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S1 Plausible Data Generating Processes and No Effect Modification 

Let 𝐘∗ represent the latent true values of the survey variables in the analysis, 𝐘0, 𝐘1 the mode-

specific potential outcomes,  and 𝐘 = (1 − 𝐷)𝐘0 + 𝐷𝐘1 the observed data.  We now consider two 

plausible data generating mechanisms for the data in a mixed-mode sequential design.  Both 

induce non-random non-ignorable selection. 

(i) Mode effects determined prior to individual mode choice. 

The mode-specific potential outcomes (and hence the mode effect) depend on the latent-but-

true characteristics of the individual 𝐘∗ and the design and implementation of the survey.  

Hence, 𝓜= 𝐘1 − 𝐘0 is determined after 𝐘∗ and 𝑀 but before the individual chooses whether to 

comply.  This data generating process has the form 

𝑃(𝐘∗)𝜁(𝑀)𝜁(𝐘0, 𝐘1|𝐘
∗)𝜁(𝐷|𝑀, 𝐘∗, 𝐘0, 𝐘1).      (S1.1) 

The density 𝑃(𝐘∗) is for the survey characteristics of the target population and exists 

independently of the study, while the densities indicated by 𝜁 depend on the study (its design 

and timing) as well as the characteristics of the subjects.  There is no density for 𝐘 because it is 

uniquely determined given 𝐷 and 𝐘0 and 𝐘1 by (1 − 𝐷)𝐘0 + 𝐷𝐘1. 

The randomization density 𝜁(𝑀) is trivial but the measurement process 𝜁(𝐘0, 𝐘1|𝐘
∗) and the 

compliance/selection process 𝜁(𝐷|𝑀, 𝐘∗, 𝐘0, 𝐘1) are not.  

The measurement model does not depend on 𝑀 and so incorporates the usual assumption that 

potential mode outcomes depend on individuals’ survey characteristics but not on their 

randomization outcomes.   

However, the model for compliance is completely unconstrained: if 𝑀 is a valid instrumental 

variable then it must be associated with the compliance decision, and the dependence on 

𝐘0 and 𝐘1 allows compliance to depend explicitly on simple mode effect 𝓜 as well as an 

individual’s survey characteristics.  

Under (S1.1), the resulting mode-effect distribution among those who choose web with 

randomization outcome 𝑀 is 

𝑝(𝐘0, 𝐘1|𝐷 = 1,𝑀) = ∫
𝑃(𝐘∗)𝜁(𝐘0, 𝐘1|𝐘

∗)𝜁(𝐷 = 1|𝑀, 𝐘∗, 𝐘0, 𝐘1)

𝑝(𝐷 = 1|𝑀)
𝐘∗

𝜕𝐘∗,      (S1.2) 

which will generally depend on 𝑀 so that the NEM assumption does not hold.   

There are two exceptions to this.  Exception 1 is when mode selection is independent of the 

individual’s characteristics or mode outcomes such that 𝜁(𝐷 = 1|𝑀, 𝐘∗, 𝐘0, 𝐘1) = 𝜁(𝐷 = 1|𝑀), in 

which case 𝑝(𝐘0, 𝐘1|𝐷 = 1,𝑀) = 𝑝(𝐘0, 𝐘1).   

Exception 2 is when a) the measurement model does not depend on the survey characteristics 

such that 𝜁(𝐘0, 𝐘1|𝐘
∗) = 𝜁(𝐘0, 𝐘1), and b) compliance does not depend on the potential mode 
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outcomes such that 𝜁(𝐷 = 1|𝑀, 𝐘∗, 𝐘0, 𝐘1) = 𝜁(𝐷 = 1|𝑀, 𝐘
∗).  If a) and b) hold then 

𝑝(𝐘0, 𝐘1|𝐷 = 1,𝑀) = 𝑝(𝐘0, 𝐘1) as above.  While we argue that it is not implausible to assume 

that compliance depends only on an individual’s true characteristics, it is generally 

unreasonable to assume that mode effects are independent of the true characteristics. 

(ii) Mode effects determined immediately after individual mode choice. 

Alternatively, 𝐘0, 𝐘1 are determined only after the participants have chosen to comply or 

noncomply with their randomized allocations in the data generating process, that is, 

𝑃(𝐘∗)𝜁(𝑀)𝜁(𝐷|𝑀, 𝐘∗)𝜁(𝐘0, 𝐘1|𝐘
∗, 𝐷).      (S1.3) 

Now compliance depends only on an individual’s true survey characteristics and randomization, 

and the measurement model can depend on whether individuals comply or not with their 

randomization. 

Under (S1.3), 

𝑝(𝐘0, 𝐘1|𝐷 = 1,𝑀) = ∫
𝑃(𝐘∗)𝜁(𝐷 = 1|𝑀, 𝐘∗)𝜁(𝐘0, 𝐘1|𝐘

∗, 𝐷 = 1)

𝑝(𝐷 = 1|𝑀)
𝐘∗

𝜕𝐘∗,      (S1.4) 

will generally depend on 𝑀 so, again, NEM does not generally hold. 

NEM again holds under trivial exception 1 above, but also under a variation on exception 2: if 

the measurement model does not depend on the true characteristics among those who choose 

web, that is, 𝜁(𝐘0, 𝐘1|𝐘
∗, 𝐷 = 1) = 𝜁(𝐘0, 𝐘1|𝐷 = 1), then 𝑝(𝐘0, 𝐘1|𝐷 = 1,𝑀) = 𝑝(𝐘0, 𝐘1|𝐷 = 1).   

Finally, we compare data generating processes (i) and (ii) for the mixed-modes experiment with 

that underpinning classical treatment-effect problems, which have the form 

𝑃(𝛆)𝜁(𝑍)𝜁(𝐷|𝛆, 𝑍)𝜁(𝐘0, 𝐘1|𝛆, 𝐷),      (S1.5) 

where 𝑍 is the instrumental variable, 𝐘0 and 𝐘1 are respectively the potential outcomes under 

control and treatment , and 𝛆 represents the effect of unobserved confounding.  Clearly, the 

unobserved confounding take the place of the true characteristics in the mode-effect data 

generating process (ii).  Exception 2 is explicitly built-in to the classical linear casual model 

𝑌𝑑 = 𝛽0 + 𝛽1𝑑 + 𝜚0 + (𝜚1 − 𝜚0)𝑑, 

where 𝐸(𝜚0|𝐷 = 0) ≠ 𝐸(𝜚0|𝐷 = 1) but the treatment effect 

𝑌1 − 𝑌0 = 𝛽1 + 𝜚1 − 𝜚0 

depends on a heterogeneity term 𝜚1 − 𝜚0 that is explicitly taken to satisfy either 

𝐸(𝜚1 − 𝜚0|𝐷, 𝛆) = 0 or  𝐸(𝜚1 − 𝜚0|𝐷 = 1, 𝛆) = 𝐸(𝜚1 − 𝜚0|𝐷 = 1).  In other words, the treatment-

effect heterogeneity does not depend on unobserved confounding 𝛆 and NEM holds.  This 

assumption accepted in the treatment-effect estimation literature but, as outlined above, it 

cannot be so easily justified for mixed-mode designs. 

 

S2 Two Stage Least Squares and G-estimation 

The potential outcomes 𝑌𝑑𝑚 are taken to exist prior to the experiment taking place, the potential 

outcome.  This represents the measurement we would obtain had the individual lived in a 

household that was allocated to mode 𝑚 and chosen mode 𝑑.  There are thus four potential 
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outcomes of which we observe only one: 𝑌 = 𝑌𝐷𝑀 .  The single unit treatment value assumption 

(SUTVA) is taken to hold such that 𝑌𝑑𝑚 is taken to be independent of 𝑑 and 𝑚 for every other 

sample member (including those living in the same household): in other words, the 

randomization and mode choice of the other sample members has no impact on the potential 

outcome of each individual (Angrist et al. 1996). 

For 𝑀 to be a valid instrumental variable, it must satisfy the following conditions: 

1. Exclusion restriction 𝑌𝑑𝑚 = 𝑌𝑑  

2. Independence of randomization and mode-specific potential outcomes: 𝑀 ⫫ (𝑌0, 𝑌1) 

3. A non-null association exists between 𝑀 and 𝐷. 

Consider IV regression for the linear model 

𝑌𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝜖𝑖,      (S2.1) 

where error 𝜖𝑖 represents the combined effect of every cause of 𝑌𝑖  not explicitly included in the 

linear model, and 𝜏1 is the causal effect of mode, that is, the effect of changing 𝐷𝑖 from 0 to 1 

while simultaneously holding everything else (i.e. 𝜖𝑖) fixed (ceteris paribus).  Ordinary least 

squares is unbiased and consistent for 𝛽1 only if 𝐸(𝜖𝑖|𝐷𝑖) = 0, that is, 𝐷𝑖 is ‘exogenous’.  

However, if 𝐸(𝜖𝑖|𝐷𝑖) ≠ 0 then 𝐷𝑖 is ‘endogenous’ which, in this case, is due to non-random 

selection in which participants’ mode choices are potentially related to their mode effects.  

If 𝐷𝑖 is ‘endogenous’ , two-stage least squares (2SLS) should be used instead of ordinary least 

squares.  2SLS estimation proceeds as follows: 1. Regress 𝐷𝑖 on 𝑀𝑖 to obtain the predicted value 

𝐷̂𝑖 = 𝜋̂(𝑀𝑖), where 𝜋(𝑀𝑖) = Pr(𝐷𝑖 = 1|𝑀𝑖); and 2. Regress of 𝑌𝑖  on 𝐷̂𝑖 to obtain 𝛽̂1.  The 2SLS 

estimator in this simple case reduces to 

𝛽̂1 =
𝐸(𝑌𝑖|𝑀𝑖 = 1) − 𝐸(𝑌𝑖|𝑀𝑖 = 0)

𝜋(1) − 𝜋(0)
,      (S2.2) 

which is consistent, but not unbiased, for 𝛽1. 

Our framework is based on the structural mean models (SMMs) for causal inference (Hernán 

and Robins 2006).  A linear SMM for the effect of mode on the mean of survey variable 𝑌is 

𝐸(𝑌𝑖 − 𝑌0𝑖|𝐷𝑖, 𝑀𝑖) = 𝜇1𝐷𝑖,      (S2.3) 

where 𝜇1 = 𝐸(𝑌1𝑖 − 𝑌0𝑖|𝐷𝑖 = 1) is the average difference between the web and face-to-face 

mode responses among those who choose web.  In contrast to IV regression, the SMM does not 

constrain heterogeneity in   In addition to core conditions 1-3 above, the SMM model makes 

clear that we must also assume the mode effect among those choosing web is the same for 

compliers as it is for non-compliers.   

The mode effect is identified by the conditional mean independence (CMI) assumption    

𝐸(𝑌0𝑖|𝑀𝑖) = 𝐸(𝑌0𝑖),      (S2.4) 

which follows under core conditions 1-2.  Under SMM (S2.3), this can be rewritten as 

𝐸(𝑌0𝑖|𝑀𝑖) = 𝐸{𝐸(𝑌𝑖|𝐷𝑖, 𝑀𝑖) − 𝜇1𝐷𝑖|𝑀𝑖} = 𝐸(𝑌𝑖 − 𝜇1𝐷𝑖|𝑀𝑖) = 𝐸(𝑌0𝑖).      (S2.5) 

The general form of the g-estimator for 𝜇1 is  

∑ 𝑎0(𝑀𝑖)𝑈𝑖
𝑖

= 0,      (S2.6) 
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where 𝑈𝑖 = 𝑌𝑖 − 𝜇1𝐷𝑖 and the choice of 𝑎0(𝑀𝑖) must satisfy 𝐸{𝑎0(𝑀𝑖)} = 0. Note that 𝑈𝑖  is local 

notation and does not correspond to 𝑈𝑖  in Submitted Paper (2020, equations (5-6)).  

Irrespective of this choice, the solution to (S2.6) is simply the 2SLS estimator (S2.2).  Standard 

results for g-estimators give 

𝑎0(𝑀𝑖) = ( 𝜋𝑖 − 𝜋)𝜎𝑈
−2,      (S2.7) 

where 𝜋 = Pr(𝐷𝑖 = 1), 𝜋𝑖 = 𝜋(𝑀𝑖)  and 𝜎𝑈
2 = 𝐸(𝑈𝑖).  The asymptotic distribution is 

√𝑛(𝜇̂1 − 𝜇1)~𝑁{0, 𝜎𝑈
2 var(𝜋𝑖)⁄ }.      (S2.8) 

While this estimator would be semi-parametrically efficient if 𝐸(𝑈𝑖
2|𝑀𝑖) = 𝐸(𝑈𝑖

2) and no 

modelling assumptions were made about 𝐸(𝑌0𝑖), basing variance estimation on 𝜎𝑈
2 var(𝜋𝑖)⁄  will 

lead to over-estimated standard errors because 𝐸(𝑌0𝑖) from (S2.5) can be included in the model 

without imposing further constraints on the observed data law simply by adding 𝜇0 = 𝐸(𝑌0𝑖) as 

a parameter.  Hence, the estimating equation for 𝜇0 and 𝜇1 is 

∑ 𝐚0(𝑀𝑖)𝑈̅𝑖
𝑖

= 𝟎,      (S2.9) 

where the mean of 𝐚0(𝑀𝑖) can be non-zero but 

𝑈̅𝑖 = 𝑌𝑖 − 𝜇0 − 𝜇1𝐷𝑖      (S2.10) 

satisfies 𝐸(𝑈̅𝑖|𝑀𝑖) = 0 under CMI (Clarke et al. 2015).  Note that 𝑈̅𝑖  corresponds to 𝑈𝑖  in 

Submitted Paper (2020, equations (5-6); note also that (S2.10) has the same form as the 

residual of the 2SLS estimator (S2.1).  Semi-parametric theory for (S2.9) reveals the efficient 

choice to be 

𝐚0(𝑀𝑖) = (
1
𝜋𝑖
)𝜎𝑈̅

−2, 

with asymptotic marginal distribution 

√𝑛(𝜇̂1 − 𝜇1)~𝑁{0, 𝜎𝑈̅
2 var(𝜋𝑖)⁄ }.      (S2.11) 

The asymptotic variance above is smaller than in (S2.8) because 𝜎𝑈̅
2 = 𝐸(𝑈̅𝑖

2) = 𝜎𝑈
2 − 𝜇0

2 ≤ 𝜎𝑈
2. 

Generally, the use of a mean-centred 𝑈̅𝑖  (e.g. when covariates are included in the SMM) requires 

further modelling assumptions, with bias introduced if the model for 𝐸(𝑈̅𝑖|𝑀𝑖, 𝐂𝑖) is incorrectly 

specified.  However, the mean-centring is trivial in this case and so preferable to standard g-

estimation, and will be used to construct estimators of the structural moment, variance and 

covariance models. 

 

 

S3 Structural Moment Models  

S3.1 Choice of efficient instrument for SMoMs 

Denote the SMoM parameters by 𝛉 (this includes the mean-centring parameter) and its residual 

𝜀𝑖  satisfying 𝐸(𝜀𝑖|𝑀𝑖) = 0.  We wish to determine an ‘efficient instrument’ 𝐚0(𝑀𝑖) satisfying 

unconditional moment restriction 

𝐸{𝐚0(𝑀𝑖)𝜀𝑖} = 𝟎,      (S3.1) 
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where, as in Section S2 above, 𝜀𝑖 = 𝑈𝑖  for a classical g-estimator or 𝜀𝑖 = 𝑈̅𝑖  for a mean-centred 

GMM estimator.  The efficient instrument, should it exist, is semi-parametrically efficient in that 

it achieves the lowest possible variance among consistent and asymptotically normal estimators 

where the data are constrained by the SMoM and the CMI assumptions alone. 

