with moderate risk aversion

commonly considered in the literature under expected utility imply that bidders would be close

to risk neutral when facing such modest stakes. In contrast, loss aversion may be present in

these auctions because the utility in (1.1) captures the well documented fact that over modest

gambles, individuals are noticeably more averse to losses relative to the status quo than they

14With homogeneous bidders, the log-bidding functions in Figure 1.4 are equivalent to the log-bidding functions
without active non-bidding participants in Figure 1.3 for rounds 0, 1 and 2.
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are attracted by gains (see Barberis et al (2001) for more details).

1.5.1 Model speci�cation

Given that the common public information bidders have during the auction are the locker

characteristics and the municipality in which they are located, I have regressed the (log) ex-post

value of the locker on its size and the per capita income of the municipality. The results are

presented in Table 1.4.15

(Table 1.4)

Not surprisingly, the statistical signi�cance of the results con�rm that richer neighborhoods

and larger lockers have more valuable locker contents. Consequently, I specify the mean of the

common value component for a given auction as

m = �0 + �1SIZE + �2HHI;

where SIZE is a variable that measures the size of the locker (small (1), medium (2) or large

(3)) and HHI captures the median household income of the municipality where the locker is

located in the State of California.

In contrast, private valuations are usually associated with di¤erences in interests across

bidders, for which I do not observe any proxies. For that reason, I �exibly de�ne the mean of

the private value component of the four main bidders (Barry "Ba", Darrell "Dr", Dave "Dv"

and Jarrod "Jr"), as well as of the other active bidders whose identity is not shown publicly, as

�a = ( �0 + �1Ba �0 + �2Dr �0 + �3Dv �0 + �4Jr �0 � � � �0 );

where Ba, Dr, Dv and Jr are mutually exclusive dummy variables. For example, Ba takes the

value 1 if Barry is an active bidder in the auction and 0 otherwise. Note that �0 is the common

mean of the private value component of those active bidders whose identity is unknown.16

Furthermore, to guarantee positivity, the variance of the common value component, which is

obviously the same across bidders, is modelled as r20 = exp(�0), while the variance of the noise

15A more �exible non-linear speci�cation that allows for di¤erent coe¢ cients for each of the three locker sizes
does not o¤er any statistically signi�cant gains in �t, which is not surprinsing given that the sequence of locker
sizes corresponds to 3, 5 and 7 rooms (see section 1.2.2 for more details).

16Given that in all the formulas all that matters is m + �ai (see section 1.7.2 for further details), I set �0 = 0
without loss of generality because the constant terms of �a and m are not separately identi�ed.
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for each of the bidder�s signals is �exibly de�ned as

s2 = exp( 
0 + 
1Ba 
0 + 
2Dr 
0 + 
3Dv 
0 + 
4Jr 
0 � � � 
0 );

so that 
0 is the baseline variance of the anonymous bidders.

In principle, I also allow for unrestricted heterogeneity in the variance of the private value

component as follows

t2 = exp( �0 + �1Ba �0 + �2Dr �0 + �3Dv �0 + �4Jr �0 � � � �0 ):

Finally, I set the loss aversion parameter � to 2:25, a value initially proposed by Tversky

and Kahneman (1992) on the basis of experimental evidence which has been used by most of

the subsequent literature (see for example Barberis et al (2001), Barberis and Huang (2008) and

Post et al (2008)).

1.5.2 Parameter estimates of the baseline model

The �rst thing I do is check whether Storage Wars bidders exhibit loss aversion. To do

so, I �t the model with � = 2:25 for all the bidders and compare it to a speci�cation with

risk neutrality (� = 1). Surprisingly, the likelihood is actually worse. However, given that the

model in section 1.3 explicitly allows for heterogeneous bidders�characteristics, this two extreme

speci�cations are not the only ones that one could consider. In fact, when I set � = 1 for Dave

and � = 2:25 for all the other bidders, I �nd that the di¤erence between the log-likelihoods of

the risk neutral model and this alternative speci�cation is 9.41, thus con�rming the empirical

relevance of loss aversion in ascending auctions.

As I explained in section 1.2.1, Dave is the most professional bidder in Storage Wars. There-

fore, my �nding is not entirely surprising in view of the results in List (2004), who found that

professional traders did not exhibit loss aversion.17 In this respect, it is worth mentioning that

Dave su¤ers the smallest median loss when he losses and enjoys the largest median pro�t when

he wins, regardless of the size of the locker.

The maximum likelihood estimates of the model parameters for this speci�cation are shown

in Table 1.5.

(Table 1.5)

17 In contrast, Pope and Schweitzer (2011) found that even the best golfers seem loss averse in the non-pecuniary
context of golf putts.
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The results indicate that the coe¢ cients of the size of the locker (�1) and the per capita

income of the municipality (�2) are both positive and statistically signi�cant, which agrees

with the �ndings in Table 1.4 regarding the speci�cation of the mean of the common value

component (m). Additionally, there is strong evidence of asymmetry in terms of the mean of

the private value components (p-value of 0 for LR test of H0 : �1 = �2 = �3 = �4 = 0) and

weaker evidence of heterogeneity in the accuracy of the signals (p-value of 0.07 for LR test of

H0 : 
1 = 
2 = 
3 = 
4 = 0). However, there is no evidence of heterogeneity in the importance

of the private value component when t2 is heterogeneously modelled as in section 1.5.1 (p-value

of 0.43 for LR test of H0 : �1 = �2 = �3 = �4 = 0).

The variance of the common value component (r20) explains 74% of the variance of the

valuation Vi (see section 1.3.1 and section 1.7.2), which re�ects that the model is neither a pure

common value nor an independent private value model, but a mixture of both. To con�rm this

claim, I formally compare my estimated model to those two extreme versions:

LR Test p-value

Independent Private Value 404.23 0

Pure Common Value 77.24 0

Although the pure common value model provides a better match of the results in Table 1.5, it

is still rejected by a long margin.

(Figure 1.6)

Figure 1.6 plots the estimated equilibrium log-bidding functions at round 0 of Storage Wars

bidders, all of whom are loss averse except for Dave, who is risk neutral. As can be seen, Dave,

whose marginal utility is the same for both gains and losses, is the most aggressive bidder for

most signal values, although his bidding function has the lowest slope. At the opposite extreme,

Barry is the least aggressive bidder. As an illustration, suppose both of them had the same

log-signal xi = 8:5 ($4,914), which is approximately the average ex-post value of all the lockers

in Storage Wars. Then, we can read o¤ the graph that Dave�s targeted log-dropout price in

round 0 would be 8.48 ($4,821), while it would be 6.91 ($1,007) for Barry.

1.5.3 Parameter estimates with active non-bidding participants

Following the evidence in the previous section, I continue to set � = 1 for Dave (the most

professional bidder in the sample) and � = 2:25 for all the other bidders. In this case, the
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improvement in the log-likelihood function relative to the risk neutral model is 12.73, which is

even greater than in section 1.5.2. Therefore, loss aversion is again empirically relevant in this

more general framework.

The maximum likelihood estimates of the model parameters for this speci�cation are shown

in Table 1.6.

(Table 1.6)

As in section 1.5.2, the values of �1 and �2 are statistically signi�cant. Additionally, I �nd

that there is strong evidence of heterogeneity in the precision of the signals (p-value of 0 for

LR test of H0 : 
1 = 
2 = 
3 = 
4 = 0) and of asymmetry in the mean of the private value

component (p-value of 0 for LR test of H0 : �1 = �2 = �3 = �4 = 0). However, once again I

�nd no evidence of heterogeneity in the importance of the private value component t2 (p-value

of 0.77 for LR test of H0 : �1 = �2 = �3 = �4 = 0), as in Table 1.5.

(Figure 1.7)

Figure 1.7 illustrates the estimated equilibrium log-bidding functions of Storage Wars bidders

in round 0 with 1 active non-bidding participant, in this case Darrell. This graph shows that the

slope of the log-bidding functions for the remaining bidders decreases substantially compared

to their round 0 log-bidding functions in Figure 1.6. Intuitively, this re�ects the fact that

they e¤ectively take into account the private information of the bidder who decided not to

participate, thereby con�rming the empirical relevance of active non-bidding participants in

ascending auctions.

1.6 Conclusions

In this chapter I propose a novel tractable structural model with both private and common

value components for ascending auctions in which heterogeneous bidders may exhibit loss aver-

sion. Importantly, I �nd that, ceteris paribus, the bidding functions of a loss averse bidder are

signi�cantly lower than under risk neutrality.

Additionally, I consider a more general framework in which active bidders incorporate into

their strategies the information of those bidders who are present but decide not to participate

after observing the item put up for auction when the auctioneer announces the opening bid.

In this respect, I �nd that bidders reduce the aggressiveness of their bids even further as the
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number of non-bidding participants increases.

To empirically asses my model, I use data from the popular TV show Storage Wars, which

follows some recurrent individual bidders who take part in storage locker auctions throughout

the State of California.

My empirical results document for the �rst time the presence of loss aversion in actual

ascending auctions. More precisely, I �nd that the behavior of most bidders is consistent with

loss aversion in a model in which there is heterogeneity in both the mean of the private value

component and the precision of the signals. At the same time, I �nd that the most professional

bidder seems to be risk neutral.

I also �nd that loss aversion persists when bidders incorporate into their strategies the

information of those bidders who are present but decide not to participate after observing the

item to be auctioned. Moreover, my �ndings con�rm the empirical relevance of taking into

account the presence of non-bidding participants in ascending auctions.

Although the empirical analysis of this chapter provides reliable evidence of the importance

of loss aversion in ascending auctions, there is still much to learn about the behavioral biases

that arise in auctions from the �eld, lab and real life situations.
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1.7 Proofs and Auxiliary Results

1.7.1 Equilibrium proof

For notational simplicity, I suppress the arguments of the bid functions so that

�ki (Xi; 
k) = �ki (�).

Following the discussion in (1.2), for any round k,

Efu[Vi � �ki (�)]j�ki g =
Z �ki (�)

0
f�i[Vi � �ki (�)]� f [Vi � �ki (�)j�ki ]gd[Vi � �ki (�)]

+

Z +1

�ki (�)
f[Vi � �ki (�)]� f [Vi � �ki (�)j�ki ]gd[Vi � �ki (�)]:

Since f [Vi � �ki (�)j�ki ] = f(Vij�ki ), then Efu[Vi � �ki (�)]j�ki g can be written as

Efu[Vi � �ki (�)]j�ki g =
Z �ki (�)

0
f�i[Vi � �ki (�)]� f(Vij�ki )gdVi

+

Z +1

�ki (�)
f[Vi � �ki (�)]� f(Vij�ki )gdVi:

Given that Vi = exp(vi), where vi � N [E(vi); V ar(vi)], the density of Vi is

f(Vij�ki ) =
1

Vi
p
2�V ar(vi)

exp

�
� [log(Vi)� E(vi)]

2

2V ar(vi)

�
:

Moreover,Z �ki (�)

0
f�i[Vi � �ki (�)]� f(Vij�ki )gdVi =

Z �ki (�)

0

Pr[0 < Vi < �ki (�)]
Pr[0 < Vi < �ki (�)]

f�i[Vi � �ki (�)]� f(Vij�ki )gdVi

or equivalently

Z �ki (�)

0
f�i[Vi � �ki (�)]� f(Vij�ki )gdVi = f�i[Pr 0 < Vi < �ki (�)g

�
"Z �ki (�)

0

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi � �ki (�)
Z �ki (�)

0

f(Vij�ki )
Pr[0 < Vi < �ki (�)]

dVi

#
;

with
R �ki (�)
0 ff(Vij�ki )=Pr[0 < Vi < �ki (�)]gdVi = 1.

Note that Pr[0 < Vi < �ki (�)] = Pr[ln(0) < vi < ln(�
k
i (�)], so

Pr[0 < Vi < �ki (�)] = �
 
ln[�ki (�)]� &vijxp

!vijx

!
=
1

2

 
erf

(
ln[�ki (�)]� &vijxp

2!vijx

)
+ 1

!

Therefore,Z �ki (�)

0
f�i[Vi� �ki (�)]� f(Vij�ki )gdVi = f�i Pr[0 < Vi < �ki (�)]g

(Z �ki (�)

0

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi

)
:
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Following Zaninetti (2017),Z �ki (�)

0

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi = ET1;

where

ET1 =
exp[12V ar(vi)] exp[E(vi)] [erf(a1) + erf(a2)]

[erf(a3) + erf(a4)]
;

with a1 = [�1� !vijx � &vijx]=
p
2!vijx; a2 = f!vijx + &vijx � ln[�

k
i (�)]g=

p
2!vijx;

a3 = [�1� &vijx]=
p
2!vijx and a4 = f&vijx � ln[�

k
i (�)]g=

p
2!vijx.

Hence,

ET1 =
exp

�
1
2!vijx

�
exp(&vijx) [erf(a2)� 1]
[erf(a4)� 1]

;

because erf(a1) = erf(a3) = �1.

Therefore,Z �ki (�)

0
f�i[Vi � �ki (�)]� f(Vij�ki )gdVi = f�i[Pr 0 < Vi < �ki (�)]g[ET1 � �ki (�)]:

Similarly,

Z +1

�ki (�)
f[Vi � �ki (�)]� f(Vij�ki )gdVi = Pr[�ki (�) < Vi < +1]

�
(Z +1

�ki (�)

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi � �ki (�)
Z �ki (�)

0

f(Vij�ki )
Pr[0 < Vi < �ki (�)]

dVi

)
:

But since Pr[�ki (�) < Vi < +1] = Prfln[�ki (�)] < vi < +1g, then

Pr[�ki (�) < Vi < +1] =
1

2

 
1�

(
erf
ln[�ki (�)]� &vijxp

2!vijx

)!
:

Hence,Z +1

�ki (�)
f[Vi � �ki (�)]� f(Vij�ki )gdVi = Pr[�ki (�) < Vi < +1]

"Z +1

�ki (�)

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi

#
:

Again, following Zaninetti (2017),Z +1

�ki (�)

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi = ET2;

where

ET2 =
exp[12V ar(vi)] exp[E(vi)] [erf(b1) + erf(b2)]

[erf(b3) + erf(b4)]
;

with b1 = �a2; b2 = [!vijx + &vijx �1]=
p
2!vijx; b3 = �a4 and b4 = [&vijx �1]=

p
2!vijx.
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Hence,

ET2 =
exp

�
1
2!vijx

�
exp(&vijx) [� erf(a2)� 1]
[� erf(a4)� 1]

;

because erf(b2) = erf(b4) = �1.

Therefore,Z +1

�ki (�)
f[Vi � �ki (�)]� f(Vij�ki )gdVi = Pr[�ki (�) < Vi < +1][ET2 � �ki (�)];

so Efu[Vi � �ki (�)]j�ki g is then

Efu[Vi � �ki (�)]j�ki g = f�i Pr[0 < Vi < �ki (�)]g[ET1 � �ki (�)]

+ fPr[�ki (�) < Vi < +1g[ET2 � �ki (�)]:

In equilibrium,

f�i Pr[0 < Vi < �ki (�)]g[ET1 � �ki (�)] + fPr[�ki (�) < Vi < +1]g[ET2 � �ki (�)] = 0;

which simpli�es to

exp

�
1

2
!vijx

�
exp(&vijx)

"
(1� �i)

(
erf

!vijx + &vijx � ln[�
k
i (�)]p

2!vijx

)
+ (1 + �i)

#

� expfln[�ki (�)]g
"
(�i � 1) erf

"
ln(Pk)� &vijxp

2!vijx

#
+ (�i + 1)

#
= 0:

When �i > 1 and �i 6= 1, by "Guess and Verify", it is clear that the solution is:

&vijx = ln[�
k
i (�)]�

1

2
!vijx + �i;

with �i solving

exp(�i)

"
(1� �i) erf

 !vijx
2 + �ip
2!vijx

!
+ (1 + �i)

#
�
"
(�i � 1) erf

 !vijx
2 � �ip
2!vijx

!
+ (�i + 1)

#
= 0:

(1.9)

If there exists an �i that solves (1.9), then the above solution solves the original system. To

con�rm this claim, let

Y (�i) � exp(�i)
"
(1� �i) erf

 !vijx
2 + �ip
2!vijx

!
+ (1 + �i)

#

�
"
(�i � 1) erf

 !vijx
2 � �ip
2!vijx

!
+ (�i + 1)

#
= 0:
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To check whether �i is a solution to Y (�i) = 0, one can exploit the fact that

1) lim�i!�1 Y (�i) < 0

2) lim�i!+1 Y (�i) > 0

9>=>;
Speci�cally, given that 0 < !vijx <1 and �i > 1, then

lim
�i!�1

Y (�i) = �2�i < 0 and lim
�i!+1

Y (�i) = +1 > 0:

As a special case,

lim
�i!0

Y (�i) = 2(1� �i) erf
 !vijx

2p
2!vijx

!
� 0:

The continuity of Y (�i) guarantees that there exists an �i that solves Y (�i) = 0.

If in addition @Y (�i)=@�i > 0 for any �1 < �i < 1, the solution will be unique. In

particular,

@Y (�i)=@�i=exp(�i)

8<:(1��i) erf
 !vijx

2 + �ip
2!vijx

!
+(1+�i)+

2(1��i)p
2�!vijx

exp

24� !vijx
2 + �ip
2!vijx

!2359=;
+

8<: 2(�i � 1)p
2�!vijx

exp

24� !vijx
2 � �ip
2!vijx

!2359=; > 0;

or equivalently
(1 + �i)

(�i � 1)
� erf

 !vijx
2 + �ip
2!vijx

!
> 0;

which is true for any value of �i and 0 < !vijx <1 because [(1+�i)=(�i�1)] > 1 for 1 < �i <1

and erf[(12!vijx + �i)=
p
2!vijx] 2 [�1; 1] : As an aside, it is worth mentioning that �i, despite

being heterogeneous, does not depend on the round of the auction or on the bidder�s own private

signal.

Therefore, given the existence and uniqueness of �i,

&vijx = (�i � �
0
�ix�

��1	) + �0�ix�
��1
k;1 x

k
r + �

0
�ix�

��1
k;2 x

k
d;

where ���1 = (���1k;1 ;�
��1
k;2 ). Solving for x

k
r yields:

xkr = (�
0
�ix�

��1
k;1 )

�1[&vijx + (�
0
�ix�

��1	� �i)� �0�ix�
��1
k;2 x

k
d]:

Given that in the log-normal setup !vijx is constant and &vijx is linear in the log of xi, then

E(VijX1; : : :; XN ) is monotonically increasing in Xi:

For a proof of the existence of an increasing-strategy Bayesian-Nash equilibrium see Milgrom
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and Weber (1982) theorem 10 and Hong and Shum (2003, pp. 352). Speci�cally, they show that

if all bidders j 6= i follow their equilibrium strategies �kj (�), bidder i�s best response is to play

�ki (�) because this guarantees that bidder i will win the auction if and only if his expected net

payo¤ is positive conditional on winning.

1.7.2 Mean, variances and covariances of values and signals

Noting that �i = E(vi) = E(ai+v) = m+�ai, then � = (�1; : : : ; �N )0 = (m+�a1; : : : ;m+�aN )0.

Similarly, E(xi) = E(vi + si�i) = E(vi) = m+ �ai; so 	 = E(x) = (m+ �a1; : : : ;m+ �aN )
0. Also,

V ar(vi) = V ar(ai + v) = V ar(ai) + V ar(v) + 2Cov(ai; v) = r20 + t
2
i

and

Cov(vi; vj) = E(vivj)� E(vi)E(vj) = E(v2)� [E(v)]2 = V ar(v) = r20

for all i; j 2 N and i 6= j, so

�2� =

0BBBB@
r20 + t

2
1 � � � r20

...
. . .

...

r20 � � � r20 + t
2
N

1CCCCA :

In addition,

Cov(vi; xi) = E[vi(vi + si�i)]� E(vi)E(xi) = E(v2i )� [E(vi)]2 = V ar(vi)

and

Cov(vi; xj) = E[vi(vj + sj�j)]� E(vi)E(xj) = E(vivj)� E(vi)E(vj) = Cov(vi; vj)

for all i; j 2 N and i 6= j. As a consequence,

��i	 =

0BBBB@
r20 + t

2
1 � � � r20

...
. . .

...

r20 � � � r20 + t
2
N

1CCCCA :

Finally, since

V ar(xi) = V ar(vi + si�i) = V ar(vi) + s
2
iV ar(�i) + 2siCov(vi; �i) = r20 + t

2
i + s

2
i
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and

Cov(xi; xj) = E(xixj)� E(xi)E(xj) = E(vivj)� E(vi)E(vj) = Cov(vi; vj)

for all i; j 2 N and i 6= j, we have that

�� =

0BBBB@
r20 + t

2
1 + s

2
1 � � � r20

...
. . .

...

r20 � � � r20 + t
2
N + s

2
N

1CCCCA :

1.7.3 Di¤erence between loss aversion and expected utility

When �i = 1, one gets the standard risk neutral case (see Hong and Shum (2003)), so

exp[
1

2
V ar(vki j�ki )] exp[E(vki j�ki )] = exp[ln(�ki (�)]

or equivalently

E(vki j�ki ) = ln[�ki (�)]�
1

2
V ar(vki j�ki );

with xkr = (�
0
�ix�

��1
k;1 )

�1[E(vki j�ki ) + (�0�ix�
��1	� �i)� �0�ix�

��1
k;2 x

k
d].

Hence, the di¤erence between loss aversion (LA) and expected utility (EU) in this ascending

model is simply:

ELA(vki j�ki )� EEU (vki j�ki ) = �i:

Moreover, since xkr = (�0�ix�
��1
k;1 )

�1[E(vki j�ki ) + (�0�ix�
��1	 � �i) � �0�ix�

��1
k;2 x

k
d], then at

round 0,

x0;PRr � x0;EUr = (�0�ix�
��1
k;1 )

�1�i;

while in subsequent rounds,

xk;PRr � xk;EUr =
�
�0�ix�

��1
k;1

��1
(�i � �0�ix�

��1
k;2 x

k;PR
d + �0�ix�

��1
k;2 x

k;EU
d ):

1.7.4 Special cases

There are three important special cases of the model under prospect theory proposed in

section 1.3: the independent private value model, the pure common value model and Wilson�s

(1998) model. In addition, any heterogeneous model may simplify to a fully homogeneous one.

Independent private value model

In this model there is no correlation in the valuations, so that Vi = Ai; which e¤ectively
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requires that V = 1 (m = r20 = 0); implying that the only information bidders care about is

their own valuation. The log-bidding functions for each bidder in the initial round only depend

on their own private signal. As the auction progresses, the bidding functions do not change

in subsequent rounds. Therefore, Vickrey (1961) revenue equivalence theorem result applies.

Speci�cally, Vickrey (1961) showed that in a sealed-bid second price independent private value

auction, the bidders�optimal strategies are to truthfully bid their valuations. As the valuation

of each bidder is independent of the others, observing someone else�s valuation has no impact on

the valuation of anyone else, making the bids independent of the number of bidders participating

in the auction. Therefore, as all bidders will drop out when the price reaches their privately

known values, the outcome is Pareto optimal because the bidder with the highest value will win

the item.

Pure common value model

In this special case, Vi = V; which requires that Ai = 1 for all i (�ai = t2i = 0): As in the

independent private value model, the log-bidding functions for each bidder in the initial round

only depend on their own private signal. However, as the auction progresses, bidders lower their

bids. Intuitively, any information possessed by the bidders who drop out signi�cantly in�uences

the beliefs of the other bidders because the value of the object is the same across bidders.

Wilson auction model

Wilson (1998) allowed each bidder to observe two signals: his private component Ai as well

as his noisy estimate of the common component Ei. In contrast, the model in section 1.3 only

allows bidder i to obsere the composite signal Xi = Ai � Ei. Nevertheless, given that he made

a di¤use prior assumption on the distribution of the common value component, in practice, one

can achieve the same with r20 = 1. As usual, the log-bidding functions for each bidder at the

initial round only depend on their own private signals, but as the auction progresses, the e¤ects

of the private signal on the log-bidding functions of the remaining bidders is greater than in both

the pure common value and independent private value models. The reason is that the di¤use

nature of the prior makes bidders pay more attention to all the signals they observe.

Fully homogeneous model

In the fully homogeneous model, all the parameters are common, implying that they do
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not depend on the bidders� characteristics, i.e. � � (�a;m; t2; r20; s
2): In this case, the bidder

with the lowest signal will be the �rst one to drop out in round 0 because all bidders are

homogeneous. Given that the winner is the bidder with the highest bid, in a homogeneous set

up this corresponds to the one with the highest signal.

1.7.5 Winner�s curse

In �rst and second price sealed bid common value auctions, there may exist winner�s curse,

i.e. overpaying due to incomplete information. Suppose there are 3 bidders and the item for

auction has an actual value of $5. Assume bidder A bids $2, bidder B bids $6 and bidder C

$9. Even though bidder C won the auction, he ended up overpaying by $4. If bidders take this

problem into consideration, they should shade their bids, leading the average bid to decrease

with the number of bidders, as in Athey and Haile (2002) and Bajari and Hortaçsu (2003).

However, ascending auctions have the unique feature of "information transparency", so bidders

can make inferences about the private information possessed by the bidders who have dropped

out. As shown in Milgrom and Weber (1982), this feature reduces the e¤ects of the winner�s

curse, allowing bidders to bid more aggressively than in a sealed-bid auctions.

To shed some light on the existence of winner�s curse in Storage Wars, the following table

reports the average pro�t for the regular bidders:

Winners Estimate Std. Error
Barry 920.78 2407.01
Darrell 9473.71 2676.39
Dave 3949.31 2779.37
Jarrod 1721.38 2481.08
Anonymous 915.91 5984.59

Notes: *Indicates rejection of the null at the 10% signi�cance level, ** 5% level, *** 1% level.

As in Hong and Shum (2002) and Bajari and Hortaçsu (2003), I �nd that bidders took into

account the possibility of overpaying and shaded their bids in order to avoid winner�s curse.

These results suggest that professional bidder behavior is based on previous experiences, which

is in line with the experimental evidence in Kagel and Levin (1986).

