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ABSTRACT
The COVID-19 pandemic has affected all countries in the world and
brings a major disruption in our daily lives. Estimation of the preva-
lence and contagiousness of COVID-19 infections may be challeng-
ing due to under-reporting of infected cases. For a better under-
standing of such pandemic in its early stages, it is crucial to take
into consideration unreported infections. In this study we propose
a truncation model to estimate the under-reporting probabilities
for infected cases. Hypothesis testing on the differences in trunca-
tion probabilities, that are related to the under-reporting rates, is
implemented. Large sample results of the hypothesis test are pre-
sented theoretically and by means of simulation studies. We also
apply themethodology to COVID-19 data in certain countries, where
under-reporting probabilities are expected to be high.
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1. Introduction

The COVID-19 pandemic has progressively expanded to almost every country in the
world. By September 2020, the new virus SARS-CoV-2 has infected more than 33 million
people and the death toll is more than 1 million. To model the epidemic for such a highly
infectious disease, Susceptible-Infectious-Recovery (SIR)models are widely used. Estimat-
ing themodel parameters, the infection rate, recovery rate, death rate, etc. in the early stage
is very important to help government better control the epidemic andminimise its impacts
on our society. Although there is a vast literature related to COVID-19 modelling and esti-
mation of SIR model parameters (Huang et al. 2020; Zhang 2020; Zhou et al. 2020; Zhu
et al. 2020), their results may not be reliable because of the under-reporting, which leads
to selection bias in the dataset collected in the pandemic.

Under-reporting of infected cases and deaths has resulted in delayed responses in many
countries, which cause severe social and economic impacts. Under-reporting is due to, for
instance, people who actually died from the virus before they were diagnosed to be infected
or people having mild symptoms and recovered from it before they even realised that they
had been infected already. Therefore existing research outputs may very likely estimate
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the death rate or infection rate with bias. For example, in the UK, many old people in care
homes died before theywere diagnosed and these death cases were not included in the early
stage of the pandemic. Also there were adjustments on the total number of infected cases
in China, UK and France, at later stages when more and more under-reporting evidence
had been gathered.

Under-reporting in the early stages of the pandemicmakes it very difficult to understand
the epidemic (Maugeri, Barchitta, Battiato, andAgodi 2020; Nishiura et al. 2020). Although
existing research has pointed out that unrecognised cases (often patients who experienced
mild or no symptoms, and patients that died before hospitalisation) could silently expose
a far greater proportion of the population to the SARS-CoV-2 (Li et al. 2020), they mainly
used simple estimation approaches or simulation studies to provide a subjective under-
reporting probability estimate.

In this research, we propose to use a truncation model to estimate the under-reporting
probabilities for infected cases. If the track-and-trace can be implemented perfectly in each
country, then every patient will have a reporting time X∗ (time from having symptoms to
reporting date). However, this is not the case in practice. The reporting timeX∗ can only be
recorded if the patient has been hospitalised (or tested due to any reason). In other words,
we can only observe X∗ if X∗ ≥ Y∗, where Y∗ is the time from the date having symptoms
to the date that patients go to hospital (or being tested). If X∗ ≥ Y∗, we observe both X∗
and Y∗; otherwise we do not have any information of X∗ and Y∗. Note that X∗ may be
also subject to right censoring by variable C∗, which is usually the last follow-up date, for
example from symptomdate to recovery or from symptomdate to other eventswhich result
reporting not happening yet.

Such truncation and censoringmodels have been proven useful inmany areas including
cancer research, clinical trials, epidemiological studies and actuarial science (Lawless 2003;
Kalbfleisch and Prentice 2011). We here focus on hypothesis testing to study the under-
reporting rate for infected cases under different characteristic (such as age and country)
groups.

Our research proposes a new hypothesis testing method to study the difference of trun-
cation probabilities in different population groups, where the truncation probability links
to the under-reporting probability. We prove the large sample results for the hypothesis
test statistic, under the martingale framework. Note that, existing research in the litera-
ture mainly focussed on comparison between survival curves of different populations, for
example the Gehan test and log-rank test (Lagakos, Barraj, and De Gruttola 1988; Bilker
and Wang 1996; Shen 2007, 2009, 2015). We use the nonparametric product limit esti-
mator to estimate the unknown survival curve in our analysis. Based on the estimated
survival functions, the hypothesis test statistic (for truncation probabilities) is constructed.
Although nonparametric maximum likelihood estimator (NPMLE) is another option for
estimating the survival function, it may underestimate the survival function at early times
for small to medium sized samples in the presence of truncation (Lynden-Bell 1971;
Woodroofe 1985; Tsai 1988).

This paper is organised as follows. Themethodologies are presented in Section 2, includ-
ing the hypotheses, test statistic and its large sample results, with all necessary proofs
provided in Appendix. Simulation studies and data analysis are presented in Sections 3
and 4, respectively. The paper ends with a conclusion in Section 5.
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2. Methodology

2.1. Model framework and the test hypotheses

Suppose there are K populations. For each k = 1, 2, . . . ,K, denote (X∗
i,k,Y

∗
i,k,C

∗
i,k), i =

1, 2, . . . as the continuous random variables from the kth population such that X∗
i,k is inde-

pendent of (Y∗
i,k,C

∗
i,k). The main survival time of interest X∗

i,k (time from the date having
symptoms to the reporting date) is subject to left truncation byY∗

i,k (time from the date hav-
ing symptoms to the date being referred to hospital) and is also subject to right censoring
by C∗

i,k. This means we observe nothing if X∗
i,k < Y∗

i,k, and observe X̃∗
i,k = min{X∗

i,k,C
∗
i,k}

and δ∗
i,k = I[X∗

i,k ≤ C∗
i,k] if X

∗
i,k ≥ Y∗

i,k. We also assume Y∗
i,k is independent of C∗

i,k and
P(C∗

i,k > Y∗
i,k) = 1 throughout this paper, for notation simplicity. Note that the indepen-

dent assumption of Y∗ and C∗ can be removed and the corresponding theoretical proofs
are provided in the Supplementary file.

Denote the survival function, the cumulative distribution and the cumulative hazard
function for X∗

i,k as Sk(t), Fk(t) = 1 − Sk(t) = P(X∗
1,k ≤ t) and �k(t), respectively. We

further denote the cumulative distribution for Y∗
i,k and C∗

i,k as Gk(t) = P(Y∗
1,k ≤ t) and

Qk(t) = P(C∗
1,k ≤ t), and the cumulative hazard function for Y∗

i,k as �k,G(t).
For any cumulative distribution function F(x), denote

aF = inf{x : F(x) > 0}, and bF = sup{x : F(x) < 1}.
We impose the following condition throughout the paper.

Condition 2.1: For k = 1, 2, . . . ,K, Fk(·),Gk(·) andQk(·) are continuous in their support
[aFk , bFk], [aGk , bGk] and [aQk , bQk], respectively.

Further, from Woodroofe (1985), under the following condition, Fk,Gk and Qk are
identifiable. Denote τk = min{bFk , bQk}.

Condition 2.2: For k = 1, 2, . . . ,K,

aGk ≤ min{aFk , aQk}, and bGk ≤ τk = min{bFk , bQk}.