Bowden and Vansteelandt (2011) use semi-parametric theory (e.g. Tsiatis 2006) to determine 

𝐚0(𝑀𝑖) for linear and log-linear SMMs for non-mean-centred residuals, that is, those satisfying 

𝐸(𝑈𝑖|𝑀𝑖) = 𝐸(𝑈𝑖) ≠ 0.  Simply replacing the outcome 𝑌 with 𝑌𝑘 in their results (or with 𝑋𝑗𝑌𝑘), 

the efficient choice 𝐚0(𝑀𝑖) satisfying 𝐸{𝐚0(𝑀𝑖)} = 𝟎 is 

𝐚0(𝑀𝑖) = 𝜎𝑈
−2(𝑀𝑖) [𝐸 (−

𝜕𝑈𝑖
𝜕𝛉
|𝑀𝑖) − 𝐸{𝜎𝑈

−2(𝑀𝑖)}
−1𝐸 {𝜎𝑈

−2(𝑀𝑖)𝐸 (−
𝜕𝑈𝑖
𝜕𝛉
|𝑀𝑖)}], 

where 𝜎𝑈
2(𝑀𝑖) = 𝐸(𝑈𝑖

2|𝑀𝑖) = 𝐸(𝑈𝑖
2|𝑀𝑖) because 𝑀𝑖 is randomised.   

For mean-centred estimators, we adapt their derivation to replace the 𝐸{𝐚0(𝑀𝑖)} = 𝟎 constraint 

with 𝐸{𝐚0(𝑀𝑖)} ≠ 𝟎 and 𝐸(𝑈̅𝑖|𝑀𝑖) = 0 to show that 

𝐚0(𝑀𝑖) = 𝜎𝑈̅
−2(𝑀𝑖)𝐸 (−

𝜕𝜀𝑖
𝜕𝛉
|𝑀𝑖),      (S3.2) 

where randomisation again leads to 𝜎𝑈̅
2(𝑀𝑖) = 𝐸(𝑈̅𝑖

2|𝑀𝑖) = 𝐸(𝑈̅𝑖
2), which can now be 

interpreted as a residual variance. 

In both cases, the asymptotic distribution of the g-estimator is 

√𝑛(𝛉̂ − 𝛉0)~𝑁 [𝟎, 𝐸{𝐚0(𝑀𝑖)𝐚0
𝑇(𝑀𝑖)𝜀𝑖

2}
−1
],      (S3.3) 

where 𝛉0 is the true value of the SMoM.   

In the mixed-mode example, because 𝐷𝑖 is binary, the mean-centred residual is linear for both 

linear and log-linear SMoMs (in the latter case, 𝑌𝑘 exp(−𝜆𝐷) = 𝑌𝑘 − {1 − exp(−𝜆)}𝐷).  The 

resulting linear model means that the estimator is the linear projection of 𝐷 onto the space 

spanned by  𝐚0(𝑀𝑖), which is identical to the linear projection onto the space spanned by 
(1,𝑀𝑖)

𝑇 because 𝑀𝑖 is binary and the efficient instrument is always a linear combination of 𝑀𝑖.  

Thus, the GMM estimator with IV 𝑀𝑖 as the IV is semi-parametrically efficient. 

The form of the efficient instrument for SVMs and SCMs is far more complex but is discussed, 

and the efficient instrument for the SVM set out, in Appendix SA1 below.  Ultimately, the same 

argument about efficiency for SMoMs also follows because both 𝑀𝑖 and 𝐷𝑖 are binary (Clarke et 

al. 2015). 
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S3.2 Mode effect on the distribution of a nominal categorical variable 

Suppose now that 𝑌𝑖  is a nominal categorical variable with 𝑘 + 1 categories.  For such variables, 

it is inappropriate to think of mode effects on the mean, variance or any other mean-centred 

moment of its distribution.  Any change to the probability of being in one category affects the 

entire distribution and so corresponds to a component of the overall mode effect. 

We can implement this straightforwardly using the same approach as above.  One begins by 

arbitrarily relabelling the categories of 𝑌𝑖  as 0,… , 𝐿 with category 0 as the baseline, or reference, 

category against which the others are to be compared.  One can then define dummy variables 

for each of the remaining 𝑘 categories of 𝑌𝑖  as 

𝐘𝑖 = (𝑌𝑖
[1]
, ⋯ , 𝑌𝑖

[𝐿]
)
𝑇
, 

where 𝑌𝑖
[𝑗]
= 1 if 𝑌𝑖 = 𝑗 and 𝑌𝑖

[𝑗]
= 0 if 𝑌𝑖 ≠ 𝑗 for 𝑗 = 1,… , 𝐿.  

The effect of mode on 𝑌𝑖  can thus be captured by the following multivariate linear SMM: 

𝐸(𝐘𝑖 − 𝐘0𝑖|𝐷𝑖,𝑀𝑖) = 𝛍1𝐷𝑖,      (S3.4) 

where 𝛍1 = (𝜇1
[1]
, ⋯ , 𝜇1

[𝐿]
)
𝑇

 and 𝜇1
[𝑗]
= 𝐸 (𝑌1𝑖

[𝑗]
− 𝑌0𝑖

[𝑗]
| 𝐷𝑖 = 1) indicates the effect of mode on 

category 𝑗.  A mode effect is thus present if there is evidence to reject the null hypothesis that 

𝐻0: 𝜇1
[1]
= ⋯ = 𝜇1

[𝐿]
= 0. 

In terms of estimation, the mean-centred residual for (S3.4) can be written 

𝐔̅𝑖 = 𝐘𝑖 − 𝑋𝑖𝛍,      (S3.5) 

where  𝑋𝑖 = 𝐼𝐿⨂(1,𝐷𝑖) is the 𝐿 × 2𝐿 design matrix, ⨂ is the Kronecker product, 𝐼𝐿 is the 𝐿 × 𝐿 

identity matrix, 𝛍 = (𝜇0
[1]
, 𝜇1
[1]
, … , 𝜇0

[𝐿]
, 𝜇1
[𝐿]
)
𝑇

 and 𝜇0
[𝑗]
= 𝐸 (𝑌0𝑖

[𝑗]
).  Tsiatis (2006, Sec. 4.5) shows 

that the efficient score is 

𝐬𝑛(𝛍) =∑𝐴0(𝑀𝑖)𝐔̅𝑖

𝑛

𝑖=1

=∑ 𝑋̂𝑖𝐶
−1𝐔̅𝑖

𝑖
, 

where 𝑋̂𝑖 = 𝐼𝐿⨂{1, 𝜋(𝑀𝑖)}, 𝐶 = 𝐸(𝐔̅𝑖𝐔̅𝑖
′) and cov{√𝑛(𝛍̂ − 𝛍)} = {𝐸(𝑋̂𝑖𝐶

−1𝑋̂𝑖
𝑇)}

−1
.  SMM (S3.4) 

can alternatively be estimated using generalized estimating equations (Liang and Zeger 1986). 

S3.3 Mode effect on the variance of a continuous variable 

The effect of mode on the variance can modelled specified using the following log-linear 

structural variance model (SVM): 

log{var(𝑌𝑖|𝐷𝑖, 𝑀𝑖)} − log{var(𝑌0𝑖|𝐷𝑖, 𝑀𝑖)} = 𝜆1𝐷𝑖,      (S3.6) 

subject to CMI (S2.4) and 

𝐸(𝑌0𝑖
2 |𝑀𝑖) = 𝐸(𝑌0𝑖

2),      (S3.7) 

both of which hold under core conditions 1-2.  (Note that, if 𝑌 is binary, the extra moment 

restriction (S3.7) adds no further information because 𝑌0𝑖
2 = 𝑌0𝑖.)   
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The target parameter 

exp(𝜆1) = var(𝑌1𝑖|𝐷𝑖 = 1) var(𝑌0𝑖|𝐷𝑖 = 1)⁄ ,      (S3.7) 

is the ratio of the variances of the web responses to that of the counterfactual face-to-face 

responses among those who choose web.  The estimator of 𝜆1 is (see Appendix SA1) 

𝜆̂1 = log(
𝐴

𝜇1
2𝐵 + 2𝜇1𝐶 + 𝐷

) ,     (S3.8) 

where 𝜇1 is the effect of mode on the mean from SMM (S2.3),  

𝐴 = 𝜋(1)var(𝑌𝑖|𝐷𝑖 = 1,𝑀𝑖 = 1) − 𝜋(0)var(𝑌𝑖|𝐷𝑖 = 1,𝑀𝑖 = 0), 

𝐵 = 𝜋(0) − 𝜋(1), 

𝐶 = 𝜋(1)𝐸(𝑌𝑖|𝐷𝑖 = 1,𝑀𝑖 = 1) − 𝜋(0)𝐸(𝑌𝑖|𝐷𝑖 = 1,𝑀𝑖 = 0), 

and 

𝐷 = {1 − 𝜋(0)}{var(𝑌𝑖|𝐷𝑖 = 0,𝑀𝑖 = 0) + 𝐸
2(𝑌𝑖|𝐷𝑖 = 0,𝑀𝑖 = 0)}

− {1 − 𝜋(1)}{var(𝑌𝑖|𝐷𝑖 = 0,𝑀𝑖 = 1) + 𝐸
2(𝑌𝑖|𝐷𝑖 = 0,𝑀𝑖 = 1)}

+ 𝜋(0)𝐸2(𝑌𝑖|𝐷𝑖 = 1,𝑀𝑖 = 0) − 𝜋(1)𝐸
2(𝑌𝑖|𝑑𝑖 = 1,𝑀𝑖 = 1). 

Estimation is more straightforward using GMM based on the residual  

𝑉𝑖 = exp(−𝐷𝑖𝜆1)𝜖𝑖
2 + (𝑈𝑖 − 𝜖𝑖)

2, 

where 𝑈𝑖 = 𝑌𝑖 −𝐷𝑖𝜇1 is the residual for SMM (S2.3) and 𝜖𝑖 = 𝑌𝑖 − 𝛽0 − 𝛽1𝑀𝑖 − 𝛽2𝐷𝑖 − 𝛽12𝑀𝑖𝐷𝑖 is 

the residual of the association model, that is, the saturated linear regression of 𝑌𝑖  on 𝑀𝑖, 𝐷𝑖 and 

𝑀𝑖𝐷𝑖.  This residual comes from expanding the CMI condition 

𝐸(𝑌0𝑖
2 |𝑀𝑖) = 𝐸{𝐸(𝑌0𝑖

2 |𝐷𝑖,𝑀𝑖)|𝑀𝑖} = 𝐸{var(𝑌0𝑖|𝐷𝑖, 𝑀𝑖) + 𝐸
2(𝑌0𝑖|𝐷𝑖,𝑀𝑖)|𝑀𝑖}

= 𝐸𝐷𝑖[exp(−𝐷𝑖𝜆1)var(𝑌𝑖|𝐷𝑖,𝑀𝑖) + {𝐸(𝑌𝑖|𝐷𝑖,𝑀𝑖) − 𝐷𝑖𝜇1}
2|𝑀𝑖]

= 𝐸𝑌𝑖,𝐷𝑖{exp(−𝐷𝑖𝜆1)𝜖𝑖
2 + (𝑈𝑖 − 𝜖𝑖)

2|𝑀𝑖}, 

because var(𝑌𝑖|𝐷𝑖,𝑀𝑖) = 𝐸(𝜖𝑖
2|𝐷𝑖, 𝑀𝑖) and 𝑈𝑖 − 𝜖𝑖 = 𝛽0 + 𝛽1𝑀𝑖 + (𝛽2 − 𝜇1)𝐷𝑖 + 𝛽12𝑀𝑖𝐷𝑖. 

The residual 𝑉𝑖 is analogous to 𝑈𝑖  because it satisfies 𝐸(𝑉𝑖|𝑀𝑖) = 𝐸(𝑉𝑖) ≠ 0 but, as already 

discussed above, it is desirable to work with a zero-mean residual to efficiently estimate the 

standard error of 𝜆̂1.  We choose the mean-centred residual 

𝑉𝑖 = exp(−𝐷𝑖𝜆1)𝜖𝑖
2 + (𝑈𝑖 + 𝜇10 − 𝜖𝑖)

2 − 𝜇20,      (S3.9) 

where 𝑈𝑖 = 𝑌𝑖 − 𝜇10−𝐷𝑖𝜇1, 𝜇10 = 𝐸(𝑌0𝑖) and 𝜇20 = 𝐸(𝑌0𝑖
2).  Other choices of mean-zero residual 

are possible: see the discussion for log-linear SMMs in Clarke et al. (2015). 

The form of the efficient instrument for the SVM is not straightforward but can be derived using 

semiparametric theory as sketched in Appendix SA.3. If 𝜖𝑖, 𝑈𝑖  and 𝑉𝑖 are estimated 

simultaneously, the efficient instrument for each component residual is a linear combination of 

the expected derivatives of said residuals with respect to the joint-model parameters, where the 

scalar multipliers are functions of the moments of (𝜖𝑖, 𝑈𝑖 , 𝑉𝑖).  However, if we estimate 𝑈𝑖  and 𝑉𝑖 

jointly but exclude the estimating equation for 𝛽̂, the (locally) efficient instrument is 
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𝐴0(𝑀𝑖) = 𝐸

{
 

 

(

 

𝜕𝑈𝑖
𝜕𝜇

𝜕𝑉𝑖
𝜕𝜇

𝜕𝑈𝑖
𝜕𝜆

𝜕𝑉𝑖
𝜕𝜆)

 ||𝑀𝑖

}
 

 
(
𝜎𝑈
2 𝜎𝑈𝑉

𝜎𝑈𝑉 𝜎𝑉
2 )

−1

, 

where 𝜎𝑈
2 = 𝐸(𝑈𝑖

2), 𝜎𝑉
2 = 𝐸(𝑉𝑖

2) and 𝜎𝑈𝑉 = 𝐸(𝑈𝑖𝑉𝑖) (Newey 1993). 

S3.4 The mode effect on the association between two continuous mixed-mode variables 

For two mixed-mode continuous variables, the mode effect on the covariance can be estimated 

using the linear structural covariance model (SCM) 

cov(𝑋𝑖, 𝑌𝑖|𝐷𝑖, 𝑀𝑖) − cov(𝑋𝑖0, 𝑌0𝑖|𝐷𝑖, 𝑀𝑖) = 𝜎1𝐷𝑖,      (S3.10) 

subject to (S2.4) for 𝑋 and for 𝑌, and  

𝐸(𝑋0𝑖𝑌0𝑖|𝑀𝑖) = 𝐸(𝑋0𝑖𝑌0𝑖).      (S3.11) 

The target parameter is  

𝜎1 = cov(𝑋1𝑖, 𝑌1𝑖|𝐷𝑖 = 1) − cov(𝑋𝑖0, 𝑌0𝑖|𝐷𝑖 = 1) 

with estimator 

𝜎̂1 =
1

𝜋(1) − 𝜋(0)
[𝐸(𝑋𝑖𝑌𝑖|𝑀𝑖 = 1) − 𝐸(𝑋𝑖𝑌𝑖|𝑀𝑖 = 0)

+ 𝜋(1){𝜇1
𝑋𝜇1

𝑌𝜏1
𝑋(1)𝜏1

𝑌(1) − 𝜇1
𝑋𝜏1

𝑌(1) − 𝜇1
𝑌𝜏1

𝑋(1)}

− 𝜋(0){𝜇1
𝑋𝜇1

𝑌𝜏1
𝑋(0)𝜏1

𝑌(0) − 𝜇1
𝑋𝜏1

𝑌(0) − 𝜇1
𝑌𝜏1

𝑋(0)}] 

where 𝜇1
𝑋 and 𝜇1

𝑌  are respectively the effects of mode on the means of 𝑋 and 𝑌 under linear SMM 

(S2.3), 𝜏1
𝑋(𝑚) = 𝐸(𝑋𝑖|𝐷𝑖 = 1,𝑀𝑖 = 𝑚) and 𝜏1

𝑌(𝑚) = 𝐸(𝑌𝑖|𝐷𝑖 = 1,𝑀𝑖 = 𝑚) for 𝑚 = 0,1. 