1.7.6 Calculating the likelihood of baseline model

Continuous component

Using the log-bidding function in Section 1.3.2, the bid functions of bidders dropping out in
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round k will be given by (1.7). Let

F =

�
C0N
A0N

� �N � � � CN�22

AN�22

� �2
�

be an (N � 1)� 1 vector,

Gi =
 
0; : : : ; 0| {z }
N�i�2

1=AiN�i DiN�i=AiN�i
!

a 1� (N � 1) vector and

G = ( G00 � � � G0N�2 )

an (N � 1)� (N � 1) matrix. Thus, the vector of dropout bids can be written as

P = G (x2; : : : ; xN )0 + F : (1.10)

Let  2(�) be the N � 1 subvector of 	 and ��2(�) the (N � 1) � (N � 1) submatrix of ��

corresponding to bidders 2; : : : ; N . Then, equation (1.10) implies that the mean and variance of

the vector of dropout bids will be

�p(�) = F(�) + G(�) 2(�)

�p(�) = G(�)��2(�)G(�)0

9>=>; :

Therefore, the continuos part of the (N � 1)-variate normal log-likelihood function for a given

auction is

log f(P; �) = �1
2
(N � 1) log(2�)� 1

2
log(j�p(�)j)�

1

2

n
[P � �p(�)]

0
�p(�)

�1[P � �p(�)]
o
:

Characterization of T2(�) and its probability

In an ascending auction, one does not observe the winner�s dropout bid, only the price at which

the second highest bidder stops. As a result, the signal of the winning bidder is constrained to

a region T2(x2;. . . ; xN ; �) � R1. Hong and Shum (2003) show that the set T2[G�1(P � F); �]

consist of the following conditions:

fx1 : bl1(x1;xld; �) � pl; for all l = 0; : : : ; N � 2g:

This implies that for any dropout order, the winning bidder will never regret having remained

active in all prior rounds. However, given the ascending nature of the auction, the only binding
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constraint will be

bN�21 (x1;x
N�2
d ; �) � pN�2: (1.11)

Unfortunately, there is a mistake in the expression for the probability of T2 after the formula

(24) that Hong and Shum (2003) provide. Speci�cally, they seem to have used unconditional

moments when they should have used conditional ones instead because PrfT2[G�1(P � F); �]g

denotes the probability that x1 2 T2(�) conditional on P.

To illustrate the calculation, consider an auction with N = 3 bidders. Without loss of

generality, suppose bidder 3 had the lowest bid in round 0, so at round 1 only bidders 1 and 2

remain active. Then,

b11(x1;x3; �) � p1;

which can then be simpli�ed to

x1 � A11p1�C11 �D11x3 +A11�1:

Therefore,

PrfT2[G�1(P � F)j�]g = Pr
"
x1 � E(x1jx2; x3)p
V ar(x1jx2; x3)

� A11p1�C11 �D11x3 +A11�1 � E(x1jx2; x3)p
V ar(x1jx2; x3)

#

or equivalently

PrfT2[G�1(P � F)j�]g = �
"
E(x1jx2; x3) + C11 +D11x3 �A11p1 �A11�1p

V ar(x1jx2; x3)

#
:

To obtain E(x1jxd) = �	 and V ar(x1jxd) = ���; �rst partition the vector x as

x= [x1 (x2; x3)| {z }
N�1

]0;

and then partition 	 and �� accordingly:

	 = [	1 	d|{z}
N�1

]0 and �� =

0BBBB@
��11

1�(N�1)z}|{
��1d

��d1|{z}
(N�1)�1

��dd|{z}
(N�1)�(N�1)

1CCCCA :

Then, the distribution of x1 conditional on (x2; x3) is multivariate normal

x1jx2; x3 � N( �	; ���), where �	 = 	1 +��1d (�
�
dd)

�1 [(x2; : : : ; xN+q)�	d] and
��� = ��11 � ��1d (��dd)

�1��d1.

31



Characterization of Pr[T1(�); �]

For the dropout to occur in the correct order (CO), it must be the case that

bki (xi;x
k
d; �) � bkN�k(xN�k;x

k
d; �) = pk; for all k and i = 0; : : : ; N � k � 1:

The truncation region T1(�) for a given value of � is de�ned as the values of the log-signals

such that CO is satis�ed. More formally,

T1(�) = fx1; : : :; xN : CO is satis�edj�g :

Given the ascending nature of the auction and that the log-bidding functions for rounds k

and k � 1 intersect when they are equal, Hong and Shum (2003) show that the CO condition

can be simpli�ed to the following N � 1 inequalities

bkN�k�1(xN�k�1;x
k
d; �) � bkN�k(xN�k;x

k
d; �); for all k = 0; : : : ; N � 2;

which implies that the log-bidding functions of the bidders remaining in round k have to be

greater than the log-bidding functions of all the ones who have dropped out.

To illustrate the calculations for Pr[T1(�); �], suppose that, for example, N = 3. The only

binding constraints are:

b02(x2; �) � b03(x3; �)

b11(x1; x3; �) � b12(x2; x3; �)

9>=>;
which can be written in matrix form as

0B@ 0

0

1CA
| {z }

Z

�

264 C03
A03
� C02

A02
+ (�2 � �3)

C12
A12
� C11

A11
+ (�1 � �2)

375
| {z }

h

+

264 0 � 1
A02

1
A03

� 1
A11

1
A12

�
D1
2

A12
� D1

1

A11

�
375

| {z }
H

0BBBB@
x1

x2

x3

1CCCCA
| {z }

x

;

The probability that Z � 0 is simply a multivariate normal cdf with E(Z) = h +H	 and

V (Z) = H��H 0 because x � N (	;��). To calculate this multivariate normal cdf, I use a

numerical quadrature procedure for bivariate and trivariate distributions, and a quasi-Monte

Carlo integration algorithm for four or more dimensions (see Matlab (2019) mvncdf entry for

more details).

As an aside, it is worth mentioning that the CO condition in Pr[T1(�)j�] in the fully homoge-

neous case (see section 1.7.4) implies that the log-signal of the winner has to be greater than the
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log-signal of the second highest bidder, and similarly the log-singal of the third highest bidder,

etc. For example, when there are only three bidders,

Pr[T1(�)j�] = Pr(x1 � x2;x2 � x3j�) = Pr(z1 � 0; z2 � 0j�);

where z1 = x1 � x2 and z2 = x2 � x3. But notice that this is the probability that a bivariate

normal with zero means, unit variances and some correlation coe¢ cient between z1 and z2 (�z1z2)

lies in the �rst quadrant. In this case, it is easy to prove that

Pr[T1(�)j�] = 1=N !

because there are N ! possible orderings, which are all equally likely in the fully homogeneous

case. Consequently, Pr[T1(�)j�] does not depend on the model parameters.

1.7.7 Calculating the likelihood with active non-bidding participants

Continuous component

De�ne

~F =
�

C�1N+q
A�1N+q

� �N+q � � � C�1N+1
A�1N+1

� �N+1
C0N
A0N

� �N � � � CN�22

AN�22

� �2
�

as an (N + q � 1) � 1 vector, with q being the number of non-bidding participants and N the

number of active bidders. Similarly, let

~Gj =
 
0; : : : ; 0| {z }
N�j�2

1=A�1N�j 0; : : : ; 0| {z }
q+j

!
, for j = �q; : : : ;�1

~Gi =
 
0; : : : ; 0| {z }
N�i�2

1=AiN�i DiN�i=AiN�i| {z }
q+i

!
, for i = 0; : : : ; N � 2:

denote two 1� (N + q � 1) vectors and

~G = ( ~G0�q � � � ~G0�1 ~G00 � � � ~G0N�2 )

an (N + q � 1)� (N + q � 1) matrix. As before, the vector of dropout bids can be written as

~P = ~G (x2; : : : ;xN+q)0 + ~F : (1.12)

This equation describes the mapping from the unobserved log-signals

xdr � (x2; : : : ;xN ; xN+1; : : : ; xN+q)0
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to the observed log-bids ~P =(p�1; : : : ; p�1| {z }
q

; p0;. . . ; pN�2)0.

Let ~ 2(�) be the N+q�1 subvector of 	 and ~��2(�) the (N + q � 1)�(N + q � 1) submatrix

of �� corresponding to the signals of bidders 2; : : : ; N + q. Then, equation (1.12) implies that

the mean and variance of the vector of dropout bids will be

~�p(�) = ~F(�) + ~G(�)~ 2(�)
~�p(�) = ~G(�)~��2(�) ~G(�)0

9>=>; :

Similarly, partition the price vector ~P as:

~P = ((p�1; : : : ; p�1)| {z }
q

(p0; : : : ; pN�2)| {z }
N�1

)0

and then partition ~�p(�) and ~�p(�) accordingly:

~�p(�) = (~�p;1|{z}
q

~�p;2|{z}
N�1

)0 and ~�p(�) =

0BBBBB@
q�qz }| {
~�p;11

q�(N�1)z }| {
~�p;12

~�p;21| {z }
(N�1)�q

~�p;22| {z }
(N�1)�(N�1)

1CCCCCA :

Then, the distribution of (p0; : : : ; pN�2) conditional on (p�1; : : :; p�1) is multivariate normal

[(p0; : : :; pN�2) j (p�1; : : :; p�1)] � N
�
��p; ��p

�
, where ��p = ~�p;2+ ~�p;21 ~�

�1
p;11

�
(p�1; : : :; p�1)� ~�p;1

�
and ��p = ~�p;22 � ~�p;21 ~��1p;11 ~�p;12.

Therefore, the continuos part of the (N � 1� q)-variate normal log-likelihood function for a

given auction conditional on the initial dropout bidders is

log f(PajP�1; �) = �
1

2
(N�1�q) log(2�)�1

2
log(j��p(�)j)�

1

2

n
[Pa � ��p(�)]

0 ��p(�)
�1[Pa � ��p(�)]

o
;

where Pa = (p0; : : :; pN�2)0.

Characterization of T2(�) and Pr[T1(�); �jP�1]

In this case, the probability of T2 will be the same as (1.11). To illustrate how the Pr[T1(�); �]

looks like in this context suppose that, for example, N = 3 and q = 2.

At round -1, bidders 5 and 4 drop out simultaneously at price p�1. Therefore, the only
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binding constraints will be:

b�13 (x3jx4; x5) � b�14 (x4jx4; x5)

b02 (x2jx4; x5) � b03 (x3jx4; x5)

b11 (x1;xdjx4; x5) � b12 (x2;xdjx4; x5)

9>>>>=>>>>;
which can be written in matrix form as

0BBBB@
0

0

0

1CCCCA
| {z }

Z

�

266664
C�14
A�14

� C�13
A�13

+ (�3 � �4)
C03
A03
� C02

A02
+ (�2 � �3)

C12
A12
� C11

A11
+ (�1 � �2)

377775+
2666664

1
A�14

0�
D03;1
A03

� D02;1
A02

� �
D03;2
A03

� D02;2
A02

�
�
D12;2
A12

� D11;2
A11

� �
D12;3
A12

� D11;3
A11

�
3777775
0B@ x4

x5

1CA
| {z }

xb| {z }
h

+

2666664
0 0 � 1

A�13

0 � 1
A02

1
A03

� 1
A11

1
A12

�
D12;1
A12

� D11;1
A11

�
3777775

| {z }
H

0BBBB@
x1

x2

x3

1CCCCA
| {z }

xa

;

Note that this characterization is equivalent to b�13 (x3jx4; x5) � b�15 (x5jx4; x5).

Then, partition the vector x as

x=
�
x0a; x

0
b

�0
= [(x1; : : : ; xN )| {z }

N

(xN+1; : : : ; xN+q)| {z }
q

]0;

and then partition 	 and �� accordingly:

	 = ( 	a|{z}
N

	b|{z}
q

)0 and �� =

0BBBB@
N�Nz}|{
��aa

N�qz}|{
��ab

��ba|{z}
q�N

��bb|{z}
q�q

1CCCCA :

The distribution of xa conditional on xb is multivariate normal xajxb � N(	̂; �̂�), where

	̂ = 	a +�
�
ab (�

�
bb)

�1 [(xN+1; : : : ; xN+q)�	b] and �̂� = ��aa � ��ab (��bb)
�1��ba.

The probability that Z � 0 conditional on xb is simply a multivariate normal cdf with

E[Zj (xN+1; : : : ; xN+q)] = h+H ~	 and V [Zj (xN+1; : : : ; xN+q)] = H ~��H 0.
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1.8 Tables Chapter 1

Table 1.1: Auctioneer Behavior

Estimate Std. Error
HHI�� 0.012 0.005
SIZE��� 0.472 0.103
Constant 1.829 0.395

Notes: Multiple regression of (log) opening bid. HHI captures the median household income of the
municipality where the locker is located in the State of California, SIZE is a variable that measures the
size of the locker (small (1), medium (2) or large (3)). Additionally, * indicates rejection of the null at
the 10% signi�cance level, ** 5% level, *** 1% level.

Table 1.2: Summary Statistics

Variable #Obs. Season 1 Season 2 Season 3
Auction characteristics
Small locker 100 23 37 40
Medium locker 117 27 54 36
Large locker 37 9 12 16
Average HHI 78 57641 61473 58750
Average Ex-post 250 4797 3954 6319
Average Pro�t 250 3949 2282 4821
Number of auctions 254 59 103 92

Number of bidders per auction
N = 2 14 3 6 5
N = 3 50 9 13 28
N = 4 72 20 29 23
N = 5 63 13 34 16
N = 6 36 8 16 12
N = 7 19 6 5 8

Notes: HHI denotes the median household income of the municipality where the locker is located in
the State of California, Ex-post denotes the ex-post value of the locker and pro�t denotes the di¤erence
between the ex-post value of the locker and the winner�s bid.
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Table 1.3: Bidder�s Frequency Participation

# Obs. First Bidder J Dr Dv J-Dr J-Dv Dr-Dv J-Dr-Dv
Barry 139 66 82 86 76 52 44 50 29

# Obs. First Bidder J B Dv J-B J-Dv B-Dv J-B-Dv
Darrell 161 25 96 86 98 52 57 50 29

# Obs. First Bidder J Dr B J-Dr J-B Dr-B J-Dr-B
Dave 151 10 99 98 76 57 44 50 29

# Obs. First Bidder B Dr Dv B-Dr B-Dv Dr-Dv B-Dr-Dv
Jarrod 165 31 82 96 99 52 44 57 29

Notes: The four main bidders are Barry "B", Darrell "Dr", Dave "Dv" and Jarrod "Jr". Additionally,
"J-Dv" means that Jarrod and Dave were the only two main bidders out of the four who were active
bidding participants, i.e. they participated in the auction.

Table 1.4: Mean Common Value

Estimate Std. Error
HHI�� 0.012 0.005
SIZE��� 0.368 0.123
Constant 6.242 0.408

Notes: Multiple regression of (log) Ex-post value. HHI captures the median household income of the
municipality where the locker is located in the State of California and SIZE is a variable that measures
the size of the locker (small (1), medium (2) or large (3)). Additionally, * indicates rejection of the null
at the 10% signi�cance level, ** 5% level, *** 1% level.
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Table 1.5: Maximum Likelihood Estimates Baseline Model

Estimate p-value
����1 0.381 0
���2 0.009 0.01
�0 0.014 -
�0 5.534 -
����1 -0.185 0
����2 0.198 0
��3 0.101 0.06
�4 0.039 0.51
�0 -1.081 -

0 0.371 -

1 -0.059 0.85

2 0.053 0.77

���3 0.923 0

�4 -0.717 0.09

Notes: The mean of the common value component for a given auction is m = �0 + �1SIZE + �2HHI,
where SIZE is a variable that measures the size of the locker (small (1), medium (2) or large (3)) and
HHI captures the median household income of the municipality where the locker is located in the State of
California. Additionally, the mean of the private value component of the four main bidders (Barry "Ba",
Darrell "Dr", Dave "Dv" and Jarrod "Jr"), as well as of the other active bidders whose identity is not
shown publicly, is �a = (�0 +�1Ba; �0 +�2Dr; �0 +�3Dv; �0 +�4Jr; �0;. . . ;�0), where Ba, Dr, Dv and
Jr are mutually exclusive dummy variables. Furthermore, the variance of the common and private value
component is modelled as r20 = exp(�0) and t

2 = exp(�0), respectively, while the variance of the noise for
each of the bidder�s signals is s2 = exp(
0 + 
1Ba; 
0 + 
2Dr; 
0 + 
3Dv; 
0 + 
4Jr; 
0;. . . ;
0). p-values
correspond to the likelihood ratio. Finally, * indicates rejection of the null at the 10% signi�cance level,
** 5% level, *** 1% level.
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Table 1.6: Maximum Likelihood Estimates With Active Non-Bidding Participants

Estimate p-value
����1 0.291 0
����2 0.009 0
�0 -0.002 -
�0 5.926 -
����1 -0.439 0
�2 -0.007 0.55
����3 -0.126 0
�4 0.001 0.59
�0 0.001 -

0 1.628 -

�1 -0.427 0.08

2 -0.022 0.79

���3 1.024 0

4 0.058 0.76

Notes: The mean of the common value component for a given auction is m = �0 + �1SIZE + �2HHI,
where SIZE is a variable that measures the size of the locker (small (1), medium (2) or large (3)) and
HHI captures the median household income of the municipality where the locker is located in the State of
California. Additionally, the mean of the private value component of the four main bidders (Barry "Ba",
Darrell "Dr", Dave "Dv" and Jarrod "Jr"), as well as of the other active bidders whose identity is not
shown publicly, is �a = (�0 +�1Ba; �0 +�2Dr; �0 +�3Dv; �0 +�4Jr; �0;. . . ;�0), where Ba, Dr, Dv and
Jr are mutually exclusive dummy variables. Furthermore, the variance of the common and private value
component is modelled as r20 = exp(�0) and t

2 = exp(�0), respectively, while the variance of the noise for
each of the bidder�s signals is s2 = exp(
0 + 
1Ba; 
0 + 
2Dr; 
0 + 
3Dv; 
0 + 
4Jr; 
0;. . . ;
0). p-values
correspond to the likelihood ratio. Finally, * indicates rejection of the null at the 10% signi�cance level,
** 5% level, *** 1% level.
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1.9 Graphs Chapter 1

Figure 1.1: Loss Aversion Utility Function
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Notes: This graph displays the shape of the utility function (1.1) plotted against gains and losses for
� = 1 (risk neutrality) and � = 2:25 (loss aversion), with the marginal utility of losses being � times the
marginal utility of gains.
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Figure 1.2: Bidding Functions

0 5000 10000 15000 20000 25000
Signal

0

5000

10000

15000

20000

25000

30000

Pr
ic

e

=1
=2.25

Notes: This graph displays the equilibrium bid functions for � = 1 (risk neutrality) and � = 2:25 (loss
aversion), with bidders bidding substantially lower under loss aversion.
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Figure 1.3: Log-Bid Functions in Multiple Rounds

0 2 4 6 8 10
Log­Signal

2

3

4

5

6

7

8

9

10

11

Lo
g­

Pr
ic

e

Round 0
Round 1
Round 2
Round 3

Notes: This graph displays the log-bid functions of a representative bidder for each round in an auction
with 5 loss averse bidders.
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Figure 1.4: Log-Bid Functions with Active Non-Bidding Participants
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Notes: This graph displays the log-bid function of a representative loss averse bidder when he takes into
account the private information active non-bidding participants have in round 0.
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Figure 1.5: Distribution of Storage Wars Pro�t/Losses
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Notes: This graph displays the boxplot of the pro�t/losses in storage locker auctions, without a few
extreme outliers.
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Figure 1.6: Log-Bid Functions of Storage Wars Bidders Baseline Model
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Notes: This graph displays the round 0 log-bid functions of Storage Wars bidders under loss aversion,
except for Dave who is risk neutral.
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Figure 1.7: Log-Bid Functions of Storage Wars Bidders With Active Non-Bidding Participants
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Notes: This graph displays the log-bid functions of Storage Wars bidders in round 0 with 1 active
non-bidding participant, which in this case is Darrell.
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Chapter 2

Heterogeneous Pairs Play Mixed Strategies in the Soccer Field

2.1 Introduction

Mixed strategies are a fundamental component of game theory that allows us to theoretically

understand strategic situations which involve unpredictability and mutual outguessing. However,

the empirical evidence is still mixed when it comes to assessing whether players actually play

consistently with equilibrium predictions.

Experimental situations provide a controlled environment to assess the behavior of players,

but they are sometimes criticized because labs might be too aseptic and detached from a real

life situation. In contrast, behavior in the �eld is more likely to re�ect real life because of its

natural setting, which might provide higher external validity.

The main purpose of this chapter is to check if individuals, when repeatedly facing the

same opponents, really behave as game theory predicts by using data from a natural example

of strategic play: soccer penalty kicks. A penalty kick can be regarded as a zero-sum game

between two players, one kicker and one goalkeeper, because the rules of the game forbid any

other player to intervene. They provide a notable advantage over many other real life situations

because soccer players are experts at their game and the outcome (goal or miss) is immediately

observed after the players choose their strategies.

To test the main implications of mixed strategy equilibrium within pairs, I conducted a

(quasi) �eld experiment in the training grounds of AD Alcorcón, a team from the Spanish

Second Division League (also known as LaLiga SmartBank). The dataset I collected includes

very detailed information on all relevant aspects of the penalty kicks, speci�cally the choices

taken and the outcome of the kick. The players in my dataset take part in regular competitive

leagues in amateur divisions.1

Given that in real life situations the same pair of players is rarely observed, previous empir-

1Apart from training several hours every day of the working week and playing matches every weekend, they
devote a signi�cant fraction of their time and e¤ort to become professional experts in their �eld.
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ical papers using penalty kicks assumed homogeneity of opponents (see Chiappori et al (2002)

and Palacios-Huerta (2003, 2017) for examples). In this chapter, I study the consequences of

ignoring heterogeneity in empirical work, which arises when pooling observations across rivals.

Speci�cally, I show that assuming homogeneity might lead to false rejections when the di¤erent

rivals of a given player behave di¤erently. Apart from providing necessary and su¢ cient condi-

tions for this problem to be irrelevant, I suggest a simple way of combining the test statistics

of a player across opponents to obtain a valid aggregate test without making any additional

assumptions.

The �rst testable implication I check is whether the scoring probabilities of a player are

identical across strategies, as the theory states they should be. To the best of my knowledge,

this is the �rst time that this hypothesis is tested in the �eld using repeated observations on

speci�c pairs of kickers and goalkeepers. Empirically, I cannot reject the equality of the scoring

probabilities, except for the kickers from the least professional team.

The second testable implication I check is that the actions of the player at each penalty kick

should be serially independent, because equilibrium play also requires that each player�s choices

are independent draws from an i:i:d: process. Once again, an important advantage of my dataset

is that there are repeated observations for the same pair of players. As in the existing literature,

I �nd that the behavior of most players is consistent with the theory.

The main objective of the next two hypotheses I test is to detect possible interactions between

players because a standard assumption in non-cooperative game theory is that players�actions

are independent. Speci�cally, the third hypothesis I check is whether there exists dependence

between the strategies of the two players within a given pair at each penalty kick. This hypothesis

was already tested by Chiappori et al (2002), who did not reject the null, but they had to pool

observations across di¤erent, possibly heterogeneous, players because they did not have repeated

observations on pairs of kickers and goalkeepers. In contrast, I �nd dependence between kickers�

and goalkeepers�actions for most pairs. The validity of this hypothesis is very important in

practice since teams would like to sign goalkeepers that have positive correlation with strikers

because it would mean that they can sometimes anticipate where the kicker is going to shoot. At

the same time, teams would like to sign strikers who had negative correlation with goalkeepers

because it would imply that they are able to deceive them.

In addition, given that in my (quasi) experiment the players participated in a penalty
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shootout in the training grounds, which is a sequence of penalty kicks in which both kickers and

goalkeepers take turns, I also test whether the strategy chosen by consecutive kickers/goalkeepers

within teams is in�uenced by the previous player�s strategy. One of the possible alternatives to

this hypothesis is that there could exist herd behavior. For example, if the previous kicker

shoots to the left, then the next kicker might also decide to shoot to the left, and so on.2 In

this respect, I observe that the goalkeepers of the least professional team tend to replicate each

other�s actions.

Finally, the availability of repeated observations for each pair of kickers and goalkeepers

also allows me to check whether players exhibit some form of learning in the training grounds.

In particular, I assess the reinforcement learning model of Erev and Roth (1998), whose main

implication is that players respond to negative or positive stimuli by using actions that have

worked well for them in the past. However, I �nd that players do not seem to follow such a

reinforcement learning model.

Given that my work contributes to the empirical literature on strategic interactions in two

person zero-sum games, I will brie�y survey next the existing evidence in professional sports.

Walker and Wooders (2001) tested whether professional tennis players played according to

mixed strategies when serving and receiving. Unfortunately, their dataset only contained the

server�s action and the winner of the point. Still, they found that their data was consistent with

the implication of equal payo¤s across actions. However, they found negative serial correlation

between the actions of a player, i.e. switched actions to often. In contrast, Hsu et al (2007)

found that tennis players played consistently with the two implications of the theory using a

broader dataset, which included men�s, women�s, and juniors�matches.

Chiappori et al (2002) o¤ered evidence on the application of mixed strategies to penalty kicks

in soccer by testing whether the strategy chosen by the rival forecasts the other player�s action

in the penalty kick. However, they found no relationship between the kicker�s and goalkeeper�s

actions. Additionally, they could not reject the null hypothesis of equal winning probabilities for

the players in their sample. They also tested if there is serial correlation in actions, but they

found none. Although their paper represents one of the �rst attempts to test mixed strategy

behavior using data from real soccer games, the nature of their data meant that they looked at

2 In fact, this type of behavior was observed during the penalty shootout of the 2016 Champions League Final
between Real Madrid and Atletico de Madrid, where the kickers from both teams exactly replicated the action of
the previous kicker.
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the behavior of players aggregating across multiple, possible heterogeneous players rather than

at the level of speci�c kicker-goalkeeper pairs.

One of the contributions of Palacios-Huerta (2002) was to compile a larger dataset, which

allowed him to observe repeatedly many individual players. However, he again aggregated across

potentially heterogenous opponents because he had little data on repeated interactions of speci�c

pairs. As Chiappori et al (2002), he found that winning probabilities were identical across

strategies and that choices were serially independent.

In subsequent work, Palacios-Huerta and Volij (2008) used a 2�2 laboratory experiment bor-

rowed from O�Neill (1987) which mimics penalty kicks. In their simpli�ed lab game, a "kicker"

and a "goalkeeper" choose between two actions simultaneously several times. They found that

in their lab games professional soccer players played consistently with the mixed strategy equi-

librium predictions, with some modest deviations and some serial correlation. In contrast, the

rest of the participants did not. However, Levitt et al (2010) found that professional poker,

bridge and American soccer players were not able to transfer their professional skills acquired in

the �eld to the lab because they did not behave consistently with equilibrium predictions. This

chapter tries to shed light on this con�icting evidence.