The boundary assumption bGk ≤ min(bFk , bQk) includes the case bGk = min(bFk , bQk)=
∞ which is true in the early stage of the pandemic. This is because at the early stage of the
pandemic cases will only be recorded if patients are referred to hospital and then tested.
We may have bGk = ∞ (implying some patients being infected have mild symptoms and
they never go to hospital), but for such patients their reporting times can also be defined
as ∞, i.e. bFk = ∞. Since we can also assume bQk = ∞ for such patients because of the
nonparametric analysis used, the boundary assumption min(bFk , bQk) ≤ bGk is still valid.

The truncation probability for group k, k = 1, 2, . . . ,K, is αk = P(X∗
i,k ≥ Y∗

i,k) =∫
Gk(s) dFk(s). The probability αk represents the probability that a subject X∗

i,k can be
observed, and therefore 1 − αk is the under-reporting probability for the kth population.
Our main research target is to test the hypotheses

H0 : α1 = · · · = αK ↔ H1 : α1 ≥ · · · ≥ αK (1)

with at least one ≥ to be strictly > .
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2.2. The test statistic

To develop a test statistic for (1), we need to introduce the following notations first. Denote
the observed biased sample for the kth population as

(Y1,k, X̃1,k, δ1,k), (Y2,k, X̃2,k, δ2,k), . . . , (Ynk,k, X̃nk,k, δnk,k),

where X̃i,k = min{Xi,k,Ci,k} and δi,k = I[Xi,k ≤ Ci,k]. Denote n = ∑K
k=1 nk. Note that

throughout this paper, notations with superscript ∗, such as X∗
i,k and Y∗

i,k mean the ran-
dom variables from the population without selection bias, however such values cannot be
observed; and notations without superscript ∗, such as X̃i,k and Yi,k, mean the observed
truncated samples (having selection bias).1

Define a counting process related to X̃i,k

dNi,k(t) = I[t ≤ X̃i,k < t + dt, δi,k = 1], Nk(t) =
nk∑
i=1

Ni,k(t), (2)

and

Hi,k(t) = I[X̃i,k ≥ t > Yi,k], H̄k(t) =
nk∑
i=1

Hi,k(t). (3)

Then, the cumulative hazard function of X∗
i,k can be estimated via

d�̂k(t) = dNk(t)
H̄k(t)

,

and its survival function Sk(t) = 1 − Fk(t) can be estimated by the product limit estimator

Ŝk(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 ≤ t < X̃(1),k,∏
s∈(0,t]

[
1 − dNk(s)

H̄k(s)

]
, X̃(1),k ≤ t < X̃(nk),k,

0, t ≥ X̃(nk),k,

(4)

where X̃(1),k = min{X̃i,k}, X̃(nk),k = max{X̃i,k}. FromWoodroofe (1985), we know that the
estimate of Gk(t) is defined by

Ĝk(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t < Y(1),k,∏
s>t

[
1 − dNk,G(s)

H̄k(s)

]
, Y(1),k ≤ t < Y(nk),k,

1, t ≥ Y(nk),k,

(5)

where Nk,G(t) is given by

dNk,G(t) =
nk∑
i=1

I[t ≤ Yi,k < t + dt],

and Y(1),k = min{Yi,k}, Y(nk),k = max{Yi,k}. The large sample properties of �̂k and Ŝk are
provided in Appendix 1.
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For k = 1, 2, . . . ,K, denote

α̂k =
∫

Ĝk(s) dF̂k(s) =
∫

Ĝk(s)Ŝk(s) d�̂k(s). (6)

Then, the test statistic can be constructed as

W =
K−1∑
k=1

(
α̂k − α̂k+1 + · · · + α̂K

K − k

)
=

K−1∑
k=1

α̂k −
K−1∑
k=1

∑
i≥k+1

α̂i

K − k

=
K−1∑
k=1

α̂k −
K∑
i=2

( i−1∑
k=1

1
K − k

)
α̂i

= α̂1 +
K−1∑
k=2

(
1 −

k−1∑
i=1

1
K − i

)
α̂k −

(K−1∑
i=1

1
K − i

)
α̂K .

Let c1 = 1, ck = 1 −∑k−1
i=1 (K − i)−1, k = 2, . . . ,K − 1 and cK = −∑K−1

i=1 (K − i)−1,
thenW can be simplified as

W =
K∑

k=1

ckα̂k =
K∑

k=1

ck
∫

Ĝk(s) dF̂k(s). (7)

Note that
∑K

k=1 ck = 0.

2.3. The large sample properties of the test statistic

The following two assumptions are needed to ensure that the variance of the test statistic
exists.

Assumption 2.1: For k = 1, 2, . . . ,K, �k(t) < ∞, for t ∈ [0, τk), and

∫ τk

0

d�k(s)
Gk(s)(1 − Qk(s))Sk(s)

< ∞.

Assumption 2.2: For k = 1, 2, . . . ,K, �k,G(t) < ∞, for t ∈ [0, τk), and

∫ τk

0

d�k,G(s)
G2
k(s)(1 − Qk(s))2S2k(s)

< ∞.

Theorem2.1: Suppose for k = 1, 2, . . . ,K, nk/n → pk ∈ (0, 1), andConditions 2.1, 2.2 and
Assumptions 2.1, 2.2 hold. Denote Lk(t) = P(X̃i,k ≥ t > Yi,k). Under H0, as n → ∞, we
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have
√
nW → N

(
0, σ 2

W
)
,

where

σ 2
W =

K∑
k=1

p−1
k c2k σ 2

k , σ 2
k = σ 2

k1 + σ 2
k2 + σ 2

k3,

and

σ 2
k1 =

∫ τk

0

(∫ τk

s
Sk(u) dGk(u)

)2 d�k(u)
Lk(u)

,

σ 2
k2 =

∫ τk

0

(∫ s

0
Gk(u) dSk(u)

)2 dGk(u)
αkL2k(u)

,

σ 2
k3 = 2

∫ τk

0

(∫ s

0

∫ u
0 Gk(v) dSk(v)

Lk(u)
d�k,G(u)

) ∫ s
0 Gk(v) dSk(v)

G2
k(s)

dGk(s).

Theorem 2.1 shows that underH0, the test statistic
√
nW converges to a Normal distri-

bution. The rejection region for testing H0 at the significance level b (setting as b = 0.05
in this paper) is

{√nW/σW ≥ zb},
where zb is the b upper quantile of N(0, 1). In application, we can use a Bootstrap method
to get an consistent estimator σ̂W , replacing of σW .

3. Simulation studies

We implement a simulation study in this section to examine the finite sample performance
of the test statisticW in terms of type I errors. Here we consider two scenarios. In scenario
1, we simulate X∗

k , C
∗
k and Y∗

k from normal distribution, while in scenario 2, we consider
Weibull distribution. In all of our simulation, we set K = 3 groups.

Scenario 1, we set that the null hypothesis H0 holds, i.e. H0 : α1 = α2 = α3 and check
the probability of falsely rejectingH0 in our simulations. For i = 1, 2, . . . , n, we generate the
pseudo data X∗

i,k, C
∗
i,k and Y

∗
i,k from N(8.5 + k, 1), N(μC + k, 1) and N(μY + k, 1), respec-

tively. The simulated data X̃∗
i,k = min{X∗

i,k,C
∗
i,k}, Y∗

i,k and δ∗
i,k = min{X∗

i,k,C
∗
i,k} satisfying

the truncation condition X∗
i,k > Y∗

i,k will be used in our study; observations not satisfying
the truncation condition will be discarded. The parameter μC takes values 10.8, 10 and
9.5 which will give censoring proportions in different groups as about 5%, 15% and 25%,
respectively. The truncation parameter μY takes values 6.3, 7 and 7.5 which will make the
truncation probabilities of αk as about 95%, 85% and 75%, respectively. The sample sizes
n are chosen as 100, 200, 400 and 600, and the simulation replication is 5000 times. The
significance level is chosen as b = 0.05.