For standard error estimation, the GMM residual satisfying 𝐸(𝑊𝑖|𝑀𝑖) = 𝐸(𝑊𝑖) is 

𝑊𝑖 = 𝜖𝑖
𝑋𝜖𝑖

𝑌 − 𝐷𝑖𝜎1 + (𝑈𝑖
𝑋 − 𝜖𝑖

𝑋)(𝑈𝑖
𝑌 − 𝜖𝑖

𝑌),     (S3.12) 

where 𝑈𝑖
𝑋 = 𝑋𝑖 − 𝐷𝑖𝜇1

𝑋 and 𝑈𝑖
𝑌 = 𝑌𝑖 −𝐷𝑖𝜇1

𝑌  are the residuals for SMM (S2.3) and 𝜖𝑖
𝑋 = 𝑋𝑖 −

𝛽0
𝑋 − 𝛽1

𝑋𝑀𝑖 − 𝛽2
𝑋𝐷𝑖 − 𝛽12

𝑋𝑀𝑖𝐷𝑖 and 𝜖𝑖
𝑌 = 𝑌𝑖 − 𝛽0

𝑌 − 𝛽1
𝑌𝑀𝑖 − 𝛽2

𝑌𝐷𝑖 − 𝛽12
𝑌 𝑀𝑖𝐷𝑖 are the residuals of 

the association models, that is, the saturated linear regression of the survey variable on 𝑀𝑖, 𝐷𝑖 

and 𝑀𝑖𝐷𝑖.  Its zero-mean equivalent is thus 

𝑊̅𝑖 = 𝜖𝑖
𝑋𝜖𝑖

𝑌 − 𝜇011 − 𝐷𝑖𝜎1 + (𝑈𝑖
𝑋 − 𝜖𝑖

𝑋)(𝑈𝑖
𝑌 − 𝜖𝑖

𝑌),      (S3.13) 

where 𝜇011 = 𝐸(𝑋0𝑖𝑌0𝑖).  The same comments regarding the form of the efficient instrument for 

the SVM in Appendix SA.3 are pertinent to the SCM. 

 

S3.5 Adjusting for complex sampling designs 

In general, if our (semi-)parametric model leads to 𝐬𝑖(𝛉) such that 𝐸{𝐬𝑖(𝛉)} = 𝟎 and the 

dimensions of 𝐬𝑖(𝛉) and 𝛉 are equal, the method of moments finds 𝛉̂ = {𝛉: 𝐬𝑛(𝛉) = 𝟎}, where 

𝐬𝑛(𝛉̂) = ∑ 𝐬𝑖(𝛉̂)𝑖  is the sum of these scores.  The variance-covariance of 𝛉̂ is estimated using the 

sandwich estimator 

𝑉(𝛉)̂ = {
𝜕𝐬𝑛

𝑇(𝛉̂)

𝜕𝛉
}

−1

{∑ 𝐬𝑖(𝛉̂)𝐬𝑖
𝑇(𝛉̂)

𝑖
} {
𝜕𝐬𝑛(𝛉̂)

𝜕𝛉𝑇
}

−1

= 𝐺−1𝑆𝐺−𝑇 ,      (S3.15) 
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where 𝐺−𝑇 = (𝐺𝑇)−1.  The sandwich estimator is used rather than a plug-in estimator of the 

asymptotic variance, 𝑆−1 𝑛⁄ .   

Stata has a suite of svy commands that can be used in conjunction with many of its standard 

estimation routines.  However, these do not include the gmm command and so we implement the 

linearized version of (S3.15) used by ivregress among other routines.  This simply replaces 𝐺 

by its weighted equivalent 

𝐺𝑤 =∑ 𝑤𝑖𝐬𝑖(𝛉̂)
𝜕𝐬𝑖

𝑇(𝛉̂)

𝜕𝛉𝑖
, 

where 𝑤𝑖 is the survey weight for unit 𝑖.  This is obtained by executing gmm [pweight = 

h_indinub_xw] etc.  Then 𝑆 is replaced by a design-consistent estimator of the variance of the 

sum ∑ 𝐬𝑖(𝛉̂)𝑖 , 𝑆𝑑.  This can be implemented using svy: total.  The linearized variance 

estimator is then 

𝑉(𝛉)̂lin = 𝐺𝑤
−1𝑆𝑑𝐺𝑤

−𝑇      (S3.16). 

 

S4 Failure of the No Effect Modification (NEM) assumption 

Consider the true linear SMM (S2.3) if NEM fails: 

𝐸(𝑌𝑖 − 𝑌0𝑖|𝐷𝑖, 𝑀𝑖) = 𝜇1(𝑀𝑖)𝐷𝑖,      (S4.1) 

where 𝜇1(𝑀𝑖) = 𝐸(𝑌1𝑖 − 𝑌0𝑖|𝐷𝑖 = 1,𝑀𝑖).   

This model is nonidentified if only the observed data are available because the resulting g-

estimator would have three unknowns but only two equations.  However, it could be identified 

if sample data were available on the same population from a survey where only face-to-face 

mode were used.  In this case, with appropriate nonresponse adjustments, 𝜇0 = 𝐸(𝑌0𝑖) could be 

estimated using these data rather than the observed data, leaving a g-estimator with two 

equations and two unknowns. 

 Two useful ways of expressing residual (S4.1) are 

𝑈𝑖 = 𝑌0𝑖 − 𝜇0 − (1 −𝑀𝑖)𝐷𝑖𝜇1(0) − 𝑀𝑖𝐷𝑖𝜇1(1) = 𝑌0𝑖 − 𝜇0 − 𝐷𝑖𝜇1(1) + (1 −𝑀𝑖)𝐷𝑖Δ𝜇1,     (S4.2) 

where Δ𝜇1 = 𝜇1(1) − 𝜇1(0).  This trivially holds for the SMoM for 𝑘 ≥ 1.   

Similarly, for log-linear SMM, 

𝑉𝑖 = 𝑌0𝑖
2 exp{−(1 −𝑀𝑖)𝐷𝑖𝜆2(0) − 𝑀𝑖𝐷𝑖𝜆2(1)} − 𝜈0

= 𝑌0𝑖
2 exp{−𝐷𝑖𝜆2(1) − (1 −𝑀𝑖)𝐷𝑖Δ𝜆2} − 𝜈0,     (S4.3) 

where Δ𝜆2 = 𝜆2(1) − 𝜆2(0). 

The first parameterization of (S4.2) and (S4.3) is explicitly in terms of the two 𝑀-specific 

parameters from which the target parameters can be calculated as follows: 

𝐸(𝑌1𝑖 − 𝑌0𝑖|𝐷𝑖 = 1) = (1 − 𝑝)𝜇1(0) + 𝑝𝜇1(1) = 𝜇1 + 𝑝Δ𝜇1,      (S4.4) 

var(𝑌1𝑖|𝐷𝑖 = 1)

var(𝑌0𝑖|𝐷𝑖 = 1)
=

𝑆1
2

(1 − 𝑝)𝑆01
2 𝑒−𝜆1 + 𝑝𝑆11

2 𝑒−𝜆1−Δ𝜆1 + 𝐴
,      (S4.5) 

where 𝑝 = Pr(𝑀𝑖 = 1|𝐷𝑖 = 1), 
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𝐴 = (1 − 𝑝)𝑝{Δ𝜇1
2 + (𝑆1̅1 − 𝑆0̅1)

2 − 2(𝑆1̅1 − 𝑆0̅1)Δ𝜇1}, 

𝑆1
2 = var(𝑌𝑖|𝐷𝑖 = 1), 𝑆𝑚̅1 = 𝐸(𝑌1𝑖|𝑀𝑖 = 𝑚,𝐷𝑖 = 1) and 𝑆𝑚1

2 = var(𝑌1𝑖|𝑀𝑖 = 𝑚,𝐷𝑖 = 1). 

Finally, for the additive SCM, if NEM fails then 

cov(𝑋𝑖, 𝑌𝑖|𝑀𝑖, 𝐷𝑖) − cov(𝑋0𝑖, 𝑌0𝑖|𝑀𝑖, 𝐷𝑖) = 𝐷𝑖𝜎1(𝑀𝑖) = 𝐷𝑖𝜎1 +𝑀𝑖𝐷𝑖Δ𝜎1,      (S4.6) 

in which case 

cov(𝑋𝑖, 𝑌𝑖|𝐷𝑖 = 1) − cov(𝑋0𝑖, 𝑌0𝑖|𝐷𝑖 = 1) = 𝜎1 + 𝑝Δ𝜎1 + 𝐵,      (S4.7) 

where 

𝐵 = (1 − 𝑝)𝑝{Δ𝜇1
𝑋Δ𝜇1

𝑌 − (𝑆1̅1
𝑌 − 𝑆0̅1

𝑌 )Δ𝜇1
𝑋 −−(𝑆1̅1

𝑋 − 𝑆0̅1
𝑋 )Δ𝜇1

𝑌}, 

and the 𝑋 and 𝑌 superscripts indicate the obvious (based on the preceding discussion) 

parameters. 

Standard errors for (S4.2), (S4.5) and (S4.7) can then be obtained post-estimation using the 

delta method.  

 

S5 Simulation Study Design 

A simulation study was carried out by generating data from the following simple model: 

1. Generate the dichotomous instrumental variable 𝑍~Bernoulli(𝜋IV). 

2. Generate independent error terms 𝑒0
𝑌~𝑁(0, 𝜎0

2) and 𝑒1
𝑌~𝑁(0, 𝜎1

2). 

3. Generate unobserved confounding variable 𝑈~𝑁(0,1). 

4. Calculate the face-to-face mode potential outcomes 𝑌0 = 𝛽0 + 𝛽2𝑈 + 𝑒0
𝑌. 

5. Calculate the web mode potential outcomes 𝑌1 = 𝛽0 + 𝛽1 + 𝛽2𝑈 + 𝑒0
𝑌 + 𝑒1

𝑌.  

6. Generate mode selection dependent on 𝑍 and 𝑈 as follows: 

𝐷~Bernoulli[1  {1 + exp(−𝛼0 − 𝛼1𝑍 − 𝛼2𝑈)}⁄ ]. 

7. Calculate the observed outcome 𝑌 = (1 − 𝐷)𝑌0 + 𝐷𝑌1.  

The parameter values 𝜋IV, 𝜎𝑋0
2 , 𝜎𝑋1

2 , 𝛼0, 𝛼1, 𝛼2, 𝛽0, 𝛽1 and 𝛽2 are set by the user.  𝛽1 is the average 

of the simple mode effects 𝑌1 − 𝑌0 = 𝛽1 + 𝑒1
𝑌.  𝛽2 determines the standard deviation of the 

unobserved confounding variable, and 𝜎𝑋1 is the standard deviation of the mode effect 

heterogeneity.  The study looked at the sequence of g-estimators for increasing sample sizes 𝑛 =

102, 103, 104 and 105 for the linear SMM 𝐸(𝑌 − 𝑌0|𝐷, 𝑍) = 𝐷𝜇1, the log-linear SMoM 

𝐸(𝑌2|𝐷, 𝑍) 𝐸(𝑌0
2|𝐷, 𝑍)⁄ = exp(𝐷𝜆2), and SVM Var(𝑌|𝐷, 𝑍) Var(𝑌0|𝐷, 𝑍)⁄ = exp(𝐷𝜐1).  Monte 

Carlo estimation is used to calculate the true values of 𝜇1 = 𝐸(𝑌1 − 𝑌0|𝐷 = 1), exp(𝜆2) =

𝐸(𝑌1
2|𝐷 = 1) 𝐸(𝑌0

2|𝐷 = 1)⁄  and exp(𝜐1) = Var(𝑌1|𝐷 = 1) Var(𝑌0|𝐷 = 1)⁄  based on 107 draws.  

Some results indicative of the performance of the g-estimators are displayed in Table S5.1 below. 
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Table S5.1 Example of g-estimator behaviour for three SMoMs  

True values         
 𝜋IV 𝜎0 𝜎1 𝛼0 𝛼1 𝛼2 𝛽0 𝛽1 𝛽2 
 0.5 2.5 1 0 1 2.5 5 2 1 

Sample size 100 1000 10000 100000 

 F-statistic Avg. SD Avg. SD Avg. SD Avg. SD 
  4.764 4.35 38.1 13 362 38.2 3615 127 

Linear SMM (𝝁𝟏 = 𝟐) Est. R. Bias Est. R. Bias Est. R. Bias Est. R. Bias 
MM- only Coeff 1.294 -35.3% 1.955 -2.3% 2.005 0.3% 2.001 0.1% 

 SE 95.9 381% 0.94 -3.0% 0.28 0.7% 0.09 2.3% 
Augmented Coeff 1.988 -0.6% 1.9999 0.0% 2.001 0.0% 2.002 0.1% 

 SE 0.66 -0.6% 0.21 -1.0% 0.07 1.6% 0.02 0.0% 

Log-linear SMoM  
(𝝀𝟐 = 𝟎. 𝟓𝟓𝟗) 

        

MM-only Coeff 0.627 12.4% 0.580 3.7% 0.575 2.8% 0.577 3.2% 

 SE 1.83 -36.6% 0.29 -4.9% 0.08 0.0% 0.03 -3.7% 
Aug (i) Coeff 0.578 3.4% 0.564 0.8% 0.560 0.1% 0.562 0.5% 

 SE 0.20 -0.5% 0.06 0.0% 0.02 0.0% 0.01 0.0% 
Aug (ii) Coeff 0.5805 3.8% 0.5644 0.9% 0.560 0.1% 0.561 0.3% 

 SE 0.172 -4.4% 0.056 0.0% 0.02 1.2% 0.01 0.0% 

SVM (𝝊𝟏 = 0.038)         
MM-only Coeff -0.112 -394% -0.021 -157% 0.035 -7.1% 0.038 1.3% 

 SE 10.8 645% 0.79 20.5% 0.16 1.3% 0.05 0.0% 
Aug (i) Coeff 0.068 80.2% 0.036 -4.0% 0.039 1.6% 0.039 2.1% 

 SE 0.46 -2.1% 0.12 -0.9% 0.04 0.6% 0.01 0.0% 
Aug (ii) Coeff 0.092 144% 0.0447 17.9% 0.039 4.0% 0.038 1.1% 

 SE 0.53 10.1% 0.107 -0.9% 0.03 0.0% 0.01 0.0% 

Notes: R(elative) Bias = 100(Average – Truth)/abs(Truth); SD = Standard Deviation; SE = Standard Error; Aug(i)= 
mixed-mode data augmented by independent face-to-face sample fitted using just-identified one-step GMM; Aug 
(ii) = as Aug(i) except constants retained as instruments and fitted using two-step GMM. 

 

The first set of results is for the g-estimator for 𝜇1 from the linear SMM for 𝑌. In the first row, the 

estimator uses only the mixed-mode sample data and so is equivalent to 2SLS. The relative biases 

for the estimator of 𝜇1 and its standard error are both large for 𝑛 = 100 but are considerably 

smaller, less than two percent, for 𝑛 = 1000, and close to zero for 𝑛 = 10000 and 100000.  The 

large bias for 𝑛 = 100 is explained by noting that 𝑍 is a weak instrument because the average F-

statistic is 4.8 < 10.  In contrast, the average F-statistics all exceed 10 for the larger sample sizes, 

with an F-statistic of 362 for 𝑛 = 10000, the sample size most relevant to the example in this 

paper.   

The second row of Table S5.1 contains the results where the g-estimator is augmented by an 

unbiased estimator of 𝜇0 = 𝐸(𝑌0𝑖) from an independent face-to-face-only sample also of size 𝑛.  

The relative bias is small (less than 2 percent) for all sample sizes and the standard errors smaller 

by a factor of roughly four.   

The second set of results is for the g-estimator of 𝜆2 from the log-linear SMoM for 𝑌2.  The same 

pattern of the results as for 𝜇1 is apparent; the main differences are that the relative biases for 

𝑛 = 100 are large but less large than for 𝜇1, but not close to zero for the larger sample sizes, 

despite being small.  Additionally, there are two rows for the g-estimator augmented by an 

unbiased estimator of is augmented by an unbiased estimator of 𝜇02 = 𝐸(𝑌0𝑖
2): the first is for the 

one-step GMM and the second for the two-step GMM.  The difference between the two is that the 

one-step estimator dispenses with the constant instrument required to estimate 𝜆2 and 𝜇02 freely, 

whereas the second one includes it in order to create an over-identified model with more 

instruments (1 and 𝑍) than parameters. The two-step estimator is asymptotically efficient given 

the choice of instrumental variables and so potentially has smaller standard errors. However, the 
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results show that the choice made very little difference to the relative bias of the point or standard 

error estimates. 