The rest of the chapter is organized as follows. Section 2.2 discusses the theoretical setting

and its equilibrium. In section 2.3, I discuss the problems that arise from pooling observations

of heterogeneous pairs of players as well as suggesting a valid aggregate test. Next, in section 2.4

I describe the dataset that I compiled to test the equilibrium predictions of mixed strategies in

the training grounds. The results of the empirical analysis are presented in section 2.5. Finally,

section 2.6 studies whether there is evidence of learning. This is followed by the conclusions and

several appendices where proofs and additional details can be found.

2.2 Penalty Kicks in Football and Game Theory

2.2.1 The rules

According to Federation Internationale de Football Association (FIFA) in the O¢ cial Laws

of the Game (FIFA, 2018) "in soccer, a penalty kick is awarded against a team which com-

mits one of the ten punishable o¤enses inside its own penalty area while the ball is in play".3

Additionally, there are penalty shootouts (mostly used in knockout tournaments), which are

3The ball is placed on the penalty mark. The goalkeeper remains on his goal line facing the kicker between
the goalposts until the ball has been kicked. The rest of the players are located outside the penalty area and they
cannot interfere in the kick.
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used for determining the winning team in a match that cannot end in a draw after both the

regulation and extra playing time have expired.4

In a given penalty kick, the ball takes approximately 0.3 seconds to travel the distance

between the penalty mark and the goal line. Thus, if the goalkeeper decides his action after the

kick, he will not be able to stop the shot (unless, of course, it is aimed at him), so in theory

both players must choose their strategies simultaneously.5 This is one of the hypothesis that I

will test in section 2.5.

2.2.2 The formal setting

A formal setting of the penalty kick game can be written as follows: one goalkeeper and

one kicker are facing each other at a penalty kick. The kicker preferences are to score while the

goalkeeper has the opposite preferences, as in all strictly competitive games. Speci�cally, the

kicker�s payo¤ is the probability of scoring while the goalkeeper�s payo¤ is the complementary

probability. The kicker may choose to kick to his right (R), to his left (L), or to the center (C).

Similarly, the goalkeeper may choose to jump to his left, to his right or remain at the center.

When both players choose the same side (L, C, or R) the outcome is less likely to be a goal. In

addition, there is usually a natural side for a kicker to shoot, so that the probability of scoring,

when kicking to that side, is higher than when kicking to the center or the opposite side, both

when the goalkeeper guesses it and when he does not. In contrast, goalkeepers do not have a

natural side, but their ability to stop the goal may vary widely across opponents, as I document

in detail in section 2.5.

As an example, suppose that the player is right-footed and shooting to his left is his natural

side. The payo¤ matrix, which consists of scoring probabilities, is then:

4Each team take turns to shoot �ve penalty kicks, which must be taken by di¤erent kickers. The winning
team is decided on the best of �ve kicks basis. However, if both teams are tied in the number of scored penalties
after these �ve penalty kicks, then the shootout progresses into additional "sudden death" rounds (see Apesteguia
and Palacios-Huerta (2010) for more details).

5Miller (1998) reports evidence on the fact that both players must choose their strategies simultaneously using
data from all the penalty kicks in four World Cups.
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Goalkeeper

Left Center Right

Left a; 1� a b; 1� b b; 1� b

Kicker Center e; 1� e c; 1� c e; 1� e

Right e; 1� e e; 1� e d; 1� d

where the �rst payo¤ corresponds to the kicker and the second payo¤ to the goalkeeper.

In terms of the payo¤ matrix, a is the probability that a goal is scored when both players

choose the kicker�s natural side. But if the kicker is the only one who chooses it, a goal is scored

with probability b. Therefore, it makes sense to assume that b > a. For any action other than

the kicker�s natural side, e is the probability that a goal is scored when the actions of both

players di¤er. Similarly, if both players choose action C, a goal is scored with probability c, but

if they both choose R, the probability is d. Given that the goalkeeper is more likely to save if

he remains at the center, it makes sense to assume that d > c. Additionally, as the kicker has

a natural side when kicking, then a > d. It also makes sense to assume that b > e because the

kicker�s probability of scoring a goal when kicking to his natural side (in this case left) is higher

than when kicking anywhere else, regardless of the actions of the goalkeeper. Finally, it is also

reasonable to expect that e > a, which means that the kicker is more likely to score when the

actions of both players di¤er.

Under these reasonable conditions, namely b > e > a > d > c, there is no pure strategy

Nash equilibrium in this game (see section 2.8.2 for a proof). However, there exists a unique

mixed strategy Nash equilibrium involving all three strategies where the kicker will choose L, C

and R with probabilities

pL =
(e� d) (e� c)

�
; pC =

(e� d) (b� a)
�

and pR =
(b� a) (e� c)

�
;

where � = (b+ e� a� c) (e� d)� (e� c) (a� b). In turn, the goalkeeper will choose the same

actions with probabilities

qL =
(e� d) (b� c) + (c� e) (e� b)

�
; qC =

(e� a) (e� d)
�

and qR =
(e� a) (e� c)

�
;

respectively (see section 2.8.3 for more details). These values guarantee that in expected terms,

the probability of the kicker scoring a goal is the same regardless of the strategy chosen (L, C
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or R). The same reasoning applies to the goalkeeper.6

Given that in my dataset each kicker-goalkeeper pair played the penalty kick game several

times, these multiple observations imply that the game was in fact a �nite two-person repeated

zero-sum game. However, the only subgame perfect equilibrium stipulates to play the Nash

equilibrium obtained above in every period (see Osborne (2003) chapter 14 for more details).

From an empirical point of view, the tests would be much simpler if all pairs were alike

because one could pool all the observations together. However, this is not the case in practice

because the parameters a, b, c, d and e of the payo¤matrix depend on the relative abilities of the

kicker and goalkeeper, so in general, there will exist pair-speci�c heterogeneity in the strategies

played. For that reason, it is convenient to have repeated observations for each pair. I discuss

this issue in more detail next.

2.3 Heterogenous Opponents

The problem of heterogeneity arises when the observations of two or more di¤erent pairs of

players, each having di¤erent abilities or characteristics, are treated as if they all came from

the same pair. This is done very frequently in empirical work because of the lack of repeated

observations for speci�c pairs. For example, despite its size, Palacios-Huerta�s (2003, 2017)

dataset on penalty kicks in actual soccer matches has very few repeated observations for the

same pair of kicker-goalkeeper.

In this section, I study the consequences of assuming that the sample observations come

from a homogeneous population when in fact it is heterogeneous. For simplicity of exposition,

I consider a version of the model in section 2.2.2 with only two actions, although the problem

applies more generally. The payo¤ matrix of this simpli�ed game is the following:

Kicker

Goalkeeper

Left Right

Left a; 1� a b; 1� b

Right e; 1� e d; 1� d

where the �rst payo¤ corresponds to the kicker and the second payo¤ to the goalkeeper. As

before, the parameters a, b, d and e depend on the relative abilities of the kicker and goalkeeper,

6Chiappori et al (2002) discussed a simpli�ed 3 � 3 payo¤ matrix which can sometimes give rise to an
equilibrium with only two strategies.
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so in general, there will exist pair-speci�c heterogeneity in the strategies played. It is easy to

see that there is no pure Nash equilibrium in this game. In this case, the unique mixed strategy

Nash equilibrium is such that the kicker will choose L and R with probabilities

pL =
e� d

b+ e� a� d and pR =
b� a

b+ e� a� d; (2.1)

while the goalkeeper will choose them with probabilities

qL =
b� d

b+ e� a� d and qR =
e� a

b+ e� a� d; (2.2)

respectively.7 Again, if the same pair of kicker and goalkeeper play the game repeatedly a

�nite number of times, the only subgame perfect equilibrium stipulates to play the same Nash

equilibrium in every period.

Suppose now the same player faces two di¤erent opponents, which gives rise to di¤erent

parameters values a, b, d and e for each pair, and therefore di¤erent equilibrium values. As an

illustration, suppose that the payo¤ matrices for pairs A and B are the following:

Kicker

Pair A

Goalkeeper

Left Right

Left 0.03,0.97 0.98,0.02

Right 0.99,0.01 0.02,0.98

Kicker

Pair B

Goalkeeper

Left Right

Left 0.73,0.27 0.93,0.07

Right 0.92,0.08 0.89,0.11

where I have chosen these values in such a way that if I choose 20% of the observations from

pair A and 80% from pair B, then the average payo¤matrix corresponds to the one in Palacios-

Huerta (2017). For each of these two pairs, there exists a unique mixed strategy Nash equilibrium

7A special case arises when a = d = 0 and b = e = 1; which leads to a mixed strategy Nash equilibrium where
both the kicker and the goalkeeper choose L and R with probability 1=2.
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in which the kicker and goalkeeper of pair A play L and R with probabilities pAL = 0:51 and

pAR = 0:49, and q
A
L = 0:50 and q

A
R = 0:50, respectively; while the kicker and goalkeeper of pair B

will choose L and R with probabilities pBL = 0:13 and p
B
R = 0:87, and q

B
L = 0:17 and q

B
R = 0:83,

respectively.

The joint probability distribution in the population for the kicker-goalkeeper pair i, for

i = A;B, is

Direction/Outcome Left Right Sum

Success �iSL �iSR �iS

Failure �iFL �iFR �iF

Sum �iL �iR 1

where �iL denotes the marginal probability of the left strategy and �
i
S the marginal probability

of scoring.

Suppose now that an empirical researcher erroneously treats all the observations as though

they came from the same pair. Let�s de�ne a heterogeneous playerH as drawn with probability �

from pair A and with probability 1� � from B. The following proposition establishes necessary

and su¢ cient conditions that allow researchers to ignore heterogeneity (see section 2.8.1 for

proof).

Proposition 2.1 If both pairs of kicker and goalkeeper play consistently with the equilibrium
predictions of mixed strategies, the scoring probabilities of a "heterogeneous" player will dif-
fer across strategies unless � = 0 or � = 1 (no heterogeneity in the sample), �AL = �BL (no
heterogeneity in the strategies) or �AS = �BS (no heterogeneity in the outcome).

As a special case, this proposition justi�es the su¢ cient condition of identical goalkeepers

in Chiappori et al (2002), who stated that if goalkeepers are indeed homogeneous, the kicker�s

strategy will be independent of the goalkeeper he is facing. In contrast, the result in Proposition

2.1 is both necessary and su¢ cient. In this sense, it is important to emphasize that it is not

enough that one of the players is the same across pairs; even in that case, what matters is

whether �AL = �BL or �
A
S = �BS .

To investigate the e¤ects of heterogeneity, I study the correlation between the actions of

a supposedly homogeneous player with his scoring probability, which should be equal to zero

under the null H0 : �ihj = �ih � �ij , for h = S; F and j = L;R, where S (success), F (failure), L

(left) and R (right) are dummy variables with F = 1� S and R = 1� L.

If both pairs of kicker and goalkeeper play consistently with equilibrium predictions, then
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the marginal probability of their actions (�iL) is equal to the mixed strategy equilibrium (p
i
L; q

i
L)

for each pair i in (2.1) and (2.2). Additionally, given independent actions between players, the

marginal probability of scoring can be easily computed as

�ih =
RX
j=L

Pr(h = 1jj;m) � pij � qim;where m = L;R:

However, the marginal probability of scoring and the marginal probability of the actions

of the heterogeneous "player" H will be �Hj = ��Aj + (1 � �)�Bj and �
H
h = ��Ah + (1 � �)�Bh ,

respectively. Therefore,

Corr(hH ; jH) = �H =
Cov(hH ; jH)p
V ar(hH)V ar(jH)

; (2.3)

where

Cov(hH ; jH) = �(1� �)
�
�Ah � �Bh

�
(�Aj � �Bj )

V ar(hH) = �Hh (1� �Hh )

V ar(jH) = �Hj (1� �Hj )

(see section 2.8.1 for more details).

(Figure 2.1)

Figure 2.1 shows the e¤ects of varying the fraction of observations from pair A (�) on

the correlation between the actions of the supposedly homogeneous player with his scoring

probability. As expected, � = 0 or � = 1 (no heterogeneity in the sample) implies that player

H is indeed homogeneous. However, for any other value of �, there is an apparent dependence

between a player�s actions and his scoring probabilities when in fact there is none.

(Figure 2.2)

Figure 2.2 shows the theoretical rejection rates obtained with Pearson�s independence test

statistic with 2 actions and 1 degree of freedom for 20, 38 (Palacios-Huerta (2003) median

sample size) and 200 observations as a function of �. As can be seen, when � = 0 or � = 1,

the rejection rate is the nominal (5%) size, while for any other value of �, it exceeds 5%.

This occurs even though both underlying pairs of players play consistently with the theory.

Therefore, the homogeneity assumption misleadingly increases the rejection rate of the test

statistics because the non-centrality parameter of the distribution of the statistic is n�2H , where
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�H is the correlation between the actions of the supposedly homogeneous player with his scoring

probability de�ned in (2.3). As is well known, the distribution of a non-central X 2 shifts to the

right as the non-centrality parameter n�2H increases, which implies an increase in the rejection

rate (see Mood et al (1974) for more details). Additionally, in section 2.8.4 I con�rm that the

same conclusions hold in Monte Carlo simulations. However, it is important to note that the

rejection rate is rather low unless the sample size is large (see Figure 2.2 for more details).

So in summary, under heterogeneity, researchers may mistakenly reject the null when testing

the implications of mixed strategy even though the null is true.

2.3.1 Allowing for heterogeneity of opponents

I propose a simple solution to the heterogeneity problem in those situations in which there

are multiple observations for all the pairs involving a given player. The intuition is as follows.

For a given pair of players, all the independence test statistics converge to a X 2 under the null

when the number of observations goes to in�nity.8 Therefore, I can compute an aggregate test

for a given player as the sum of the independent X 2 statistics across all his opponents, which

results in another X 2 with degrees of freedom equal to the sum of degrees of freedom for each

pair test.

Speci�cally, suppose that the same kicker plays against N di¤erent goalkeepers. Alge-

braically, his aggregate X 2 test statistic will be:

	 =
NX
i=1

	i;

where 	i, for i = 1; : : : ; N , is his X 2 independence test statistic obtained from the observations

he shares with his ith opponent.

From an empirical point of view, this simple aggregate test statistic allows both the optimal

mixed strategies and the scoring probabilities to be di¤erent for di¤erent opponents. In addition,

it allows the theoretical results to be tested player by player, thereby using more observations

for each player than each speci�c pair test. Obviously, if there is a single observation per pair,

this procedure cannot be applied. But as the number of observations per pair increases, its

reliability will increase.

Heterogeneity also a¤ects the tests of serial correlation and action independence, but the

8As is well known, those tests which converge to an F distribution with �1 and �2 degrees of freedom can be
converted into �2v1 by multiplying the F statistic by �1.

57



problems are very similar, so I will not discuss them separately.

2.4 (Quasi) Field Experiment

2.4.1 Soccer subjects

As I explained in the introduction, I conducted a (quasi) �eld experiment in the training

grounds of AD Alcorcón, a team from the Spanish Second Division League (also known as

LaLiga SmartBank), for periods of 15 minutes each day over a three week period in April 2016.

The players came from AD Alcorcón youth teams, which were taking part in regular league

competitions in amateur divisions. Those leagues have the same structure, calendar schedule

and rules as professional leagues (FIFA, 2018).

There are two types of players, who di¤er in seniority: "Cadetes" and "Juveniles". The players

from the Cadete teams are 15 and 16 years old and the players from the Juvenil team 17, 18

and 19 years old. AD Alcorcón has three Juveniles teams. The players I recruited from that

category come from the Juvenil A team which plays in the Honor Division, the top level of the

Spanish soccer league system for youth players. Those players are in their last formative stages

and aspire to climb the last step that leads them to Alcorcón B, the reserve team of the �rst

team. Moreover, there are three Cadete teams. The players I recruited from this age group play

in the Primera Division Autonomica and Preferente Cadete, which are the highest and second

highest divisions in that category, respectively.

2.4.2 Experimental setup

Once all the players were recruited, I was able to create several pairs of kickers and goalkeep-

ers within each team. Since there are more defenders, mid�elders and forwards than goalkeepers,

the latter were paired at least four times. In particular, every goalkeeper was matched with one

left and right-footed penalty kick specialist with substantial experience in kicking penalties, as

well as with left and right-footed inexperienced penalty kickers.9 There are a total of 14 kickers

and 6 goalkeepers in the dataset.10

After the pairs of kickers and goalkeepers were formed, they played a penalty shootout in

the training grounds, which is simply a sequence of penalty kicks where players take turns,

with a random initial order. This was done so as to have approximately the same number

9The selection was made by the managers of the di¤erent teams who knew the players�abilities well. This
selection should in principle increase the heterogeneity within pairs.

10Due to the con�dentiality agreements I signed with the players�agents, I cannot reveal any personal identi-
fying information.
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of observations for each pair. Both kickers and goalkeepers regularly alternated to maintain a

high level of concentration in each practice session. Given that penalty kicks decide matches,

quali�cations for next rounds in tournaments and even titles, soccer teams devote considerable

resources to analyze and improve strategies for their players. For that reason, coaches told

players that the penalty shootouts in my (quasi) experiment were an integral part of their

training.

2.4.3 Descriptive statistics

There is a total of 8 pairs from Cadete A with 16 penalty kicks each on average. Moreover, in

Cadete C, there are also 8 pairs with approximately 13 penalties each. In Juvenil A, there are 10

pairs with 10 penalties each on average. For each of these pairs, the observations in the dataset

include all the penalties they participated, in chronological order. Given that the di¤erent teams

played the penalty kick game over non-consecutive days, I have taken these breaks into account

in some of the tests.

The dataset includes the date and time at which the penalty kick took place, the identifying

codes of the kicker and goalkeeper for each penalty kick, the choices taken (L, C and R), the

foot used by the kicker (left or right), and the outcome of the kick (goal or miss). There were

two independent measurements taken for each penalty kick to eliminate measurement error.11

Table 2.1 o¤ers a basic description of the data. It shows the relative proportions of choices

made by both kickers and goalkeepers from the di¤erent AD Alcorcón youth teams (L, C or R).

The �rst letter refers to the choice made by the kicker and the second one to the choice made

by the goalkeeper, always from the point of view of the goalkeeper. For instance, R-L means

that the kicker chooses to kick to the right hand side of the goalkeeper (the natural side of a

right-footed player) and the goalkeeper chooses to jump to his left. The last column shows the

scoring rate for a given team.

(Table 2.1)

The strategy followed by goalkeepers coincides with that followed by kickers in 47.84% of all

penalties in the dataset. Kickers do not usually kick to the center (11.71% of all kicks), whereas

goalkeepers remain in the middle less often (8.78%). The percentage of kicks where the actions

of the players do not coincide is mostly divided between L-R (18.76%) and R-L (19.35%). A

11One measurement was taken from the point of view of the kickers while the other one from the goalkeepers.
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goal is scored in 75.66% of all penalty kicks. The scoring rate is over 88.84% when the kicker

choice di¤ers from the goalkeeper, but it is just over 51.41% when it coincides.

Moreover, the scoring rate of penalties of Juvenil A, Cadete A and Cadete C are 76.92%,

72.86% and 77.77%, respectively. It may seem surprising that the scoring rate of the Cadete C,

which has the least professional players in the sample, is the highest of all the teams. This is

because the goalkeepers saving rate from Cadete C team is under 40% in all of their strategies,

the worst of the three teams (see section 2.5.1.1 for more details).

2.5 Empirical Analysis

2.5.1 Test of equal scoring probabilities

The �rst testable implication I check is whether the scoring probabilities for a player are

identical across strategies. Following the discussion in sections 2.8.5 and 2.8.6 regarding the size

and power of the di¤erent tests proposed in the literature, I use the F-test version of the Linear

Probability Model (LPM) (see Wooldridge (2002) chapter 7 for more details).12

Let S take the value 1 if the penalty is scored and 0 otherwise. Given that each player

(kicker/goalkeeper) has three strategies available (Left "L", Center "C", and Right "R"), the

LPM can be written as:

S = �LL+ �CC + �RR+ u; (2.4)

where L, C and R are mutually exclusive dummy variables and u has zero conditional mean,

i.e. E(ujL;C;R) = 0. For example, L takes the value 1 if the penalty is shot in that direction

and 0 otherwise.

The regression coe¢ cients of the LPM have a direct interpretation as conditional scoring

probabilities. For instance, �L is the proportion of left kicks scored. Thus, the estimated

probabilities are always non-negative and they add up to 1, which avoids a common criticism of

the LPM (see again Wooldridge (2002)).

The null hypothesis of equal scoring probabilities states that �L = �R = �C = �. In practice,

it is easier to test this hypothesis by estimating the following modi�cation of model (2.4):

S = �0 + �1L+ �2R+ u; (2.5)

12There are many econometric procedures to test this hypothesis. However, Proposition 3.1 of chapter 3 proves
the numerical equivalence between Pearson�s contingency table test for independence and the Lagrange Multiplier
(LM) and overidentifying restrictions test in several popular linear and non-linear regression models. Therefore,
the results that I will present are largely insensitive to the methodology used.
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where �0 = �C , �1 = �L � �C and �2 = �R � �C . In (2.5), the coe¢ cients of the dummy

variables are the di¤erences between the scoring probabilities of the corresponding strategy and

the baseline, which in this case is C. The �t of this beta regression is identical to the �t of the

regression in (2.4), but it has the advantage that the null hypothesis of equal scoring probabilities

can be expressed as �1 = �2 = 0. This can be tested using an F-test with 2 degrees of freedom

in the numerator and n � 3 degrees of freedom in the denominator, where n is the number of

observations.13 The exact formula of this F-test is:

F =
(R2=k)

(1�R2)=(n� k � 1) ;

where R2 measures the proportion of the variability of the dependent variable explained by

the k non-constant explanatory variables. Therefore, the F-statistic would be 0 if the scoring

probability is exactly the same across strategies (single outcome) and/or if the player is only

employing one strategy (single choice). However, the F-statistic would be in�nity when the

regressors provide a perfect �t, i.e. R2 = 1 (see section 2.8.5 for more details).

The LPM has one potentially important disadvantage. Under the alternative, it violates the

homoskedasticity assumption because the conditional variance of the error term u will change

depending on the values of the explanatory variables (see Wooldridge (2002)). However, the

variance of u given the dummy regressors is constant under the null hypothesis of equal scoring

probabilities (�0(1 � �0)). This implies that the homoskedasticity assumption holds and the

F-test is valid.

2.5.1.1 Pair tests

As I mentioned before, an important advantage of my dataset is that for the �rst time I

have repeated observations for each and every pair of kickers and goalkeepers. Therefore, I can

carry out separate tests that check whether each member of the pair within a team is playing

consistently with equilibrium outcomes. There is a total of 26 pairs in the dataset, and for each

pair, there is a test statistic for the kicker and another one for the goalkeeper. However, it

is important to note that the pair tests alone may have low power because of the relative low

number of observations (see section 2.8.6 for more details). The results of all those tests are

shown in Tables 2.2, 2.3 and 2.4. Table 2.2 corresponds to Cadete A, Table 2.3 to Cadete C and

13Some of the players in the training grounds never employed one of the three strategies (either L, C or R).
When that occurs, the F-test will have 1 degree of freedom in the numerator and n� 2 degrees of freedom in the
denominator.
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Table 2.4 to Juvenil A.

(Table 2.2)

(Table 2.3)

(Table 2.4)

The rejections I �nd only come from the kickers and goalkeepers from the Cadete A and

Cadete C team. Therefore, my evidence is trivially consistent with the �rst implication for all

the players from the Juvenil A team.

It is worth mentioning that the scoring rates vary substantially across pairs of the three

teams, which con�rms the empirical relevance of the discussion in section 2.3. An interesting

observation I found was that kicker 3 of Juvenil A, who is a left-footed penalty kick specialist,

had a test statistic of 0 in all of the pair tests. This is because his scoring probabilities are

100% regardless of the strategy chosen, so not only is he a great performer, but he also behaves

perfectly according to the theory.

2.5.1.2 Tests allowing for heterogeneity of the opponents

Given that the pair tests do not exploit the fact that a player is matched several times, I

compute an additional test that checks whether each player behaves as the theory predicts when

aggregating all his observations but without assuming homogeneity of his opponents. This test

should have substantially more power than each speci�c pair test. The results are shown in

Table 2.5.

(Table 2.5)

Panel A describes the results for individual players for the Cadete A team. The null hypoth-

esis is rejected for one kicker and one goalkeeper at the 5% signi�cance level and one additional

kicker at the 10% level. Panel B shows the results for the Cadete C team. The null hypothesis is

rejected for two kickers at the 5% signi�cance level and one goalkeeper at the 1% level. Finally,

Panel C includes the results for the Juvenil A team. The hypothesis is only rejected for one

kicker at the 10% level.

Hence, the evidence obtained by aggregating each player�s opponents is consistent with the

�rst implication for the goalkeepers from the Juvenil A team. As for the kickers from the

Cadete A team, if I take into account that there are multiple tests (see section 2.8.7), the

binomial probability of one or more kickers out of 4 rejecting the null at the 5% level when the
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null is true is 0.185, so the evidence suggests that as a group, those players do not reject the null

hypothesis either. Additionally, the evidence I �nd for the kickers from the Juvenil A team is

also consistent with the theory because the probability of one or more kickers out of 6 rejecting

the null at the 10% level is 0.468.

However, given that the probability that two or more kickers out of 4 rejecting the null at

the 5% level is 0.014, I can claim that the scoring probabilities of the kickers from the Cadete

C team di¤er depending on the action. As for the goalkeepers from the Cadete A and Cadete

C teams, the evidence is more mixed because the probability of at least one goalkeeper out of 2

rejecting the null at the 5% and 1% level is 0.097 and 0.02 respectively.

In contrast, I �nd that the null hypothesis of equal scoring probabilities is rejected for the

kickers from the Cadete A team when I incorrectly treat all their opponents as if they were a

single homogeneous one because the probability of two or more kickers out of 4 rejecting the

null at the 5% level is 0.014. This false rejection con�rms the importance of recognizing the

heterogeneity of opponents.