The results are shown in Table 1. We can see that α̂k becomes closer to the true value of
αk (truncation proportion), as n increases. Rejection probability forH0 also goes to the 5%
significant level (the type I error being allowed), as n increases.
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Table 1. Simulation results*(100) when the null hypothesis holds under normal distributions.

n = 100 n = 200 n = 400 n = 600

TP CP k α̂k std. α̂k std. α̂k std. α̂k std.

1 94.97 0.05 94.70 0.02 94.49 0.01 94.41 0.01
5% 2 94.97 0.05 94.69 0.03 94.48 0.01 94.35 0.01

3 95.00 0.05 94.67 0.03 94.47 0.01 94.36 0.01
RP 3.06 3.88 4.40 4.13
1 95.04 0.05 94.69 0.03 94.49 0.01 94.39 0.01

95% 15% 2 95.01 0.05 94.71 0.02 94.49 0.01 94.43 0.01
3 95.03 0.05 94.76 0.03 94.51 0.01 94.39 0.01
RP 2.64 3.42 4.18 4.45
1 95.09 0.05 94.83 0.03 94.55 0.01 94.44 0.01

25% 2 95.07 0.05 94.79 0.03 94.54 0.01 94.43 0.01
3 95.14 0.05 94.82 0.03 94.58 0.01 94.44 0.01
RP 2.62 3.22 3.65 4.65
1 87.54 0.23 86.82 0.12 86.51 0.06 86.36 0.04

5% 2 87.47 0.23 86.95 0.11 86.54 0.06 86.34 0.04
3 87.54 0.21 87.00 0.11 86.47 0.06 86.32 0.04
RP 3.74 3.64 4.88 5.00
1 87.71 0.21 87.11 0.11 86.66 0.06 86.48 0.04

85% 15% 2 87.62 0.22 87.15 0.11 86.63 0.06 86.48 0.04
3 87.67 0.22 87.14 0.11 86.59 0.06 86.41 0.04
RP 3.70 4.24 4.25 4.80
1 87.89 0.22 87.30 0.12 86.85 0.06 86.57 0.04

25% 2 87.85 0.24 87.30 0.12 86.82 0.06 86.53 0.04
3 87.90 0.21 87.25 0.12 86.77 0.06 86.59 0.04
RP 3.30 4.48 4.40 4.65
1 79.17 0.49 78.24 0.27 77.47 0.15 77.32 0.10

5% 2 79.15 0.49 78.29 0.26 77.50 0.15 77.31 0.10
3 79.30 0.48 78.27 0.26 77.47 0.15 77.33 0.09
RP 3.92 4.34 4.05 4.48
1 79.70 0.49 78.55 0.28 77.83 0.15 77.51 0.10

75% 15% 2 79.74 0.49 78.53 0.28 77.83 0.15 77.49 0.11
3 79.45 0.52 78.72 0.27 77.93 0.14 77.52 0.11
RP 4.16 4.00 4.28 4.58
1 79.89 0.54 78.96 0.28 78.96 0.28 77.82 0.10

25% 2 80.17 0.50 78.97 0.27 78.97 0.27 77.76 0.11
3 79.91 0.54 79.11 0.29 79.11 0.29 77.81 0.10
RP 4.06 4.24 4.38 4.80

Note: α̂k – themean estimate of the 5000 simulation replicates.std – the standard deviation of α̂k .TP – truncationproportion;
α := α1 = · · · = αK .CP – censoring proportion.RP – probability of rejecting H0, of the 5000 simulations.

Scenario 2, we still set that the null hypothesis H0 holds, and consider the simulated
data X∗

i,k such that X∗
i,k − k from Weibull(6.5, 4), where 6.5 is the scale parameter and

shape parameter is 4. The censored variables C∗
i,k is such that C∗

i,k − k ∼ Weibull(sC, 4),
while the truncation variable values Y∗

i,k is such that Y∗
i,k − k ∼ Weibull(sY , 4). Since the

simulated probability of rejecting H0 is not sensitive to censoring proportion, we set sC
to be 10 so that the censoring proportion is about 15%. In the meantime, we set sY to be
3, 4.1, 4.8 to test the influence of different truncation probabilities on hypothesis testing.
The same as above, the sample sizes are chosen as 100, 200, 400 and 600, and the simu-
lation replication is 5000 times. The significance level is chosen as b = 0.05. The results
are listed in Table 2. We can see that the results for Scenario 2 (Weibull distribution) are
very similar to that of Scenario 1, i.e. the estimator α̂k converges to the true truncation
proportion and the convergence becomes faster when the truncation proportion becomes
smaller.
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Table 2. Simulation results*(100) when the null hypothesis holds under Weibull distributions.

n = 100 n = 200 n = 400 n = 600

CP TP k α̂k std. α̂k std. α̂k std. α̂k std.

1 95.86 0.14 95.75 0.09 95.73 0.05 95.73 0.03
95% 2 95.99 0.12 95.79 0.08 95.73 0.05 95.72 0.03

3 95.93 0.13 95.75 0.10 95.73 0.05 95.73 0.03
RP 1.82 1.92 2.56 2.90
1 87.29 0.40 86.88 0.25 86.62 0.16 86.56 0.11

15% 85% 2 87.50 0.40 86.84 0.26 86.73 0.14 86.61 0.12
3 87.17 0.46 87.01 0.25 86.61 0.16 86.58 0.09
RP 3.06 3.10 3.50 3.56
1 78.99 0.71 78.43 0.39 77.87 0.24 77.71 0.17

75% 2 79.30 0.71 78.24 0.40 77.79 0.25 77.69 0.18
3 79.37 0.69 78.14 0.45 77.89 0.23 77.76 0.16
RP 3.66 4.12 4.20 4.21

Table 3. Simulation results*(100) when the null hypothesis is false; PoT – power of test.

n = 50 n = 100 n = 150 n = 200

TP CP k α̂k std. α̂k std. α̂k std. α̂k std.