Finally, the third set of results is for the g-estimator of 𝜐1 from the log-linear SVM for 𝑌. The results 

show that this g-estimator performs considerably less well than those above.  The relative biases 

are large for 𝑛 = 100 and 1000, even augmented by unbiased estimators of 𝜇0 and 𝜇02, but 

relative biases for 𝑛 = 10000 and 100000 are nonzero but small. 

 

S6 Limitations of the Indicator Method  

In this section, we discuss the indicator method and its limitations when the outcome and 

predictor variables are subject to mode effects. 

Take two variables 𝑌𝑖  and 𝑋𝑖  and suppose that we wish to use ordinary least squares (OLS) to 

estimate the effect of mode on the regression coefficient of 𝑋𝑖  in the regression of 𝑌𝑖  and 𝑋𝑖 .  The 

basic indicator method involves the simple linear regression of 𝑌 on 𝑋, 𝐷 and the interaction 

term 𝑋𝐷. 

In the presence of nonrandom mode selection in an observational study, control variables 𝐂𝑖 

available can be used to adjust for selection effects provided that  

𝐷𝑖 ⫫ (𝑌0𝑖, 𝑋0𝑖, 𝑌1𝑖 , 𝑋0𝑖)|𝐂𝑖      (S6.1) 

holds.    

In this case, the effects of mode can be written 𝛼̃1 − 𝛼̃0 and 𝛽̃1 − 𝛽̃0, where  

𝑌0𝑖 = 𝛼̃0 + 𝛽̃0𝑋0𝑖 + 𝛄0
𝑇𝐂𝑖 + 𝑒0𝑖 and 𝑌1𝑖 = 𝛼̃1 + 𝛽̃1𝑋1𝑖 + 𝛄1

𝑇𝐂𝑖 + 𝑒1𝑖,      (S6.2) 

and 𝐸(𝑒0𝑖|𝑋0𝑖, 𝐂𝑖)  = 𝐸(𝑒1𝑖|𝑋1𝑖, 𝐂𝑖) = 0.  The true mean does not have to be linear in 𝑋𝑖  and 𝐂𝑖 

but if so then it must be recognised that the estimand of the adjusted OLS estimator is merely a 

measure of association rather than a parameter of the true model. 

However, the indicator method is considerably more limited when analysing data from a 

sequential design where, as in this application, we do not think that (S6.1) is plausible.  The IV 

indicator method is a 2SLS version of the basic indicator method above: stage one involves 

regressing 𝐷𝑖 on 𝑀𝑖 to obtain 𝐸(𝐷𝑖|𝑀𝑖) and stage two regressing 𝑌𝑖  on 𝑋𝑖 , 𝐸(𝐷𝑖|𝑀𝑖) and 

𝑋𝑖𝐸(𝐷𝑖|𝑀𝑖). 

 

The mode effects are now 𝛼1
[1]
− 𝛼0

[1]
 and 𝛽1

[1]
− 𝛽0

[1]
, where  

𝑌0𝑖 = 𝛼0
[1] + 𝛽0

[1]𝑋0𝑖 + 𝑒0𝑖
[1] and 𝑌1𝑖 = 𝛼0

[1] + 𝛽1
[1]𝑋1𝑖 + 𝑒1𝑖

[1],      (S6.3) 

subject to 𝐸 (𝑒0𝑖
[1]|𝑋0𝑖, 𝐷𝑖 = 1) = 𝐸 (𝑒1𝑖

[1]|𝑋1𝑖, 𝐷𝑖 = 1) = 0.  These are the differences between the 

intercept and slopes using web and face-to-face data among those choose web.  Note again that 

the true mean does not have to be linear.    

We show below that one of the following assumptions is generally required to estimate 𝛽1
[1]
−

𝛽0
[1]

: 

1. Non-random mode selection is independent of 𝑋0𝑖; or 
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2. The simple mode effect for 𝑋, 𝑋0𝑖 = 𝑋1𝑖 + 𝜑𝑖, satisfies 𝐸(𝜑𝑖|𝑋1𝑖 = 𝑥,𝐷𝑖 = 1) = 0 and 

𝐸(𝑌0𝑖|𝑋0𝑖, 𝑋1𝑖 = 𝑥,𝐷𝑖 = 1) = 𝐸(𝑌0𝑖|𝑋0𝑖, 𝐷𝑖 = 1). 

Both assumptions are strong.  The first assumption is so strong that it is unnecessary to use IVs 

if it holds: simply regressing 𝑌 on 𝑋, 𝐷 and interaction 𝑋𝐷 is unbiased and consistent for the 

mode effect.   

The second assumption requires the mode effect to have mean zero and so unrelated to the 

observed value of 𝑋.  While this might be plausible in some cases, it will not generally hold and 

is anyway impossible to verify. 

However, a corollary of assumption 2 is that the IV indicator method can be used if 𝑋𝑖  is a single-

mode or mode-invariant variable because it trivially holds if either 𝑋𝑑𝑖 = 𝑋𝑖  for all 𝑖 (single-

mode) or 𝑋1𝑖 = 𝑋0𝑖 (mode-invariant) because both parts of assumption 2 would hold. 

To demonstrate the role of assumption 1, expand the observed mean function as follows: 

𝐸(𝑌𝑖|𝑋𝑖 = 𝑥,𝑀𝑖) = Pr(𝐷𝑖 = 0|𝑀𝑖) 𝐸(𝑌0𝑖|𝑋0𝑖 = 𝑥, 𝐷𝑖 = 0) + Pr(𝐷𝑖 = 1|𝑀𝑖) 𝐸(𝑌1𝑖|𝑋1𝑖 = 𝑥𝐷𝑖 = 1)

= 𝛼0
[0]
+ 𝛽0

[0]
𝑥 + (𝛼1

[1]
− 𝛼0

[0]
)𝐸(𝐷𝑖|𝑀𝑖) + (𝛽1

[1]
− 𝛽0

[0]
) 𝑥𝐸(𝐷𝑖|𝑀𝑖), 

where 𝑌𝑑𝑖 = 𝛼𝑑
[𝑗]
+ 𝛽𝑑

[𝑗]
𝑋𝑑𝑖 + 𝑒𝑑𝑖

[𝑗]
 subject to 𝐸 (𝑒𝑑𝑖

[𝑗]|𝑋𝑑𝑖, 𝐷𝑖 = 𝑗) = 0 are the simple linear 

regressions of 𝑌𝑑𝑖 on 𝑋𝑑𝑖 among those choosing mode 𝑗 (𝑑, 𝑗 = 0,1).   

The form of this model involves using the predicted choice of mode 𝐸(𝐷𝑖|𝑀𝑖) rather than 𝐷𝑖 

itself, and includes the interaction between 𝑋𝑖  and 𝐸(𝐷𝑖|𝑀𝑖) as well as the main effects.  

However, this is no different to the naïve regression of 𝑌𝑖  on 𝑋𝑖  and 𝐷𝑖, which similarly leads to a 

reduced-form regression model of the same form, that is, 

𝐸(𝑌𝑖|𝑋𝑖 = 𝑥,𝐷𝑖) = (1 − 𝐷𝑖)𝐸(𝑌0𝑖|𝑋0𝑖 = 𝑥,𝐷𝑖 = 0) + 𝐷𝑖𝐸(𝑌1𝑖|𝑋1𝑖 = 𝑥𝐷𝑖 = 1)

= 𝛼0
[0]
+ 𝛽0

[0]
𝑥 + (𝛼1

[1]
− 𝛼0

[0]
)𝐷𝑖 + (𝛽1

[1]
− 𝛽0

[0]
) 𝑥𝐷𝑖. 

In neither case is the coefficient of the interaction term generally equal to 𝛽1
[1]
− 𝛽0

[1]
, that is, the 

effect of mode on the regression coefficient among those choosing web.  Only if 𝛽0
[0]
= 𝛽0

[1]
= 𝛽0, 

which holds only under the implausible assumption that selection is independent of 𝑋0𝑖, does 

the indicator method return a meaningful mode effect. 

To show the role of assumption 2, expand 

𝐸(𝑌𝑖|𝑋𝑖 = 𝑥,𝑀𝑖) = 𝐸{𝑌0𝑖 + 𝐷𝑖(𝑌1𝑖 − 𝑌0𝑖)|𝑋𝑖 = 𝑥,𝑀𝑖}

= 𝐸(𝑌0𝑖|𝑋𝑖 = 𝑥) + Pr(𝐷𝑖 = 1|𝑀𝑖) 𝐸(𝑌1𝑖 − 𝑌0𝑖|𝑋𝑖 = 𝑥, 𝐷𝑖 = 1)

= 𝛼0 + 𝛽0𝑥 + 𝐸(𝑌1𝑖 − 𝑌0𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 1)𝐸(𝐷𝑖|𝑀𝑖). 

This approach requires the following assumptions about the mode measurement model for 𝑋𝑖: 

𝐸(𝑌1𝑖 − 𝑌0𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 1) = 𝐸(𝑌1𝑖 − 𝑌0𝑖|𝑋1𝑖 = 𝑥,𝐷𝑖 = 1)

= 𝛼1
[1]
+ 𝛽1

[1]
𝑥 − 𝐸(𝑌0𝑖|𝑋1𝑖 = 𝑥,𝐷𝑖 = 1), 

where 

𝐸(𝑌0𝑖|𝑋1𝑖 = 𝑥,𝐷𝑖 = 1) = 𝐸𝑋𝑖0|𝑋1𝑖=𝑥,𝐷𝑖=1{𝐸(𝑌0𝑖|𝑋0𝑖, 𝑋1𝑖 = 𝑥,𝐷𝑖 = 1)}. 

Progress can be made if the inner expectation on the right-hand side satisfies 

𝐸(𝑌0𝑖|𝑋0𝑖, 𝑋1𝑖 = 𝑥,𝐷𝑖 = 1) = 𝐸(𝑌0𝑖|𝑋0𝑖, 𝐷𝑖 = 1), 
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so that 

𝐸𝑋𝑖0|𝑋1𝑖=𝑥,𝐷𝑖=1{𝐸(𝑌0𝑖|𝑋0𝑖 , 𝐷𝑖 = 1)} = 𝛼0
[1]
+ 𝛽0

[1]
𝐸(𝑋0𝑖|𝑋1𝑖 = 𝑥,𝐷𝑖 = 1). 

Furthermore, if the mode measurement model connecting the two outcomes, 𝑋0𝑖 = 𝑋1𝑖 + 𝜑𝑖, 

satisfies 𝐸(𝑋1𝑖 + 𝜑𝑖|𝑋1𝑖 = 𝑥,𝐷𝑖 = 1) = 𝑥, that is, the average mode effect 𝐸(𝜑𝑖|𝑋1𝑖 = 𝑥,𝐷𝑖 =

1) = 0 for all values of 𝑋1𝑖, then 

𝐸(𝑌0𝑖|𝑋1𝑖 = 𝑥,𝐷𝑖 = 1) = 𝛼0
[1]
+ 𝛽0

[1]
𝑥, 

and  

𝐸(𝑌1𝑖 − 𝑌0𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 1) = 𝛼1
[1]
+ 𝛽1

[1]
𝑥 − 𝛼0

[1]
− 𝛽0

[1]
𝑥, 

as required.   

From this, it follows that the required mode effect is obtained if 𝑋𝑖 = 𝑋0𝑖 or 𝑋𝑖 = 𝑋1𝑖 for all 𝑖 

(single-mode variable) or 𝑋1𝑖 = 𝑋0𝑖  (mode-invariant variable). 

 

S7 Mode Effect on the Maximum Likelihood Estimator 

S7.1 Methodological development 

Let 𝜃0 = 𝜃(𝑌0) be the maximum likelihood estimator (MLE) which would have been obtained 

had everyone used face-to-face mode, and 𝜃 = 𝜃(𝑌) be the MLE obtained using the observed 

mixed-modes data. 

Now let 𝜃∗ be the probability limit of 𝜃, where 

𝑠̅(𝜃; 𝑌) = 𝑛−1∑  𝑠(𝜃; 𝑌𝑖)
𝑛

𝑖=1
= (1 − 𝜋̂)𝑠̅0(𝜃; 𝑌) + 𝜋̂𝑠̅1(𝜃; 𝑌) = 0,      (S7.1) 

is the sample analogue of the population moment restriction 𝐸{𝑠(𝜃∗; 𝑌)} = 0, 𝑠̅𝑑(𝜃; 𝑌) =

∑ 𝑠(𝜃; 𝑌𝑖)𝐼(𝐷𝑖 = 𝑑)
𝑛
𝑖=1 ∑ 𝐼(𝐷𝑖 = 𝑑)

𝑛
𝑖=1⁄  is the mean (observed-data) score among those who 

choose mode 𝑑 = 0,1, and 𝜋̂ = 𝑛−1∑ 𝐼(𝐷𝑖 = 1)
𝑛
𝑖=1  is unbiased for 𝜋 = Pr(𝐷𝑖 = 1). 

The usual first-order Taylor series expansion of 𝑠̅(𝜃; 𝑌) around 𝜃∗ gives 𝑠̅(𝜃; 𝑌) = 𝑠̅(𝜃∗; 𝑌) −

ℱ0(𝜃
∗)(𝜃̂ − 𝜃∗) = 0 under (S7.1) so that 

𝑠̅(𝜃∗; 𝑌) = ℱ(𝜃∗)(𝜃̂ − 𝜃∗),      (S7.2) 

where ℱ(𝜃∗) = E{−𝜕𝑠𝑇(𝜃; 𝑌𝑖) 𝜕𝜃⁄ |𝜃=𝜃∗} is the Fisher information (ignoring 𝑜𝑝(1) terms).  

Likewise, 𝜃0 is the solution to  

𝑠̅(𝜃0; 𝑌0) = 𝑛
−1∑  𝑠(𝜃0; 𝑌0𝑖)

𝑛

𝑖=1
= (1 − 𝜋̂)𝑠̅0(𝜃̂0; 𝑌0) + 𝜋̂𝑠̅1(𝜃̂0; 𝑌0) = 0,      (S7.3) 

where 𝑠̅𝑑(𝜃0; 𝑌0) = ∑ 𝑠(𝜃0; 𝑌0𝑖)𝐼(𝐷𝑖 = 𝑑)
𝑛
𝑖=1 ∑ 𝐼(𝐷𝑖 = 𝑑)

𝑛
𝑖=1⁄  is the mean (face-to-face) score 

among those who choose mode 𝑑 = 0,1. 

For a sequence (in 𝑛) of 𝜃0 lying in a neighbourhood of 𝜃∗, a first-order Taylor series expansion 

of (S7.3) around 𝜃∗ gives 𝑠̅(𝜃0; 𝑌0) = 𝑠̅(𝜃
∗; 𝑌0) − ℱ0(𝜃

∗)(𝜃0 − 𝜃
∗) = 0 so that 

𝑠̅(𝜃∗; 𝑌0) = ℱ0(𝜃
∗)(𝜃0 − 𝜃

∗),      (S7.4) 
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where ℱ0(𝜃
∗) = E{−𝜕𝑠𝑇(𝜃; 𝑌0𝑖) 𝜕𝜃⁄ |𝜃=𝜃∗}.  Note that ℱ0 is not now the expected Fisher 

information matrix because 𝜃∗ is not the probability limit of 𝜃0. 

Under the convenient approximation 

ℱ0(𝜃
∗) ≈ ℱ(𝜃∗),      (S7.5) 

it follows from combining (S7.1) and (S7.3) that 

𝜃 − 𝜃0 ≈ 𝑉(𝜃
∗){ 𝑠̅(𝜃∗; 𝑌) − 𝑠̅(𝜃∗; 𝑌0)} = 𝜋̂𝑉(𝜃

∗){ 𝑠̅1(𝜃
∗; 𝑌) − 𝑠̅1(𝜃

∗; 𝑌0)},     (S7.6) 

where 𝑉(𝜃∗) = ℱ−1(𝜃∗). 

