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Until recently, the survey mode of the household panel study Under-
standing Society was mainly face-to-face interview, but it has now adopted
a mixed-mode design where individuals can self-complete the questionnaire
via the web. As mode is known to affect survey data, a randomized mixed-
mode experiment was implemented during the first year of the two-year Wave
8 fieldwork period to assess the impact of this change. The experiment in-
volved a sequential design that permits the identification of mode effects
in the presence of nonignorable nonrandom mode selection. While previous
studies have used instrumental variables regression to estimate the effects
of mode on the means of the survey variables, we describe a more general
methodology based on novel structural moment models that characterizes the
overall effect of mode on a survey by its effects on the moments of the survey
variables’ joint distribution. We adapt our estimation procedure to account for
nonresponse and complex sampling designs and to include suitable auxiliary
data to improve inference and relax key assumptions. Finally, we demonstrate
how to estimate the effects of mode on the parameter estimates of general-
ized linear models and other exponential family models when both outcomes
and predictors are subject to mode effects. This methodology is used to in-
vestigate the impact of the move to web mode on Wave 8 of Understanding
Society.

1. Introduction. The term survey mode is used in survey research to refer to way in
which the survey data are collected. The survey mode of Understanding Society: the U.K.
Household Longitudinal Study (UKHLS) and its predecessor, the British Household Panel
Survey (BHPS), has predominantly been the face-to-face interview. However, UKHLS has
now followed other major surveys by introducing a mixed-mode design where participants
have the option of choosing web mode (ISER (2018), pages 45–46).

A potential drawback of this change is that survey mode is known to affect the sample
distribution of, and nonresponse pattern among, the survey variables. Whether the impact is
positive or negative in terms of measurement error depends on the nature of the variable: web
mode is hypothesized to reduce measurement error for questions for which the presence of an
interviewer could lead to social desirability, positivity or disclosure bias, but to increase it for
complex questions where the absence of an interviewer could lead to bias due to satisficing
or presentation effects (Jäckle, Roberts and Lynn (2010), D’Ardenne et al. (2017)).

The effect of mode on the collected data is a special case of causal effect that contrasts
the observed measurement with what would have been measured had the survey been admin-
istered using a different mode (Vannieuwenhuyze, Loosveldt and Molenberghs (2010)). In
mixed-mode surveys, where participants are able to choose the survey mode they prefer, the
difference between the group of participants who were administered the survey in one mode
and the group who were administered it in another will generally be a biased estimate of the
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mode effect because of nonrandom selection, which arises if there are systematic differences
between the characteristics of the two groups.

In this paper we develop a general methododology for estimating mode effects from
mixed-mode surveys in the potential presence of nonignorable nonrandom selection, and
apply it to data from UKHLS Wave 8. Nonignorable selection is driven by unobserved con-
founding variables, the effects of which cannot be adjusted for using standard covariate-
adjustment methods. The method instead requires an instrumental variable (IV) to identify
the mode effect (Angrist, Imbens and Rubin (1996)). An IV is available from the sequen-
tial mixed-mode experiment implemented at UKHLS Wave 8 in which households were
initially randomized to face-to-face or web mode, but individual household members could
noncomply with the household randomization. While such noncompliance could also lead to
nonignorable selection, the initial randomization is a credible IV that can be used to identify
mode effects.

IV regression, based on two-stage least squares (Wooldridge (2010), Chapter 6), has al-
ready been used to estimate the effects of mode on survey variable means (e.g. Jäckle, Gaia
and Benzeval (2017), page 20). However, we have more general aims: Aim A is to estimate
the effect of mode on the distribution of the survey variables, not just the mean; and Aim
B is to estimate the effect of mode on the parameter estimates of statistical models, such
as linear and logistic regression, when both outcomes and predictors are subject to mode
effects.

For Aim A, Vannieuwenhuyze (2015) suggested characterizing the overall effect of mode
on the survey data by the effects of mode on the different moments of the survey variables’
joint distribution. He devised estimators of the effects of mode on variances, covariances and
correlations from data collected using a restricted sequential design in which those random-
ized to one of the modes cannot noncomply. We generalize this approach by extending the
family of structural mean models (Robins (1994)) to create a family of structural moment
models, which include novel structural variance models, structural covariance models and
multivariate models for categorical variables, with which we can perform IV estimation of
mode effects on arbitrary moments of a joint distribution. We show how all mode effects
within this framework can be estimated using the generalized method of moments (GMM),
and adapt GMM to adjust for nonresponse bias and the effects of complex sampling designs,
such as that used by UKHLS.