X ∼N(9+0.25k,1) α1 = 81.14% 3% 1 84.77 0.63 83.51 0.33 83.13 0.22 82.84 0.18
Y ∼N(7+k,1) α2 = 64.12% 1% 2 70.31 1.70 68.69 0.98 67.46 0.69 66.93 0.52
C ∼N(11+k,1) α3 = 43.04% 1% 3 55.97 3.37 51.28 1.93 50.03 1.40 48.53 1.08

PoT 33.23 61.73 78.88 89.58
X ∼N(9+0.5k,1) α1 = 85.43% 4% 1 88.36 0.40 87.57 0.21 87.05 0.16 86.90 0.12
Y ∼N(7+k,1) α2 = 75.98% 2% 2 80.53 0.90 79.09 0.48 78.27 0.35 78.36 0.26
C ∼N(11+k,1) α3 = 63.87% 1% 3 70.64 1.71 68.59 0.96 67.55 0.70 67.04 0.51

PoT 25.58 50.08 66.88 80.15
X ∼N(9+0.75k,1) α1 = 89.40% 6% 1 91.45 0.25 90.83 0.13 90.53 0.09 90.24 0.07
Y ∼N(7+k,1) α2 = 85.51% 4% 2 88.27 0.40 87.43 0.20 87.16 0.16 86.93 0.11
C ∼N(11+k,1) α3 = 81.13% 3% 3 84.84 0.62 83.49 0.37 83.23 0.21 82.84 0.18

PoT 10.55 21.98 32.68 42.20
X ∼N(9+0.25k,1) α1 = 80.55% 11% 1 84.76 0.62 83.82 0.32 83.32 0.22 83.13 0.18
Y ∼N(7+k,1) α2 = 63.68% 4% 2 70.89 1.69 68.54 0.95 67.97 0.64 67.18 0.54
C ∼N(10+k,1) α3 = 43.15% 2% 3 56.17 3.33 51.75 1.96 49.60 1.39 48.75 1.11

PoT 32.70 61.75 79.95 89.03
X ∼N(9+0.5k,1) α1 = 84.98% 15% 1 88.50 0.41 87.76 0.21 87.31 0.15 87.09 0.11
Y ∼N(7+k,1) α2 = 75.47% 8% 2 80.63 0.94 79.38 0.48 78.61 0.34 78.34 0.27
C ∼N(10+k,1) α3 = 63.76% 4% 3 70.77 1.69 68.71 0.98 67.93 0.68 67.41 0.53

PoT 25.10 50.40 66.60 79.15
X ∼N(9+0.75k,1) α1 = 88.35% 19% 1 91.76 0.24 90.90 0.13 90.59 0.08 90.39 0.07
Y ∼N(7+k,1) α2 = 84.84% 15% 2 88.60 0.39 87.59 0.21 87.30 0.14 87.14 0.11
C ∼N(10+k,1) α3 = 80.59% 11% 3 85.03 0.62 83.80 0.32 83.32 0.22 82.96 0.17

PoT 10.10 21.93 31.83 41.38

To justify the performance of our method, we implement another simulation to study
the power of the test. Scenario 3, random variables are simulated from different normal
distribution settingswhich are detailed in Table 3. The truncation probabilities are different
in different groups, i.e.H1 holds. The sample sizes are chosen as 50, 100, 150, and 200 and
5000 simulations are implemented. The significance level is also chosen as b = 0.05.

From the results in Table 3, we can see that the estimates for α̂k converges to the true
values αk as n increases. Also the probability of correctly rejecting H0 goes higher as n
increases. This indeed implies that the power of the test increases as n increases. The greater
the difference of truncation proportions between different groups, the higher the power of
the test. The censoring proportion has little effect on the power of this test. Note that, in
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Table 3 the results of tests of rows 1, 2, 4, 5 have larger powers because these scenarios have
very different αk, k = 1, 2, 3 and the hypothesis test method has larger power to distinguish
them evenwith small sample sizes. On the contrary, the results in rows 3 and 6 have smaller
power, because in these scenarios the truncation probabilities in different groups αk, k =
1, 2, 3 have very close values. It needs much larger sample sizes to distinguish them, which
is indeed what we shall expect for all hypothesis test methods.

4. Real data analysis

We study a dataset collected in the early stage of the COVID-19 outbreak, from January to
February, 2020, provided in

https://github.com/mrc-ide/COVID19_CFR_submission.

It consists of 436 patients from different countries (regions) which have records of three
event time points: the time when symptoms appeared, the time when patient went to the
hospital, and the time when the case was reported. The main survival time X∗ is from
symptom date to the date of reporting. This X∗ is subject to left truncation by Y∗, the
time from symptom date to the date of hospital admission (or testing date). We can only
observe the pair (X∗,Y∗) when X∗ > Y∗. Here X∗ may be censored by C∗ which is the
last follow-up date, for example from symptom date to recovery or from symptom date to
other events which result reporting not happening yet. Our target is to study the truncation
probabilities αk under different groups, in particular, testing the hypotheses in (1). Note
thatαk = P(X∗

·,k ≥ Y∗
·,k), thus a higher α̂k represents a lower probability of under-reporting

(1 − αk).

4.1. Under-reporting probabilities under different age groups or different
countries

Firstly, using Equation (6), the estimated truncation probabilities α̂k under different age
groups are calculated and listed in Table 4. Totally 4 age groups are considered here, i.e.
K = 4. We use the test statisticW provided by (7) to test the hypotheses in (1). The alter-
native hypothesis means that as age increases the truncation probabilities go down, i.e. the
under-reporting probabilities go higher for older people. The p-value of this test is 0.1446,
hence H0 cannot be rejected under a 5% significance level, which means that by consider-
ing the full data set, there is no significant difference in the under-reporting probabilities
for different age groups. However, this result is based on all data from different countries
(regions), which does not take into account the heterogeneity of countries (regions).

The underlying country (region) factor may also play an important role in this analysis.
It is because of the heterogeneity of under-reporting across different countries (regions),

Table 4. The estimated truncation probabilities
of different age groups.

Age group 0–30 31–50 51–75 76–100

k 1 2 3 4
nk 58 141 209 28
α̂k 0.4437 0.5120 0.5246 0.3181

https://github.com/mrc-ide/COVID19_CFR_submission
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Table 5. The estimated truncation probabilities of different regions.

Region group Singapore Japan Hong Kong Taiwan Mainland China

k 1 2 3 4 5
nk 74 131 72 15 108
α̂k 0.7506 0.6692 0.4056 0.3881 0.2557

Table 6. The estimated truncation probabilities of different age groups.

Mainland China Hong Kong Japan Singapore

Age group k α̂k nk k α̂k nk k α̂k nk k α̂k nk

0–30 1 0.2607 19 1 0.8000 7 1 0.6429 15 1 0.7419 11
31–50 2 0.1784 39 2 0.6482 15 2 0.8279 30 2 0.8051 34
51–75 3 0.2710 37 3 0.5900 43 3 0.6689 79 3 0.8530 28
76–100 4 0.4687 13 4 0.2500 7 4 0.5391 7 4 – 1

which is likely due to the different track-and-trace policies in each country (region). There-
fore, we further implement an analysis by partition the data into subsets according to
country (region) (Mainland China, Hong Kong, Taiwan, Japan and Singapore). The trun-
cation probability estimates for different regions (not considering age effects) are shown
in Table 5. It can be seen that the truncation probabilities of different region groups are
quite different. Similarly as before, we use the test statistic W provided by (7) to test the
hypotheses in (1). The p-value is less than 0.001 which shows that there is a very strong
evidence to reject the NULL hypothesis, even under a 0.001 significance level. This means
that before February 2020 Singapore had the lowest under-reporting probability (only
about 25%), then it follows by Japan, Hong Kong, Taiwan. Mainland China had the highest
under-reporting probability (nearly 75%).

4.2. Under-reporting probabilities under different age groups and regions

In this subsection, we will study the under-reporting probabilities under different age
groups within each region. We will focus on Mainland China, Hong Kong, Japan, and
Singapore. The data from Taiwan were dropped off because of not enough observations
available. We display all the estimated truncation probabilities in Figure 1. It can be easily
seen that in Hong Kong and Japan, the truncation probabilities tend to decrease with age
increasing. However, in Mainland China and Singapore, the pattern is not clear or even
seems to be opposite.