To evaluate the asymptotic distribution of 𝜃 − 𝜃0, first define sample average ∆𝑠̅1 = 𝑠̅1(𝜃
∗; 𝑌) −

𝑠̅1(𝜃
∗; 𝑌0), ∆𝑠𝑖 = 𝑠(𝜃

∗; 𝑌𝑖) − 𝑠(𝜃
∗; 𝑌0𝑖) and ∆𝑠1 = E(∆𝑠𝑖|𝐷𝑖 = 1).  Then rewrite (S7.6) as 

𝜃 − (𝜃0 + 𝜋𝑉(𝜃
∗)∆𝑠1) ≈ 𝑉(𝜃

∗)(𝜋̂ ∆𝑠̅1 − 𝑝∆𝑠1),      (S7.7) 

and apply the (multivariate) central limit theorem to the random variable 𝐷𝑖∆𝑠𝑖 (because 

𝜋̂ ∆𝑠̅1 = 𝑛
−1∑ 𝐷𝑖∆𝑠𝑖

𝑛
𝑖=1  with mean 𝑝∆𝑠1 ≠ 0).  If we write 

𝜋̂ ∆𝑠̅1 − 𝜋∆𝑠1 = {𝑛
−1𝑄1(𝜃

∗)}
1
2{𝑛−1𝑄1(𝜃

∗)}−
1
2(𝜋̂ ∆𝑠̅1 − 𝜋∆𝑠1) 

then (S7.7) can be rewritten as 

√𝑛{𝜃 − (𝜃0 + 𝜋𝑉(𝜃
∗)∆𝑠1)} ≈ 𝑉(𝜃

∗)𝑄1
1 2⁄ (𝜃∗)[{𝑛−1𝑄1(𝜃

∗)}−1/2( 𝜋̂ ∆𝑠̅1 − 𝜋∆𝑠1)], 

where 

𝑄1(𝜃
∗) = var(𝐷𝑖∆𝑠𝑖) = 𝐸{( 𝐷𝑖∆𝑠𝑖 − 𝜋∆𝑠1)(𝐷𝑖∆𝑠𝑖 − 𝜋∆𝑠1)

𝑇} = 𝜋E(∆𝑠𝑖∆𝑠𝑖
𝑇|𝐷𝑖 = 1) − 𝜋

2∆𝑠1∆𝑠1
𝑇 

is the variance-covariance of zero-mean 𝐷𝑖∆𝑠𝑖 − 𝜋∆𝑠1.  

It follows from applying the (multivariate) central limit theorem that {𝑛−1𝑄1(𝜃
∗)}−1/2( 𝜋̂ ∆𝑠̅1 −

𝜋∆𝑠1) ∼ 𝒩(0, 𝐼) so that 

𝜃 − 𝜃0 ∼̇ 𝒩{𝜋𝑉(𝜃
∗)∆𝑠1, 𝑛

−1𝑉(𝜃∗)𝑄1(𝜃
∗)𝑉(𝜃∗)}      (S7.8) 

as 𝑛 → ∞. 

Equation (S7.6) simplifies as follows when the density of 𝑌𝑖  is a member of the curved 

exponential family of distributions such that 

𝑓(𝑦𝑖; 𝜃) = ℎ(𝑦𝑖)exp{𝜂
𝑇(𝜃)𝑇(𝑦𝑖) − 𝐴(𝜃)}, 

where 𝑇(. ) is the sufficient statistic for natural parameter 𝜂.  In this case, 

𝑠̅(𝜃; 𝑌) =
𝜕𝜂𝑇(𝜃)

𝜕𝜃
{(1 − 𝜋̂)𝑇̅0(𝑌) + 𝜋̂𝑇̅1(𝑌) −

𝜕𝐴(𝜂)

𝜕𝜂
}, 

where 𝑇̅𝑑(𝑌) = ∑ 𝐼(𝐷𝑖 = 𝑑)𝑇(𝑌𝑖)
𝑛
𝑖=1 ∑ 𝐼(𝐷𝑖 = 𝑑)

𝑛
𝑖=1⁄ , which gives 

𝜃 − 𝜃0 = 𝜋̂𝑉(𝜃
∗)
𝜕𝜂𝑇(𝜃∗)

𝜕𝜃
{𝑇̅1(𝑌) − 𝑇̅1(𝑌0)}      (S7.9) 

and 𝑇̅1(𝑌) − 𝑇̅1(𝑌0) can be estimated by fitting the multivariate SMM 

𝐸{𝑇(𝑌𝑖) − 𝑇(𝑌0𝑖)|𝐷𝑖, 𝑀𝑖} = 𝐷𝑖𝜇1𝑇 , 
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so that 

𝜃 − 𝜃0 = 𝜋̂𝑉(𝜃)
𝜕𝜂𝑇(𝜃)

𝜕𝜃
𝜇̂1𝑇.     (S7.10) 

Alternatively, we can directly estimate the face-to-face score function as follows: rewrite (S7.3) 

as  

𝑠̅(𝜃; 𝑌0) = 𝑛
−1∑  (1 − 𝐷𝑖)

𝜕𝜂𝑇

𝜕𝜃
𝑇(𝑌𝑖)

𝑖
−
𝜕𝐴

𝜕𝜃
+
𝜕𝜂𝑇

𝜕𝜃
{𝑛−1∑ 𝐷𝑖

𝑖
𝑇(𝑌0𝑖)}. 

The final parenthesised term is consistent for 𝜋𝐸{𝑇(𝑌0𝑖)|𝐷𝑖 = 1} = 𝜋𝐸{𝑇(𝑌𝑖) − 𝜇𝑇|𝐷𝑖 = 1}, 

where 𝜇𝑇 is the parameter of the linear SMoM 𝐸{𝑇(𝑌𝑖) − 𝑇(𝑌0𝑖)|𝐷𝑖, 𝑀𝑖} = 𝐷𝑖𝜇𝑇.  Plugging this 

into the expression above and simplifying yields the plug-in estimator 

𝑠̅(𝜃; 𝑌0)̂ = 𝑛−1∑  
𝜕𝜂𝑇

𝜕𝜃
{𝑇(𝑌𝑖) − 𝐷𝑖𝜇̂𝑇}

𝑖
−
𝜕𝐴

𝜕𝜃
,      (S7.11) 

where 𝜃0 = {𝜃: 𝑠̅(𝜃; 𝑌0)̂ = 0}. 

In terms of variance estimation, we cannot rely on the limiting distribution (S7.8) because 𝑄1 

cannot be estimated, and we have derived no such convenient expression for (S7.11).  

Submitted Paper (2020) suggest using the bootstrap to estimate the standard errors but base 

significance on a (joint) hypothesis test of 𝜇1𝑇 = 0 based on weighed linearized variance 

estimation of the SMoM. 

Example S7.1: Consider the normal linear regression model for outcome 𝑌 with two 

predictors 𝑋1 and 𝑋2 where all three variables are mean-centred.  The mode of interest is 

𝑌𝑖 = 𝑏1𝑋1𝑖 + 𝑏2𝑋2𝑖 + 𝑒𝑖,      (S7.12) 

where residual 𝑒𝑖 is assumed to be normally distributed with variance 𝜎𝑒
2.  If none of the 

three variables is mode-invariant, we must jointly model all three.  We take the joint 

distribution to be normal with zero mean and variance-covariance matrix 

Σ = (
Σ𝑋 𝜎𝑋𝑌
𝜎𝑋𝑌
𝑇 𝜎𝑌

2 ), 

where 𝜎𝑋𝑌
𝑇 = (𝜎1𝑌, 𝜎2𝑌) are respectively the covariances between 𝑌 and 𝑋1 and 𝑌 and 𝑋2, 

Σ𝑋 = (
𝜎1
2 𝜎12

𝜎2
2 ) 

is the variance-covariance matrix of 𝑋1 and 𝑋2, and 𝜎𝑌
2 is the variance of the outcome. 

The connection between the natural parameters of the exponential-family representation 

of this distribution and 𝜃 = (𝜎1
2, 𝜎12, 𝜎2

2, 𝑏1, 𝑏2, 𝜎𝑒
2)𝑇 is given by standard results: 

(

𝜂1 𝜂2 𝜂3
𝜂4 𝜂5

𝜂6

) = Σ−1 = (
Σ𝑋
−1 + 𝑏𝑏𝑇 𝜎𝑒

2⁄ −𝑏 𝜎𝑒
2⁄

−𝑏𝑇 𝜎𝑒
2⁄ 1 𝜎𝑒

2⁄
), 

where 𝑏𝑇 = (𝑏1, 𝑏2) and 𝜎𝑒
2 = 𝜎𝑌

2 − 𝜎𝑋𝑌
𝑇 𝑏 are respectively the coefficients and residual 

variance of (S7.11).  The sufficient statistics for 𝜂1 = 𝜎2
2 𝑑⁄ + 𝑏1

2 𝜎𝑒
2⁄ , 𝜂2 = −𝜎12 𝑑⁄ +

𝑏1𝑏2 𝜎𝑒
2⁄ , 𝜂4 = 𝜎1

2 𝑑⁄ + 𝑏2
2 𝜎𝑒

2⁄ , 𝜂3 = −𝑏1 𝜎𝑒
2⁄ , 𝜂5 = −𝑏2 𝜎𝑒

2⁄  and 𝜂6 = 1 𝜎𝑒
2⁄  are 
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respectively 𝑇1 = 𝑋1
2, 𝑇2 = 𝑋1𝑋2, 𝑇4 = 𝑋2

2, 𝑇3 = 𝑋1𝑌, 𝑇5 = 𝑋2𝑌 and 𝑇6 = 𝑌
2 (where 𝑑 =

det(Σ𝑋)). 

None of the derivatives in 𝜕𝜂𝑇 𝜕𝜃⁄  taken with respect to 𝜎1
2, 𝜎12 or 𝜎2

2 depend on 

𝑏1, 𝑏2 or 𝜎𝑒
2 so we need only focus on the derivatives taken with respect to the parameters 

of (S7.12).  These are given as follows: 

𝜕𝜂1
𝜕𝑏1

=
2𝑏1

𝜎𝑒
2 ,
𝜕𝜂1
𝜕𝑏2

= 0,
𝜕𝜂1

𝜕𝜎𝑒
2 = −

𝑏1
2

𝜎𝑒
4, 

𝜕𝜂2
𝜕𝑏1

=
𝑏2

𝜎𝑒
2 ,
𝜕𝜂2
𝜕𝑏2

=
𝑏1

𝜎𝑒
2 ,
𝜕𝜂2

𝜕𝜎𝑒
2 = −

𝑏1𝑏2

𝜎𝑒
4 , 

𝜕𝜂4
𝜕𝑏1

= 0,
𝜕𝜂4
𝜕𝑏2

=
2𝑏2

𝜎𝑒
2 ,
𝜕𝜂4

𝜕𝜎𝑒
2 = −

𝑏2
2

𝜎𝑒
4, 

𝜕𝜂3
𝜕𝑏1

= −
1

𝜎𝑒
2 ,
𝜕𝜂3
𝜕𝑏2

= 0,
𝜕𝜂3

𝜕𝜎𝑒
2 =

𝑏1

𝜎𝑒
4, 

𝜕𝜂5
𝜕𝑏1

= 0,
𝜕𝜂5
𝜕𝑏2

= −
1

𝜎𝑒
2 ,
𝜕𝜂5

𝜕𝜎𝑒
2 =

𝑏2

𝜎𝑒
4, 

and 

𝜕𝜂6
𝜕𝑏1

=
𝜕𝜂6
𝜕𝑏2

= 0,
𝜕𝜂6

𝜕𝜎𝑒
2 = −

1

𝜎𝑒
4. 

In this situation, equation (S7.6) for 𝜃 = (𝑏1, 𝑏2, 𝜎𝑒
2)𝑇 is 

𝜃 − 𝜃0 ≈ 𝜋̂𝑉(𝜃){ 𝑠̅1(𝜃; 𝑌) − 𝑠̅1(𝜃; 𝑌0)} = 𝜋̂𝑉(𝜃)∑
𝜕𝜂𝑘
𝜕𝜃

|
𝜃=𝜃̂

6

𝑘=1
𝜇̂𝑇1𝑘 , 

where 

𝜇𝑇1𝑘 = 𝐸{𝑇𝑘(𝑍𝑖) − 𝑇𝑘(𝑍0𝑖)|𝐷𝑖 = 1} 

is estimated using the appropriate SMoM, 𝑍𝑖 = (𝑋1𝑖, 𝑋2𝑖, 𝑌𝑖)
𝑇 with its face-to-face 

equivalent 𝑍0𝑖 , and is the observed-data estimated variance covariance matrix. 

Example S7.2: Now consider estimating the effect of mode on generalized linear models 

of the form 

𝑔{𝐸(𝑌𝑖|𝑋𝑖)} = 𝑋𝑖
𝑇𝛽, 

where 𝑔 is the link function and 𝑌𝑖  (given 𝑋𝑖) is a member of the over-dispersed 

exponential family with a density function of the form 

𝑓(𝑦𝑖) = ℎ(𝑦𝑖 , 𝜎) exp (
𝜂𝑖𝑇(𝑦𝑖) − 𝐴(𝜂𝑖)

𝜎
), 

where 𝜎 is the over-dispersion scale parameter.   

We focus on simple models like the normal, exponential, Bernoulli and Poisson where 

𝑇(𝑦𝑖) = 𝑦𝑖  and 𝜎 is a known constant.  For these cases, the efficient score is 

𝑠̅(𝛽) =
1

𝑛
∑

𝜕𝜂𝑖
𝜕𝛽

{
𝑌𝑖 − 𝑔

−1(𝑋𝑖
𝑇𝛽)

𝜎
} .

𝑖
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In contrast to the case above, the natural parameter 𝜂𝑖  varies between individuals through 

the implicit conditioning on 𝑋𝑖  so neither (S7.6) nor (S7.11) are applicable because both 

assume independent and identically distributed realizations when only the first of these 

now holds.  

For example, the logistic regression model assumes that 𝑌𝑖  is Bernoulli distributed and 

logit link 𝑔(𝑝) = log{𝑝 (1 − 𝑝)⁄ } so that 𝜂𝑖 = 𝑥𝑖
𝑇𝛽, 𝑇(𝑦𝑖) = 𝑦𝑖 , 𝐴(𝜂𝑖) = log{1 + exp(𝑥𝑖

𝑇𝛽)}, 

𝜎 = 1, and 

 𝑠̅(𝛽) = 𝑛−1∑  𝑋𝑖[𝑌𝑖 − 1 {1 + exp(−𝑋𝑖
𝑇𝛽)}⁄ ]

𝑖
 

is the score function based on the mixed-modes data. 

We can see that the form of this canonical model is loglinear in the sufficient statistic for 

𝛽, 𝑌𝑖𝑋𝑖 , but that 1 {1 + exp(−𝑋𝑖
𝑇𝛽)}⁄  is not.  Thus, the same approach as before can be 

used to adjust 𝑌𝑖𝑋𝑖 based on the SMoM 

𝐸(𝑌𝑖𝑋𝑖 − 𝑌0𝑖𝑋0𝑖|𝐷𝑖, 𝑀𝑖) = 𝐷𝑖𝜓𝑦𝑥 . 

The same approach can also be used for the non-loglinear term but only by proceeding 

iteratively as follows.  Let 𝛽(𝑘) be the current estimate of the regression parameter, which 

can be treated as a constant in the update step.  Now estimate the mode effect on 𝑋𝑖𝑍𝑖
(𝑘)

 

using the SMoM 

𝐸 (𝑋𝑖𝑍𝑖
(𝑘)
− 𝑋0𝑖𝑍0𝑖

(𝑘)
| 𝐷𝑖, 𝑀𝑖) = 𝐷𝑖𝜏𝑦𝑥

(𝑘)
, 

where 𝑍𝑖
(𝑘)

= 1 {1 + exp(−𝑋𝑖
𝑇𝛽(𝑘))}⁄  and 𝑍0𝑖

(𝑘)
= 1 {1 + exp(−𝑋0𝑖

𝑇 𝛽(𝑘))}⁄ .  The estimated 

score function at iteration 𝑘 is thus 

𝑠̅(𝑘)(𝛽) = 𝑛−1∑  𝑋𝑖𝑌𝑖 − 𝑋𝑖𝑍𝑖 − 𝐷𝑖 (𝜓̂𝑥𝑦 − 𝜏𝑦𝑥
(𝑘)
)

𝑖
,       

where 𝑍𝑖 = log{1 + exp(𝑋𝑖
𝑇𝛽)}, and 𝛽(𝑘+1) = {𝛽: 𝑠̅(𝑘)(𝛽) = 0}.   