A further advantage of this framework is that it makes explicit the assumptions required
to handle mode-effect heterogeneity, that is, where the effect of mode is different for each
sample member. In the presence of heterogeneity, IVs generally only identify bounds on mode
effects unless the analyst is prepared to make further assumptions or incorporate additional
data (Hernán and Robins (2020), Chapter 16). The specification of structural moment models
makes clear that mode effects are point identified by the no effect modification assumption.
As such, we further adapt our GMM estimator to incorporate auxiliary data from a single-
mode survey of the same population to relax this requirement, and use the single-mode data
available from UKHLS Wave 8 to assess the impact of no effect modification on the results
of our application.

Finally, for Aim B we consider the important problem of estimating the effect of mode on
the estimates of parametric statistical models when both outcome and covariates are subject
to mode effects. Park, Kim and Park (2016) devised a method based on fractional imputa-
tion to do this. We propose and apply an alternative approach, again based on generalizing
an approach suggested by Vannieuwenhuyze (2015), in which estimates of mode effects on
the sufficient statistics obtained using the structural moment models are combined to esti-
mate mode effects on the parameter estimates from exponential family and generalized linear
models.
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2. Mode effects.

2.1. Survey measurement. Let Yi represent the values of the survey variables recorded
for sample member i. To represent the effect of mode on the measurement of these variables,
we define the pair of potential mode outcomes Y0i and Y1i (Vannieuwenhuyze, Loosveldt and
Molenberghs (2010), Kolnenikov and Kennedy (2014)). The first (Y0i) contains the values,
which will be recorded for individual i if the survey is administered in face-to-face mode, and
the second (Y1i) contains the values which will be obtained if web mode is used. In practice,
only one of the potential mode outcomes is observed: if Di ∈ {0,1} indicates the mode chosen
by individual i (Di = 0 if i chooses face-to-face, Di = 1 if web), then the observed data are
Yi = (1 − Di)Y0i + DiY1i .

The principal focus of this application is on the effect of introducing web mode to the
study. This involves comparing the observed distribution of the survey variables, F(Y), with
the counterfactual distribution F(Y0) that would have been observed had the study been
run, as before, with face-to-face mode predominant. Such a comparison hinges on those who
chose web mode because Y0i is unavailable for them, whereas we would have obtained the
same Yi from those who chose face-to-face had the study been run as before. We note that it
is also possible to compare F(Y) with F(Y1) (this simply involves recoding 0 = 1 and 1 = 0
for Di in the development below), and the two counterfactual scenarios F(Y0) and F(Y1) by
combining the two comparisons of F(Y0) and F(Y1) with F(Y).

To characterize the overall effect of mode, we initially follow Vannieuwenhuyze (2015)
by using the set of univariate effects of mode on the means and variances of the survey vari-
ables and the bivariate effects of mode on the covariances between pairs of survey variables.
The simplest measure of the impact of mode on the mean of the distribution is the additive
difference between the observed mean and the face-to-face mean

E(Yi − Y0i ) = πμ1,(1)

where μ1 = E(Y1i − Y0i | Di = 1) and π = Pr(Di = 1) is the probability of a participant
choosing web mode. The key parameter μ1 is the average of Y1i − Y0i �= μ1 among those
who choose web, that is, we assume there is between-individual heterogeneity in the effect of
mode. Similarly, the univariate additive effect of mode on the covariance of survey variables
Xi and Yi is

cov(Xi, Yi) − cov(X0i , Y0i) = π
{
μXY

11 − E(Xi)μ
Y
1 − E(Yi)μ

X
1 + πμX

1 μY
1
}
,

where μX
1 = E(Xi −X0i | Di = 1), μY

1 = E(Yi −Y0i | Di = 1) and μXY
11 = E(XiYi −X0iY0i |

Di = 1). Mode effects can also be measured in other ways, such as multiplicative mode ef-
fects on the variance, var(Yi)/var(Y0i ). In Sections 3–4 we specify structural moment models
for estimating the additive and multiplicative effects of mode on the means, variances, covari-
ances and arbitrary moments of the survey-variable distribution.

For Aim B the focus is on the difference between estimate θ̂ of the parameter of a statistical
model and the estimate θ̂0 that would have been obtained had only face-to-face mode been
available. In Section 7 we show how to do this by combining estimates of mode effects,
obtained using structural moment models, on the sufficient statistics of the model parameters.