2.5.2 Test for serial independence

The second testable implication I check is that the actions of the player at each penalty

kick should be serially independent. In that regard, note that the players� strategies will not

be serially independent if they switch actions too often (negative serial correlation) or if they

choose not to switch their actions regularly (positive serial correlation). Following the discussion

in sections 2.8.5 and 2.8.6 regarding the size and power of the di¤erent tests proposed in the

literature, I use the F-version of the Lawley-Hotelling trace test (LH) in the multivariate version

of the LPM to test if the player�s strategies are serially independent (see Stewart (1995) for more

details).14

The multivariate regression I have used to detect possible departures from serial independence

is similar to a �rst-order vector autoregressive process for dummy variables (see Wooldridge

14The numerical equivalence results Proposition 3.1 of chapter 3 also applies to tests of serial independence of
a discrete Markov chain, which can be regarded as an analog to the multinomial model, although in a time series
context. Therefore, the results that I present should be largely insensitive to the methodology.
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(2002) chapter 18, section 5 for more details). Speci�cally,0BBBB@
Lt

Ct

Rt

1CCCCA =

0BBBB@
�LL �CL �RL

�LC �CC �RC

�LR �CR �RR

1CCCCA
0BBBB@

Lt�1

Ct�1

Rt�1

1CCCCA+
0BBBB@

uLt

uCt

uRt

1CCCCA ;

where Lt, Ct and Rt are the dependent variables, Lt�1, Ct�1 and Rt�1 are lagged regressors,

�CL measures the probability of Lt being equal to 1 given that Ct�1 is equal to 1, etc. In this

multivariate regression with three lagged explanatory variables, but no constant, the coe¢ cients

of the lagged variables are the probability of choosing a strategy at time t conditional on the

previous action. These are sometimes called transition probabilities. The sum of �LL, �LC

and �LR is equal to 1, and the same applies to the other columns in the matrix. Therefore, the

coe¢ cients in equation Ct can be obtained from the other two equations because Ct = 1�Lt�Rt.

For that reason, I can eliminate this equation from the system of equations without loss of

generality to avoid the singularity (see Judge et al (1985) chapter 12, section 5 for more details).

The null hypothesis of serial independence implies that �LL = �CL = �RL and �LR = �CR =

�RR. In practice, it is easier to test this hypothesis by estimating the following model:

Lt = �L0 + �LLLt�1 + �LRRt�1 + uLt

Rt = �R0 + �RLLt�1 + �RRRt�1 + uRt

9>=>; ;

where �L0 = �CL and �R0 = �CR , �LL = �LL � �CL, �RL = �RL � �CL, �LR = �LR � �CR and

�RR = �RR��CR. In the regression with only two lagged variables and a constant, the coe¢ cients

of the lagged variables are the di¤erences between the probabilities of the corresponding strategy

and the baseline, which is the lagged variable Ct�1. The adjustment of these regressions is

identical to the adjustment of the regressions written in terms of ��s, but they have the advantage

that the null hypothesis of serial independence can be expressed as

�LL = �LR = �RL = �RR = 0. In addition, homoskedasticity will again hold under the null, so

the usual regression tests remains valid.

2.5.2.1 Pair tests

As in section 2.5.1.1, given that I have repeated observations on each pair of kicker-goalkeeper,

I can compute a test for the kicker and another one for the goalkeeper to check whether the

null hypothesis of serial independence holds using multiple observations for each and every pair.

But as I mentioned in section 2.4, the di¤erent teams played the penalty shootout over non-
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consecutive days, so there were long breaks between some of the observations. For that reason,

instead of assuming that the players remembered what they did at the very end of the previous

day, I test for serial correlation within each practice session, but combine the di¤erent sessions

for a given pair. In practice, this means dropping the �rst observation from each day. This

allowed me to have a larger sample for each pair, which enables the test to have more power to

reject the null. The results of the tests are shown in the following tables:

(Table 2.6)

(Table 2.7)

(Table 2.8)

The null hypothesis of serial independence is only rejected for the kickers in pair 4 and 9

from the Juvenil A team at the 5% and 1% level respectively, which is surprising because they

are both two penalty kick specialists. In fact, the actions of pair 9 kicker provide a perfect �t

(see section 2.8.5.1 for more details).

2.5.2.2 Tests allowing for heterogeneity of the opponents

Following the discussion in section 2.5.1.2, I also check whether the behavior of each indi-

vidual player is consistent with this second implication when aggregating all his observations

but without assuming homogeneity of his opponents. Again, the solution is to add up the X 2

versions of the pair tests. The results are shown in Table 2.9.

(Table 2.9)

Panel A describes the results for individual players from the Cadete A team while Panel B

shows the results for the Cadete C team. The hypothesis of serial independence is not rejected

for any of those players, implying that they are indeed able to generate random sequences even

though they are not the most professional players in the sample. Finally, Panel C includes the

results for the Juvenil A team. The null hypothesis is only rejected for two kickers at the 10%

level.

In this context, one could therefore argue that most of the evidence obtained by aggregating

each player�s opponents is consistent with the second implication for all of the players in the

sample, including the kickers in the Juvenil A team because the probability of two or more

kickers out of 6 rejecting the null at the 10% level is 0.114 (see again section 2.8.7). Thus,
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they seem truly able to generate random sequences; they do not appear to switch strategies too

regularly or to seldom. This di¤ers from the evidence of negative serial dependence in Walker

and Wooders (2001), who tested whether professional tennis players played according to the

theory when serving and receiving.

2.5.3 Test for action independence

In a penalty kick, both players must choose their strategies simultaneously due to the nature

of the game (see the discussion in Miller (1998) and footnote 4, section 2.2.1 for more details).

Therefore, an important implication of their randomizing behavior is that there should be no

dependence between the strategies played by the two players. Thanks to the repeated nature of

my data, I can follow a similar approach as in the previous section to test for possible interactions

for each pair of players from the three teams. In fact, the econometric procedure is analogous

to the one used for testing serial independence described in section 2.5.2, except that here

regressands and regressors correspond to the same time period and the explanatory variables

correspond to the actions of his opponent (see section 2.8.6 for more details).15 Obviously, this

test can only be done at the pair level. The results for the three teams are displayed in Tables

2.10, 2.11 and 2.12.

(Table 2.10)

(Table 2.11)

(Table 2.12)

The results show that of the 26 existing pairs, the null hypothesis is rejected for one pair

from the Cadete A team, and two pairs from the Cadete C team at the 10% level, one pair from

the Juvenil A at the 5% level, and �nally two pairs from the Cadete C team and one pair from

Juvenil A team at the 1% level. In fact, in the Cadete C team, the regressors for pairs 5 and 6

provide a perfect �t. These two pairs correspond to both goalkeepers playing against the same

inexperienced left-footed kicker.

If I take into account that there are multiple tests (see section 2.8.7), the probability that two

or more pairs out of 8 from the Cadete C team rejecting the null at the 1% level is 0.002, so there

seems to be dependence between the kicker�s and goalkeepers actions in a penalty kick. This is

15 It is worth mentioning that the results in Proposition 3.1 of chapter 3 imply that I would get the same results
if I exchanged regressors and regressands in these regressions.
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not very surprising because they are the least experienced players in the sample. Similarly, as

the probability that at least one pair out of 10 from the Juvenil A team rejecting the null at the

1% level is 0.095, there is marginal evidence of dependence between the kicker�s and goalkeeper�s

actions. In contrast, I can conclude that the kickers�and goalkeepers�actions are not correlated

for the Cadete A team players because the probability of one or more pairs out of 8 rejecting

the null at the 10% level is 0.569. This di¤ers from the evidence in Chiappori et al (2002), who

did not rejected the null, but they did not have repeated observations. However, my �nding is

in line with the results in Belot et al (2013).

2.5.4 Test for sequential independence

Finally, I test that the strategy chosen by consecutive kickers/goalkeepers within teams is

independent of the previous player�s strategy. Recall that players played a penalty shootout in

the training grounds with an initial random order, so that both kickers and goalkeepers regularly

alternated to maintain a high level of concentration in each practice session. This hypothesis

will be rejected if there is herd behavior. For example, if the previous kicker shoots to the left,

then the next kicker might also decide to shoot to the left, and so on. Once again, instead of

assuming that the players remembered what they did at the very end of the previous day, I test

for sequential independence by combining the di¤erent sessions for a given team without the

�rst observation from each day.

The econometric procedure is analogous to the one described in section 2.5.2 except that now

the lagged variables represent the action of di¤erent kickers/goalkeepers from the same team.

The results of the test are shown in Table 2.13.

(Table 2.13)

The main result in this analysis is that the null hypothesis is only rejected for the goalkeepers

from the Cadete C team at the 5% signi�cance level. Apparently, the goalkeepers from that

team tended to replicate the strategy of the previous goalkeeper. This may occur because these

players have less years of experience and play in the least competitive league of the three teams

in the sample. On this basis, one could say that those players exhibited some form of herd

behavior. In contrast, players with substantial experience tend to rely on their own actions and

not on the previous players actions.
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2.6 Reinforcement Learning

Although many economic theories rely on the analysis of Nash equilibria in games, they

do not necessarily require fully rational players. In fact, Nash equilibrium might arise as a

result of less than fully rational players learning over time. For that reason, I study if the

reinforcement learning model of Erev and Roth (1998), whose main implication is that players

respond to negative or positive stimuli by using actions that have worked well in the past, might

be relevant for the players in my dataset.

Assume that at t = 1, each player i has an initial propensity to play his mth pure strategy

(L, C or R), given by #im(1). For simplicity, assume that to begin with, each player i will have

equal propensities for each of his pure strategies, so #iL(1) = #iC(1) = #iR(1) = 1=3. After

each play, propensities are updated using a reinforcement function. Speci�cally, assume that if

player i plays his mth pure strategy at time t and obtained a payo¤ x, then his propensity to

play strategy m at time t+ 1 is updated by setting

#ih(t+ 1) =
#im(t) +R(x) if m = mt

#im(t) otherwise

9>=>; ;

for some increasing function R(�). The idea is that if mt was successful, the player is more likely

to use that strategy again. However, if it was unsuccessful, he will be less likely to play it.

Propensities are mapped into choices using a probabilistic choice rule. For instance, letting

�im(t) denote the probability that player i will choose action m at time t, a simple rule would

be:

�im(t) =
#im(t)P

m=L;C;R #im(t)
;

where the sum is taken over all player i�s pure strategies (L, C and R).

Therefore, a testable implication of the reinforcement learning model is that a player�s strat-

egy depends on the outcome of his previous action. On the other hand, if kickers and goalkeepers

play according to mixed strategies, then they will not modify the probabilities of their actions

regardless of the outcome of their previous actions.16

To test if players use such a learning mechanism, I will use the multivariate version of the

LPM in section 2.5.2 but this time using as regressors interaction terms between the lagged

outcome (success (St�1) and failure (Ft�1 = 1 � St�1)) and the lagged regressors (Lt�1, Ct�1
16This hypothesis is somewhat related to the implication of serial independence but it is substantially di¤erent.
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and Rt�1). Speci�cally, I consider

0BBBB@
Lt

Ct

Rt

1CCCCA =

0BBBB@
�LLS �CLS �RLS �LLF �CLF �RLF

�LCS �CCS �RCS �LCF �CCF �RCF

�LRS �CRS �RRS �LRF �CRF �RRF

1CCCCA

0BBBBBBBBBBBBBB@

LSt�1

CSt�1

RSt�1

LFt�1

CFt�1

RFt�1

1CCCCCCCCCCCCCCA
+

0BBBB@
uLt

uCt

uRt

1CCCCA ;

where Lt, Ct and Rt are the dependent variables, mht�1, for m = L;C;R and h = C;F , is an

interaction term between the lagged regressors and the lagged outcome, and �LLS measures the

probability of Lt being equal to 1 given that LSt�1 is equal to 1, etc. As usual, the coe¢ cients

in equation Ct can be obtained from the other two equations because Ct = 1 � Lt � Rt. For

that reason, I eliminate this equation from the system of equations without loss of generality to

avoid the singularity.

The null hypothesis of no learning implies that �LjS = �CjS = �RjS = �LjF = �CjF = �RjF

for j = L;R. In practice, it is easier to test this hypothesis by estimating the following model:

Lt = !L0 + !LLSLSt�1 + !CLSCSt�1 + !RLSRSt�1 + !LLFLFt�1 + !RLFRFt�1 + uLt

Rt = !R0 + !LRSLSt�1 + !CRSCSt�1 + !RRSRSt�1 + !LRFLFt�1 + !RRFRFt�1 + uRt

9>=>; ;

where !L0 = �CLF , !R0 = �CRF , !LLS = �LLS � �CLF , !LRS = �LRS � �CRF , etc. In these

regressions with only �ve variables and a constant, the coe¢ cients of the lagged explanatory vari-

ables are the di¤erences between the probabilities of the corresponding strategy�s outcome and

the baseline, which corresponds to CFt�1. Otherwise, the econometric procedure is analogous

to the one used to test for serial independence described in section 2.5.2.

2.6.1 Pair tests

Given that there are multiple observations for each pair of kickers and goalkeepers, I check

whether the null hypothesis of lack of learning holds. As usual, for each pair there is a test

statistic for the kicker and another one for the goalkeeper. The results of the tests are shown in
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Tables 2.14, 2.15 and 2.16.

(Table 2.14)

(Table 2.15)

(Table 2.16)

In the Cadete A team, pair 3 kicker rejects the null hypothesis of lack of learning at the 10%

signi�cance level. Additionally, in the Cadete C team, the null is only rejected for pair 3 kicker

at the 5% level and for pair 6 goalkeeper at the 10% level. Similarly, in the Juvenil A team,

pair 4 kicker and pair 8 goalkeeper reject the null at the 10% level. Despite these rejections,

only a few of the players showed clear evidence of reinforced learning. For instance, the kickers

from pair 3 from the Cadete A and Cadete C teams seemed to change strategies when they

missed and remain playing the same strategy if they scored. In contrast, pair 4 kicker and pair

8 goalkeeper from the Juvenil A team did not play according to the implications of reinforced

learning because surprisingly they switched strategies too often whenever at t� 1 the outcome

was a goal.

2.6.2 Tests allowing for heterogeneity of the opponents

Once again, I compute an additional test that checks whether each player behaves consis-

tently with learning by aggregating all his observations but without assuming homogeneity of

his opponents. The results are shown in Table 2.17.

(Table 2.17)

Panel A describes the results for individual players for the Cadete A team. The null hypoth-

esis of lack of learning is not rejected for any of the players. Panel B shows the results for the

Cadete C team. The null hypothesis is rejected for one kicker and one goalkeeper at the 10%

level. Finally, Panel C includes the results for the Juvenil A team. The hypothesis is rejected

for one kicker at the 10% level.

Nevertheless, if I take into account that there are multiple tests (see section 2.8.7), most of

the evidence obtained by aggregating each player�s opponents does not suggest the presence of

reinforced learning because the probability of one or more kickers out of 4 from the Cadete C

team rejecting the null at the 10% is 0.344 while the probability of one or more kickers out of 6
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from the Juvenil A team rejecting the null at the 10% level is 0.468.

2.7 Conclusions

In this chapter I conducted a (quasi) �eld experiment in the training grounds of AD Alcorcón

to test if individuals satisfy the main implications of mixed strategy equilibrium in soccer penalty

kicks. An important advantage of my dataset is that it contains multiple observations on speci�c

heterogeneous pairs of players, a situation that rarely repeats in real life. I also study the e¤ects

of ignoring heterogeneity in empirical work, which arises when pooling observations because of

the lack of repeated observations for speci�c pairs. I �nd that if researchers ignore heterogeneity

when it is present, they may often reject the null when in fact the null is true. For that reason,

I suggest a simple way of combining the test statistic of a player across opponents to obtain a

valid aggregate test without making any additional assumptions.

From the empirical point of view, I �nd that the behavior of most soccer players, when

repeatedly facing the same opponents, is consistent with the implications of mixed strategy

equilibrium, in the sense that winning probabilities are identical across strategies, except for

the kickers from the least professional team, and that player�s actions are serially independent.

In contrast, I �nd dependence between the kicker�s and goalkeeper�s actions. Moreover, the

goalkeepers of the least professional team tended to replicate each other�s action during the

penalty shootout. Nevertheless, I also �nd that players do not seem to follow a reinforcement

learning model.

Although the empirical analysis of this chapter provides reliable evidence on some funda-

mental implications of game theory, paying particular attention to the e¤ects of the di¤erent

years of experience and the level of professionalism of the di¤erent teams, there is still much to

learn about the competitive behavior that arises in zero-sum games from the �eld, lab and real

life situations.
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2.8 Proofs and Auxiliary Results

2.8.1 Proof of Proposition 2.1

Recall from section 2.3 that under the null, �ihj = �ih � �ij for h = S; F and j = L;R,

where S, F , L and R are dummy variables with F = 1 � S and R = 1 � L. The payo¤s of a

heterogeneous player H will be:

�Hhj = P (hH = 1; jH = 1) = P (hH = 1; jH = 1 j Pair A)� P (Pair A)

+ P (hH = 1; jH = 1 j Pair B)� P (Pair B)

or equivalently

�Hhj = �Ahj�+ �
B
hj(1� �):

Similarly,

�Hm = P (mH = 1 j Pair A)� P (Pair A) + P (mH = 1 j Pair B)� P (Pair B)

or equivalently

�Hm = �Am�+ �
B
m(1� �); for m = j; h:

We want to check if �ihj = �ih � �ij is true for the heterogeneous player H given that

�Ahj = �Ah � �Aj and �Bhj = �Bh � �Bj .

If we regress hH on a constant and j, for example, the regression coe¢ cient is

Cov(hH ; jH)=V ar(jH);

where

Cov(hH ; jH) = E(hHjH)� E(hH)E(jH) and V ar(jH) = E
�
(jH)2

�
�
�
E(jH)

�2
:

Here,

E(hHjH) = E(hAjA j PairA)�+ E(hBjB j PairB)(1� �);

but under independence of (hA, jA) and (hB, jB), then E(hHjH) = (�Ah �
A
j )�+ (�

B
h �

B
j )(1� �)

because E(hiji j Pair i) = E(hi j Pair i)� E(ji j Pair i).

Similarly,

E(mH) = �Am�+ �
B
m(1� �); for m = j; h:
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Therefore,

Cov(hH ; jH) = (�Ah �
A
j )�+ (�

B
h �

B
j )(1� �)� [�Aj �+ �Bj (1� �)]

�
�Ah �+ �

B
h (1� �)

�
;

which simpli�es to

Cov(hH ; jH) = �(1� �)�
�
�Ah � �Bh

�
� (�Aj � �Bj ):

As a consequence, the regression coe¢ cient will be zero if and only if � = 0 or � = 1 (no

heterogeneity in the sample), or �Ah = �Bh (no heterogeneity in the outcome) or �
A
j = �Bj (no

heterogeneity in the strategies), as stated.

2.8.2 Proof of lack of pure strategies

Note that the penalty kick game in section 2.2.2 is strictly competitive because the kicker

wants to score while the goalkeeper has opposite preferences (see Osborne (2003) chapter 11,

section 3 for more details).

Let�s �nd out the best response function of the goalkeeper to the actions of the kicker. If the

kicker plays left, the goalkeeper best response is to play left because 1� a > 1� b. Similarly, if

the kicker plays center, the goalkeeper best response is to play center as 1� c > 1� e > 1� b.

Lastly, if the kicker plays right, the goalkeeper best response is to also play right. Therefore,

the goalkeeper�s best response is to play the same action as the kicker.

Now, let�s derive the best response function of the kicker. If the goalkeeper plays left, the

kicker best response is to play either center or right because e > a. Similarly, if the goalkeeper

plays center, the kicker best response is to play left as b > e > c. Lastly, if the goalkeeper plays

right, the kicker best response is to play left. Therefore, the kicker�s best response is to play the

opposite action of the goalkeeper.

2.8.3 Existence and uniqueness of equilibrium

Suppose that in the penalty kick game in section 2.2.2 the kicker believes that the goalkeeper

plays L with probability qL, R with probability qR and C with probability qC = 1 � qL � qR.

Similarly, suppose the goalkeeper believes that the kicker plays L with probability pL, R with

probability pR and C with probability pC = 1� pL � pR.

The expected payo¤ of the kicker�s pure strategies against the goalkeeper�s mixed strategies
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(�G) for the payo¤ matrix in section 2.2.2 are:

E[uK(L; �G)] = aqL + b(qC + qR)

E[uK(C; �G)] = e(qL + qR) + cqC

E[uK(R; �G)] = e(qL + qC) + dqR

9>>>>=>>>>; :

Since in equilibrium E[uK(L; �G)] = E[uK(C; �G)] = E[uK(R; �G)], then

aqL + b(qC + qR) = e(qL + qR) + cqC

aqL + b(qC + qR) = e(qL + qC) + dqR

or equivalently

(b+ e� a� c) qL + (e� c) qR = b� c

(a� b) qL + (e� d) qR = e� b

which can be written in matrix form as0B@ b+ e� a� c e� c

a� b e� d

1CA
0B@ qL

qR

1CA =

0B@ b� c

e� b

1CA :

Solving for qL and qR yields:0B@ qL

qR

1CA =

0B@ b+ e� a� c e� c

a� b e� d

1CA
�10B@ b� c

e� b

1CA
0B@ qL

qR

1CA =
1

�

0B@ e� d c� e

b� a b+ e� a� c

1CA
0B@ b� c

e� b

1CA
where � = (b+ e� a� c) (e� d)� (e� c) (a� b) > 0 given that b > e > a > d > c.

Hence, 0B@ qL

qR

1CA =
1

�

264 (e� d) (b� c) + (c� e) (e� b)
(e� a) (e� c)

375 :
Similarly, the expected payo¤ of the goalkeeper�s pure strategies against the kicker�s mixed

strategies (�K) are:

E[uG(L; �K)] = (1� a)pL + (1� e)(pC + pR)

E[uG(C; �K)] = (1� b)pL + (1� e)pR + (1� c)pC

E[uG(R; �K)] = (1� b)pL + (1� e)pC + (1� d) pR

9>>>>=>>>>; :
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Since in equilibrium, E[uG(L; �K)] = E[uG(C; �K)] = E[uG(R; �K)], then

(1� a)pL + (1� e)(pC + pR) = (1� b)pL + (1� e)pR + (1� c)pC

(1� a)pL + (1� e)(pC + pR) = (1� b)pL + (1� e)pC + (1� d) pR

or equivalently

(e+ b� a� c) pL + (e� c) pR = e� c

(a� b) pL + (e� d) pR = 0

which can be written in matrix form as0B@ e+ b� a� c e� c

a� b e� d

1CA
0B@ pL

pR

1CA =

0B@ e� c

0

1CA
Solving for pL and pR yields:0B@ pL

pR

1CA =
1

�

0B@ e� d c� e

b� a e+ b� a� c

1CA
0B@ e� c

0

1CA :

Hence, 0B@ pL

pR

1CA =
1

�

0B@ (e� d) (e� c)

(b� a) (e� c)

1CA :

When b > e > a > c but c = d, then qL > qC = qR and pL > pC = pR if 2b � d > 2e � a,

which implies that both players will choose more frequently the natural side of the kicker than

any other side. In turn, the kicker will only choose R and the goalkeeper L when b > e but

e = a = d because pL = pC = qC = qR = 0. Similarly, when b > e and a > d > c but e = a, the

goalkeeper will only choose L because qC = qR = 0. Additionally, when b = e = a but a > d,

both players will only play L because pC = pR = qC = qR = 0. Finally, when a = b = c = d = e,

both the kicker and the goalkeeper are indi¤erent between playing pure or mixed strategies,

since the expected payo¤ from choosing L, C or R gives the exact same payo¤. However, all

these equilibria are ruled out by assumption.

Hence, the game has no pure strategy Nash equilibrium, as stated.

2.8.4 Finite sample behavior under heterogeneity

The p-value plots of the tests, which contain the empirical cumulative distribution func-

tion (cdf) of the asymptotic p-values in the Monte Carlo simulations for 200 observations (see

Davidson and MacKinnon (1998)), are depicted in Figures 2.3.a to 2.3.f. The advantage of this
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sample size is that the asymptotic p-values are reliable. As can be seen, the empirical cdf of the

asymptotic p-values is well above the 45� line even though both pairs of players play according

to the theory. Hence, under heterogeneity, we will often mistakenly reject the null even though

the null is true, as shown in Figure 2.2.

I also consider the case for 20 observations, where I get analogous results but with lower

rejection rates. Thus, my Monte Carlo results con�rm the result in Proposition 2.1.

2.8.5 Size experiments

Even in experimental studies, few observations for each pair of kicker-goalkeeper are likely

to be the rule rather than the exception. Therefore, it is important to investigate the behavior

of the tests described in section 2.5 in small samples because the asymptotic X 2 distribution

of those test procedures may be unreliable when the number of observations is small. Part of

the problem is that given that all the variables used are discrete, the number of states of the

world is �nite (3 possible actions per player � 2 possible outcomes per combination of kicker

and goalkeeper actions). In addition, the number of values of the estimators and test statistics

will be repeated in many of those states of the world.

As we will see in chapter 3, there are only seven possible tests: the LM in the multivariate

regression, which coincide with Pearson�s independence test and the LM test in a multinomial

model, multinomial logit and multinomial probit models as well as the J-test for overidentifying

restrictions; the LR and Wald tests in the multivariate regression, Wald�s heteroskedasticity-

robust version, which coincides with the Wald test in the multinomial model, and the Wald and

LR tests in the multinomial logit model, the last one being equal to the LR test in the probit

and multinomial model. I will also consider the F-test of the univariate regression as the penalty

kick has only two outcomes.

2.8.5.1 Problematic cases

Sometimes the calculations for some of the tests mentioned above breakdown. Although this

is unlikely to happen with real data, I discuss here those situations in the 2�2 as an illustration

because they occur in the simulations.

Perfect classi�cation

As an example suppose that when the kicker shoots to the left, he never scores, whereas when

he shoots in any other direction he may score or not. Hence, �̂L = 0 but 0 < �̂R < 1. In this

case, 
̂L ! �1 and the computation of the logit model breaks down (see Ruud (2000) section
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27.1 for more details). The logit LR test is well de�ned although the unrestricted likelihood may

also lead to numerical errors. For instance, when �̂L ! 0 the limit of the logit log-likelihood

function becomes:

lim
�̂L!0

log

�
�̂
nSL
n

L (1� �̂L)
nFL
n �̂

nSR
n

R (1� �̂R)
nFR
n

�n
= log

h
�̂
nSR
R (1� �̂R)nFR

i
:

In this context, Stata removes the perfectly classi�ed observations and computes again the

MLE from the remaining ones. However, it fails to provide a Wald test. In that regard, I can

prove that the limit of the logit Wald test goes to zero when one of the 
̂i, for i = L;R, goes to

plus or minus in�nity.

Perfect �t

In this case, the variables L and R explain perfectly the model, i.e. R2 = 1. This requires

�̂L = 1 and �̂R = 0 or vice versa. In this context, I can show that the LM test in the LPM is

exactly equal to the number of observations, while the usual Wald, F and LR test as well as the

heteroskedasticity-robust version of the Wald test of this regression model diverge to in�nity. In

the logit model, the LR can still be computed and it is not generally in�nity, but the limit of

the Wald test is surprisingly equal to 0.