A similar approach can be used straightforwardly for other canonical generalized linear 

models.  For the non-canonical models like the probit for binary outcomes with link 

𝑔(𝑝) = Φ(𝑝), SMoMs are required for 𝑌𝑖 𝜕Φ(𝑋𝑖
𝑇𝛽) 𝜕𝛽⁄  and Φ−1(𝑋𝑖

𝑇𝛽)𝜕Φ(𝑋𝑖
𝑇𝛽) 𝜕𝛽⁄  and 

both must be iteratively estimated as 𝛽 is updated. 

 

S7.2 Simulation Study 

To demonstrate the performance of the estimators based on the approaches outlined above, we 

carried out a simulation study to estimate the mode effect on the association between 𝑌 and 𝑋 

when both variables are subject to mode effects.   

The first example concerns the effect of mode of the coefficient of 𝑋 in the linear regression of 𝑌 

on 𝑋 when both variables are continuous.  The data were generated as follows: 

1. Generate the dichotomous instrumental variable 𝑍~Bernoulli(𝜋IV). 

2. Generate independent error terms 𝑒0
𝑋~𝑁(0, 𝜎0

2) and 𝑒0
𝑌~𝑁(0, 𝜎0

2). 
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3. Generate correlated heterogeneity terms (
𝑒1
𝑋

𝑒1
𝑌)~𝑁 {(

0
0
) , (

𝜎1
2 𝜌𝜎1

2

𝜎1
2 )}. 

4. Generate unobserved confounding variable 𝑈~𝑁(0,1). 

5. Calculate the face-to-face mode potential outcomes 𝑋0 = 𝛽0 + 𝛽2𝑈 + 𝑒0
𝑋 and 𝑌0 = 𝛽0 +

𝛽2𝑈 + 𝑒0
𝑌. 

6. Calculate the web mode potential outcomes 𝑋1 = 𝛽0 + 𝛽1 + 𝛽2𝑈 + 𝑒0
𝑋 + 𝑒1

𝑋 and 𝑌1 =

𝛽0 + 𝛽1 + 𝛽2𝑈 + 𝑒0
𝑌 + 𝑒1

𝑌.  

7. Generate mode selection dependent on 𝑍 and 𝑈 as follows: 

𝐷~Bernoulli[1  {1 + exp(−𝛼0 − 𝛼1𝑍 − 𝛼2𝑈)}⁄ ]. 

8. Calculate the observed outcome 𝑌 = (1 − 𝐷)𝑌0 + 𝐷𝑌1.  

The approximate method (S7.10) is a direct estimate of the mode effect; the exact method is the 

difference between the observed association and the solution to the mode-effect-adjusted score 

equation (S7.11).   

The bias and spread of the approximate and exact methods for an indicative example are shown 
in the table below.  The population parameters result, respectively, in mixed-mode and face-to-

face regression models 

𝑌 = 0.0004 + 0.4608𝑋 + 𝑒  and  𝑌0 = 0.0005 + 0.5005𝑋0 + 𝑒, 

with a small mode effect on the regression coefficient: –0.0397. 

The second example is the logistic regression of binary 𝑌 on 𝑋.  The data-generating procedure 

above is modified as follows to yield a binary outcome:  𝑌𝑑 ≡ 𝐼(𝑌𝑑 > 0).  then the resulting 

logistic regression models are 

logit Pr(𝑌 = 1|𝑋) = −0.0251 + 0.5857𝑋  and  logit Pr(𝑌0 = 1|𝑋0) = 0.0022 + 0.6750𝑋0 

corresponding to a mode effect of 0.0893.  The focus of the study is the use of exact method for 

generalised linear models so the target parameter is 0.6750 the ‘slope’ coefficient of 𝑋0. 

The results using the exact approach for both linear and logistic regression are in line with 

those for the SMoMs in that the relative bias is less than 10% for sample sizes of 10,000 and 

100,000.  This is expected because the method is driven by the bias of the SMoM estimates.  The 

estimator is also accurate in that its standard deviation is small enough to permit a statistical 

test to produce a significant finding from a hypothesis test. 
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Table S7.1 Estimated mode effects on coefficients of linear and logistic regression using SMoM 

method 

True values         

𝜋IV 𝜎0 𝜎1 𝜌 𝛼0 𝛼1 𝛼2 𝛽0 𝛽1 𝛽2 
0.5 1 0.5 –0.1  0 1 2.5 0 0 1 

Sample size 100 1000 10000 100000 

Linear regression Est. R. Bias Est. R. Bias Est. R. Bias Est. R. Bias 

  True mode effect = –0.0397 
Approx Mode effect 0.2238 +663% 0.0137 +134% –0.0339 14.7% –0.0372 6.4% 

 SD 1.062  0.275  0.081  0.025  
 Converged 99%  100%  100%  100%  
          

Exact Mode effect 0.0144 +63.8% –0.0372 +6.5% –0.0378 +4.8% –0.0398 -0.3% 

 SD 0.558  0.346  0.090  0.027  
 Converged 46%  90%  100%  100%  
Logistic Regression         

  True slope = 0.6750 
Exact Slope 0.5408 -19.9% 0.8189 +21.3% 0.6928 +2.7% 0.6718 -0.5% 

 SD 0.869  1.110  0.208  0.055  
 Converged 19%  84%  100%  100%  

Notes: R(elative) Bias = 100(Average – Truth)/Abs(Truth); SD = Standard Deviation; SE = Standard Error;  

 

The results of this study also indicate that an advantage of the approximate method for small 

sample sizes is that it almost always converges, but this is offset by large bias for sample size of 

100. However, for the larger sample size, it outperforms the exact method in terms of mean 

square error (0.0137 + 0.0397)2 + 0.2752 = 0.078 to (–0.0372 + 0.0397)2 + 0.3462 = 0.120 as 

well as in terms of convergence (100% to 90%).  A complete assessment of the relative 

strengths of these two approaches would be an interesting topic for further investigation. 

 

S8 Adjusting for non-response 

S8.1 Inverse probability weighting 

If 𝑅𝑖
𝑐𝑐 is the complete-cases response indicator and we have control variables 𝐂𝑖 satisfying 

𝑅𝑖
𝑐𝑐 ⫫ (

𝑌0𝑖
𝑌1𝑖
𝑀𝑖
𝐷𝑖

)|𝐂𝑖,      (S8.1) 

then the inverse probability weighted (IPW) estimator for SMM 

𝐸(𝑌𝑖 − 𝑌0𝑖|𝐷𝑖, 𝑀𝑖) = 𝐷𝑖𝜇1,      (S8.2) 

is simply (S2.9) weighted by 𝑤(𝐂𝑖 , 𝑀𝑖, 𝐷𝑖) = 1 Pr(𝑅𝑖
𝑐𝑐 = 1|𝐂𝑖, 𝑀𝑖, 𝐷𝑖)⁄ , that is, 

∑ 𝑤(𝐂𝑖 , 𝑀𝑖, 𝐷𝑖)𝐚0(𝑀𝑖)𝑈̅𝑖𝑅𝑖
𝑐𝑐

𝑖
= 𝟎.      (S8.3) 

However, if the control variables are related to the mode effect on the mean so that 

𝐸(𝑌𝑖 − 𝑌0𝑖|𝐷𝑖, 𝑀𝑖, 𝐂𝑖) = 𝐷𝑖𝜇1(𝐂𝑖),      (S8.4) 

SMM (S8.2) cannot satisfy NEM because 
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𝐸(𝑌𝑖 − 𝑌0𝑖|𝐷𝑖, 𝑀𝑖) = 𝐸{𝐸(𝑌𝑖 − 𝑌0𝑖|𝐷𝑖,𝑀𝑖, 𝐂𝑖)|𝐷𝑖,𝑀𝑖} = 𝐷𝑖𝐸{𝜇1(𝐂𝑖)|𝐷𝑖 = 1,𝑀𝑖}

≠ 𝐷𝑖𝐸{𝜇1(𝐂𝑖)|𝐷𝑖 = 1}, 

under either of the (control variable-conditional) data generating processes defined in 

Supplementary Information S.1, unless 𝐷𝑖 ⫫ 𝑀𝑖|𝑌𝑖
∗, 𝐂𝑖  or 𝐷𝑖 ⫫ 𝑀𝑖|𝑌𝑖

∗, 𝑌0𝑖, 𝑌1𝑖 , 𝐂𝑖, that is, the 

control variables also control for the dependence of 𝐷 on 𝑀 in the data generating process for 

mode selection, where 𝑌𝑖
∗ is the latent true value of the survey characteristics.  

S8.2 Linear SMMs 

Under (S8.1), we have that 

𝐸(𝑌𝑖 − 𝑌0𝑖|𝐷𝑖,𝑀𝑖 , 𝐂𝑖, 𝑅𝑖
𝑐𝑐 = 1) = 𝐸(𝑌𝑖 − 𝑌0𝑖|𝐷𝑖, 𝑀𝑖, 𝐂𝑖). 

where the right-hand side follows SMM (S8.4) and 𝜇1(𝐂𝑖) = 𝐸(𝑌1𝑖 − 𝑌0𝑖|𝐷𝑖 =1, 𝐂𝑖). 

The most obvious way to handle this dependence would be to specify a parametric SMM for 

𝜇1(𝐂𝑖) but, for simplicity, we would prefer to estimate 𝜇1 = 𝐸{𝜇1(𝐂𝑖)|𝐷𝑖 = 1} as if there were no 

association between the mode effects and control variables, that is, using 

𝐸(𝑌𝑖 − 𝑌0𝑖|𝐷𝑖,𝑀𝑖, 𝐂𝑖) = 𝐷𝑖𝜇1,      (S8.5) 

despite NEM not being satisfied.  To show that the naïve g-estimator based on (S8.5) is not 

consistent for 𝜇1, consider the residual one would use if 𝐂𝑖 and mode effect were unrelated, that 

is, 

𝑈𝑖 = 𝑌𝑖 − 𝐷𝑖𝜇1
∗ , 

where 𝜇1
∗ ≠ 𝜇1.  A locally efficient but naive g-estimator for 𝜇1

∗  is the solution to 

𝜎𝑈
−2∑ {Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝑈𝑖

𝑖
= 0, 

which, ignoring 𝜎𝑈
−2, is consistent for the population moment restriction 

𝐸[{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝑈𝑖] = 0.      (S8.6) 

Now rewrite 

𝑈𝑖 = 𝑌𝑖 − 𝐷𝑖𝜇1(𝐂𝑖) + 𝐷𝑖{𝜇1(𝐂𝑖) − 𝜇1
∗} = 𝑈̅𝑖 + 𝐷𝑖{𝜇1(𝐂𝑖) − 𝜇1

∗}, 

where 𝑈̅𝑖  satisfies CMI 𝐸(𝑈̅𝑖|𝑀𝑖, 𝐂𝑖) = 𝐸(𝑈̅𝑖|𝐂𝑖).  Hence, equation (S8.6) can be rewritten 

𝐸[{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝑈̅𝑖]

+ 𝐸[{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}{𝜇1(𝐂𝑖) − 𝜇1
∗}𝐷𝑖]

= 𝐸[{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝐸(𝑈̅𝑖|𝑀𝑖 , 𝐂𝑖)]

+ 𝐸[{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}{𝜇1(𝐂𝑖) − 𝜇1
∗}𝐷𝑖]

= 𝐸[𝐸{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)|𝐂𝑖}𝐸(𝑈̅𝑖|𝐂𝑖)]

+ 𝐸[{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}{𝜇1(𝐂𝑖) − 𝜇1
∗}𝐷𝑖]

= 0 + 𝐸[{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}{𝜇1(𝐂𝑖) − 𝜇1
∗}𝐷𝑖] = 0, 

from which equality to zero gives 

𝜇1
∗ =

𝐸[{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝜇1(𝐂𝑖)|𝐷𝑖 = 1]

𝐸{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)|𝐷𝑖 = 1}
≠ 𝜇1. 
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However, if (S8.6) had been weighted by  

𝑤𝑖(𝐂𝑖) =
1

𝐸{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖) |𝐷𝑖 = 1, 𝐂𝑖}
, 

then 

𝐸[𝑤𝑖(𝐂𝑖){Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝑈𝑖]

= 𝐸[𝑤𝑖(𝐂𝑖){Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝐸(𝑈̅𝑖|𝐂𝑖)]

+ Pr(𝐷𝑖 = 1)𝐸[𝑤𝑖(𝐂𝑖)𝐸{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)|𝐂𝑖}{𝜇1(𝐂𝑖) − 𝜇1}|𝐷𝑖
= 1]

= 𝐸[𝑤𝑖(𝐂𝑖)𝐸{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)|𝐂𝑖}𝐸(𝑈̅𝑖|𝐂𝑖)]

+ Pr(𝐷𝑖 = 1)𝐸[{𝜇1(𝐂𝑖) − 𝜇1}|𝐷𝑖 = 1] Pr(𝐷𝑖 = 1)

= Pr(𝐷𝑖 = 1) [𝐸{𝜇1(𝐂𝑖)|𝐷𝑖 = 1} − 𝜇1] = 0,     (S8.7) 

where one should note 𝜇1
∗  has been replaced by 𝜇1 so it follows that the weighted g-estimator is 

consistent for 𝜇1.  

To improve the estimated standard errors, we modify the above argument to work with the 

mean-zero residual 

𝑈𝑖 = 𝑌𝑖 − 𝐸(𝑌𝑖|𝐂𝑖) − {𝐷𝑖 − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝜇1 = 𝑌̅𝑖 − 𝐷̅𝑖𝜇1, 

where 𝑌̅𝑖 = 𝑌𝑖 − 𝐸(𝑌𝑖|𝐂𝑖) and 𝐷̅𝑖 = 𝐷𝑖 − Pr(𝐷𝑖 = 1|𝐂𝑖) require the analyst to specify and fit 

additional models for 𝐸(𝑌𝑖|𝐂𝑖) and Pr(𝐷𝑖 = 1|𝐂𝑖).  However, the same arguments as above based 

around 

𝑈𝑖 = 𝑌̅𝑖 − 𝐷̅𝑖𝜇1(𝐂𝑖) + 𝐷̅𝑖{𝜇1(𝐂𝑖) − 𝜇1
∗} = 𝑈̅𝑖 + 𝐷̅𝑖{𝜇1(𝐂𝑖) − 𝜇1

∗} 

give 

∑𝑤𝑖(𝐂𝑖){Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝑈𝑖
𝑖

= 0,      (S8.8) 

because CMI 𝐸(𝑈̅𝑖|𝑀𝑖, 𝐂𝑖) = 0. This is also a consistent estimating equation for 𝜇1 because 

𝐸[𝑤𝑖(𝐂𝑖){Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝑈𝑖]

= 𝐸[𝑤𝑖(𝐂𝑖){Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}𝐸(𝑈̅𝑖|𝑀𝑖, 𝐂𝑖)]

+ 𝐸[𝑤𝑖(𝐂𝑖){Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}{𝜇1(𝐂𝑖) − 𝜇1}𝐷𝑖
∗]

= 0 + 𝐸[𝑤𝑖(𝐂𝑖){Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}{𝜇1(𝐂𝑖) − 𝜇1}𝐷𝑖]

+ 𝐸[𝑤𝑖(𝐂𝑖){Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}{𝜇1(𝐂𝑖) − 𝜇1} Pr(𝐷𝑖 = 1|𝐂𝑖)]

= 𝐸[𝑤𝑖(𝐂𝑖){Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)}{𝜇1(𝐂𝑖) − 𝜇1}𝐷𝑖]

+ 𝐸[𝑤𝑖(𝐂𝑖)𝐸{Pr(𝐷𝑖 = 1|𝑀𝑖, 𝐂𝑖) − Pr(𝐷𝑖 = 1|𝐂𝑖)|𝐂𝑖}{𝜇1(𝐂𝑖) − 𝜇1} Pr(𝐷𝑖 = 1|𝐂𝑖)]

= 0 + 𝐸[{𝜇1(𝐂𝑖) − 𝜇1}𝐷𝑖] = 0. 