2.2. Mixed-mode designs. If the sample members of a mixed-mode study are allowed to
choose survey mode, the selection mechanism determining Di will potentially be associated
with the survey variables and even the mode effect itself. Plausible selection mechanisms
for mixed-mode surveys are discussed by Vannieuwenhuyze, Loosveldt and Molenberghs
(2014) and Clarke and Bao (2022a), section S1. One way of handling potentially nonran-
dom selection bias is to adjust for any prechoice differences in control variables Ci between
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TABLE 1
Mode Used to Administer Survey by Sample Group Membership in UKHS Wave 8

Sequential Experiment Ringfenced Low-propensity

Randomization F2F1 Web Total % Complied F2F F2F

F2F 4893 279 5172 94.6
Web 2367 5278 7645 69.0
Total 7260 5557 12,817 4220 3921

Note: 1. F2F denotes face-to-face mode.

those who chose web and those who chose face-to-face mode. This can be done using in-
verse probability weights, regression models, matching or imputation (Jäckle, Roberts and
Lynn (2010), Kolnenikov and Kennedy (2014), Lugtig et al. (2011), Park, Kim and Park
(2016), Vannieuwenhuyze, Loosveldt and Molenberghs (2014), Buelens and Van den Brakel
(2017)). However it is done, these adjustments rely on the ignorable selection assumption
Di ⊥⊥ Y0i ,Y1i | Ci which is generally unrealistic because the range of control variables
available is usually limited and mode selection poorly understood (Vannieuwenhuyze and
Loosveldt (2013)).

Randomized experimental designs offer a more robust way to investigate mode effects
(Jäckle, Roberts and Lynn (2010)). Mixed-mode experiments typically involve sequential
designs where the sample members are randomly allocated a mode but, if they decline to par-
ticipate, are offered another mode according to a predetermined sequence, until they either
participate or there are no more options available. Sequential designs are thus subject to non-
compliance: if Mi is the mode to which individual i is initially randomized, noncompliance
arises if Di �= Mi . However, the initial randomization Mi can be used as an IV to identify the
mode effect, even if mode selection is nonignorable (see Section 3).

2.3. UKHLS Wave 8. A sequential experiment was implemented as part of the complex
design of UKHLS Wave 8 (Carpenter (2018), Section 1). We focus on the three major sam-
ple groups created by this design. The first two groups comprise the auxiliary data used in
Sections 5.3 and 6.2. First, a randomly selected 20% of the sample households were assigned
to the ringfenced group for which UKHLS was carried out exactly as in previous years. A
further 16% of the sample members were automatically assigned to face-to-face interview
in the low-propensity group because their predicted probabilities of responding via the web
were judged to be too low.

Finally, the remaining 64% of households were incorporated into the sequential mixed-
mode experiment. The sequential experiment involved randomizing 60% of the remaining
households to web and 40% to face-to-face interview. Each individual was initially in-
vited to participate, using the mode to which their household was randomized, and would
either agree to take part (thus complying with the randomization) or not. Those sample
members who did not wish to participate were offered the other mode, at which point
they could agree to participate (as noncompliers) or nonrespond. Table 1 displays the ini-
tial (randomized) mode allocation by the final choice of mode in the sequential experi-
ment and the numbers in the ringfenced and low-propensity groups. We exclude those par-
ticipants in the experimental group, who were eventually interviewed by telephone, and
those in the ringfenced and low-propensity groups, who were eventually interviewed by
web (515 in total), because the numbers are relatively small and their inclusion would
complicate the subsequent development while making little difference to the final re-
sults.
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3. Instrumental variables estimation.

3.1. The core conditions. IVs are widely used in economics and epidemiology for esti-
mating causal effects in the presence of nonignorable nonrandom selection. In this study we
follow others by proposing to use randomization Mi as an IV (Vannieuwenhuyze, Loosveldt
and Molenberghs (2010)). The core conditions under which Mi is a valid IV can be speci-
fied using potential outcomes notation (Angrist, Imbens and Rubin (1996)) as follows: Let
Y(md)i be the potential outcomes of the survey variables should survey member i be ran-
domized to mode m and choose mode d , so there are four potential outcomes of which only
Yi = ∑

m,d I (Mi = m,Di = d)Y(md)i is observed. The IV core conditions can thus be stated
as

1. Independence: Mi ⊥⊥ Y(00)i , Y(10)i , Y(01)i , Y(11)i ;
2. Exclusion restriction: Y(md)i = Ydi for all m,d ;
3. Association: Mi �⊥⊥Di .