We perform the same hypothesis test for different age groups within each region, where
the label information and partition details of each age groups are presented in Table 6.
The p-values for Hong Kong and Japan are 9.0596 ∗ 10−10 and 0.0287, respectively, which
means the proportion of under-reporting for elder people is much larger than young peo-
ple in these two areas. Meanwhile, the p-values for Mainland China and Singapore are
0.8631 and 0.7671, respectively. This means that in Mainland China and Singapore age is
not a significant factor for under-reporting rates at a 5% significance level, although over-
all before February 2020Mainland China had a very high under-reporting probability and
Singapore had a very low under-reporting probability.
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Figure 1. The estimated truncation probabilities of Mainland China, Hong Kong, Japan, and Singapore.

5. Conclusion

Under-reporting for COVID-19 infectious cases has become a major concern of World
Health Organisation (WHO) since in order to better understand and control the pan-
demic, under-reporting probability should be lowered at a minimum possible level. In this
study, we propose a truncation model to estimate the under-reporting probabilities for
infected cases of COVID-19 in different countries and for different age groups. Our results
largely agree with existing research. For example, the reports from Imperial College Lon-
don, (Imai, Dorigatti, Cori, Riley, and Ferguson 2020b; Imai et al. 2020a), have pointed out
the there could bemassive under-reporting cases in China before February 2020. However,
these existing studies use some very naive approaches or simulation studies to estimate the
under-reporting probability and thus provide less reliable estimation. Existing methods
may improve their estimates on under-reporting probability by using more extra informa-
tion available only at very late stage of the pandemic. Therefore, for such fast spreading
infectious disease, to better understand and control it, our proposedmethodology gives an
alternative sophisticated solution and can be used at very early stage of the pandemic (we
only used some publicly available data from January to February 2020 but the method can
still provide consistent estimate).

Our proposedmethodology can provide consistent estimate for the truncation probabil-
ity (thus for under-reporting probability) and can implement the hypothesis testing to find
out which factors are related to under-reporting. First, the country (region) factor played
an important role in the analysis, because of the heterogeneity of under-reporting across
different countries. Second,we have found that in some countries, elder people had a signif-
icant higher under-reporting probability than younger people. One reasonmay be because
many old people who live lonely or live in caremay have died from the disease without even
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diagnosed. This was actually what happened in the UK and China, where both countries
have once adjusted their total number of figures by adding the under-reporting figures in
the later stage of the pandemic. This was evidenced by a single day spike of infected cases
in both countries.

The disease has spread to almost every country in the world and the pandemic is still
in the early stage in many countries. Therefore, our methods may be valuable for them to
understand the epidemic, to bring about relevant actions to tackle it, to provide guidance
on their decision makings and to control the epidemic and minimise its impacts on their
economies and societies.

This research focussed on estimation and hypothesis testing for under-reporting prob-
abilities based on univariate truncation models, where only hospital admission time and
reporting time were used. Apart from these two events, the infected cases will have two
outcomes in the end, cure or death. Therefore, a competing risk model can be used. The
cure and death event will be subject to right censoring. Therefore, a future research work
will be to study the under-reporting probabilities using bivariate truncation and censoring
methodologies (Dai and Fu 2012; Dai, Restaino, andWang 2016; Dai, Wang, Restaino, and
Bao 2018; Wang, Dai, and Fu 2013), under the competing risk model framework.

Note

1. Note that the notations X and Y stand for the observable data, which must satisfy the condition
X ≥ Y , hence they are not independent. The independence assumption in Section 2.1 is for X∗
and Y∗ which can not be observed when X∗ < Y∗.
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Appendices

Appendix 1. Large sample properties for �̂k(t) and Ŝk(t)
Define the filtrationFi,k,t = σ {Ni,k(u), I[X̃i,k ≤ t, δi,k = 0], I[Yi,k ≤ u] : 0 ≤ u ≤ t}, t ∈ [0, τ ], and
denote its left limit as Fi,k,t−. Then we have the following lemma.

Lemma A.1: With the notations in Section 2, we have

E{dNi,k(t) |Fi,k,t−} = I[X̃i,k ≥ t > Yi,k] d�k(t) := dAi,k(t).

Proof: We need to show that for any set B ∈ Fi,k,t−,

P
({X̃i,k ≥ t > Yi,k} ∩ B

) · d�k(t) = P
(
{dNi,k(t) = 1} ∩ B

)
. (A1)

For B ∈ Fi,k,t−, there are the following three scenarios.

(a) A set B ∈ Fi,k,t−, in the form of {X̃i,k ≥ s3,Yi,k ∈ [s1, s2)} for any 0 ≤ s1 < s2 < t, s3 ≤ t,
guarantees (A1) since it becomes

P
(
X̃i,k ≥ t,Yi,k ∈ [s1, s2)

)
d�k(t) = P

(
X̃i,k ∈ [t, t + dt), δi,k = 1,Yi,k ∈ [s1, s2)

)
,

or equivalently

P
(
X̃∗
i,k ≥ t,Y∗

i,k ∈ [s1, s2) |X∗
i,k > Y∗

i,k
)
d�k(t)

= P
(
X̃∗
i,k ∈ [t, t + dt), δ∗

i,k = 1,Y∗
i,k ∈ [s1, s2) |X∗

i,k > Y∗
i,k
)
,

which is obvious true.
(b) A set B ∈ Fi,k,t−, in the form of {X̃i,k ∈ [s3, s4), δi,k = 1,Yi,k ∈ [s1, s2)} (or {X̃i,k ∈ [s3, s4), δi,k =

0,Yi,k ∈ [s1, s2)}) for any 0 ≤ s3 < s4 ≤ t and any s1, s2 such that B ∈ Fi,k,t−, also guaran-
tees (A1) since both sides of the equation become 0.

(c) A set B ∈ Fi,k,t−, in the form of {X̃i,k ≥ s3,Yi,k ≥ s1} for any 0 ≤ s1 ≤ t, 0 ≤ s3 ≤ t, guaran-
tees (A1) since it becomes

P
(
X̃i,k ≥ t > Yi,k ≥ s1

) · d�k(t) = P
(
X̃i,k ∈ [t, t + dt), δi,k = 1,Yi,k ≥ s1

)
,

and further

P
(
X̃∗
i,k ≥ t, t > Y∗

i,k ≥ s1
)

P
(
X∗
i,k > Y∗

i,k

) · d�k(t) =
P
(
X̃∗
i,k ∈ [t, t + dt), δ∗

i,k = 1, t > Y∗
i,k ≥ s1

)
P
(
X∗
i,k > Y∗

i,k

) ,

which is also true.

For any other sets, which are union, intersection, complementary of the sets of form in the above
item (a), (b) and (c), Equation (A1) also holds. �

Let dAi,k(t) = I[X̃i,k ≥ t > Yi,k] d�k(t) and Mi,k(t) = Ni,k(t) − Ai,k(t). From Lemma A.1, we
have E{dMi,k(t) |Fi,k,t−} = 0, i.e. Mi,k(t) is a martingale with respect to Fi,k,t . Similar arguments
hold forMk(t) = ∑nk

i=1Mi,k(t) with respect to filtration Fk,t = ∨nk
i=1Fi,k,t .