S4.3 Log-linear SMMs 

The same weighting strategy does not work for log-linear SMoMs.  To show why, consider the 

same set up as above for the log-linear SMoM 

log{𝐸(𝑌𝑖
2|𝐷𝑖, 𝑀𝑖, 𝐂𝑖 , 𝑅𝑖

𝑐𝑐 = 1)} − log{𝐸(𝑌0𝑖
2 |𝐷𝑖, 𝑀𝑖, 𝐂𝑖 , 𝑅𝑖

𝑐𝑐 = 1)}

= log{𝐸(𝑌𝑖
2|𝐷𝑖, 𝑀𝑖, 𝐂𝑖)} − log{𝐸(𝑌0𝑖

2 |𝐷𝑖,𝑀𝑖, 𝐂𝑖)} = 𝐷𝑖𝜇2(𝐂𝑖),      (S8.9) 

where exp{𝜇2(𝐂𝑖)} = 𝐸(𝑌1𝑖
2|𝐷𝑖 = 1, 𝐂𝑖) 𝐸(𝑌0𝑖

2 |𝐷𝑖 = 1, 𝐂𝑖)⁄ .  Together with CMI 

𝐸(𝑌0𝑖
2 |𝑀𝑖, 𝐂𝑖) = 𝐸(𝑌0𝑖

2 |𝑀𝑖, 𝐂𝑖),      (S8.10) 
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this model implies that 

𝑉𝑖 = 𝑌𝑖
2 exp{−𝜇2(𝐂𝑖)𝐷𝑖},      (S8.11) 

satisfies CMI assumption 

𝐸(𝑉𝑖|𝑀𝑖, 𝐂𝑖) = 𝐸(𝑉𝑖|𝐂𝑖),      (S8.12) 

whereas the simpler residual 

𝑉𝑖
∗ = 𝑌𝑖

2 exp(−𝜇2
∗𝐷𝑖),      (S8.13) 

derived from 

log{𝐸(𝑌𝑖
2|𝐷𝑖, 𝑀𝑖, 𝐂𝑖)} − log{𝐸(𝑌0𝑖

2 |𝐷𝑖,𝑀𝑖, 𝐂𝑖)} = 𝜇2
∗𝐷𝑖      (S8.14) 

does not satisfy CMI 𝐸(𝑉𝑖
∗|𝑀𝑖, 𝐂𝑖) = 𝐸(𝑉𝑖

∗|𝐂𝑖). 

Finally, note that the target parameter is 

exp(𝜇2) =
𝐸(𝑌1𝑖

2 |𝐷𝑖 = 1)

𝐸(𝑌0𝑖
2 |𝐷𝑖 = 1)

=
𝐸(𝑌𝑖

2|𝐷𝑖 = 1)

𝐸[𝑌𝑖
2 exp{−𝜇2(𝐂𝑖)}|𝐷𝑖 = 1]

.     (S8.15) 

but the g-estimator is consistent for   

exp(𝜇2
∗) =

𝐸{𝑏0(𝑀𝑖, 𝐂𝑖)𝑌𝑖
2𝐷𝑖}

𝐸[𝑏0(𝑀𝑖, 𝐂𝑖)𝑌𝑖
2𝐷𝑖 exp{−𝜇2(𝐂𝑖)}]

≠ exp(𝜇2), 

where 𝑏0(𝑀𝑖, 𝐂𝑖) is the efficient instrument.  

However, the dependence of (S8.15) on 𝑌𝑖
2 ultimately prevents any choice of 𝑤𝑖(𝐂𝑖) correcting 

for this bias.  For example, consider expanding (S8.13) as 

𝑉𝑖
∗ = 𝑉𝑖 + [exp(−𝜇2

∗) − exp{−𝜇2(𝐂𝑖)}]𝑌𝑖
2𝐷𝑖, 

in which case the general form of the g-estimator for (S8.14) is 

𝐸{𝑏0(𝑀𝑖, 𝐂𝑖)𝑉𝑖
∗} = 𝐸{𝑏0(𝑀𝑖, 𝐂𝑖)𝑌𝑖

2𝐷𝑖} exp(−𝜇2
∗) − 𝐸[𝑏0(𝑀𝑖, 𝐂𝑖)𝑌𝑖

2𝐷𝑖 exp{−𝜇2(𝐂𝑖)}] = 0, 

where  

𝑏0(𝑀𝑖, 𝐂𝑖) ∝ 𝐸(𝐷𝑖𝑌𝑖
2|𝑀𝑖, 𝐂𝑖) − 𝐸(𝐷𝑖𝑌𝑖

2|𝐂𝑖), 

is a locally efficient choice satisfying 𝐸{𝑏0(𝑀𝑖, 𝐂𝑖)|𝐂𝑖} = 0.  Then 

𝐸{𝑤𝑖(𝐂𝑖)𝑏0(𝑀𝑖 , 𝐂𝑖)𝑉𝑖
∗}

= Pr(𝐷𝑖 = 1)𝐸{𝑤𝑖(𝐂𝑖)𝑏0(𝑀𝑖, 𝐂𝑖)𝑌𝑖
2|𝐷𝑖 = 1} exp(−𝜇2

∗)

− Pr(𝐷𝑖 = 1)𝐸[𝑤𝑖(𝐂𝑖)𝑏0(𝑀𝑖, 𝐂𝑖)𝑌𝑖
2 exp{−𝜇2(𝐂𝑖)}|𝐷𝑖 = 1] = 0, 

but almost surely 

𝐸{𝑤𝑖(𝐂𝑖)𝑏0(𝑀𝑖, 𝐂𝑖)𝐸(𝑌𝑖
2|𝐷𝑖 = 1,𝑀𝑖 , 𝐂𝑖)|𝐷𝑖 = 1} ≠ 𝐸(𝑌𝑖

2|𝐷𝑖 = 1), 

𝐸[𝑤𝑖(𝐂𝑖)𝑏0(𝑀𝑖, 𝐂𝑖)𝐸(𝑌𝑖
2|𝐷𝑖 = 1,𝑀𝑖, 𝐂𝑖) exp{−𝜇2(𝐂𝑖)}|𝐷𝑖 = 1] ≠ 𝐸[𝑌𝑖

2 exp{−𝜇2(𝐂𝑖)}|𝐷𝑖 = 1] 

for any choice of weight.  The best that could be done would be to choose 

𝑤𝑖(𝐂𝑖) = 1 𝐸{𝑏0(𝑀𝑖, 𝐂𝑖)𝑌𝑖
2|𝐷𝑖 = 1, 𝐂𝑖}⁄ , 
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in which case the g-estimator would be consistent for 

exp(𝜇2
∗) =

1

𝐸[exp {−𝜇2(𝐂𝑖)}|𝐷𝑖 = 1]
= [𝐸 {

𝐸(𝑌0𝑖
2 |𝐷𝑖 = 1, 𝐂𝑖)

𝐸(𝑌1𝑖
2|𝐷𝑖 = 1, 𝐂𝑖)

|𝐷𝑖 = 1}]

−1

, 

 but while this does not depend on 𝑏0 it would not target parameter (S8.15). 

 

 

▀ Appendices: 

 

SA1 Analytical expression for SVM estimator 

To show this, use the law of iterated expectations to obtain 

𝐸(𝑌0𝑖
2 |𝑀𝑖) = 𝐸{𝐸(𝑌0𝑖

2 |𝐷,𝑀𝑖)|𝑀𝑖}. 

Now convert the inner expectation into a variance plus remainder term as follows: 

𝐸(𝑌0𝑖
2 |𝐷,𝑀𝑖) = var(𝑌0𝑖|𝐷,𝑀𝑖) + 𝐸

2(𝑌0𝑖|𝐷,𝑀𝑖). 

This expression can now be written in terms of linear and log-linear SMM parameters as 

follows: 

𝐸(𝑌0𝑖
2 |𝐷,𝑀𝑖) = exp(−𝐷𝜆)var(𝑌𝑖|𝐷,𝑀𝑖) + {𝐸(𝑌𝑖|𝐷,𝑀𝑖) − 𝐷𝜇}

2

= {(1 − 𝐷) + 𝐷exp(−𝜆)}var(𝑌𝑖|𝐷,𝑀𝑖) + {𝐸(𝑌𝑖|𝐷,𝑀𝑖) − 𝐷𝜇}
2. 

We further use that 

𝐸(𝑌0𝑖
2 |𝑀𝑖) = Pr(𝐷 = 0|𝑀𝑖) 𝐸(𝑌0𝑖

2 |𝐷 = 0,𝑀𝑖) + Pr(𝐷 = 1|𝑀𝑖) 𝐸(𝑌0𝑖
2 |𝐷 = 1,𝑀𝑖)

= Pr(𝐷 = 0|𝑀𝑖) [var(𝑌𝑖|𝐷 = 0,𝑀𝑖) + {𝐸(𝑌𝑖|𝐷 = 0,𝑀𝑖)}
2]

+ Pr(𝐷 = 1|𝑀𝑖) [exp(−𝜆)var(𝑌𝑖|𝐷 = 1,𝑀𝑖) + {𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖) − 𝜇}
2]. 

Then solve 𝐸(𝑌0𝑖
2 |𝑀𝑖 = 0) = 𝐸(𝑌0𝑖

2 |𝑀𝑖 = 1) by expanding out the left and right-hand sides as 

Pr(𝐷 = 0|𝑀𝑖 = 0)𝐸(𝑌0𝑖
2 |𝐷 = 0,𝑀𝑖 = 0) + Pr(𝐷 = 1|𝑀𝑖 = 0)𝐸(𝑌0𝑖

2 |𝐷 = 1,𝑀𝑖 = 0)

= Pr(𝐷 = 0|𝑀𝑖 = 0) [var(𝑌𝑖|𝐷 = 𝑀𝑖 = 0) + {𝐸(𝑌𝑖|𝐷 = 𝑀𝑖 = 0)}
2]

+ Pr(𝐷 = 1|𝑀𝑖 = 0) [exp(−𝜆)var(𝑌𝑖|𝐷 = 1,𝑀𝑖 = 0)

+ {𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖 = 0) − 𝜇}
2]

= Pr(𝐷 = 0|𝑀𝑖 = 1)𝐸(𝑌0𝑖
2 |𝐷 = 0,𝑀𝑖 = 1)

+ Pr(𝐷 = 1|𝑀𝑖 = 1)𝐸(𝑌0𝑖
2 |𝐷 = 𝑀𝑖 = 1)

= Pr(𝐷 = 0|𝑀𝑖 = 1) [var(𝑌𝑖|𝐷 = 0,𝑀𝑖 = 1) + {𝐸(𝑌𝑖|𝐷 = 0,𝑀𝑖 = 1)}
2]

+ Pr(𝐷 = 1|𝑀𝑖 = 1) [exp(−𝜆)var(𝑌𝑖|𝐷 = 𝑀𝑖 = 1)

+ {𝐸(𝑌𝑖|𝐷 = 𝑀𝑖 = 1) − 𝜇}
2] 

to obtain a closed-form expression for exp(𝜆). 

SA2 Analytical expression for SCM estimator 

To show this, use the law of iterated expectations to obtain 

𝐸(𝑋0𝑖𝑌0𝑖|𝑀𝑖) = 𝐸{𝐸(𝑋0𝑖𝑌0𝑖|𝐷,𝑀𝑖)|𝑀𝑖}, 
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and then convert the inner expectation into a covariance plus remainder term as follows: 

𝐸(𝑋0𝑖𝑌0𝑖|𝐷,𝑀𝑖) = cov(𝑋0𝑖, 𝑌0𝑖|𝐷,𝑀𝑖) + 𝐸{𝐸(𝑋0𝑖|𝐷,𝑀𝑖)𝐸(𝑌0𝑖|𝐷,𝑀𝑖)|𝑀𝑖}. 

This expression can now be written like so 

𝐸(𝑋0𝑖𝑌0𝑖|𝐷,𝑀𝑖) = cov(𝑋𝑖, 𝑌𝑖|𝐷,𝑀𝑖) − 𝐷𝜎
𝑋𝑌 + {𝐸(𝑋𝑖|𝐷,𝑀𝑖) − 𝐷𝜇

𝑋}{𝐸(𝑌𝑖|𝐷,𝑀𝑖) − 𝐷𝜇
𝑌}. 

Now we use that 

𝐸(𝑋0𝑖𝑌0𝑖|𝑀𝑖) = Pr(𝐷 = 0|𝑀𝑖) 𝐸(𝑋0𝑖𝑌0𝑖|𝐷 = 0,𝑀𝑖) + Pr(𝐷 = 1|𝑀𝑖) 𝐸(𝑋0𝑖𝑌0𝑖|𝐷 = 1,𝑀𝑖)

= Pr(𝐷 = 0|𝑀𝑖) [cov(𝑋𝑖, 𝑌𝑖|𝐷 = 0,𝑀𝑖) + 𝐸(𝑋𝑖|𝐷 = 0,𝑀𝑖)𝐸(𝑌𝑖|𝐷 = 0,𝑀𝑖)]

+ Pr(𝐷 = 1|𝑀𝑖) [cov(𝑋𝑖, 𝑌𝑖|𝐷 = 1,𝑀𝑖) − 𝜎
𝑋𝑌

+ {𝐸(𝑋𝑖|𝐷 = 1,𝑀𝑖) − 𝜇
𝑋}{𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖) − 𝜇

𝑌}]. 

Aside: Before proceeding, we recall that the law of iterated expectations for covariances can be 

written as 

cov(𝑋, 𝑌|𝑉) = 𝐸𝑊{cov(𝑋, 𝑌|𝑊, 𝑉)|𝑉} + cov𝑊{𝐸(𝑋|𝑊, 𝑉), 𝐸(𝑌|𝑊, 𝑉)|𝑉}. 

In other words, the conditional covariance (given V) equals the sum of the average conditional 

covariance (given (V,W)) and the covariance of the conditional averages (both given (V,W)).  The 

second of these terms can also be written as 

cov𝑊{𝐸(𝑋|𝑊, 𝑉), 𝐸(𝑌|𝑊, 𝑉)|𝑉} = 𝐸𝑊[{𝐸(𝑋|𝑊, 𝑉) − 𝐸(𝑋|𝑉)}{𝐸(𝑌|𝑊, 𝑉) − 𝐸(𝑌|𝑉)}]

= 𝐸𝑊{𝐸(𝑋|𝑊, 𝑉)𝐸(𝑌|𝑊, 𝑉)} − 𝐸(𝑋|𝑉)𝐸(𝑌|𝑉).      (S3.15) 

Proceeding line by line: 

Pr(𝐷 = 0|𝑀𝑖) cov(𝑋𝑖, 𝑌𝑖|𝐷 = 0,𝑀𝑖) + Pr(𝐷 = 1|𝑀𝑖) cov(𝑋𝑖, 𝑌𝑖|𝐷 = 1,𝑀𝑖)

= 𝐸𝐷{cov(𝑋𝑖, 𝑌𝑖|𝐷,𝑀𝑖)|𝑀𝑖}. 

Pr(𝐷 = 0|𝑀𝑖) 𝐸(𝑋𝑖|𝐷 = 0,𝑀𝑖)𝐸(𝑌𝑖|𝐷 = 0,𝑀𝑖)

+ Pr(𝐷 = 1|𝑀𝑖) 𝐸(𝑋𝑖|𝐷 = 0,𝑀𝑖)𝐸(𝑌𝑖|𝐷 = 0,𝑀𝑖)

= 𝐸𝐷{𝐸(𝑋𝑖|𝐷,𝑀𝑖)𝐸(𝑌𝑖|𝐷,𝑀𝑖)|𝑀}. 

−Pr(𝐷 = 1|𝑀𝑖) 𝜎
𝑋𝑌. 