The fact that the logit Wald test is 0 while the robust and non-robust versions of the Wald

test in the LPM diverge to in�nity con�rms that this type of test is not numerically invariant

to non-linear transformation of the restrictions (see again Ruud (2000) section 17.4 for another

example in which two Wald tests based on transformation of the restrictions diverge).

Single outcome

This case arises when the estimated probability of scoring (�̂S) is either 0 or 1. This implies

that the residual sum of squares of both the restricted and unrestricted model (SSRR and

SSRU ) are 0, which in turn implies that �̂L = �̂R = 0 or �̂L = �̂R = 1 depending on the value

of �̂S .

When this occurs, I set all the tests for the LPM and logit models to 0, so that their p-values

are 1.

Single choice

This occurs when the estimated probability of choosing left (�̂L) is either zero or one, which

means that the player is only employing one strategy. When this case arises, I again set all the

tests to 0 because the single choice situation is like the single outcome situation in the regression
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of L on a constant and ~y. Although, the theoretical results in section 2.3 show that �L = 0

would not be optimal, �̂L = 0 can happen despite �L > 0 if n is small.

Finally, there exists also the possibility that both the Single Choice and Single Outcome

cases occur simultaneously, in which case I again set all the tests to 0.

2.8.5.2 Comparison asymptotic and Monte Carlo size in 2�3 and 3�3 Cases

I compare Monte Carlo and asymptotic p-values using p-value plots (see Davidson and MacK-

innon (1998)), which display the empirical cdf of the asymptotic p-values in the Monte Carlo

simulations.

I have simulated 10,000 replications of the 3�3 model explained in section 2.2.2 with n = 20

and parameter values a = 0:03, b = 0:99, c = 0:01_9, d = 0:02 and e = 0:98 to check if the

p-value plots are close to the 45� degree line. Given that there are many values for the tests,

I focus on p-values below 15%, which are the most relevant ones. The con�dence intervals

for the rejection rates at the 1, 5 and 10% levels under the null are (0:80; 1:20), (4:57; 5:43)

and (9:41; 10:6), respectively. In fact, the formula for calculating the con�dence interval is

�� 1:96
p
�(1� �)=(No. Replications), where � is the signi�cance level.

Scoring equality

The graphs for the null hypotheses of equal scoring probability are presented in Figures 2.4.a

to 2.4.g. Empirical researchers that rely on asymptotic p-values should probably use the LR,

LM and F-test of the LPM and avoid the rest of the tests. In particular, the Wald test in the

LPM over rejects the null considerably.

Serial independence

The p-value plots corresponding to the null hypothesis of serial independence are presented

in Figures 2.5.a to 2.5.h. Researchers that rely on asymptotic p-values should probably use

F-versions of the Lawley-Hotelling (LH) and Wilks�test in the multivariate LPM, although the

former is slightly better. At the same time, they should avoid the remaining tests. Again, the

Wald test in the LPM and the multinomial logit LR test show considerable over rejections, while

the Wald test in the multinomial logit hardly ever rejects.

Action independence

The graphs for the null hypotheses of action independence are presented in Figures 2.6.a to

2.6.h. The results suggest that empirical researches should probably use the LM test as well as

the F-version of the Wilks, Lawley-Hotelling and Pillai tests in the multivariate LPM, with the
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Wilks�test being almost perfect, and avoid the rest. In particular, the Wald and LR tests in the

LPM and the multinomial logit LR test over reject the null considerably, while the Wald test in

this model hardly rejects.

2.8.6 Power experiments

When choosing the signi�cance level of a test, one sets the probability of rejecting the null

when in fact it is true (Type 1 error). In the previous subsection, I studied which tests are more

reliable when one chooses this level to be small, say 5%. At the same time, one would like to

reject the null with high probability when the null is false. This is known as the power of the

test. In what follows, I use Monte Carlo simulations to investigate the power of the di¤erent

tests in some reasonable designs which do not satisfy the null.

2.8.6.1 Alternatives to equal scoring probabilities in 2�3 case

The alternative of the implication of equal scoring probabilities is that the player�s probability

of scoring depends on the strategy chosen. Here, I consider two alternatives because in reality,

players do not necessarily know how to solve for the mixed strategy Nash equilibrium. At the

same time, I have assumed serial independence to concentrate only in these two alternatives.

Alternative 1

In the case of the model with three actions, I assume that the kicker plays left with probability

0:7 and center and right with 0:15, while the goalkeeper plays left and center with probability

0:15 and right with 0:7: I have chosen these probabilities because, under the assumption that

the kicker is left-footed, his natural side is to shoot to the left-hand side of the goalkeeper.

Therefore, one could think that a naive kicker is more likely to shoot to the left, which justi�es

the kicker�s probability of 0:7. However, the goalkeeper may believe that the obvious reasoning

of a right-footed kicker is that the goalkeeper will jump to the left and therefore the probability

of scoring will be low, so he will change the direction and kick to the right. That is why the

chosen goalie�s probability is 0:15.

Alternative 2

This alternative is similar to the previous one but now I assume that the kicker plays left and

center with probability 0:15 and right with 0:7 while the goalkeeper plays left with probability

0:7 and center and right with 0:15.

Power of tests

I have only looked at the power of the LM and F tests of the null hypothesis of equal scoring
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probabilities in the LPM because they are the only ones whose asymptotic p-values are reliable

under the null.

The following table shows the percentage of times that these tests reject the null at the 1, 5

and 10% signi�cance level under alternatives 1 and 2.

F-test LM test

% Alternative 1 Alternative 2 Alternative 1 Alternative 2

1 22:42 24 18:25 19:64

5 36:56 38:63 36:28 38:2

10 44:89 47:27 45:47 47:86

These results suggest that empirical researchers should use the F-test of the LPM because

it is the most powerful test under the two alternatives. The power here is higher than with only

two actions because the alternatives are further away from the null.

2.8.6.2 Alternatives to serial independence in 3�3 contingency tables

The alternative of the hypothesis of serial independence is that the players actions at time t

depend on the action chosen at time t � 1. To propose a speci�c alternative, I use a standard

Markov Chain (see section 3.4.1 for more details, and Shachat et al (2015) for a more complicated

hidden Markov model). The transition matrix P of the Markov chain in this case is:

P =

0BBBB@
PLL PLC PLR

PCL PCC PCR

PRL PRC PRR

1CCCCA ;

with states i = L;C;R, where PiC = 1� PiL � PiR.

Note that I can write the multivariate LPM to detect serial dependence as the following

vector autoregression:

Lt � �L = bLL(Lt�1 � �L) + bRL(Rt�1 � �R) + uLt

Rt � �R = bLR(Lt�1 � �L) + bRR(Rt�1 � �R) + uRt

9>=>; ;

where E(Lt) = �L and E(Rt) = �R are the average probabilities of kicking left and right

respectively. Assume for simplicity that bRL = bLR = 0 under the alternative. Hence I get that

PRL = PCL = PLL � bLL and PLR = PCR = PRR � bRR. These assumptions imply that the
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transition matrix is:

P =

0BBBB@
PLL 1� PLL � PRR + bRR PRR � bRR

PLL � bLL 1� PLL � PRR + bLL + bRR PRR � bRR

PLL � bLL 1� PLL � PRR + bLL PRR

1CCCCA :

The stationary distribution in this Markov Chain is de�ned by the vector � = (�L; �C ; �R),

where �C = 1� �L � �R, such that �P = �.

This yields:

�L =
PLL � bLL
1� bLL

and �R =
PRR � bRR
1� bRR

:

Under the null hypotheses, bLL and bRR are equal to zero. Here, I propose di¤erent alterna-

tives depending on the values of bLL and bRR. However, I have assumed simultaneous moves and

�xed the stationary probabilities of the Markov chain equal to the probabilities of the optimal

strategy in the Nash equilibrium, so that the only discrepancy from the null is serial dependence.

Power of tests

I have only looked at the power of the F-version of the Lawley-Hotelling and Wilks�tests of

the null hypothesis of serial independence in the multivariate LPM because they are the only

ones whose asymptotic p-values are reliable under the null.

The following tables show the percentage of times that these tests reject the null at the

1, 5 and 10% signi�cance level under the following alternatives: (1) bLL = bRR = 0:5, (2)

bLL = bRR = �0:5, (3) bLL = bRR = 0:05 and (4) bLL = bRR = �0:05:

Wilks�F-test Lawley-Hotelling F-test

% (1) (2) (3) (4) (1) (2) (3) (4)

1 23:30 50:67 1:08 1:49 24:55 50:82 1:37 1:84

5 40:37 92:31 4:42 5:64 40:92 86:03 4:79 6:03

10 50:65 97:48 8:48 10:60 51:25 97:09 8:74 10:92

These results suggest that empirical researchers should use the F-version of the Lawley-

Hotelling test in the multivariate LPM because it is the most powerful test under the four

alternatives, although it does not have much power under alternatives 3 and 4, as expected.

2.8.6.3 Alternatives to action independence in 3�3 case

Taking into account the discussion in section 2.5.3, I can test the null hypothesis by estimat-
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ing the following model:

LGt = �L0 + �LLLKt + �LRRKt + uLt

RGt = �R0 + �RLLKt + �RRRKt + uRt

9>=>; ;

where LGt and RGt is the direction chosen by the goalkeeper at time t and LKt and RKt is the

direction chosen by the kicker at time t.

Note that this model can be written as:

LGt � �GL = �LL(LKt � �KL) + �LR(RKt � �KR) + uLt

RGt � �GR = �RL(LKt � �KL) + �RR(RKt � �KR) + uRt

9>=>; ;

where �hj , for h = K;G and j = L;R, denote the average probabilities of a player�s strategy

and �ij , for i; j = L;R denotes a correlation measure between the actions of the kicker and

goalkeeper. If the � coe¢ cients are not 0, then either the goalie anticipates the action of the

kicker or the kicker misleads the goalkeeper. I set the values of �Kj = pj and �Gj = qj so that

on average the players satisfy the implications of mixed strategy equilibrium but not at any

particular penalty kick.

Under the null hypotheses, �LL, �LR, �RL and �RR are equal to 0. For simplicity, I assume

that �LR = �RL = 0 and consider di¤erent alternatives depending on the values of �LL and �RR.

Power of tests

I have only looked at the power of the LM test as well as the F-versions of the Wilks, LH,

Pillai tests in the multivariate LPM because they are the only ones which performed well under

the null.

The following table shows the percentage of times that the above tests reject the null at

the 1, 5 and 10% signi�cance level under the following alternatives: (1) �LL = �RR = 0:5, (2)

�LL = �RR = �0:5, (3) �LL = �RR = 0:05 and (4) �LL = �RR = �0:05.

82



LM test Lawley-Hotelling F-test

% (1) (2) (3) (4) (1) (2) (3) (4)

1 40.45 28.34 0.67 0.66 48.10 43.58 2.05 1.87

5 66.10 95.14 5.20 4.64 66.62 86.75 6.50 6.41

10 76.43 98.10 11.04 11.02 75.39 97.51 11.08 11.16

Pillai F-test Wilks F-test

% (1) (2) (3) (4) (1) (2) (3) (4)

1 44.56 36.32 0.99 0.88 47.16 42.24 1.61 1.38

5 66.01 94.98 5.15 4.59 66.37 92.19 5.99 5.58

10 75.43 97.99 10.27 10.14 75.60 97.67 10.84 10.79

These results suggest that empirical researchers should use the F version of the Lawley-

Hotelling trace test in the multivariate LPM because it is the most powerful test under the four

alternatives, although as expected, it does not have much power under alternatives 3 and 4.

2.8.7 Multiple testing issues

With N players in my sample, there will be N aggregate test statistics, and some of those

tests could reject the null by chance even when the null is true for all of them. In fact, the

probability of k of N tests rejecting the null is given by the following binomial distribution:

Pr(X = k) =

�
N

k

�
pk(1� p)N�k. for k = 0; : : : ; N; (2.6)

where
�
N
k

�
= N !=[k! (N � k)], N is the total number of players considered, k is the number of

rejections and p is the signi�cance level of the tests.

In empirical work, researchers often compare the actual number of rejections to the expected

number of rejections, but this rule is only reliable when the number of players N is very large.

For that reason, I will use the binomial probabilities (2.6) to con�rm whether players treated as

a group behave consistently with the theory.
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R
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R
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0.
50 -

- 0
- 1

- -
0.
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p
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at
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0.
14

G
oa
lk
ee
p
er
1

16
.1
6

16
0.
44

G
oa
lk
ee
p
er
2

3.
33

4
0.
50

N
ot
es
:
T
he
te
st
st
at
is
ti
c
fo
r
a
gi
ve
n
pl
ay
er
is
th
e
su
m
of
th
e
in
de
p
en
de
nt
X
2
st
at
is
ti
cs
ac
ro
ss
al
l
hi
s
op
p
on
en
ts
w
it
h
de
gr
ee
s
of
fr
ee
do
m
eq
ua
l
to
th
e
su
m
of

th
e
de
gr
ee
s
of
fr
ee
do
m
fo
r
ea
ch
pa
ir
te
st
.
A
dd
it
io
na
lly
,
*
in
di
ca
te
s
re
je
ct
io
n
of
th
e
nu
ll
at
th
e
10
%
si
gn
i�
ca
nc
e
le
ve
l,
**
5
%
le
ve
l,
**
*
1
%
le
ve
l.

92



T
ab
le
2.
10
:
T
es
t
fo
r
A
ct
io
n
In
de
p
en
de
nc
e
C
ad
et
e
A

D
is
tr
ib
ut
io
n
of
St
ra
te
gi
es

P
ai
r
#

#
O
bs
.

L
-L

L
-C

L
-R

C
-L

C
-C

C
-R

R
-L

R
-C

R
-R

L
H
F
-T
es
t

p
-v
al
ue

1�
16

0.
25

0.
06

0.
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0.
37

2.
58

0.
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0.
08

0
1.
16

0.
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0.
08

0.
08

0.
24

0.
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2.10 Graphs Chapter 2

Figure 2.1: Correlation of a "Heterogenous" Player
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Notes: This graph displays the correlation between the actions of a supposedly homogeneous player with
its scoring probability as a function of the fraction of observations from the �rst pair (�).
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Figure 2.2: Rejection Probabilities
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Notes: This graph displays the rejection rate at the 5% nominal level of the non-central chi-square for
20, 38 (Palacios-Huerta (2003) median sample size) and 200 observations as a function of the fraction of
observation from the �rst pair (�).
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Figure 2.3: p-value Plots of Tests for Independence with 2 Actions Under Heterogeneity

Figure 2.3.a: LPM LM Figure 2.3.b: LPM LR
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Figure 2.3.c: LPM F-test Figure 2.3.d: LPM Wald
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Figure 2.3.e: Logit LR Figure 2.3.f: Logit Wald
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Notes: These graphs display the empirical distribution functions of the asymptotic p-values (dashed line)
in the Monte Carlo simulations for 200 observations for the following test statistics: LM test in the
multivariate regression, the F-test, LR and Wald test in the multivariate regression, and the Wald and
LR tests in the multinomial logit model (see Davidson and MacKinnon (1998)).
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Figure 2.4: p-value Plots of Test of Equal Scoring Probabilities with 3 Actions

Figure 2.4.a: LPM LM Test Figure 2.4.b: LPM LR Test
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Figure 2.4.c: LPM F-Test Figure 2.4.d: LPM Wald Test
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Figure 2.4.e: LPM Het. Rob. Wald Test Figure 2.4.f: Logit LR Test
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Figure 2.4.g: Logit Wald Test
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Notes: These graphs display the empirical distribution functions of the asymptotic p-values (dashed line)
in the Monte Carlo simulations for 200 observations for the following test statistics: LM test in the multi-
variate regression, the F-test, LR and Wald test in the multivariate regression, Wald�s heteroskedasticity
robust version, and the Wald and LR tests in the multinomial logit model (see Davidson and MacKinnon
(1998)).
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Figure 2.5: p-value Plots of Serial Independence Tests with 3 Actions

Figure 2.5.a: LPM LM Test Figure 2.5.b: LPM Pillai Test
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Figure 2.5.c: LPM LR Test Figure 2.5.d: LPM Wilks�Test
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Figure 2.5.e: LPM Wald Test Figure 2.5.f: LPM L-H Test
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Figure 2.5.g: Logit LR Test Figure 2.5.h: Logit Wald Test
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Notes: These graphs display the empirical distribution functions of the asymptotic p-values (dashed line)
in the Monte Carlo simulations for 200 observations for the following test statistics: LM test in the
multivariate regression, Pillai trace, LR, Wilks�lambda, Wald and Lawley�s-Hotelling trace test in the
multivariate regression, and the Wald and LR tests in the multinomial logit model (see Davidson and
MacKinnon (1998)).
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Figure 2.6: p-value Plots of Tests for Action Independence with 3 Actions

Figure 2.6.a: LPM LM Test Figure 2.6.b: LPM Pillai Test
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Figure 2.6.c: LPM LR Test Figure 2.6.d: LPM Wilks Test
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Figure 2.6.e: LPM Wald Test Figure 2.6.f: LPM L-H Test
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Figure 2.6.g: Logit LR Test Figure 2.6.h: Logit Wald Test
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Notes: These graphs display the empirical distribution functions of the asymptotic p-values (dashed line)
in the Monte Carlo simulations for 200 observations for the following test statistics: LM test in the
multivariate regression, Pillai trace, LR, Wilks�lambda, Wald and Lawley�s-Hotelling trace test in the
multivariate regression, and the Wald and LR tests in the multinomial logit model (see Davidson and
MacKinnon (1998)).
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Chapter 3

Tests For Independence Between Categorical Variables

3.1 Introduction

Economic theories are usually confronted with data to assess their validity. This is often

done by deriving hypotheses implied by a theory and testing them with econometric procedures.

In many important cases, such as testing the implications of mixed strategy equilibrium or the

e¢ cient market hypothesis, those hypotheses imply the independence between two categorical

variables. There are multiple procedures in the literature one can use to conduct such tests,

which leads to the crucial question of which approach to use for testing independence between

categorical variables. Anatolyev and Kosenok (2009) showed the asymptotic equivalence between

Pearson�s independence test and the usual Wald test in a multivariate Linear Probability Model

(LPM). However, this equivalence does not prevent that those tests lead to di¤erent conclusions

in �nite samples. In fact, it is even possible that researchers could report contradictory results

with the same dataset. In addition, econometricians often prefer probit or logit models instead

of LPMs.

The �rst contribution of this chapter is to prove the numerical equivalence for general cate-

gorical variables between (i) Pearson�s independence test in a contingency table, (ii) the LM test

in several popular regression models: the multivariate LPM, the conditional and unconditional

multinomial model, the multinomial logit and probit models; and (iii) the corresponding J-test

statistic for overidentifying restrictions in the Generalized Methods of Moments (GMM). There-

fore, di¤erent researchers using di¤erent econometric procedures will reach the same conclusions

if they use any of those tests.

Additionally, I show that the asymptotically equivalent LR tests of independence in the con-

ditional and unconditional multinomial model, multinomial logit and probit models numerically

coincide too. Finally, I prove that the heteroskedasticity-robust Wald tests in the multivariate

LPM and GMM are numerically identical to the Wald test in the conditional multinomial model.

Given that the LM test is numerically the same in all those models, all the other independence

tests will also be asymptotically equivalent. Therefore, the only reason why researchers might
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reach di¤erent conclusions in empirical applications is because they use either LR or Wald

versions, not because they use di¤erent models. Table 3.1 summarizes the theoretical results.

Table 3.1: Numerical and Asymptotic Equivalence Results

ModelsnTests LM (Gradient) LR (Distance) Wald Wald Robust J-test
Multivariate LPM 
 5 5 � -
Unconditional Multinomial Model 
 4 5 5 -
Conditional Multinomial Model 
 4 � 5 -
Multinomial Probit 
 4 5 5 -
Multinomial Logit 
 4 5 5 -
GMM 
 
 5 � 


Speci�cally, it presents by rows the di¤erent models that empirical researchers have employed

to test independence between categorical variables, while each column contains the various tests

that they have at their disposal for a given model. The symbol 
 corresponds to Pearson�s test

and all its numerically equivalent versions, while 4 and � represent the LR and Wald tests in

the multinomial model. Finally, 5 stresses the asymptotic equivalence among them.

Another related contribution of this chapter is to show that all these equivalences also apply

to tests of serial independence of a discrete Markov chain, which can be regarded as a time series

analog to the multinomial model.

A real life example of independence between categorical variables arises in soccer penalty

kicks, which capture the theoretical setting of a two-person zero-sum game with no pure strategy

Nash equilibria extremely well due to the clarity of the rules and the detailed structure of the

simultaneous one-shot play. As is well known, in games with no pure strategy Nash equilibria,

one fundamental theoretical implication is that the probability of winning should be the same

regardless of the strategy chosen. E¤ectively, this requires independence between a dummy

variable which indicates winning and a categorical variable that describes the strategies of the

player. In addition, when the game is �nite with a unique Nash equilibrium, the only subgame

perfect equilibrium stipulates to play the same Nash equilibrium in every period (see chapter

14 of Osborne (2003) for more details). As a result, a second implication of the theory with a

temporal dimension is that the actions of the players should be serially independent.

In the existing empirical literature, di¤erent researchers have used di¤erent econometric

procedures to test the independence implications mentioned above. For example, Palacios-

Huerta (2003) tested the �rst independence implication by means of a contingency table, while
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Chiappori et al (2002) used Wald tests in a LPM. A third possibility is to test that the winning

probabilities implied by a probit or logit model do not depend on the action taken by the

players, as in Brown and Rosenthal (1990), who relied on the LR test instead. Similarly, for the

second implication, one could use Wilks�lambda, Pillai trace or the Lawley-Hotelling trace tests

frequently employed in multivariate analysis of variance (see Stewart (1995) for more details),

as well as dynamic multinomial probit or logit models. In contrast, I eliminate the possibility of

obtaining con�icting empirical conclusions by using my numerical equivalence results to assess

if professional soccer players, who are among the highest paid sportsmen, satisfy these two

independence implications using penalty kicks in actual professional soccer games. Speci�cally,

I collected a dataset of 549 penalty kicks that include the names of the teams and players

involved for each penalty kick, the choices taken and the outcome of the kick. Given that soccer

players are experts at their game, my dataset provides a notable advantage over lab experiments

because it is virtually impossible for lab individuals to be pro�cient at unfamiliar games in a

limited timeframe. Empirically, I �nd that the behavior of some players is inconsistent with

the implications of mixed strategy equilibrium, in the sense that winning probabilities are not

identical across strategies. In contrast, I �nd that the second testable implication (players�

actions are serially independent) holds for all the players. The �rst result di¤ers from the

existing evidence on mixed strategies in professional sports (e.g., Walker and Wooders (2002),

Chiappori et al (2002), Palacios-Huerta (2003), Hsu et al (2007)), while the second result is

consistent with the literature.

Sports provide an ideal setting to empirically test economic theories because the players are

experienced professionals and the stakes are high (see e.g. Garicano et al (2005), Miklós-Thal

and Ulrich (2016) and the references therein). Nevertheless, in other economic situations the

theoretical predictions of a model also imply independence between categorical variables, so my

analysis applies rather more generally. Important examples include tests of strict exogeneity of

the movements in the price of a �rm�s product for the observed excess demand/supply (Bouissou

et al (1986)), testing the e¢ cient market hypothesis (Pesaran and Timmermann (1994)) and

testing independence between donating blood and the levels of monetary compensation (Mell-

ström and Johannesson (2008)). Details of how these tests can be mapped to my setting can be

found in section 3.3.2.

The rest of the chapter is organized as follows. Section 3.2 explains the di¤erent econometric
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methods. In section 3.3, I discuss several empirical applications of independence tests. Section

3.4 presents my numerical equivalence results as well as their time series extensions, while section

3.5 contains the empirical results. This is followed by the conclusions.

3.2 Econometric Methodology

There are several approaches in the literature that one can use to test for independence

between two categorical variables. Before explaining the exhaustive list of di¤erent econometric

procedures, I brie�y de�ne the notation used across the analysis. Let x be a K � 1 categori-

cal variable that takes values (A1; � � � ; AK), where A1; : : :; AK are K exhaustive and mutually

exclusive dummy variables which fully characterize the categorical variable. Similarly, let ~y

be another H � 1 categorical variable that takes values (B1; : : : ; BH). Both Ak and Bh, for

k = 1; : : : ;K and h = 1; : : : ;H, are dummy variables equal to 1 if its corresponding categorical

value is equal to its kth or hth value, respectively.

A contingency table summarizes the sample information as follows:

~ynx A1 � � � AK Sum

B1 n11 � � � n1K n1�
...

...
...

...
...

BH nH1 � � � nHK nH�

Sum n�1 � � � n�K n

where nhk, for h = 1; : : : ;H and k = 1; : : : ;K, denotes the observed joint frequency; for

example, n12 is the number of times that B1 and A2 are simultaneously 1 in the sample. Also,

nh� =
PK
k=1 nhk denotes the number of times that Bh is 1, n�k =

PH
h=1 nhk the number of times

Ak is 1 and n =
PK
k=1 n�k =

PH
h=1 nh� the total number of observations.

3.2.1 Pearson�s contingency test

This is the original and best known test for independence, which is given by:

Pearson =
XK

k=1

XH

h=1
[nhk � (n�knh�=n)]2 (n=n�knh�) : (3.1)

Under the null hypothesis, this statistic follows a X 2 distribution with (H � 1)�(K � 1) degrees

of freedom in large samples under appropriate regularity conditions (see Mood et al (1974)).1

1Speci�cally, in addition to random sampling, it requires all joint frequencies �hk; h = 1; :::; H and k = 1; :::;K;
to be strictly positive and �xed, so that the observed joint frequencies nhk will increase asymptotically at the
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Unlike most other statistics, the X 2 statistic in (3.1) has an easy to interpret expression, which

provides information on exactly which estimated joint frequencies account for its value.

It is worth mentioning that if nh� and n�k; for h = 1; : : : ;H and k = 1; : : : ;K; were �xed,

(3.1) would then become Fisher�s (1922) exact test (see section 3.7.4).

3.2.2 Multivariate regression

This is a technique that combines several regression equations with the same regressors, one

for each dependent variable. Multivariate regression is useful here because one can write the

relationship between the dummy variables Bh and Ak for h = 1; : : : ;H and k = 1; : : : ;K as the

following multivariate LPM:

B1i = �11A1i + � � �+ �1KAKi + u1i
...