From the definition of �̂k, we have

�̂k(t) − �k(t) =
∫
[0,t]

I[H̄k(s) > 0]
H̄k(s)

dMk(s) −
∫
[0,t]

I[H̄k(s) = 0] d�k(s),

we know that �̂k(t) is a biased estimate to �k(t), but the bias
∫
[0,t] I[H̄k(s) = 0] d�k(s) (even with

a multiple factor nk) is negligible, according to Lemma A.3. Therefore, the variance of �̂k(t) is such
that

nkVar(�̂k(t)) = nk
∫
[0,t]

E

{
I[H̄k(s) > 0]

H̄k(s)

}
d�k(s) + o(1). (A2)
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We also have the following corollary.

Corollary A.1: For every k = 1, 2, . . . ,K, under Conditions 2.1, 2.2 and Assumption 2.1, for t ∈
[0, τk], we have the following statements:

√
nk
(
�̂k(t) − �k(t)

)
⇒ Z�k(t),

where Z�k(t) is a zero-mean Gaussian process with independent increments and variance function

σ 2
�k

(t) = αk

∫ t

0

d�k(s)
Gk(s)(1 − Qk(s))Sk(s)

. (A3)

Based on the following Lemma, which can be proved similarly as that in Fleming and Harring-
ton (1991), we can have the large sample properties for Ŝk(t).

Lemma A.2: If Sk(t) > 0,

Ŝk(t)
Sk(t)

= 1 −
∫ t

0

Ŝk(s−)

Sk(s)

{
dNk(s)
H̄k(s)

− d�k(s)
}
.

The bias of Ŝk(t) is then given by

Ŝk(t) − Sk(t) = −Sk(t)
∫ t

0

Ŝk(s−)

Sk(s)
I[H̄k(s) > 0]

H̄k(s)
dMk(s) + Bk(t), (A4)

where Bk(t) = Sk(t)
∫ t
0

Ŝk(s−)
Sk(s)

I[H̄k(s) = 0] d�k(s). From Lemma A.3, Bk(t) is negligible even with a
multiplicative factor nk. Hence, the variance of Ŝk(t) is such that

nkVar(Ŝk(t)) = nkS2k(t)
∫ t

0
E

{
Ŝ2k(s−)

S2k(s)
I[H̄k(s) > 0]

H̄k(s)

}
d�k(s) + o(1). (A5)

Corollary A.2: Under Conditions 2.1, 2.2 and Assumption 2.1, for t ∈ [0, τk], we have the following
statements:

√
nk(Ŝk(t) − Sk(t)) ⇒ ZSk(t),

where ZSk(t) is a zero-mean Gaussian process with independent increments and variance function

σ 2
Sk(t) = αk S2k(t)

∫ t

0

d�k(s)
Gk(s)(1 − Qk(s))Sk(s)

. (A6)

Appendix 2. Proof of Theorem 2.1

A.1. Necessary lemmas for proving Theorem 2.1

Lemma A.3: Under Condition 2.1 and Assumption 2.1, we have the following statements: for any
κ ∈ (0, 1), k = 1, 2, . . . ,K, we have

n1−κ
k

∫
[0,τk]

I[H̄k(s) = 0] d�k(s)
p→ 0; (A7)

Proof: According to Condition 2.1 we know that P(Ci,k ≥ s > Yi,k) · Sk(s−) > 0 with s ∈ (0, τk).
SinceE I[H̄k(s) = 0] = (1 − P(Ci,k ≥ s > Yi,k)Sk(s−))nk , Assumption 2.1 implies that�k(τ ) < ∞,
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�k is continuous at 0 and τ and∫
[0,τk]

(
P(Ci,k ≥ s > Yi,k) · Sk(s−)

)−1
d�k(s) < ∞.

Therefore, we can find sequences εn ≤ ε and τn ≥ τ0, such that εn ↓ 0 and τn ↑ τk as n → ∞ and
�k = 1/(nk1−κ log nk), �k(τk) − �k(τn) = 1/(n1−κ

k log nk). Because∫
[0,τk]

(
P(Ci,k ≥ s > Yi,k) · Sk(s−)

)−1
d�k(s) < ∞,

we know that(
P(Ci,k ≥ εn > Yi,k) · Sk(εn−)

)−1 · �k(εn) ≤
∫
[0,εn]

(
P(Ci,k ≥ s > Yi,k) · Sk(s−)

)−1
d�k(s) < ∞

and further

P(Ci,k ≥ εn > Yi,k) · Sk(εn−) ≥ �k(εn) = 1
n1−κ
k log nk

.

Similarly we have P(Ci,k ≥ τn > Yi,k) · Sk(τk−) ≥ (n1−κ
k log nk)−1.

On the other hand, P(Ci,k ≥ s > Yi,k) · Sk(s−) = E(n−1
k H̄k(s)), and

E

∣∣∣∣n1−κ
k

∫
[0,τk]

I[H̄k(s) = 0] d�k(s)
∣∣∣∣ = n1−κ

k

∫
[0,τk]

[1 − E(n−1
k H̄k(s))]nk d�k(s)

= n1−κ
k

∫
[0,εn]

[
1 − E(n−1

k H̄k(s))
]nk d�k(s) + n1−κ

k

∫
[τn ,τk]

[1 − E(n−1
k H̄k(s))]nk d�k(s)

+ n1−κ
k

∫
[εn,τn]

[1 − E(n−1
k H̄k(s))]nk d�k(s)

≤ n1−κ
k �k(εn) + n1−κ

k (�k(τk) − �k(τn)) + n1−κ
k [1 − 1/(n1−κ

k log nk)]nk �k(τk)

= 2
log nk

+ O
(
n1−κ
k exp(−nκ

k/ log nk)
) → 0

which implies (A7). The lemma is proved. �

Let dNk,G(t) = ∑nk
i=1 I[t ≤ Yi,k < t + dt], dAk,G(t) = ∑nk

i=1 I[Yi,k ≥ t]d�k,G(t). Similarly as
Lemma A.1, we have that Mk,G(t) = Nk,G(t) − Ak,G(t) is a martingale with respect to Fk,t and we
also have the following lemmas.

Lemma A.4: If Gk(t) > 0,

Ĝk(t)
Gk(t)

= 1 −
∫ τk

t

Ĝk(s−)I[H̄k(s) > 0]
Gk(s)H̄k(s)

(
dMk,G(s) + Jk(s)

Gk(s)
d�k,G(s)

)
+ 	Gk , (A8)

where Jk(s) = H̄k(s) − Gk(s)
∑nk

i=1 I[X̃i,k ≥ s] = Op(n
−1/2
k ), and

	Gk = −
∫ τk

t

Ĝk(s−)I[H̄k(s) = 0]
Gk(s)

d�k,G(s).

Proof: Suppose U, V and W are right-continuous functions of locally bounded variation on
any finite interval [t, τk], then U(τk)V(τk) − U(t)V(t) = ∫ τk

t U(s−) dV(s) + ∫ τk
t V(s) dU(s). and
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dW−1(s) = −(W(s)W(s−))−1dW(s). Let U(s) = Ĝk(s),W(s) = Gk(s), V(s) = G−1
k (s), so

Ĝk(t)
Gk(t)

= 1 +
∫ τk

t

Ĝk(s−)

Gk(s)
dGk(s)
Gk(s)

−
∫ τk

t

Ĝk(s−)

Gk(s)
dĜk(s)
Ĝk(s−)

.