Pr(𝐷 = 1|𝑀𝑖) {𝜇
𝑋𝜇𝑌 − 𝐸(𝑋𝑖|𝐷 = 1,𝑀𝑖)𝜇

𝑌 − 𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖)𝜇
𝑋}.       

The first two of these can be written in terms of cov(𝑋𝑖, 𝑌𝑖|𝑀𝑖) using (S3.15) as follows: 

𝐸𝐷{cov(𝑋𝑖, 𝑌𝑖|𝐷,𝑀𝑖)|𝑀𝑖} + 𝐸𝐷{𝐸(𝑋𝑖|𝐷,𝑀𝑖)𝐸(𝑌𝑖|𝐷,𝑀𝑖)|𝑀} = cov(𝑋𝑖, 𝑌𝑖|𝑀𝑖) +

𝐸(𝑋𝑖|𝑀𝑖)𝐸(𝑌𝑖|𝑀𝑖), 

and the square completed to give 

Pr(𝐷 = 1|𝑀𝑖) {𝜇
𝑋𝜇𝑌 − 𝐸(𝑋𝑖|𝐷 = 1,𝑀𝑖)𝜇

𝑌 − 𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖)𝜇
𝑋}

= Pr(𝐷 = 1|𝑀𝑖) {𝜇
𝑋 − 𝐸(𝑋𝑖|𝐷 = 1,𝑀𝑖)}{𝜇

𝑌 − 𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖)}

− Pr(𝐷 = 1|𝑀𝑖) 𝐸(𝑋𝑖|𝐷 = 1,𝑀𝑖)𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖). 

Hence, 

𝐸(𝑋0𝑖𝑌0𝑖|𝑀𝑖) = cov(𝑋𝑖, 𝑌𝑖|𝑀𝑖) + 𝐸(𝑋𝑖|𝑀𝑖)𝐸(𝑌𝑖|𝑀𝑖) − Pr(𝐷 = 1|𝑀𝑖) 𝜎
𝑋𝑌

+ Pr(𝐷 = 1|𝑀𝑖) {𝜇
𝑋 − 𝐸(𝑋𝑖|𝐷 = 1,𝑀𝑖)}{𝜇

𝑌 − 𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖)}

− Pr(𝐷 = 1|𝑀𝑖) 𝐸(𝑋𝑖|𝐷 = 1,𝑀𝑖)𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖). 
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Finally, expanding 𝐸(𝑋0𝑖𝑌0𝑖|𝑀𝑖 = 0) = 𝐸(𝑋0𝑖𝑌0𝑖|𝑀𝑖 = 1) out as 

cov(𝑋𝑖, 𝑌𝑖|𝑀𝑖 = 0) + 𝐸(𝑋𝑖|𝑀𝑖 = 0)𝐸(𝑌𝑖|𝑀𝑖 = 0) − Pr(𝐷 = 1|𝑀𝑖 = 0)𝜎
𝑋𝑌

+ Pr(𝐷 = 1|𝑀𝑖 = 0) {𝜇
𝑋 − 𝐸(𝑋𝑖|𝐷 = 1,𝑀𝑖 = 0)}{𝜇

𝑌 − 𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖 = 0)}

− Pr(𝐷 = 1|𝑀𝑖 = 0)𝐸(𝑋𝑖|𝐷 = 1,𝑀𝑖 = 0)𝐸(𝑌𝑖|𝐷 = 1,𝑀𝑖 = 0)

= cov(𝑋𝑖, 𝑌𝑖|𝑀𝑖 = 1) + 𝐸(𝑋𝑖|𝑀𝑖 = 1)𝐸(𝑌𝑖|𝑀𝑖 = 1) − Pr(𝐷 = 1|𝑀𝑖 = 1) 𝜎
𝑋𝑌

+ Pr(𝐷 = 1|𝑀𝑖 = 1) {𝜇
𝑋 − 𝐸(𝑋𝑖|𝐷 = 𝑀𝑖 = 1)}{𝜇

𝑌 − 𝐸(𝑌𝑖|𝐷 = 𝑀𝑖 = 1)}

− Pr(𝐷 = 1|𝑀𝑖 = 1)𝐸(𝑋𝑖|𝐷 = 𝑀𝑖 = 1)𝐸(𝑌𝑖|𝐷 = 𝑀𝑖 = 1). 

gives the closed-form expression for 𝜎𝑋𝑌. 

 

SA3 Sketch of derivation of efficient instrument for SVM estimator 

Recall that the model residuals are 

𝜖 = 𝑌 − 𝛽0 − 𝛽1𝑀− 𝛽2𝐷 − 𝛽12𝑀𝐷,   𝑈 = 𝑌 − 𝜇0 − 𝜇1𝐷, 

and 

𝑉 = 𝑒−𝜆1𝑀(𝑌 − 𝛽0 − 𝛽1𝑀− 𝛽2𝐷 − 𝛽12𝑀𝐷)
2 + {𝛽0 + 𝛽1𝑀+ (𝛽2 − 𝜇1)𝐷 + 𝛽12𝑀𝐷}

2 − 𝜆0
= 𝑒−𝜆1𝑀𝜖2 + (𝑈 + 𝜇0 − 𝜖)

2 − 𝜆0. 

all of which satisfy 𝐸(𝜖|𝑀,𝐷) = 𝐸(𝑈|𝑀) = 𝐸(𝑉|𝑀) = 0.  The sketch follows Bowden and 

Vansteelandt (2011) and Tsiatis (2006, Theorem 1). 

Note 𝜎𝜖
2(𝑀,𝐷) = 𝐸(𝜖2|𝑀, 𝐷), 𝜎𝜖𝑈(𝑀) = 𝐸(𝜖𝑈|𝑀), 𝜎𝜖𝑉(𝑀) = 𝐸(𝜖𝑉|𝑀), 𝜎𝑈

2 = 𝐸(𝑈2), 𝜎𝑉
2 = 𝐸(𝑉2) 

𝜎𝑈𝑉 = 𝐸(𝑈𝑉), and so on with dependence on 𝑀 and 𝐷 suppressed or explicitly excluded.   

The form of the estimating equation is 

𝐠(
𝛽
𝜇
𝜆

) = {

𝑎𝛽(𝑀,𝐷)

𝑎𝜇(𝑀,𝐷)

𝑎𝜆(𝑀,𝐷)

} 𝜖 + {

𝑏𝛽(𝑀)

𝑏𝜇(𝑀)

𝑏𝜆(𝑀)

}𝑈 + {

𝑐𝛽(𝑀)

𝑐𝜇(𝑀)

𝑐𝜆(𝑀)

}𝑉. 

The parameterization 𝛽, 𝜇 and 𝜆 of the first two moments of 𝑌, 𝑌0|𝐷 = 1,𝑀 is variation-

independent so the semiparametrically efficient choices of 𝑎, 𝑏 and 𝑐 must satisfy 

𝐸 [{(

𝑎𝛽
𝑎𝜇
𝑎𝜆
) 𝜖 + (

𝑏𝛽
𝑏𝜇
𝑏𝜆

)𝑈 + (

𝑐𝛽
𝑐𝜇
𝑐𝜆
)𝑉}

𝑇

(

ℎ𝛽
ℎ𝜇
ℎ𝜆

)]

= 𝐸 [{(

𝑎𝛽
𝑎𝜇
𝑎𝜆
) 𝜖 + (

𝑏𝛽
𝑏𝜇
𝑏𝜆

)𝑈 + (

𝑐𝛽
𝑐𝜇
𝑐𝜆
)𝑉}

𝑇

{(

𝑎𝛽
𝑎𝜇
𝑎𝜆
) 𝜖 + (

𝑏𝛽
𝑏𝜇
𝑏𝜆

)𝑈 + (

𝑐𝛽
𝑐𝜇
𝑐𝜆
)𝑉}], 

for all ℎ in the 8-dimensional Hilbert space of mean zero random variables satisfying 

‖𝐸(ℎℎ𝑇)‖ < ∞. 

To determine the efficient choices, we begin by matching the left-hand and right-hand sides as 

follows: 

𝑎𝛽
𝑇: 𝐸(ℎ𝛽𝜖|𝑀,𝐷) = 𝜎𝜖

2𝑎𝛽(𝑀,𝐷) + 𝜎𝜖𝑈𝑏𝛽(𝑀) + 𝜎𝜖𝑉𝑐𝛽(𝑀),      (SA3.1) 

𝑏𝛽
𝑇: 𝐸(ℎ𝛽𝑈|𝑀) = 𝐸{𝜎𝜖𝑈𝑎𝛽(𝑀,𝐷)|𝑀} + 𝜎𝑈

2𝑏𝛽(𝑀) + 𝜎𝑈𝑉𝑐𝛽(𝑀), 
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𝑐𝛽
𝑇: 𝐸(ℎ𝛽𝑉|𝑀) = 𝐸{𝜎𝜖𝑉𝑎𝛽(𝑀,𝐷)|𝑀} + 𝜎𝑈𝑉𝑏𝛽(𝑀) + 𝜎𝑉

2𝑐𝛽(𝑀), 

where (SA3.1) also implies that 

𝐸(ℎ𝛽𝜖|𝑀) = 𝐸{𝜎𝜖
2𝑎𝛽(𝑀,𝐷)|𝑀} + 𝜎𝜖𝑈𝑏𝛽(𝑀) + 𝜎𝜖𝑉𝑐𝛽(𝑀).     (SA3.2) 

It also follows from constraints 𝐸(𝜖|𝑀,𝐷) = 𝐸(𝑈|𝑀) = 𝐸(𝑉|𝑀) = 0 that 

𝜕

𝜕𝛽
 𝐸(𝜖|𝑀,𝐷) = 𝐸(ℎ𝛽𝜖|𝑀,𝐷) + 𝐸 (

𝜕𝜖

𝜕𝛽
|𝑀,𝐷) = 0 ⇒ 𝐸(ℎ𝛽𝜖|𝑀,𝐷) = 𝐸 (−

𝜕𝜖

𝜕𝛽
|𝑀,𝐷), 

𝜕

𝜕𝛽
 𝐸(𝑈|𝑀) = 𝐸(ℎ𝛽𝑈|𝑀) + 𝐸 (

𝜕𝑈

𝜕𝛽
|𝑀) = 0 ⇒ 𝐸(ℎ𝛽𝑈|𝑀) = 0, 

𝜕

𝜕𝛽
 𝐸(𝑉|𝑀) = 𝐸(ℎ𝛽𝑉|𝑀) + 𝐸 (

𝜕𝑉

𝜕𝛽
|𝑀) = 0 ⇒ 𝐸(ℎ𝛽𝑉|𝑀) = 𝐸 (−

𝜕𝑉

𝜕𝛽
|𝑀). 

Hence, 

𝐸 (−
𝜕𝜖

𝜕𝛽
|𝑀,𝐷) = 𝜎𝜖

2𝑎𝛽(𝑀,𝐷) + 𝜎𝜖𝑈𝑏𝛽(𝑀) + 𝜎𝜖𝑉𝑐𝛽(𝑀),      (SA3.3) 

0 = 𝐸{𝜎𝜖𝑈𝑎𝛽(𝑀,𝐷)|𝑀} + 𝜎𝑈
2𝑏𝛽(𝑀) + 𝜎𝑈𝑉𝑐𝛽(𝑀),     (SA3.4) 

𝐸 (−
𝜕𝑉

𝜕𝛽
|𝑀) = 𝐸{𝜎𝜖𝑉𝑎𝛽(𝑀,𝐷)|𝑀} + 𝜎𝑈𝑉𝑏𝛽(𝑀) + 𝜎𝑉

2𝑐𝛽(𝑀).     (SA3.5) 

To construct a closed-form solution, it is necessary to make the local assumption 

𝜎𝜖
2(𝑀, 𝐷) = 𝜎𝜖

2(𝑀), 𝜎𝜖𝑈(𝑀, 𝐷) = 𝜎𝜖𝑈(𝑀), 𝜎𝜖𝑉(𝑀,𝐷) = 𝜎𝜖𝑉(𝑀), 

under which (SA3.2-SA3.5) become 

𝐸 (−
𝜕𝜖

𝜕𝛽
|𝑀,𝐷) = 𝜎𝜖

2𝑎𝛽(𝑀,𝐷) + 𝜎𝜖𝑈𝑏𝛽(𝑀) + 𝜎𝜖𝑉𝑐𝛽(𝑀),      (SA3.6) 

0 = 𝐸{𝜎𝜖𝑈𝑎𝛽(𝑀,𝐷)|𝑀} + 𝜎𝑈
2𝑏𝛽(𝑀) + 𝜎𝑈𝑉𝑐𝛽(𝑀),     (SA3.7) 

𝐸 (−
𝜕𝑉

𝜕𝛽
|𝑀) = 𝐸{𝜎𝜖𝑉𝑎𝛽(𝑀,𝐷)|𝑀} + 𝜎𝑈𝑉𝑏𝛽(𝑀) + 𝜎𝑉

2𝑐𝛽(𝑀),      (SA3.8) 

and (SA3.6) further implies 

𝐸 (−
𝜕𝜖

𝜕𝛽
|𝑀) = 𝜎𝜖

2𝐸{𝑎𝛽(𝑀,𝐷)|𝑀} + 𝜎𝜖𝑈𝑏𝛽(𝑀) + 𝜎𝜖𝑉𝑐𝛽(𝑀).     (SA3.9) 

Then from (SA3.7), 

𝐸{𝑎𝛽(𝑀,𝐷)|𝑀} = −
1

𝜎𝜖𝑈
{𝜎𝑈

2𝑏𝛽(𝑀) + 𝜎𝑈𝑉𝑐𝛽(𝑀)}, 

which can be substituted into (SA3.9) to give 

𝑏𝛽(𝑀) =
1

𝐴
{𝐸 (−

𝜕𝜖

𝜕𝛽
|𝑀) − 𝐵𝑐𝛽(𝑀)}.      (SA3.10) 
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Now (SA3.8) can similarly be written 

𝐸 (−
𝜕𝑉

𝜕𝛽
|𝑀) = 𝐶𝑏𝛽(𝑀) + 𝐷𝑐𝛽(𝑀), 

and substituted into (SA3.10) to give 

𝑐𝛽(𝑀) =
𝐴

𝐴𝐷 − 𝐶𝐵
{𝐸 (−

𝜕𝑉

𝜕𝛽
|𝑀) −

𝐶

𝐴
𝐸 (−

𝜕𝜖

𝜕𝛽
|𝑀)},      (SA3.11) 

and hence 

𝑏𝛽(𝑀) =
1

𝐴
{(1 −

𝐶

𝐴
)𝐸 (−

𝜕𝜖

𝜕𝛽
|𝑀) −

𝐴𝐵

𝐴𝐷 − 𝐶𝐵
𝐸 (−

𝜕𝑉

𝜕𝛽
|𝑀)}.      (SA3.12) 

These can then be substituted via (SA3.6) to give 

𝑎𝛽(𝑀,𝐷) =
1

𝜎𝜖
2 {𝐸 (−

𝜕𝜖

𝜕𝛽
| 𝑅,𝑀) − 𝜎𝜖𝑈𝑏𝛽(𝑀) − 𝜎𝜖𝑉𝑐𝛽(𝑀)}.      (SA3.13) 

Note that the constants 𝐴, 𝐵, 𝐶 and 𝐷 are 

𝐴 = 𝜎𝜖𝑈 −
𝜎𝜖
2𝜎𝑈

2

𝜎𝜖𝑈
= 𝜎𝜖𝑈(1 − 𝜌𝜖,𝑈

−2), 𝐵 = 𝜎𝜖𝑉 −
𝜎𝜖
2𝜎𝑈𝑉
𝜎𝜖𝑈

, 𝐶 = 𝜎𝑈𝑉 −
𝜎𝑈
2𝜎𝜖𝑉
𝜎𝜖𝑈

 and 𝐷 = 𝜎𝑉
2 −

𝜎𝜖
2𝜎𝜖𝑉
𝜎𝜖𝑈

, 

where 𝜌𝜖,𝑈 is the Pearson correlation coefficient between 𝜖 and 𝑈. 

A similar derivation is gives closed-form expressions for the remaining terms. 
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