BHi = �H1A1i + � � �+ �HKAKi + uHi

9>>>>=>>>>; : (3.2)

Given that both regressors and regressands are dummy variables, the coe¢ cients of the

explanatory variables are the probability of the di¤erent values of the multinomial variable ~y

given the other multinomial variable x. For instance,

�hk = E(BhjA1 = 0; : : : ; Ak = 1; : : : ; AK = 0) = Pr(Bh = 1jA1 = 0; : : : ; Ak = 1; : : : ; AK = 0):

Hence, the sum of �h1 for h = 1; : : : ;H is equal to 1 for all the columns in the matrix of

regression coe¢ cients. Therefore, the coe¢ cients in the equation for BHi can be obtained from

the other H � 1 equations because BHi = 1 �
PH�1
h=1 Bhi. For that reason, I can cross out the

last equation without loss of generality to avoid a singular covariance matrix (see Judge et al

(1985) chapter 12, section 5 for more details).

De�ne B0h = (Bh1; � � � ; Bhn), u0h = (uh1; � � � ; uhn) and �h = (�h1; � � � ; �hK) for h = 1; : : : ;H�

1.

Also, de�ne the matrices

X =

0BBBB@
A11 � � � AK1
...

. . .
...

A1n � � � AKn

1CCCCA and Y =

0BBBB@
B11 � � � BH�1;1
...

. . .
...

B1n � � � BH�1;n

1CCCCA :

same rate as the sample size n:
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Finally, de�ne the matrix of regression coe¢ cients

� =

0BBBB@
�11 � � � �1K
...

. . .
...

�H�1;1 � � � �H�1;K

1CCCCA ;

with � = vec (�0) and �U = E(uiu
0
i) = V ar (ui). In this way, the multivariate regression model

in (3.2) can be written as Y = X�0 + u.

Under the assumptions of the classical regression model, the parameters of the model can

be e¢ ciently estimated by OLS equation by equation. The reason is that �̂
GLS

= �̂
OLS

because

the regressors in all the H � 1 equations are identical.

The OLS estimator of the parameters of the hth equation is �̂
OLS

h = (X 0X)�1X 0Bh; where

X 0X = diag(n�1;. . . ; n�K) and X 0Bh = (nh1;. . . ; nhK)0 because
Pn
i=1Aki = n�k andPn

i=1AkiBhi = nhk for k = 1; : : : ;K and h = 1; : : : ;H � 1.

This yields �̂
OLS

h = (nh1=n�1;. . . ; nhK=n�K)0, so equation by equation OLS gives the natural

estimator of �hk. Thus, the estimated probabilities are always non-negative and add up to 1,

which avoids a common criticism of LPMs (see Wooldridge (2002)).

The null hypothesis of independence implies that �h1 = � � � = �hK = �h for h = 1;. . . ;H � 1,

so that the conditional and unconditional probabilities of Bh = 1 are the same. The restricted

model can be estimated e¢ ciently by OLS equation by equation because GLS is once more equal

to OLS. The restricted OLS estimators are trivially ~�
OLS
h = nh�=n, for h = 1; : : : ;H � 1.

The multivariate LPM has one potentially important disadvantage. Under the alternative,

it violates the homoskedasticity assumption because the conditional variance of the error term u

will change depending on the values of the explanatory variables rather than being the assumed

constant matrix �U (see Wooldridge (2002)). However, �R, which is the covariance matrix of u

given the dummy regressors under the null hypothesis of independence, is constant. This implies

that the homoskedasticity assumption holds under the null, and hence all the usual regression

tests are asymptotically valid.

The three classical multivariate regression tests are the Wald, LR and LM . Note that for

any dataset, the relationship between these tests in a multivariate regression model is Wald �

LR � LM despite being asymptotically equivalent (see Berndt and Savin (1977) and Engle

(1983) for more details). Moreover, they are monotonic transformations of the regression F-test

in the H = 2 case only but not in general (see section 3.7.5 for the case of H = 3).
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These three tests can be easily transformed into the Pillai trace, Wilks�lambda and Lawley-

Hotelling trace tests used in multivariate analysis of variance (see Stewart (1995) for more

details). More precisely, the Pillai trace test can be written as V = n�1LM , while Wilks�

lambda is � = exp
�
�n�1LR

�
and the Lawley-Hotelling trace test is LH = n�1Wald.

Finally, I consider a robust test which is still valid if the homoskedasticity assumption is

violated. Speci�cally, I use the heteroskedasticity-robust Wald test in a multivariate regression,

which I derive in section 3.7.3 using the results in Hansen (1982).

3.2.3 Conditional multinomial model

The LPM is usually regarded as a linear approximation to the true conditional probabilities.

For that reason, de�ne Phk = Pr(Bh = 1jA1 = 0;. . . ; Ak = 1;. . . ; AK = 0) for k = 1; : : : ;K and

h = 1; : : : ;H � 1, so that the joint probability of Bh = 1 and Ak = 1 is �hk = Phk � ��k, where

��k = Pr(Ak = 1). Hence, the log-likelihood of the sample becomes:

lnL =
XK

k=1

��
n�k �

XH�1

h=1
nhk

�
ln

�
1�

XH�1

h=1
Phk

�
+
XH�1

h=1
(nhk lnPhk)

�
+n�K ln

�
1�

XK�1

k=1
��k

�
+
XK�1

k=1
n�k ln��k (3.3)

because the number of times Ak = 1 and AkBh = 1 is n�k and nhk, respectively.

Maximizing the log-likelihood with respect to Phk and ��k yields P̂hk = nhk=n�k and

�̂�k = n�k=n�K , so that P̂hk = �̂hk for h = 1; : : : ;H � 1 and k = 1; : : : ;K.

Under the null, which states that Phk = Ph� for k = 1; : : : ;K and h = 1; : : : ;H � 1, then

lnL =
�
n�

XH�1

h=1
nh�

�
ln

�
1�

XH�1

h=1
Ph�

�
+
XH�1

h=1
nh� lnPh�

+n�K ln

�
1�

XK�1

k=1
��k

�
+
XK�1

k=1
n�k ln��k

which yields ~Ph� = nh�=n and �̂�k = n�k=n�K , so that ~Ph� = ~�h for h = 1; : : : ;H � 1. Note that

�̂�k will coincide under the null and alternative, so I can ignore these parameters.

As in the multivariate regression, I consider the LM , LR and Wald tests (see section 3.7.1).

It is worth mentioning that the information matrix evaluated under the null is block diagonal

between Phk and ��k, which simpli�es those expressions.
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3.2.4 Unconditional multinomial model

Following the traditional treatment in Mood et al (1974) section 3.5.4, I can write the joint

likelihood in terms of the joint probabilities �hk = Pr(Bh = 1;Ak = 1) rather than Phk and ��k,

with �hk = Phk � ��k. The null hypothesis states that there is independence between ~y and x,

so the joint probability should be the product of their marginal probabilities. In other words:

H0 : �hk = �h� � ��k , h = 1; : : : ;H and k = 1; : : : ;K:

For this reason, it is convenient to write the joint probabilities under the alternative as the

product of two sets of parameters: (i) �h�, for h = 1; : : : ;H � 1, and ��k, for k = 1; : : : ;K � 1,

which denote the parameters of the marginal probability distribution for ~y and x respectively,

and (ii) (K � 1)� (H � 1) additional parameters # which should be 0 under the null (see again

Mood et al (1974)).

In particular, in the 3� 3 case I can write the joint probabilities as

�11 = �1���1 + #11 , �12 = �1���2 + #12

�13 = �1� (1� ��1 � ��2)� #11 � #12 , �21 = �2���1 + #21

�22 = �2���2 + #22 , �23 = �2� (1� ��1 � ��2)� #21 � #22

�31 = (1� �1� � �2�)��1 � #11 � #21 , �32 = (1� �1� � �2�)��2 � #12 � #22

�33 = (1� �1� � �2�) (1� ��1 � ��2) + #11 + #12 + #21 + #22

9>>>>>>>>>>=>>>>>>>>>>;
;

where the additional free parameters #11, #12, #21 and #22 become 0 under the null.2

The same procedure can be applied to the general H � K case. Analogous derivations to

the ones in the previous section show that the estimators of the marginal probabilities are the

same under the null and the alternative, and that the information matrix evaluated under the

null is block diagonal between �h�, ��k and the #�s.

3.2.5 Multinomial probit model

Following section 27.3 of Ruud (2000), consider the following "random utilities" model:

B�1i = �11A1i + � � �+ �1KAKi + "1i
...

B�Hi = �H1A1i + � � �+ �HKAKi + "Hi

9>>>>=>>>>; ;

2 In the 2 � 2 case, the joint probabilities will be �11; �12; �21 and �22, which depend on �1�, ��1 and only
one other parameter, namely # = �12 � ��1�2�; which should be 0 under the null.
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where "hjx s i:i:d: N(0; !), with x being de�ned at the beginning of section 3.2.

Let the observation rule be Bhi = 1
n
B�hi = maxj=1;:::;H B

�
ji

o
, where 1fg is the indicator

function, so that Bhi = 1 if h is the preferred choice. In other words, one chooses the action h

that maximizes one�s utility. The conditional log-likelihood function is

L(�) =
Xn

i=1

XH

h=1
Bhi ln Pr(Bhi = 1jxi);

where � contains the model parameters �h (slope coe¢ cients) and ! (covariance matrix).3

Under the null hypothesis, �h1 = � � � = �hK = �h, for h = 1;. . . ;H.

This log-likelihood function coincides with the conditional component of the log-likelihood

function of the multinomial model in (3.3) but expressed in terms of ��s. However, the proba-

bilities involve multiple normal integrals of dimension H � 1.

3.2.6 Multinomial logit model

As is well known (see section 27.4 of Ruud (2000)), we will get the multinomial logit model if

in the random utility model above, "hi, instead of being normal, is drawn from an i:i:d: extreme

value distribution. De�ne the conditional probability matrix P as:

P =

0BBBB@
P11 � � � P1K
...

. . .
...

PH1 � � � PHK

1CCCCA
with Phk being the same as in the conditional multinomial model. This model ensures the non-

negativity of Phk, for all h; k, as well as the adding up constraint
PH
h=1 Phk = 1, by assuming

the following functional form:

Pr(Bh = 1 j A1; : : : ; AK) = (1 +D)�1 exp
�PK

k=1 
hkAki

�
; h = 1; : : : ;H � 1

Pr(BH = 1 j A1; : : : ; AK) = (1 +D)�1

9>=>; ;

where D =
PH�1
h=1 exp

�PK
k=1 
hkAki

�
, and 
hk, for h = 1; : : : ;H � 1 and k = 1; : : : ;K, are the

model parameters. Therefore, like in the multinomial probit, the multinomial logit is e¤ectively

a reparametrization of the matrix P which ensures non-negative probabilities that add up to 1

by columns.

This log-likelihood function is analogous to the conditional component of the likelihood in

3The independent probit model without dependence across "hi�s is the most �exible model that one can
identify in this case.
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(3.3) but expressed in terms of 
hk instead of Phk�s.

The null hypothesis of independence states that H0 : 
h1 =. . .= 
hK = 
h for

h = 1; : : : ;H � 1.

3.2.7 GMM

Given that Phk = Pr(Bh = 1jA1 = 0;. . . ; Ak = 1;. . . ; AK = 0), we can express all those

parameters in terms of the following set of moment conditions

E [(yi ��xi)
 xi] = 0; (3.4)

where 
 denotes Kronecker product and y is a categorical variable that takes values

(B1; : : : ; BH�1), so that it coincides with the �rst H�1 elements of ~y. These moment conditions

coincide with the normal equations, which are the �rst order conditions of the multivariate

LPM, as well as with the scores of the conditional multinomial model. The null hypothesis of

independence implies that H0 : �hk = �h, for k = 1; : : : ;K and h = 1; : : : ;H � 1. Under H1, �

is unrestricted while under H0, � = �l0K , where lK is a vector of K ones. Note that under H0,

I can write �0(�) = lK�
0IH�1, which implies that �(�) = vec(�0(�)) = (IH�1 
 lK)�.

The GMM estimator is de�ned as:

�̂ = argmin
�

�
1

n

Xn

i=1
f[yi ��(�)xi]
 xig

�0
��1

�
1

n

Xn

i=1
f[yi ��(�)xi]
 xig

�
;

where � is a symmetric positive de�nite [K � (H � 1)]� [K � (H � 1)] weight matrix.

With random sampling, the optimal GMM estimator is the one which minimizes the GMM

criterion function when � is equal to [�R 

Pn
i=1 (xix

0
i)], where �R is the covariance matrix of

the multivariate LPM under the null.

The J-test statistic for overidentifying restrictions is just the value of the GMM objective

function evaluated at the e¢ cient GMM estimator (see Hansen (1982) for more details). Alge-

braically, J = n� �g(�̂)0��1�g(�̂), where �g(�̂) = n�1
Pn
i=1f[yi ��(�̂)xi]
 xig.

3.3 Practical Applications

3.3.1 Applications to mixed strategies in soccer penalty kicks

Next, I illustrate the two main implications of mixed strategy equilibrium for a game with

two players and three actions with the most popular econometric methods in section 3.2. First,

consider the null hypothesis of equal scoring probabilities:
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LPM Let B = 1 if the penalty kick is scored. The LPM under the alternative is de�ned as

B = �LAL + �CAC + �RAR + u, where Ak, for k = L;C;R, are dummy variables. For example,

AR takes the value 1 if the penalty is shot in that direction and 0 otherwise. As we saw in

section 3.2, the regression coe¢ cients are conditional scoring probabilities. I can estimate the

model by OLS. In turn, the LPM under the null hypothesis states that �L = �C = �R = �.

The LM test is LM = nR2 = n � [1 � (�̂2U=�̂2R)]; where �̂2U is the unrestricted variance

estimator, �̂2R the restricted variance estimator, n the number of observations and R
2 the R-

squared of the regression (see Wooldridge (2002) chapter 8.3).

Logit model The Logit model for the penalty kick game is described as follows:

B = 1 if B� � 0

B� = 
LAL + 
CAC + 
RAR + "

9>=>; ;

where " is logistically distributed, so that Pr(B = 1jX) = D=(1 +D), where

D = exp(
LAL + 
CAC + 
RAR). Therefore, in this model

PR = Pr(B = 1jAL = 0; AC = 0; AR = 1) = exp(
R)= (1 + exp(
R)) ;

so 
R = ln[PR=(1� PR)]: The Logit model under the null states that 
L = 
C = 
R = 
.

The LM test statistic is LM = n�
�
s(e
)0I(e
)�1s(e
)�, where s(e
) is the unrestricted gradient

evaluated at the restricted estimators e
 and I(e
) is the unrestricted information matrix evaluated
at the restricted estimators (see section 3.7.1).

Now, I turn to the serial independence hypothesis:

Multivariate LPM The multivariate regression one can use to detect possible departures

from serial independence is similar to a �rst-order vector autoregressive process (see Wooldridge

(2002) chapter 18, Section 5 for more details). Speci�cally:

AL;t = �LLAL;t�1 + �CLAC;t�1 + �RLAR;t�1 + uLt

AC;t = �LCAL;t�1 + �CCAC;t�1 + �RCAR;t�1 + uCt

AR;t = �LRAL;t�1 + �CRAC;t�1 + �RRAR;t�1 + uRt

9>>>>=>>>>; ;

where Ak;t, for k = L;C;R, are the dependent variables and Ak;t�1; for k = L;C;R, are

lagged regressors. In this multivariate regression with three lagged explanatory variables, but

no constant, the coe¢ cients of the lagged variables are the probability of choosing a strategy at
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time t conditional on the previous action. These are sometimes called transition probabilities.

For instance, �RL measures the probability of AL;t being equal to 1 given that AR;t�1 is equal

to 1, etc.

The null hypothesis of independence implies that the ��s have to be the same across rows.

The formula for the LM test in this model is:

LM = (n� 1)� tr
��

n� 1
n� 2 � �̂

�1
R

�
�
�
n� 2
n� 1 � �̂R �

n� 4
n� 1 � �̂U

��
where �̂R and �̂U are the restricted and unrestricted estimates of the residual variance covariance

matrices and n the number of observations (see section 3.7.1).

Multinomial logit model Let xt denote the action chosen by the player at time t. The

multinomial logit model for the penalty kick game is described as follows:

Pr(xt = AL j xt�1) = exp(
LLALt�1 + 
LCACt�1 + 
LRARt�1)= (1 +D)

Pr(xt = AC j xt�1) = 1=(1 +D)

Pr(xt = AR j xt�1) = exp(
RLALt�1 + 
RCACt�1 + 
RRARt�1)= (1 +D)

9>>>>=>>>>; ;

with

D = exp(
LLALt�1 + 
LCACt�1 + 
LRARt�1) + exp(
RLALt�1 + 
RCACt�1 + 
RRARt�1):

Under the null hypothesis, 
LL = 
LC = 
LR = 
L and 
RL = 
RC = 
RR = 
R.

3.3.2 Other empirical applications

Price changes and excess supply Bouissou et al (1986) used a panel of French �rms to

investigate the relationship between movements in the price of their products and their observed

excess demand/supply. Speci�cally, they used data across �rms to test whether the sign of the

price changes of a product over the last quarter could be regarded as strictly exogenous for the

existence of excess demand or supply for that product.

The procedures that I explained in section 3.2 to test independence between categorical

variables can be easily used here as follows. Let B = 1 if a �rm�s product exhibits excess supply

and 0 otherwise. Similarly, let AI , AC and AD denote three dummy variables indicating whether

the price of that product has increased, remained constant or decreased in the last quarter. In

this example, the LPM under the alternative would be de�ned as B = �IAI+�CAC+�DAD+u,

so that �k = Pr (B = 1; Ak = 1) =Pr (Ak = 1), for k = I; C;D, represents the corresponding

118



conditional probabilities.

E¢ cient market hypothesis Another interesting empirical example is Pesaran and Tim-

mermann (1994), who were interested in testing the e¢ cient market hypothesis in �nancial

markets. They showed that lack of directional predictability of asset returns can be interpreted

as stochastic independence between the sign of the actual returns and the sign of the predictions

made by asset managers who want to time the market (see also Henriksson and Merton (1981)

and Swanson and White (1997)).

Let B be a dummy variable that indicates if the realized value of the excess return on asset is

positive or negative, and let AP , AZ and AN denote three dummy variables indicating whether

its forecast is positive, zero or negative. In this case, the LPM under the alternative would be

de�ned as B = �PAP + �ZAZ + �NAN + u.

Blood donations Mellström and Johannesson (2008) conducted a �eld experiment with three

di¤erent treatments to test whether the probability of becoming a blood donor is independent

of the monetary compensation o¤ered in each of those treatments.

Once again, let B = 1 if the subject agrees to become a blood donor and ANP , AP and

APC denote three dummy variables indicating whether the subject receives no payment, a single

monetary payment or a payment with a charity option, respectively. As expected, the LPM

under the alternative would be de�ned as B = �NPANP + �PAP + �PCAPC + u.

3.4 Numerical Equivalence Results

The main theoretical result in this chapter is that the LM tests in all the popular linear

and non-linear regression models discussed in section 3.2 coincide with Pearson�s test for in-

dependence as well as with the J-test statistic for overidentifying restrictions. The following

proposition, which I prove in section 3.7.1, contains the precise result:

Proposition 3.1 For general H and K, the Lagrange Multiplier test statistic for independence
in a multivariate linear probability model, multinomial logit, multinomial probit and the condi-
tional and unconditional multinomial models, computed using the information matrix, are nu-
merically identical to Pearson�s contingency table test statistic for independence and the J-test
statistic for overidentifying restrictions in GMM. Additionally, the same numerical equivalence
result holds if one exchanges regressors and regressands in all those models.

This means that di¤erent researchers using di¤erent econometric procedures will reach ex-

actly the same conclusions if they use LM tests. From the computational point of view, the
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easiest test is Pearson�s statistic, which has the very simple closed-form expression in (3.1). In

contrast, the multinomial logit and especially probit models should be avoided because they

require numerical optimization and multiple integrals in the second case.

Another implication of Proposition 3:1 is that there will only be one �nite sample distribution

for all those di¤erent tests (see section 3.7.4 for more details). Additionally, the Monte Carlo

experiments previously reported in the literature on Pearson�s test also apply to all the other

di¤erent tests, so they could be combined in a meta study.

Proposition 1 also says that if we exchange x and ~y so that x now takes values B1; : : : ; BH

and ~y takes values A1; : : : ; AK , then the corresponding test statistics will not change. While this

is obvious for the Pearson�s test (3.1) because the contingency table in section 3.2 will simply

be �ipped, it is far from obvious for all the other models.

For example, one obtains numerically the exact same LM statistic if one regresses ~yi on xi or

xi on ~yi in the multivariate LPM. Similarly, imposing independence on Pr(Bh = 1 j A1;. . . ; AK)

for all h yields the same LM statistic in a conditional multinomial model as imposing it on

Pr(Ak = 1 j B1;. . . ; BH) for all k. As an illustration, one could test the independence of the

kicker�s action from the outcome of the kick and obtain exactly the same result.

It is worth mentioning that the numerical result in Proposition 3:1 is substantially di¤erent

from the famous numerical inequality in Berndt and Savin (1977), which implies that

Wald � LR � LM in the multivariate linear probability model.4 In contrast, I show that the

LM test is numerically identical across models.

Additionally, four of the models in section 3.2 are essentially the same. Speci�cally, the log-

likelihood function under the null and alternative of the multinomial logit and probit models are

analogous to the corresponding conditional component of the log-likelihood of the multinomial

model. In addition, the unconditional multinomial model can be regarded as an alternative

reparametrization of the joint probabilities. Therefore, I also prove in section 3.7.2 the following

equality:

Proposition 3.2 For general H and K, the Likelihood Ratio test statistic for the null hypothesis
of independence in the multinomial logit, multinomial probit and the conditional and uncondi-
tional multinomial models are numerically identical.

This means that even though one can use any of those four di¤erent econometric models,

the conclusions and implications will also be the same if one uses LR tests.
4See Dastoor (2001) for alternative inequalities in other models.
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Although the Wald tests in all the models in section 3.2 will generally di¤er, the numerical

equivalence between the OLS estimator of the regression coe¢ cients in the multivariate LPM,

the ML estimators of the conditional probabilities, and the unrestricted GMM estimators suggest

a close relationship. It turns out that the crucial di¤erence is the homoskedasticity assumption

in the standard Wald test of the multivariate LPM. Speci�cally, if one decided to carry out a

robust test which would remain valid when the homoskedasticity assumption is violated, the

following numerical equality, which I prove in section 3.7.3, will hold:

Proposition 3.3 For general H and K, the heteroskedasticity-robust Wald test statistic for in-
dependence in the multivariate LPM and GMM is numerically identical to the Wald test statistic
of the conditional multinomial model.

This implies that any of those tests will yield the same results and implications.

Furthermore, Table 3.1 in the introduction uses symbols to highlight the numerical equiva-

lence results in Propositions 3:1-3. It also indicates that all the other remaining independence

tests are not numerically identical. For example, LRLPM 6= LRMultinomial because the true

conditional distribution of the LPM is not normal, so the (pseudo) likelihood function of the

multivariate regression is di¤erent from the likelihood of the multinomial model even under the

null (see section 3.7.1). Similarly, the Wald test of the multinomial logit model is di¤erent

from the multinomial version in the conditional multinomial model, and the same applies to the

multinomial probit model because Wald tests are not invariant to non-linear transformations of

the restrictions, despite having the same log-likelihood functions under the null and alternative.

Nevertheless, all the tests in Table 3.1 are asymptotically equivalent within each model, as

shown in section 17.3 of Ruud (2000). Given that the LM test is numerically equivalent in all

those models, all the other tests in Table 3.1 will also be asymptotically equivalent. Therefore,

the only reason why researchers might reach di¤erent conclusions in empirical applications is

precisely because they use Wald or LR versions rather than LM tests.

3.4.1 Serial independence tests for Markov chains

Next, I extend the numerical equivalence results in Propositions 3:1-3 in i:i:d contexts to

serial independence tests for discrete Markov chains.

Let us summarize the K strategies for each player (A1;. . . ; AK) at time t by means of the

vector xt, which has the Markov property if for all k � 1 and all t

Pr(xt+1jxt; xt�1; xt�2; : : : xt�k) = Pr(xt+1jxt):
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In this context, the Markov chain is fully characterized by the K �K transition matrix

P =

0BBBB@
P11 � � � P1K
...

. . .
...

PK1 � � � PKK

1CCCCA ;

where Phk = Pr(xt+1 = xhjxt = xk) are the one step transition probabilities with states

k = 1; : : : ;K, where PKk = 1�
PK�1
h=1 Phk, for all k and h = 1; : : : ;K � 1.

Let nhk be the number of times that there occurs a one period transition from state k to state

h, with Ak1 = 1 if the �rst observation belongs to state k and zero otherwise. The likelihood

function of the Markov chain can be written as:

L(�) = P (x1)
HY
h=1

KY
k=1

Pnhkhk ;

where P (x1) =
KQ
k=1

�Ak1k and � = (P11;. . . ; PKK) (see Lee et al (1968) for more details). Hence,

the log-likelihood function is:

L(�) =
XK

k=1

�
nKk ln

�
1�

XK�1

h=1
Phk

�
+
XK�1

h=1
(nhk lnPhk)

�
+AK1 ln

�
1�

XK�1

h=1
�k

�
+
XK�1

k=1
Ak1 ln�k:

Note that this log-likelihood function is di¤erent from (3.3) because the marginal model is

based on a single observation while the conditional model is recursive.

In contrast, if the Markov chain is serially independent, the matrix P will be:

P = lK �
�
�1 � � � �K�1 1�

PK�1
k=1 �k

�
:

I can achieve this by imposing the null hypothesis H0 : Phk = Ph, for k = 1; : : : ;K and

h = 1; : : : ;K � 1 because PK = 1�
PK�1
h=1 Ph. I can then obtain the restricted estimators from

the following log-likelihood:

L(�) =
XK

k=1

�XK�1

h=1
(nhk lnPh) + nKk ln

�
1�

XK�1

h=1
Ph

�
+ n�k ln�k

�
;

where � = (P1;. . . ; PK�1) and nh# =
PK
k=1 nhk.

Serial independence can then be assessed by means of the usual Wald, LR and LM tests.

Therefore, I can easily show that despite the apparent di¤erences, the numerical equivalence

results in Propositions 3:1-3 also apply to test for serial independence in Markov chains.
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3.5 Empirical application to penalty kicks

Soccer is one of the most important sports in the world. In fact, professional soccer players

are among the highest paid sportsmen. For instance, the 2018 average annual pay for Barcelona

and Real Madrid players exceeded those of all the US baseball (MLB), football (NFL) and

basketball (NBA) teams. The main purpose of this section is to check if soccer players really

behave as game theory predicts in such a high stakes context.