FromTheorem1 inWoodroofe (1985), Ĝ−1
k (s−) dĜk(s) = H̄−1

k (s) dNk,G(s), together with dGk(s) =
(1 − Gk(s)) d�k,G(s), we get

Ĝk(t)
Gk(t)

= 1 −
∫ τk

t

Ĝk(s−)I[H̄k(s) > 0]
Gk(s)H̄k(s)

dMk,G(s)

+
∫ τk

t

Ĝk(s−)I[H̄k(s) > 0]
G2
k(s)H̄k(s)

(
H̄k(s) − Gk(s)

nk∑
i=1

I[X̃i,k ≥ s]

)
d�k,G(s)

−
∫ τk

t

Ĝk(s−)I[H̄k(s) = 0]
Gk(s)

d�k,G(s)

= 1 −
∫ τk

t

Ĝk(s−)I[H̄k(s) > 0]
Gk(s)H̄k(s)

(
dMk,G(s) + Jk(s)

Gk(s)
d�k,G(s)

)
+ 	Gk ,

where Jk(s) = H̄k(s) − Gk(s)
∑nk

i=1 I[X̃i,k ≥ s], and

	Gk = −
∫ τk

t

Ĝk(s−)I[H̄k(s) = 0]
Gk(s)

d�k,G(s).

Denote Lk(s) = P(X̃i,k ≥ s > Yi,k). Since

Lk(s) = α−1
k P

(
X∗
i,k ≥ s,C∗

i,k ≥ s > Y∗
i,k

)
= α−1

k Sk(s)(1 − Qk(s))Gk(s), (A9)

and Gk(s)P(X̃i,k ≥ s) = Gk(s)P(min{Xi,k,Ci,k} ≥ s) = α−1
k Sk(s)(1 − Qk(s))Gk(s), we get n−1

k
Jk(s) = n−1

k H̄k(s) − Gk(s)(n−1
k
∑nk

i=1 I[X̃i,k ≥ s]) → Lk(s) − Gk(s)P(X̃i,k ≥ s) = 0, and further-
more, from central limit theorem, we have Jk(s) = Op(n

−1/2
k ).

Since 	G is negligible (even with a multiple factor nk) according to Lemma A.3, we can rewrite
	G = op(n

−1/2
k ), hence Ĝk is asymptotically unbiased, and

Ĝk(t) − Gk(t) = −Gk(t)
∫ τk

t

Ĝk(s−)I[H̄k(s) > 0]
Gk(s)H̄k(s)

(
dMk,G(s) + Jk(s)

d�k,G(s)
Gk(s)

)
+ B̄k,G(t),

(A10)

where B̄k,G(t) = Gk(t) · 	Gk = op(n
−1/2
k ). �

Lemma A.5: Under Conditions 2.1, 2.2 and Assumption 2.2, for k = 1, 2, . . . ,K, as n → ∞,

√
n
∫ τk

0

(∫ u

0
Gk(s) dSk(s)

)
Ĝk(u−)

G2
k(u)

I[H̄k(u) > 0]Jk(u)
H̄k(u)

d�k,G(u) → N
(
0, p−1

k σ 2
k3
)
,

where

σ 2
k3 = 2

∫ τk

0

(∫ v

0

∫ u
0 Gk(s) dSk(s)

Lk(u)
d�k,G(u)

) ∫ v
0 Gk(s) dSk(s)

G2
k(v)

dGk(v).
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Proof: Denote

Wk,G(u) =
(∫ u

0
Gk(s) dSk(s)

)(
Ĝk(u−) − Gk(u)

Gk(u)
+ 1

)
I[H̄k(u) > 0]

H̄k(u)

=
(∫ u

0
Gk(s) dSk(s)

)
I[H̄k(u) > 0]

H̄k(u)
+ Op(n

−1/2
k ). (A11)

Since n−1
k Jk(u) = Op(n

−1/2
k ), and

1
n−1
k H̄k(u)

= 1
Lk(u)

(
1 + Lk(u) − n−1

k H̄k(u)
n−1
k H̄k(u)

)
,

where Lk(u) is defined in (A9), therefore∫ τk

0

Wk,G(u) Jk(u)
Gk(u)

d�k,G(u) (A12)

=
∫ τk

0

(∫ u

0
Gk(s) dSk(s)

) I[H̄k(u) > 0]n−1
k Jk(u)

Gk(u)
1

n−1
k H̄k(u)

d�k,G(u) + Op(n−1
k )

=
∫ τk

0

(∫ u

0
Gk(s) dSk(s)

) I[H̄k(u) > 0]n−1
k Jk(u)

Gk(u)Lk(u)

(
1 + Lk(u) − n−1

k H̄k(u)
n−1
k H̄k(u)

)

× d�k,G(u) + Op(n−1
k )

=
∫ τk

0

(∫ u

0
Gk(s) dSk(s)

) n−1
k Jk(u)

Gk(u)Lk(u)
d�k,G(u) + Op(n−1

k )

= 1
nk

nk∑
i=1

∫ τk

0

∫ u
0 Gk(s) dSk(s)
Gk(u)Lk(u)

(
I[X̃i,k ≥ u > Yi,k] − Gk(u)I[X̃i,k ≥ u]

)
d�k,G(u) + Op(n−1

k ).

(A13)

Let Jk,i(u) = I[X̃i,k ≥ u > Yi,k] − Gk(u)I[X̃i,k ≥ u], and

ξi,k =
∫ τk

0

∫ u
0 Gk(s) dSk(s)
Gk(u)Lk(u)

Jk,i(u) d�k,G(u),

then E ξi,k = 0. Denote

σ 2
k3 = E ξ 2i,k = E

(∫ τk

0

∫ τk

0

∫ u
0 Gk(s) dSk(s)
Gk(u) Lk(u)

∫ v
0 Gk(s) dSk(s)
Gk(v) Lk(v)

Jk,i(u) Jk,i(v) d�k,G(u) d�k,G(v)

)
.

Since

E(Jk,i(u)Jk,i(v)) = E

(
I[X̃i,k ≥ u] I[X̃i,k ≥ v]

(
I[Yi,k < u] − Gk(u)

) (
I[Yi,k < v] − Gk(v)

) )
= α−1

k E

(
I[X̃∗

i,k ≥ max(u, v)]
(
I[Y∗

i,k < u] − Gk(u)
) (
I[Y∗

i,k < v] − Gk(v)
) )

= α−1
k Sk(max(u, v))

(
1 − Qk(max(u, v))

)(
Gk(min(u, v)) − Gk(u)Gk(v)

)
,

together with the definition of Lk(·) in (A9), we have

σ 2
k3 =

∫∫
0≤u≤v≤τk

∫ u
0 Gk(s) dSk(s)

Lk(u)

∫ v
0 Gk(s) dSk(s)

G2
k(v)

(1 − Gk(v)) d�k,G(u) d�k,G(v)

+
∫∫

τk≥u>v≥0

∫ u
0 Gk(s) dSk(s)

G2
k(u)

∫ v
0 Gk(s) dSk(s)

Lk(v)
(1 − Gk(u)) d�k,G(u) d�k,G(v)
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= 2
∫∫

0≤u≤v≤τk

∫ u
0 Gk(s) dSk(s)

Lk(u)

∫ v
0 Gk(s) dSk(s)

G2
k(v)

d�k,G(u) dGk(v).

Notice that, under Assumption 2.2,

σ 2
k3 < 2

∫∫
0≤u≤v≤τk

d�k,G(u) dGk(v)
Lk(u)G2

k(v)
< 2

∫ τk

0

(
1

Gk(u)
− 1

)
d�k,G(u)
Lk(u)

< ∞.