It is well known that penalty kicks decide matches, quali�cations for next rounds in tour-

naments and even titles. Therefore it is not surprising that soccer teams devote resources to

analyze and improve strategies for their players. Although most players and coaches do not know

this, penalty kicks are a relevant example of a two-person zero-sum game due to the clarity of

the rules and the detailed structure of the simultaneous one-shot play.

In this section, I use the econometric methods previously described to test if the empirical

results obtained by Chiappori et al (2002) and Palacios-Huerta (2003) are still valid. Given that

their datasets are not publicly available, I construct a similar but more recent dataset which

contains 549 penalty kicks.5 Moreover, I have expanded the actions of the players to six for a

presumably tougher test of the predictions of mixed strategy equilibrium. In my dataset, there

are 12 kickers with more than 20 penalty kicks and another 11 kickers with at least 10 penalties.

Similarly, there are 10 goalkeepers with more than 10 observations. The identities of goalies and

kickers are shown in section 3.7.6.

The penalty kick data I have collected covers the period 2005-2015 from professional games in

Spain, Italy, England and other European countries. The information comes from the following

Spanish TV programs and internet pages: Estudio Estadio (TVE), GOL TV, Canal + Liga, El

Día Después (Movistar Plus), Deportes Cuatro, As.com and Marca.com. These TV programs

and internet pages systematically review the best games played during the weekend, including

all penalty kicks that take place in those games.

The data include the names of the teams involved in the match, the date, the names of the

kicker and goalkeeper for each penalty kick, the choices taken: Left down (LD), Left up (LU),

Center down (CD), Center up (CU), Right down (RD) and Right up (RU), the time and score

at the time of the penalty, the �nal score of the game, the foot used by the kicker (left or right)

5There is no reason to expect substantive di¤erences in the datasets despite covering di¤erent time spans
because the rules governing penalty kicks have been the same for decades and team managers have always been
aware of their importance.
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and the outcome of the kick (goal or miss). The following table o¤ers a basic description of the

data with three actions.

(Table 3.2)

In particular, it shows the relative proportions of di¤erent choices made by both kickers and

goalkeepers (see section 2.4.3 for more details).

The strategy followed by goalkeepers coincides with that followed by kickers in 42:8% of all

penalties in the dataset. Kickers do not usually kick to the center (7:1% of all kicks), whereas

goalies remain in the middle less often (4:55%). The percentage of kicks where the actions of

the players do not coincide is mostly divided between LR (26:78%) and RL (20:95%). A goal is

scored in 86:34% of all penalty kicks. The scoring rate is over 90% when the kicker choice di¤ers

from the goalie, and it is just over 65% when it coincides.

3.5.1 Test of equal scoring probabilities

The �rst testable implication I check is whether the scoring probabilities for a player are

identical across strategies.6 To compare my results with the results obtained by Palacios-Huerta

(2003), I initially consider only the actions he took into account (Left and Right). To do so,

I eliminate C for all players.7 The results of the tests are described in Table 3.3. The null

hypothesis of equal scoring probabilities across those two strategies is rejected for only one

goalkeeper at the 5% level. But since the binomial probability of one or more goalkeepers out

of 10 rejecting the null hypothesis at the 5% level when the null is true is 0:401, I do not reject

the null hypothesis for those players when treated as a group (see section 2.8.7 for additional

details on multiple tests). This �nding agrees with Palacios-Huerta (2003).

A remarkable result is a 0 test statistic for kicker 3 because his scoring probabilities are the

same regardless of the strategy chosen, so he behaves perfectly according to the theory. Similarly,

goalkeeper 4 had a test statistic of 0, but this is due to the fact that his scoring probabilities are

100% regardless of the strategy chosen. From the point of view of his team, this result implies

that he is not a very good performer when it comes to saving a penalty kick. Ironically, though,

he chooses his strategies "optimally" from a game theoretical point of view.

Given that the empirical description in Table 3.2 suggest that a model with three strategies

6Given that in real life situations the same pair of players is rarely observed, I am forced to assume homogeneity
of opponents.

7 In contrast, Palacios-Huerta (2003) merges C with the natural side of the kicker for both kicker and goal-
keeper.
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is empirically more relevant, next I test the �rst implication using also action C, as Chiappori

et al (2002) did. The results are shown in Table 3.4. These results show that the null hypothesis

is rejected for two kickers at the 1% level and one kicker and two goalkeepers at the 5% level.

Given that the probability that three or more kickers out of 9 rejecting the null at the 5% level

is 0.008, I can claim that the scoring probabilities of some kickers di¤er depending on the action.

Similarly, the goalkeepers do not behave as the theory predicts either because the probability of

two or more goalkeepers out of 6 rejecting the null at the 5% is 0:033 (see again section 2.8.7).

Next, I decided to carry out a stronger test by expanding the actions of the players to LD,

LU , CD, CU , RD and RU . I can only do it for kickers because goalkeepers do not seem to jump

LU or RU , so that they only follow the three strategies already considered. This may happen

because it is virtually impossible for a goalkeeper to jump su¢ ciently high when a penalty is

shot in the LU or RU directions. The results, which I present in Table 3.5, show that the

p-values of the LM test for kickers slightly increase compared to the ones I obtained with three

actions. But qualitatively, the results obtained with six and three actions are similar, with one

more kicker rejecting the null at the 10% level.

In summary, the empirical evidence on professional penalty kicks is not consistent with the

implication of equal scoring probabilities for some players. In contrast, when I exclude C from

the analysis, they seem to behave as the theory predicts. This means that including C seems

crucial to detect possible departures from the equilibrium implications.

3.5.2 Test for serial independence

As I mentioned earlier, the second implication that I check is that the actions taken by the

players must not be serially dependent. Palacios-Huerta (2003) uses a so-called "runs test" to

evaluate this hypothesis (see Bradley (1968) for more details). A run is a sequence of consecutive

identical values. If there are too many or too few runs then the serial independence hypothesis

will be rejected. Too few runs means that the player does not change the action chosen often

enough, which implies positive serial correlation. In contrast, too many runs means negative

serial correlation.8 However, given that runs tests do not generalize to three or more actions, I

rely instead on the methods described in section 3.4.1. The results with two actions are shown in

Table 3.6. This table shows the null hypotheses of serial independence with two actions is rejected

for three goalkeepers at the 10% signi�cance level, but none at the 1% or 5% levels. Hence, if

8The hidden Markov model in Shachat et al (2015) can also generate persistent action changes in lab games.
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I rely on the usual 5% level, the evidence I obtained seems consistent with the implication of

serial independence for all the kickers and goalkeepers in the sample.

As in section 3.6.1, I also expanded the actions of the players to L, C and R. The results

of the numerically invariant LM tests are shown in Table 3.7.9 In this case, the null hypothesis

is not rejected for any of the players, implying that the results seem again in line with the

theory. Therefore, the evidence on penalty kicks is consistent with the implication of serial

independence, which is perhaps not surprising because actual penalty kicks usually take place

weeks if not months apart. These �ndings suggest that professional soccer players seem truly

able to generate random sequences; they do not appear to switch strategies too often or too

seldom. This di¤ers from the evidence of negative serial dependence in Walker and Wooders

(2001), who tested whether professional tennis players played according to mixed strategies when

serving and receiving.

3.6 Conclusions

In this chapter I study independence tests between two categorical variables, which only take

a �nite number of values H and K, respectively.

From the econometric point of view, I prove the numerical equivalence between Pearson�s

independence test statistic in contingency tables, the Lagrange Multiplier test statistic in several

popular regression models: the multivariate LPM, the conditional and unconditional multino-

mial model, the multinomial logit and probit models; and the corresponding J-test statistic for

overidentifying restrictions in GMM. In fact, the same results holds if one exchanges regressors

and regressands in all these models. Therefore, di¤erent researchers using di¤erent econometric

procedures will reach exactly the same conclusions if they use any of the aforementioned tests.

Additionally, I show that the Likelihood Ratio test statistic of independence in the condi-

tional and unconditional multinomial model, multinomial logit and probit models are numer-

ically identical, and that the heteroskedasticity-robust Wald test statistic in the multivariate

LPM and GMM coincide with the Wald test statistic in the conditional multinomial model.

Given that the LM test statistic is numerically equivalent in all those models, all the other

independence tests will also be asymptotically equivalent. Therefore, the only reason why re-

searchers might reach di¤erent conclusions in empirical applications is because they use LR or

9 I compute the asymptotic critical values of the LM tests using the F-approximation recommended by Stata,
which is supposed to be more reliable in �nite samples (see section 3.7.7 for more details).
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Wald versions rather than LM tests, not because they use di¤erent models.

All these equivalences also apply to tests of serial independence of a discrete Markov chain,

which can be regarded as a time series analog to the multinomial model.

From the empirical point of view, I check if professional soccer players satisfy the indepen-

dence implications of mixed strategy equilibrium. To do so, I collected a dataset of 549 penalty

kicks in professional soccer games that include very detailed information on many relevant as-

pects of the play, and speci�cally actions and outcomes. I �nd that some professional soccer

players do not behave consistently with the implication of equal scoring probabilities across

strategies. In contrast, I �nd that the second testable implication (player�s actions are serially

independent) holds for all of the players in the sample.

Anatolyev and Kosenok (2009) showed that Pearson goodness of �t test is also asymptotically

equivalent to a multivariate regression Wald test. Additionally, Bouissou et al (1986) explain

how the LR test can be used to test that a discrete Markov chain is of order k rather than

k + 1. Extending the numerical equivalence results of this chapter to the tests considered by

those authors, provides interesting avenues for subsequent research.
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3.7 Proofs

3.7.1 Proof of Proposition 3.1

Contingency table test For my purposes, the test statistic (3.1) can be conveniently written

as:

Pearson = n
KX
k=1

H�1X
h=1

1

n�knh�

�
nhk �

n�knh�
n

�2
+ n

KX
k=1

H�1X
h=1

1

n�knH�

�
nhk �

n�knh�
n

�2
+2n

KX
k=1

H�1X
h=1

H�1X
m=h+1

�
1

n�knH�

�
nhk �

n�knh�
n

��
nmk �

n�knm�
n

��
; (3.5)

where nh� =
PK
k=1 nhk, n�k =

PH
h=1 nhk, nH� = n�

PH�1
h=1 nh� and nHk = n�k �

PH�1
h=1 nhk for

all k = 1; : : : ;K and h = 1; : : : ;H � 1.

Multivariate regression The contribution from observation i to the log-likelihood function

of the multivariate regression model in (3.2) is:

lnLi = �
N

2
ln 2� � 1

2
ln j�j � 1

2
[(yi ��xi)0��1 (yi ��xi)]:

Following Magnus (2007), the score of the full sample can be written in matrix notation as

S� (�;�) =
�
X 0Y �X 0X�0

�
��1: (3.6)

Note that Y 0Y = diag(n1�; � � � ; nH�1�), (X 0X)�1 = diag(n�1�1 ; � � � ; n
�1
�K) and X 0Y is an

K � (H � 1) matrix with rows of the form (n1k; � � � ; nH�1;k), for k = 1; : : : ;K.

The null hypothesis of independence implies that �h1 = � � � = �hK = �h. Using thatPK
k=1Aki = 1, the model becomes Bh = �h + uh, for h = 1; : : : ;H � 1 with ~�h = nh�=n.

As a result, the estimated residual covariance matrix under the null is:

~�R =
1

n
[Y 0Y � Y 0ln(l0nlnl0nY ] =

1

n

266664
n1�[1� (n1�=n)] � � � �(n1�nH�1�=n)

...
. . .

...

�(n1�nH�1�=n) � � � nH�1�[1� (nH�1�=n)]

377775 ;
where ln is an n � 1 vector of ones. Note that Y 0ln = (n1�; � � � ; nH�1�)0, l0nY = (Y 0ln)0 and

l0nln = n. Hence, ~�R = n�1 (G+ wr0), where G = Y 0Y , w = �Y 0ln and r0 = �n�1w0. Using the

Sherman-Morrison (1950) formula, I get

~��1R = nfG�1 �
��
G�1wr0G�1

�
=
�
1 + r0G�1w

��
g;
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so that

~��1R = n

��
Y 0Y

��1
+
lnl

0
n

nH�

�
=

266664
(n=n1�) + (n=nH�) � � � n=nH�

...
. . .

...

n=nH� � � � (n=nH�1�) + (n=nH�)

377775 :

Additionally, given that under the null ~�0R = lK(l
0
nln)

�1l0nY , with lK being a K � 1 vector

of ones, then

�
X 0Y �X 0X ~�0R

�
=

266664
n11 � (n�1n1�=n) � � � nH�1;1 � (n�1nH�1�=n)

...
. . .

...

n1K � (n�Kn1#=n) � � � nH�1K � (n�KnH�1�=n)

377775 :
Therefore, given (3.6) and the previous expressions, the element k; h of the score for

k = 1; : : : ;K and h = 1; : : : ;H � 1, evaluated under the null is:

S�hk =
�
nhk �

n�knh�
n

�� n

nh�
+

n

nH�

�
+
H�1X
z=1

��
nzk �

n�knz�
n

�� n

nH�

��
= n [(nhk=nh�)� (nHk=nH�)] ;

because
PH�1
z=1 nzk = n�k � nhk � nHk and

PH�1
z=1 nz� = n� nh� � nH�.

Given that vec(ABC) = (C 0 
A)vec(B), then

vec
h
S�

�
~�R; ~�R

�i
=
�
~��1R 
 I

�
vec[X 0Y �X 0XlK(l

0
nln)

�1l0nY ]:

The LM test is de�ned as

LM = vec0
h
S�

�
~�R; ~�R

�i
~I�1R vec

h
S�

�
~�R; ~�R

�i
;

where ~IR=
h
~��1R 
 (X 0X)

i
, so

LM = vec0[X 0Y �X 0XlK(l
0
nln)

�1l0nY ]
h
~��1R 
 (X 0X)�1

i
vec[X 0Y �X 0XlK(l

0
nln)

�1l0nY ]

due to the properties of the Kronecker product. De�ne F = X 0Y �X 0XlK(l
0
nln)

�1l0nY , so

LM = vec0 (F )
h
~��1R 
 (X 0X)�1

i
vec (F ) : (3.7)

If we expand this expression, then it immediately follows that (3.7) is the same as (3.5) for

all k = 1; : : : ;K and h = 1; : : : ;H � 1:
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Conditional multinomial model The derivatives of (3.3) under the alternative with respect

to Phk and ��k are:

@ lnL
@Phk

=
nhk
Phk

� n�k �
PH�1
h=1 nhk

1�
PH�1
h=1 Phk

and
@ lnL
@��k

=
n�k
��k

� n�K

1�
PK�1
k=1 ��k

for k = 1; : : : ;K and h = 1; : : : ;H � 1, so the FOC yields P̂hk = nhk=n�k and �̂�k = n�k=n�K :

The conditional component of the log-likelihood function under the null, which states that

H0 : Phk = Ph�; for k = 1; : : : ;K; is

lnL =
H�1X
h=1

nh� lnPh� +

 
n�

H�1X
h=1

nh�

!
ln

 
1�

H�1X
h=1

Ph�

!
:

Taking �rst derivatives with respect to Ph� yields:

@ lnL
@Ph�

=
nh�
Ph�

� n�
PH�1
h=1 nh�

1�
PH�1
h=1 Ph�

:

Therefore, the FOC yields ~Ph� = nh�=n; so ~Ph� = ~�h for h = 1; : : : ;H � 1:

The Hessian of this conditional multinomial model is H(�) = @2 lnL(�)=@��0, for

� = (P11; � � � ; PH�1;K), so H(�) = diag[H1(�); � � � ;HK(�)], where

Hk(�) =

266664
@2 lnL(�)=@P 21k � � � @2 lnL(�)=@P1k@PH�1;k

� � � � � � � � �

@2 lnL(�)=@P1k@PH�1;k � � � @2 lnL(�)=@P 2H�1;k

377775
with

@2 lnL(�)
@P 2hk

= �nhk
P 2hk

� nHk

1�
PH�1
h=1 Phk

and
@2 lnL(�)

@P1k@PH�1;k
= � nHk�

1�
PH�1
h=1 Phk

�2 ;
for k = 1; : : : ;K and h = 1; : : : ;H � 1.

For a correctly speci�ed likelihood, we have the information matrix equality

V ar[s(�)] = �E[H(�)] = I(�). The information matrix is I(�) = diag[I1(�); � � � ; IK(�)], where

Ik(�) = nE(Aki)

266664
(P1k)

�1 +
�
1�

PH�1
h=1 Phk

��1
� � �

�
1�

PH�1
h=1 Phk

��1
� � � � � � � � ��

1�
PH�1
h=1 Phk

��1
� � � (PH�1;k)

�1 +
�
1�

PH�1
h=1 Phk

��1
377775 :
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Hence, using the Sherman-Morrison (1950) formula, its inverse will be given by:

Ik(�)�1 =
1

nE(Aki)

266664
P1k(1� P1k) � � � �P1kPH�1;k

� � � � � � � � �

�PH�1;kP1k � � � PH�1;k(1� PH�1;k)

377775 : (3.8)

Note that the score under the null is s(~�) = n(n11n1�
� nH1

nH�
; � � � ; nH�1:KnH=1�

� nHK
nH�

)0, which is the

same as the element h; k of the score under the null of the multivariate regression model, except

that these scores are calculated by vectorizing the matrix P by columns while the ones in the

multivariate regression are vectorized by rows.

Thus, one can go from one to another using the commutation matrix (see Magnus and

Neudecker (1988) for more details). The most useful property of such matrix is that it allows the

Kronecker products to commute. For that reason, the information matrix of the multivariate

regression and the one in the multinomial model look as a mirror image of one another, i.e.

I = [(X 0X)
��1] instead of [��1
(X 0X)]. Given that after performing appropriate re-ordering,

the score and information matrix under the null are identical to the score and information matrix

of the multivariate regression, the LM tests will also be numerically equal.

Unconditional multinomial model Ruud (2000) section 17.4 results imply that the LM

test statistic is numerically invariant to non-linear transformations of the restrictions when the

information matrix is used for its calculation instead of the Hessian. Consequently, the LM

test for the null hypothesis H0 : �hk = ��k � �h� will also be identical if one parameterizes

the multinomial log-likelihood in terms of the joint probabilities �hk instead of the conditional

probabilities Phk and the marginal ones ��k: Obviously, the same is true if one uses an alternative

parametrization which expresses the joint probabilities in terms of the two sets of marginal

probabilities ��k, for k = 1; : : : ;K � 1, and �h�, for h = 1; : : : ;H � 1, and (K � 1) � (H � 1)

additional parameters # which should be 0 under the null. In particular, in the 2� 2 case, the

log-likelihood written in this way is just

lnL = n11 ln[(1� ��2) (1� �2�) + #] + n12 ln[(1� �2�)��2 � #]

+n21 ln[(1� ��2)�2� � #] + n22 ln (��2�2� + #) :
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The score vector for � = (��2; �2�; #) is de�ned as

@ lnL
@��2

= � n11 (1� �2�)
(1� ��2) (1� �2�) + #

+
n12 (1� �2�)

(1� �2�)��2 � #
� n21�2�
(1� ��2)�2� � #

+
n22�2�

��2�2� + #

@ lnL
@�2�

= � n11 (1� ��2)
(1� ��2) (1� �2�) + #

� n12��2
(1� �2�)��2 � #

+
n21 (1� ��2)

(1� ��2)�2� � #
+

n22��2
��2�2� + #

@ lnL
@#

=
n11

(1� ��2) (1� �2�) + #
� n12
(1� �2�)��2 � #

� n21
(1� ��2)�2� � #

+
n22

��2�2� + #

so the FOC yields �̂�2 = n�2=n , �̂2� = n2�=n and #̂ = n�1n22� (�̂�2�̂2�), where n�2 = n12+n22,

n2� = n21 + n22 and n = n11 + n12 + n21 + n22. Therefore, the unrestricted estimators of the

marginal probabilities (�̂�2 and �̂2�) coincide with the restricted ones (~��2 and ~�2�).

Moreover, the Hessian of the log-likelihood function for � = (��2; �2�; #) is

@2 lnL
@�2�2

= � n11 (1� �2�)2

[(1� ��2) (1� �2�) + #]2
� n12 (1� �2�)2

[(1� �2�)��2 � #]2
� n21�

2
2�

[(1� ��2)�2� � #]2
� n22�

2
2�

(��2�2� + #)
2

@2 lnL
@��2�2�

=
n11#

[(1� ��2) (1� �2�) + #]2
+

n12#

[(1� �2�)��2 � #]2
+

n21#

[(1� ��2)�2� � #]2
+

n22#

(��2�2� + #)
2

@2 lnL
@��2#

=
n11 (1� �2�)

[(1� ��2) (1� �2�) + #]2
+

n12 (1� �2�)
[(1� �2�)��2 � #]2

� n21�2�
[(1� ��2)�2� � #]2

� n22�2�

(��2�2� + #)
2

@2 lnL
@�22�

= � n11 (1� ��2)2

[(1� ��2) (1� �2�) + #]2
� n12�

2
�2

[(1� �2�)��2 � #]2
� n21 (1� ��2)2

[(1� ��2)�2� � #]2
� n22�

2
�2

(��2�2� + #)
2

@2 lnL
@�2�#

=
n11 (1� ��2)

[(1� ��2) (1� �2�) + #]2
� n12��2
[(1� �2�)��2 � #]2

+
n21 (1� ��2)

[(1� ��2)�2� � #]2
� n22��2

(��2�2� + #)
2

@2 lnL
@#2

= � n11
[(1� ��2) (1� �2�) + #]2

� n12
[(1� �2�)��2 � #]2

� n21
[(1� ��2)�2� � #]2

� n22

(��2�2� + #)
2 :

Under the null, which states that # = 0; the information matrix is

I (�) = n�diag
�
[(1� ��2)��2]�1 [(1� �2�)�2�]�1 [(1� ��2) (1� �2�)��2�2�]�1

�
: (3.9)

The LM test statistic is de�ned by LM = n�s(~�)0I(~�)�1s(~�), where s(~�) and I(~�) are the un-

restricted gradient and information matrix evaluated at the restricted estimators ~�, respectively.

Given (3.9), the estimated information matrix I(~�) will be

I(~�) = n� diag
�
n2 (n�1n�2)

�1 n2 (n1�n2�)
�1 n4 (n�1n�2n1�n2�)

�1
�
;

where n�1 = 1� n�2 and n1� = 1� n2�. Additionally, the score under the null is given by

s(~�) = n�1
�
0 0 s11=s12

�
;

132



where

s11 = n2
�
n211n22 � n11n12n21 + n11n21n22 + n11n222 � n212n21 � n12n221 � n12n21n22

�
and

s12 = (n11 + n12) (n11 + n21) (n12 + n22) (n21 + n22) :

Therefore, the LM test statistic will be

LM = n� #̂
2

(1� �̂�2) (1� �̂2�) �̂�2�̂2�
;

where #̂ is de�ned above. Hence, the LM test, which is exactly the same as (3.5), is like a t�test

for #, but using the asymptotic standard error computed under the null.

The same procedure can be applied to the general H � K case. For example, in a 3 � 3

contingency table, the joint probabilities can be parameterized in terms of the marginal prob-

abilities �h� and ��k; for h; k = 1; 2; 3, and four additional parameters #11, #12, #21 and #22;

which should be 0 under the null.

Analogous derivations show that the estimators of the marginal probabilities are the same

under the null and the alternative, and that the information matrix evaluated under the null is

block diagonal between �h�, ��k and the #0s.

Multinomial logit model Recall that the log-likelihood function of this model is:

lnL(
) =
KX
k=1

"
H�1X
h=1

nhk lnPhk + nHk ln

 
1�

H�1X
h=1

Phk

!#
:

The score is de�ned as s(
) = @L(
)=@
 with

@ lnL(
)
@Phk

=

"
nhk
Phk

� nHk

1�
PH�1
h=1 Phk

#
and

@Phk
@
hk

=
exp(
hkAki)Aki

[1 + exp(
hkAki) + exp(
khAki)]
2 ;

for k = 1; : : : ;K and h = 1; : : : ;H � 1. Solving the FOC for P̂hk yields P̂hk = nhk=n�k, which is

again the same as the estimate in the multivariate regression, with 
̂hk = ln (nhk)�ln (n�k � nhk)

(see Cameron and Trivedi (2005) chapter 15, section 4 for more details).

The multinomial logit log-likelihood function under the null hypothesis H0 : Phk = Ph, for

k = 1; : : : ;K and h = 1; : : : ;H � 1, is:

lnL(
) =
KX
k=1

(
H�1X
h=1

"
(nhk lnPh) + nHk ln

 
1�

H�1X
h=1

Ph

!#
+ n�k ln�k

)
;
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which yields ~Ph = nh�=n; given that
PK
h=1 nh� = n. Additionally, ~Ph = exp(~
h)=

P
exp(~
h).

It is worth mentioning that the values of the log-likelihood function under the null and alter-

native of the multinomial logit are equal to the corresponding log-likelihoods of the multinomial

model, which implies that the LM and LR test statistics will be the same (see section 17.4 of

Ruud (2000)).

Multinomial probit model Recall that the observation rule is

Bhi = 1

�
B�hi = max

j=1;:::;n
B�hj

�
;

where 1fg is the indicator function, so that Bhi = 1 if the h is the preferred choice. Otherwise,

Bhi equals zero. Therefore, the log-likelihood function is

L(�) =

nX
i=1

HX
h=1

Bhi ln Pr(Bhi = 1jx):

Like in the multinomial logit, this log-likelihood function coincides with a complicated non-

linear reparametrization of the conditional component of the log-likelihood function of the

multinomial model.

For simplicity of exposition, consider the 2�K case. The log-likelihood function is:

lnL =
nX
i=1

fBi ln� (�1A1i + � � �+ �KAKi) + (1�Bi) ln[1� � (�1A1i + � � �+ �KAKi)]g;

where �(�) is the standard normal cdf. The score is de�ned as s(�) = @ lnL(�)=@� with

@ lnL(�)
@�k

=
Ak[� (�kAk)](Bi � Pk)

Pk(1� Pk)
;

where Pk = �(�1A1i + � � �+ �KAKi) ; for k = 1; : : : ;K. Solving for P̂k yields P̂k = nk=n�k

which is again the same as in the conditional multinomial model, with �̂k = ��1 (nk=n�k) :

In turn, the log-likelihood function under H0 : �k = �; for k = 1; : : : ;K; is:

lnL =
nX
i=1

fBi ln Pr(Bi = 1) + (1�Bi) ln[1� Pr(Bi = 1)]g;

which yields cPr(B = 1) = n1�=n. As a result, the multinomial probit model under the null is

entirely analogous to the multinomial logit one, so the same numerical equalities hold.
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GMM As explained in section 3.2, the moment conditions are (3.4). Under H1, � is unre-

stricted while under H0, �(�) = �l0K . The GMM estimator of � is de�ned as:

~� = argmin
�

 
1

n

nX
i=1

f[yi ��(�)xi]
 xig
!0
��1

 
1

n

nX
i=1

f[yi ��(�)xi]
 xig
!
;

where � is a symmetric positive de�nite [K � (H � 1)]� [K � (H � 1)] weight matrix.

The GMM estimator can also be written as ~� = argmin� �g0��1�g; where �g = 1
n

Pn
i=1fg[zi; �(�)]g:

Hence, the FOC is 2�g0��1
�
@�g=@�̂

0
�
= 0; with � = [�R


Pn
i=1 (xix

0
i)] being optimal under H0.

Given that (3.4) are linear, one can rewrite �g as �g = �mn� �Mn�; with �Mn =
1
n

Pn
i=1 (IH�1 
 xi)

and �mn =
1
n

Pn
i=1 (yi 
 xi) ; which implies that ~� =

�
�Mn�

�1 �Mn

�0 � �Mn�
�1 �mn

�
: Speci�cally,

~� =

8<:
"
1

n

nX
i=1

(IH�1 
 xi)
#0 "

~�R 

1

n

nX
i=1

�
xix

0
i

�#�1 " 1
n

nX
i=1

(IH�1 
 xi)
#9=;

�1

=
1

n

nX
i=1

yi;

whose representative element nh�=n is exactly the same as the restricted estimator ~�h in the

multivariate regression.

The J-test statistic for overidentifying restrictions is J = n� �g(~�)0��1�g(~�): Note that

��1 = ��1R 
 (X 0X)�1 is exactly the same as the information matrix in the multivariate regres-

sion. Additionally,

gi = (yi ��xi)
 xi = (yi 
 xi) lK � (�xi 
 xi) lK = vec(xilKy
0
i)� vec(xilkx0i�0)

and since �R(�) = �l
0
K = (lK�

0IH�1)
0 ; then gi = vec(xiy

0
i)� (IH�1 
 xix0i) � with

� = (IH�1 
 lk) vec(�) = (IH�1 
 lK) �; so gi = vec(xiy
0
i)� (IH�1 
 lk) �: This implies that

1

n

nX
i=1

gi = �g(z; ~�) = vec[X 0Y �X 0XlK(l
0
nln)

�1lnY ];

which is exactly the same as the normal equations of the multivariate regression (3.7). Therefore,

the J-test statistic for overidentifying restrictions is also numerically equivalent to the LM test.

Finally, given that the model under the alternative is exactly identi�ed, the Distance Di¤er-

ence test (see Newey and West (1987) for more details) is exactly the same as the J-test statistic.

Hence, following the results in chapter 22 of Ruud (2000), the minimum chi-square test that

compares �̂ with �(�̂) and the GMM version of the LM test will also be numerically identical

to the J-test statistic.
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3.7.2 Proof of Proposition 3.2

The results in section 17.4 of Ruud (2000) imply that the LR test of the conditional and

unconditional multinomial model, the multinomial probit model and the logit model in section

3.2 must coincide because LR tests are numerically invariant to non-linear transformations of

parameters and restrictions.

3.7.3 Proof of Proposition 3.3

Multivariate LPM The covariance matrix of the heteroskedasticity-robust Wald test in the

multivariate regression is de�ned as Q = (IH�1 
X 0X)�1	̂(IH�1 
X 0X)�1, where

	̂ =
P
i [(ui 
 xi) (u0i 
 x0i)]. Note that both 	̂ and (IH�1 
 X 0X)�1 = IH�1 
 (X 0X)�1 are

[(H � 1)�K]� [(H � 1)�K] matrices.

Speci�cally, 	̂ =
P
i [(uiu

0
i)
 (xix0i)] ; with xix0i =

0BBBB@
A21i � � � A1iAKi
...

. . .
...

A1iAKi � � � A2Ki

1CCCCA, where Aki;
for k = 1; : : : ;K; are the mutually exclusive dummy variables de�ned in section 2 and the u�s

are the regression residuals for equation i: Hence, when Aki = 1;

u2hi =
�
Bhi � nhk

n�k

�2
= Bhi

�
1� 2nhk

n�k

�
+
�
nhk
n�k

�2
;

uhiumi =
�
Bhi � nhk

n�k

��
Bmi � nmk

n�k

�
= nhknmk

n2�k
�Bhi nmkn�k

�Bmi nhkn�k

and xix0i is a matrix of zeros except for a 1 in the i
th diagonal element because Bhi and Bmi are

also dummy variables for h;m = 1; : : : ;H � 1 and h 6= m. Therefore,
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	̂ =
X
A1=1

2666666666666666664

Bhi

�
1� 2nh1

n�1

�
+
�
nh1
n�1

�2
0 :::

0 0 :::

::: ::: :::

0 ::: :::

nh1nm1
n2�1

�Bhi nm1n�1
�Bmi nh1n�1

0 :::

0 0 :::

::: ::: :::

nh1nm1
n2�1

�Bhi nm1n�1
�Bmi nh1n�1

0

0 0

::: :::

::: :::

Bmi

�
1� 2nm1

n�1

�
+
�
nm1
n�1

�2
0

0 0

::: :::

3777777777777777775

+ :::

+
X
AK=1

2666666666666664

0 ::: ::: :::

::: ::: 0 :::

::: 0 Bhi

�
1� 2nhK

n�K

�
+
�
nhK
n�K

�2
0

::: ::: 0 :::

::: 0 ::: :::

::: 0 nhKnmK
n2�K

�Bhi nmKn�K
�Bmi nhKn�K

:::

::: :::

::: 0

0 nhKnmK
n2�K

�Bhi nmKn�K
�Bmi nhKn�K

::: 0

::: :::

::: Bmi

�
1� 2nmK

n�K

�
+
�
nmK
n�K

�2

3777777777777775
;
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which can be simpli�ed to

	̂ =

2666666666666666664

n11

�
1� n11

n�1

�
0 ::: ::: :::

0 ::: 0 ::: :::

::: 0 n1K

�
1� n1K

n�K

�
0 :::

0 ::: ::: ::: :::

�n11nH�1;1
n�1

0 ::: ::: :::

0 ::: 0 ::: :::

::: 0 �n1KnH�1;K
n�K

::: :::

�nH�2;1nH�1;1
n�1

0 :::

0 ::: 0

::: 0 �nH�2;KnH�1;K
n�K

::: ::: :::

nH�1;1
�
1� nH�1;1

n�1

�
0 :::

0 ::: 0

::: 0 nH�1;K
�
1� nH�1;K

n�K

�

3777777777777777775

because
P
Aki=1

Bhk = nhk and
P
Aki=1

1 = n�k for k = 1; : : : ;K.
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Therefore,

Q =

26666666666666666664

n11
n2�1

�
1�n11

n�1

�
0 ::: :::

0 ::: 0 :::

::: 0 n1K
n2�K

�
1�n1K

n�K

�
:::

::: ::: ::: :::

�n11nH�1;1
n3�1

0 ::: :::

0 ::: 0 :::

::: 0 �n1KnH�1;K
n3�K

:::

(3.10)

�n11nH�1;1
n3�1

0 :::

0 ::: 0

::: 0 �n1KnH�1;K
n3�K

::: ::: :::

nH�1;1
n2�1

�
1�nH�1;1

n�1

�
0 :::

0 ::: 0

::: 0
nH�1;K
n2�K

�
1�nH�1;K

n�K

�

37777777777777777775
which has (H � 1)� (H � 1) blocks of size K; each of which is diagonal.

Conditional multinomial model The inverse of the estimated information matrix is given

by (3.8). In practice, we use the unrestricted ML estimator of Phk, for k = 1; : : : ;K and

h = 1; : : : ;H � 1 to estimate the inverse information matrix. Given that P̂hk = nhk=n�k and

Ê(Aki) = n�k=n, then

Ik(�̂)�1 =
1

nÊ(Aki)

266664
n1k
n�k
(1� n1k

n�k
) � � � �n1k

n�k

nH�1;k
n�k

...
. . .

...

�n1k
n�k

nH�1;k
n�k

� � � nH�1;k
n�k

(1� nH�1;k
n�k

)

377775 ;
which is exactly the same as the heteroskedasticity-robust variance in the multivariate regression

(3.10), except for re-ordering. Therefore, given that both the point estimators and the covariance

matrices are the same, the Wald tests will also be the same.
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GMM As I explained in section 3.2, the moment conditions are given by (3.4). Under H1; �

is unrestricted, so the GMM estimator is de�ned as:

�̂ = argmin
�

(
1

n

nX
i=1

[(yi ��xi)
 xi]
)0
��1

(
1

n

nX
i=1

[(yi ��xi)
 xi]
)
;

where � is a symmetric positive de�nite [K� (H � 1)]� [K� (H � 1)] weight matrix. However,

given that the model is exactly identi�ed under the alternative, � becomes irrelevant. Therefore,

the GMM unrestricted estimator will be the one that sets

1

n

nX
i=1

[(yi ��xi)
 xi] = 0:

But this expression is exactly the same as the score (3.6) in the multivariate LPM, which implies

that the GMM unrestricted estimator coincides with OLS.

Finally, the heteroskedasticity-robust estimated variance-covariance matrix will also be ex-

actly the same as in OLS (see section 21.4.3 of Ruud (2000)). Therefore, the Wald test statistic

will coincide.

3.7.4 Finite sample distribution

Even in experimental studies, few observations for each player are likely to be the rule

rather than the exception. Therefore, the asymptotic X 2 distribution of the independence tests

described in section 3.2 may be unreliable when the number of observations is small.

Given the discrete nature of the random variables involved, permutation-type tests may seem

to provide a way of conducting exact inference to test for independence. In fact, Fisher�s exact

test (see Fisher (1922)) could be regarded as a permutation test. His test takes the values of

n�1; : : : ; n�K and n1�; : : : ; nH� as given and therefore, it is equivalent to using the likelihood

in the unconditional multinomial model in section 3.2 but treating the estimated values of �h�

and ��k as if they were the true values of the parameters. However, this test is only exact

if the marginal probabilities of the two categorical random variables are known, as in Fisher�s

famous tea cup classi�cation example. In more realistic situations, those marginal probabilities

are unknown, and the supposedly exact test is only valid asymptotically.

Although Monte Carlo simulations can help us in assessing how good the asymptotic ap-

proximation of a test statistic is, in practice, they are not useful for inferences in a given sample

because we do not know the true values of the parameters.
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For that reason, simulation methods provide an alternative to asymptotic approximations

for obtaining p-values by resampling methods. Next, I explain how to compute the parametric

bootstrap distribution for the penalty kick case.

Note that tests of the �rst and second implications of mixed strategy equilibrium with two

actions are equivalent in this context because, although the variables involved are di¤erent, they

are all based on 2� 2 contingency tables. For that reason, I focus on the �rst hypothesis only.

Given that all the variables used are discrete, the number of states of the world is �nite (2

possible actions per player � 2 possible outcomes per player�s actions). In addition, the number

of values of the estimators and test statistics will be repeated in many of those states of the

world. For example, for n = 5 and two actions per player, there are (23)5 possible states, but

only 56 di¤erent contingency tables, while for n = 20 there are (23)20 states, but only 1771

contingency tables (the number of possible contingency tables for n = 5 and n = 20 is obtained

after carefully considering how many di¤erent values can nSL take for each combination of nL

and nS). For that reason, I simulate the contingency tables directly, which contain all the

information.

Recall that in the contingency table in section 3.2.1 applied to the penalty kick case, where

now ~y is the outcome (success (S) or failure (F )) and x is the action of the player (L and R),

both nL = nSL+nFL and nS = nSL+nSR have values that go from 0 to n: Given those values,

I only need to choose an additional element to complete the contingency table. Without loss

of generality, I choose nSL: For �xed nL and nS ; nSL �uctuates between a maximum and a

minimum. It is easy to see that the minimum value nSL can take is the maximum of 0 and

nL + nS � n, while the maximum value it takes is the minimum of nL and nS :

To �nd the exact probability of each of those contingency tables and therefore of the corre-

sponding test statistics, �rst note that under the null hypothesis the number of kicks to the left

(nL) and the number of goals scored (nS) are independent random variables. Therefore,

Pr(nL; nS ; nSLjn) = Pr(nS jn)� Pr(nLjn)� Pr(nSL j nL; nS ;n);

where Pr(nj jn), for j = S;L; is binomial, whose values depend on the values of n and E(L) = �L

or E(S) = �S : In turn, Fisher (1922) showed that Pr(nSL j nL; nS ;n) is hypergeometric, with

values that only depend on n; nL and nS : The binomial distribution gives the probability of

k successes in n trials with replacement, while the hypergeometric distribution does the same
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thing, but without replacement. Interestingly, the probability of those contingency tables under

the null is identical to the likelihood written in terms of �hk = Phk � ��k as stated in formula

(38) of Mood et al (1974).

For a given sample, I calculate nSL and nS to estimate the marginal probabilities �̂�L and

�̂S�. Then I use those estimated values to independently draw the actions of the kicker, as well

as whether or not the goal is scored.

However, I have found that many of those distributions are repeated for di¤erent values of

�̂�L and �̂S�. More precisely, for an even number of observations there are

1

2

�
n+ 2

2
� n

2

�
+ 1

di¤erent distributions, while for an odd number of observations there are

1

2

�
n� 1
2

� n+ 1

2

�
+ 1:

This is due to the symmetry relationships that arise because the variables of the model are

mutually exclusive dummy variables. For example, nL = 2 and nS = 3 will give the same

distribution for the test statistics as nL = 3 and nS = 2: As a result, there are only 7 and 56

possible di¤erent distributions for Pearson�s test for n = 5 and n = 20 respectively, even though

there are 56 and 1771 contingency tables.

Therefore, the only di¤erence between the Fisher test and the simulated test distribution that

I compute is that the former uses the unknown probabilities while the latter uses the estimated

probabilities.

In the case of three or more actions, I can �nd the exact probability of each possible contin-

gency table, and therefore the exact probability of the di¤erent test statistics, using

Pr(contingency tablejn) = Pr(n�1; : : : ; n�K jn)� Pr(n1�; : : : ; nH�jn)

� Pr(nhkjn�1; : : : ; n�K ;n1�; : : : ; nH�;n);

because nh� and n�k are independent under the null.
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Given that

Pr(nhkjn�1; : : : ; n�K ;n1�; : : : ; nH�;n) =
(n�1!; : : : ; n�K !) (n1�!; : : : ; nH�!)

n!
QH
h=1

QK
k=1 nij !

Pr(n�1; : : : ; n�K jn) =
n!

n�1!; : : : ; n�K !

YK

k=1
�n�k�k

Pr(n1�!; : : : ; nH�!jn) =
n!

n1�!; : : : ; nH�!

YH

h=1
�nh�h� ;

then

Pr(contingency tablejn) = n!QH
h=1

QK
k=1 nij !

�YK

k=1
�n�k�k

��YH

h=1
�nh�h�

�
:

As in the 2 � 2 case, the probability of those contingency tables under the null is identical

to the likelihood written in terms of �hk = Phk � ��k as stated in formula (38) of Mood et al

(1974).

However, the number of possible contingency tables is very large, and �nding their exact

bootstrap distribution is very tedious. For that reason, I compute the p-value using Monte Carlo

simulations rather than the exact test, using once again the estimated values of the marginal

probabilities.

3.7.5 Relationship Between Test Statistics When H = 2 and H = 3

Following Stewart (1995), the Wald, LR and LM tests in the multivariate LPM can be written

as functions of the eigenvalues (�1;. . . ; �H�1) of the matrix GE�1; where G = ~�0R
~�R � �̂0U �̂U

and E = �̂0U �̂U , with �̂U and ~�R being the unrestricted and restricted MLE of the residual

matrix in the multivariate regression model, respectively.

Speci�cally, the three tests can be written as:

Wald = n
P
i �i

LM = n
P
i[�i=(1 + �i)]

exp (LR) = n
Q
i
(1 + �i)

9>>>>=>>>>; :

For H = 3, there are only two eigenvalues (�1 and �2), so

Wald = �1 + �2

LM = [�1=(1 + �1)] + [�2=(1 + �2)] =
�1+�2+2�1�2
�1+�2+�1�2+1

exp (LR) = (1 + �1)(1 + �2) = �1 + �2 + �1�2 + 1

9>>>>=>>>>; :

Therefore, the set of values ofWald, LM and LR compatible with the previous expressions is
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a two-dimensional manifold in the three dimensional (Wald; LM; exp(LR)) space, which means

the they are not non-linear transformations of each other.

This is in contrast to the case of tests on the coe¢ cients of a multiple regression involving a

single (H = 2) regressand or tests on the coe¢ cients of a multivariate regression that involve a

single regressor (K = 1), in which case Wald = �1, LM = �1=(1 + �1) and

exp(LR) = (1+�1), so that all three tests lie on a line (a unidimensional manifold) in the three

dimensional (Wald; LM; exp(LR)) space.

3.7.6 Kickers and Goalkeepers

Players are divided between kickers and goalkeepers. In brackets is the identi�cation number

used in the empirical analysis, and in parentheses it appears the teams they play for.

Kickers [1] Cristiano Ronaldo (Real Madrid/Manchester United), [2] Messi *(Barcelona),

[3] Falcao (Atlético de Madrid/Monaco), [4] Gerrard (Liverpool), [5] Guiseppe Rossi (Vil-

lareal/Fiorentina), [6] Hulk* (Oporto/Zenit), [7] Ibrahimovic (Inter Milan/Milan/PSG), [8]

Kanoute (Sevilla), [9] Negredo* (Almería/Sevilla), [10] Soldado (Getafe/Tottenham), [11] Villa

(Valencia/Atlético de Madrid), [12] Xabi Prieto (Real Sociedad), with * denoting the kickers

who are left-footed.

Goalkeepers [1] Aouate (Deportivo La Coruña/Mallorca), [2] Diego Alves (Almería/Valencia),

[3] Diego López (Villareal/Real Madrid), [4] Iraizoz (Athletic Club Bilbao), [5] Moya (Mal-

lorca/Getafe/), [6] Palop (Sevilla), [7] Ricardo (Osasuna), [8] Roberto (Granada), [9] Ruben

(Rayo Vallecano), [10]Tono (Racing Santander/Granada/Rayo Vallecano).

3.7.7 F approximations

As I mentioned in section 3.2.2, the Pillai trace test can be written as V = n�1LM while

Wilks�lambda is � = exp
�
�n�1LR

�
and the Lawley-Hotelling trace test is LH = n�1Wald.

The F approximations of the Pillai trace (V), Wilks� lambda (�) and Lawley-Hotelling (LH)

tests that Stata uses are:
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VF =
(2n+ s+ 1)V

(2m+ s+ 1) (s� V )

�F =
(1� � 1

t )df2�
�
1
t

�
df1

LHF =
2(sn+ 1)LH

s2 (2m+ s+ 1)

where p is the number of columns of y variables, vh is the hypothesis degrees of freedom, ve is the

error degrees of freedom, s = min(p; vh);m = (jvh � pj � 1) =2; n = (ve � p� 1) =2; df1 = pvh;

df2 = wt+1� pvh=2; w = ve+ vh� (p+ vh+1)=2 and t =
q
(p2v2h � 4)=(p2 + v2h � 5) (see Stata

(2011), Manova, entry for more details).

In addition, Stata uses a degrees of freedom correction n=(n�K) for the heteroskedastitcy

robust Wald test in the univariate case (see Stata (2011), Robust, entry for more details).
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3.8 Tables Chapter 3

Table 3.2: Distribution of Strategies Combinations and Scoring Rates

#Obs. L-L L-C L-R C-L C-C C-R R-L R-C R-R
All penalties 549 20.58 2.55 26.78 3.64 1.09 2.37 20.95 0.91 21.13
Scoring rate 86.34 69.91 92.86 97.96 100 0 92.31 95.65 100 78.45

Notes: The �rst letter refers to the choice made by the kicker (Left (L), Center (C) and Right (R)) and
the second one to the choice made by the goalkeeper, always from the point of view of the goalkeeper.
For instance, L-R means than the kicker chooses to kick to the left hand side of the goalkeeper and the
goalkeeper chooses to jump to his right.
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Table 3.3: Test for Equality of Scoring Probabilities with 2 Actions

Frequency Scoring Rates
Player #Obs. L R L R LM Test p-value
Kicker 1 44 0.36 0.64 1 0.96 0.58 0.44
Kicker 2 29 0.69 0.31 0.90 0.78 0.78 0.38
Kicker 3 16 0.50 0.50 0.88 0.88 0 1
Kicker 4 32 0.59 0.41 0.95 0.85 0.93 0.33
Kicker 5 21 0.52 0.48 0.91 0.80 0.51 0.48
Kicker 6 22 0.36 0.64 0.79 0.75 0.04 0.85
Kicker 7 41 0.34 0.66 0.93 0.96 0.24 0.63
Kicker 8 9 0.67 0.33 0.67 1 1.29 0.26
Kicker 9 25 0.76 0.24 0.68 1 2.49 0.11
Kicker 10 20 0.25 0.75 1 0.80 1.18 0.28
Kicker 11 20 0.7 0.30 0.93 1 0.45 0.50
Kicker 12 16 0.69 0.31 1 0.80 2.35 0.12
Goalkeeper 1 13 0.62 0.38 0.75 1 1.48 0.22
Goalkeeper 2 16 0.56 0.44 0.56 0.57 0.01 0.95
Goalkeeper 3 10 0.50 0.50 0.60 1 2.50 0.11
Goalkeeper 4 15 0.73 0.27 1 1 0 1
Goalkeeper 5 10 0.10 0.90 1 0.89 0.12 0.73
Goalkeeper 6 10 0.40 0.60 0.50 0.83 1.27 0.26
Goalkeeper 7 9 0.44 0.56 1 0.80 0.90 0.34
Goalkeeper 8 10 0.50 0.50 1 0.80 1.11 0.29
Goalkeeper 9 10 0.60 0.40 0.83 1 0.74 0.39
Goalkeeper 10�� 11 0.27 0.73 0.33 1 6.52 0.01

Notes: L (Left) and R (Right) denote the strategies available to the players. Additionally, * indicates
rejection of the null at the 10% signi�cance level, ** 5% level, *** 1% level.

147



Table 3.4: Test for Equality of Scoring Probabilities with 3 Actions

Frequency Scoring Rates
Player #Obs. L C R L C R LM Test p-value
Kicker 1��� 50 0.34 0.10 0.56 1 0.60 0.96 11.63 0
Kicker 2 36 0.58 0.11 0.31 0.90 1 0.82 1.11 0.57
Kicker 3 21 0.43 0.19 0.38 0.89 1 0.87 0.53 0.77
Kicker 4�� 33 0.58 0.03 0.39 0.95 0 0.85 8.22 0.02
Kicker 6 26 0.54 0.02 0.31 0.79 1 0.75 1.17 0.56
Kicker 7��� 42 0.33 0.03 0.64 0.93 0 0.96 13.43 0
Kicker 8 20 0.55 0.20 0.25 0.73 1 1 2.89 0.24
Kicker 9 28 0.68 0.11 0.21 0.68 1 1 3.62 0.16
Kicker 12 20 0.55 0.20 0.25 1 1 0.80 3.16 0.21
Goalkeeper 1 14 0.57 0.07 0.36 0.75 1 1 1.75 0.42
Goalkeeper 2 18 0.50 0.11 0.39 0.56 0.50 0.57 0.03 0.98
Goalkeeper 3 12 0.50 0.08 0.42 0.67 1 0.57 2.40 0.30
Goalkeeper 4�� 18 0.67 0.11 0.22 1 0.50 1 8.47 0.01
Goalkeeper 5 15 0.13 0.27 0.60 1 0.85 0.89 0.82 0.66
Goalkeeper 10�� 13 0.23 0.08 0.69 0.33 1 1 7.88 0.02

Notes: L (Left), C (Center) and R (Right) denote the strategies available to the players. Additionally, *
indicates rejection of the null at the 10% signi�cance level, ** 5% level, *** 1% level.
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Table 3.6: Test for Serial Independence with 2 Actions

Transition Matrix
Player #Obs. LtjLt�1 RtjLt�1 LtjRt�1 RtjRt�1 LM Test p-value
Kicker 1 42 0.40 0.60 0.32 0.68 0.27 0.606
Kicker 2 27 0.73 0.27 0.56 0.44 0.92 0.337
Kicker 3 14 0.50 0.50 0.57 0.43 0.08 0.782
Kicker 4 30 0.50 0.50 0.69 0.31 1.15 0.284
Kicker 5 19 0.50 0.50 0.60 0.40 0.20 0.653
Kicker 6 20 0.62 0.38 0.75 0.25 0.40 0.525
Kicker 7 39 0.21 0.79 0.42 0.58 1.74 0.187
Kicker 8 7 0.67 0.33 0.50 0.50 0.18 0.673
Kicker 9 23 0.78 0.22 0.67 0.33 0.27 0.586
Kicker 10 18 0 1 0.29 0.71 1.81 0.179
Kicker 11 18 0.69 0.31 0.83 0.17 0.42 0.516
Kicker 12 14 0.70 0.30 0.80 0.20 0.17 0.680
Goalkeeper 1� 12 0.33 0.67 0.86 0.14 3.75 0.053
Goalkeeper 2 15 0.60 0.40 0.50 0.50 0.15 0.696
Goalkeeper 3 9 0.60 0.40 0.40 0.60 0.40 0.527
Goalkeeper 4� 14 1 0 0.56 0.44 3.64 0.057
Goalkeeper 5 9 0 1 0.13 0.88 0.28 0.598
Goalkeeper 6 9 0.20 0.80 0.60 0.40 1.67 0.197
Goalkeeper 7 8 0.50 0.50 0.33 0.67 0.23 0.635
Goalkeeper 8 9 0.50 0.50 0.50 0.50 0 1
Goalkeeper 9 9 0.75 0.25 0.50 0.50 0.63 0.429
Goalkeeper 10� 10 0 1 0.50 0.50 3.44 0.064

Notes: Lt (Left) and Rt (Right) denote the strategies available to the players at time t while Lt�1 and
Rt�1 are its corresponding lagged variables. For instance, LtjRt�1 means that the player chooses L at
time t after the previous player chose R at t � 1. Additionally, * indicates rejection of the null at the
10% signi�cance level, ** 5% level, *** 1% level.
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