The lemma is proved. �

A.2. Proof of Theorem 2.1

Proof: Under H0, we have

W =
K∑

k=1

ck
{∫ τk

0
Ĝk(s)Ŝk(s)

(
dNk(s)
H̄k(s)

− I[H̄k(s) > 0]d�k(s) − I[H̄k(s) = 0]d�k(s)
)}

+
K∑

k=1

ck
{∫ τk

0

(
Ĝk(s)Ŝk(s) − Gk(s)Sk(s)

)
d�k(s)

}

=
K∑

k=1

ck
∫ τk

0
Ĝk(s)Ŝk(s)

I[H̄k(s) > 0]
H̄k(s)

dMk(s) +
K∑

k=1

ck
∫ τk

0

(
Ĝk(s)Ŝk(s) − Gk(s)Sk(s)

)
d�k(s)

−
K∑

k=1

ck
∫ τk

0
Ĝk(s)Ŝk(s)I[H̄k(s) = 0] d�k(s) =

K∑
k=1

ck(Uk1 + Uk2 + Uk3)

Since Uk1 is a typical martingale and Uk3 is negligible according to Lemma A.3, we only need to
examine the properties of Uk2. Denote

Uk2,S =
∫ τk

0

(
Ŝk(s) − Sk(s)

)
Ĝk(s) d�k(s), Uk2,G =

∫ τk

0

(
Ĝk(s) − Gk(s)

)
Sk(s) d�k(s),

and then Uk2 = Uk2,S + Uk2,S. Substituting equations (A4) and (A8) into Uk2,S and Uk2,G, together
with Lemma A.3, we get

Uk2,S =
∫ τk

0

(
−Sk(s)

∫ s

0

Ŝk(u−)

Sk(u)
I[H̄k(u) > 0]

H̄k(u)
dMk(u) + Bk(s)

)
Ĝk(s) d�k(s)

=
∫ τk

0

(∫ τk

u
Ĝk(s) dSk(s)

)
Ŝk(u−)

Sk(u)
I[H̄k(u) > 0]

H̄k(u)
dMk(u) + op(n

−1/2
k ),

and

Uk2,G = −
∫ τk

0
Gk(s)

∫ τk

s

Ĝk(u−)I[H̄k(u) > 0]
Gk(u)H̄k(u)

×
(
dMk,G(u) + Jk(u)

d�k,G(u)
Gk(u)

)
Sk(s) d�k(s) + op(n

−1/2
k )

=
∫ τk

0

(∫ u

0
Gk(s) dSk(s)

)
Ĝk(u−)

Gk(u)
I[H̄k(u) > 0]

H̄k(u)

×
(
dMk,G(u) + Jk(u)

d�k,G(u)
Gk(u)

)
+ op(n

−1/2
k ).
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Hence Uk1 + Uk2 = Uk1 + Uk2,S + Uk2,G can be rewritten as Ik + IIk + IIIk + op(n
−1/2
k ), where

Ik =
∫ τk

0
Wk(u) dMk(u), IIk =

∫ τk

0
Wk,G(u) dMk,G(u),

IIIk =
∫ τk

0

Wk,G(u)Jk(u)
Gk(u)

d�k,G(u),

Wk(u) =
(
Ĝk(u)Ŝk(u) +

(∫ τk

u
Ĝk(s) dSk(s)

)
Ŝk(u−)

Sk(u)

)
I[H̄k(u) > 0]

H̄k(u)

=
(∫ τk

u
Sk(s) dĜk(s)

)
Ŝk(u−)

Sk(u)
I[H̄k(u) > 0]

H̄k(u)
,

with IIIk given in (A13) andWk,G(u) given in (A11).
Since bothMk(t) andMk,G(t) are martingale, together with the definition of Lk in (A9), we have

〈√
nk Ik,

√
nk Ik

〉 = nk
∫ τk

0
W2

k (u) d 〈Mk(u),Mk(u)〉 = nk
∫ τk

0
W2

k (u)H̄k(u) d�k(u)

→
∫ τk

0

(∫ τk

u
Sk(s) dGk(s)

)2 d�k(u)
Lk(u)

:= σ 2
k1,

〈√
nk IIk,

√
nk IIk

〉 = nk
∫ τk

0
W2

k,G(u) d
〈
Mk,G(u),Mk,G(u)

〉

= nk
∫ τk

0
W2

k,G(u)

( nk∑
i=1

I[X̃i,k ≥ Yi,k ≥ u]

)
d�k,G(u)

→
∫ τk

0

(∫ u

0
Gk(s) dSk(s)

)2 dGk(u)
αkL2k(u)

:= σ 2
k2.

Under Assumptions 2.1 and 2.2, both σ 2
k1 and σ 2

k2 exist.
From Theorem 2.6.1 in Fleming and Harrington (1991), we know

〈
Mk(u),Mk,G(u)

〉 = −
∫ u

0
	Ak(t) dAk,G(t) = −

nk∑
i=1

∫ u

0
	Ak(t) I[X̃i,k ≥ Yi,k ≥ t] d�k,G(t).

Further, since dAk(t) = ∑nk
i=1 I[X̃i,k ≥ t > Yi,k] d�k(t), we get

〈√
nk Ik,

√
nk IIk

〉 = nk
∫ τk

0
Wk(u)Wk,G(u) d

〈
Mk(u),Mk,G(u)

〉 = 0.

According to the martingale theory in Fleming and Harrington (1991), under Assumptions 2.1
and 2.2, when n → ∞,

√
n
nk

√
nk(Ik + IIk) → N(0, p−1

k (σ 2
k1 + σ 2

k2)). By Lemma A.5, we also have√
n
nk

√
nk IIIk → N(0, p−1

k σ 2
k3).

Therefore, using the result

Cov
(
(Ik + IIk), IIIk

)
= E (Ik + IIk)IIIk

= E

∫ τk

0
Wk(u) dMk(u)

∫ τk

0
Wk,G(v)Jk(v)

d�k,G(v)
Gk(v)

+ E

∫ τk

0
Wk,G(u) dMk,G(u)

∫ τk

0
Wk,G(v)Jk(v)

d�k,G(v)
Gk(v)
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= E

(∫ τk

0
Wk(u)

(∫ τk

0
Wk,G(v)Jk(v)

d�k,G(v)
Gk(v)

)
dMk(u)

)

+ E

(∫ τk

0
Wk,G(u)

(∫ τk

0
Wk,G(v)Jk(v)

d�k,G(v)
Gk(v)

)
dMk,G(u)

)
= 0,

we get
√

n
nk

√
nk(Uk1 + Uk2 + Uk3) → N(0, p−1

k σ 2
k ), where σ 2

k = σ 2
k1 + σ 2

k2 + σ 2
k3.

Since K groups are independent, then under H0, we have

√
nW =

K∑
k=1

ck
√
n(Uk1 + Uk2 + Uk3) → N

(
0, σ 2

W
)
,

where σ 2
W = ∑K

k=1 p
−1
k c2k σ 2

k . �


	1. Introduction
	2. Methodology
	2.1. Model framework and the test hypotheses
	2.2. The test statistic
	2.3. The large sample properties of the test statistic

	3. Simulation studies
	4. Real data analysis
	4.1. Under-reporting probabilities under different age groups or different countries
	4.2. Under-reporting probabilities under different age groups and regions

	5. Conclusion
	Note
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