First, the exclusion restriction requires survey measurements to depend only on selected
mode and not on whether participants comply with their initial randomization. In clinical tri-
als without double blinding, this assumption is questionable because there may be adverse
impacts on patients after randomization which affect the study outcome, even if they ulti-
mately choose to noncomply. However, we take it to be highly unlikely that the choice of
mode in a sequential mixed-modes experiment will lead to such effects, particularly as the
design protocol is to offer unhappy respondents the option of completing the questionnaire
using the other mode. Second, independence requires that Mi is independent of the character-
istics measured by the survey so is plausibly taken to hold because Mi is randomized. Finally,
that Mi and Di are associated is straightforwardly verified from the observed data. (Note that
the stable unit treatment value assumption (SUTVA), that an individual’s potential outcomes
do not depend on those of any other individual, is implicitly taken to hold.)

3.2. Structural mean models. The approach we take is based on structural mean models
(SMMs). A SMM is explicitly parameterized in terms of the causal effects of a treatment, or
treatment regimen, among those who receive the treatment, and can be estimated using IVs
(Clarke and Windmeijer (2010), Robins (1994), Vansteelandt and Joffe (2014)). An example
of an additive SMM for the causal effect of treatment Di ∈ {0,1} on outcome Yi , given
baseline covariates Xi and instrumental variable Zi , is

E(Yi − Y0i | Di,Zi,Xi) = μ1(Xi )Di,

where the analyst must specify a parametric model for treatment effect μ1(Xi ), for example,
a linear model μ1(Xi ) = θT Xi . The parametric model for μ1(Xi ) is explicitly specified to
capture the dependence of the treatment effect on the baseline covariates.

In the context of the application in this paper, the “treatment” is web mode, the “con-
trol” is face-to-face mode, the IV is the mode to which each household member is initially
randomized, Mi , and there are no baseline covariates. Thus, the SMM above simplifies as

E(Yi − Y0i | Di,Mi) = μ1Di,(2)

where μ1 = E(Y1i − Y0i | Di = 1) is the average mode effect among those who choose web
discussed in Section 2.1.

Inferences about the parameters of SMMs are made using g-estimation (Robins (1994)).
G-estimation involves constructing estimating equations, the solution to which is consistent
and asymptotically normal under standard regularity conditions. The estimating equations for
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SMM (2) follow if Mi satisfies IV core conditions 1–2 above, which imply the conditional
mean independence (CMI) restriction

E(Y0i | Mi) = μ0,(3)

where μ0 = E(Y0i ). In other words, the mean of the face-to-face responses does not depend
on randomization. Then, by the law of iterated expectations, CMI (3) can be rewritten as

E(Yi0 − μ0 | Mi) = E
{
E(Y0i | Di,Mi) − μ0 | Mi

} = E(Ui | Mi) = 0,

where Ui = Yi − μ0 − μ1Di is the SMM residual, and the last equality follows because
E(Yi0 | Di,Mi) = E(Yi | Di,Mi) − μ1Di under (2).

The estimating equation is the sample analogue of E{a(Mi)Ui} = 0, where the choice of
a(Mi) does not affect consistency of the estimator but does affect its precision. The choice
a∗(Mi) = (1, πi)

T /σ 2
U leads to estimating equation

1

σ 2
U

∑
i

(
1
πi

)
Ui =

(
0
0

)
,(4)

where πi = Pr(Di = 1 | Mi) is the predicted value of Di , given Mi , that depends on Mi under
core condition 3. The g-estimator (μ̂0, μ̂1), the solution to (4), is semiparametrically efficient
and satisfies

√
n

(
μ̂0 − μ0
μ̂1 − μ1

)
∼ N

{(
0
0

)
,

σ 2
U

var(πi)

(
E

(
π2

i

) −π

−π 1

)}

as sample size n → ∞ (Robins (1994)).

3.3. The no effect modification assumption. The estimand of μ̂1 = {E(Yi | Mi = 1) −
E(Yi | Mi = 0)}/{π(1) − π(0)}, where π(m) = Pr(Di = 1 | Mi = m), only equals μ1 if the
no effect modification (NEM) assumption that E(Y1i − Yi0 | Di = 1,Mi = 0) = E(Y1i −
Y0i | Di = 1,Mi = 1) holds. An assumption like NEM is needed because, in the presence of
nonignorable selection, the IV core conditions alone only identify bounds on causal effects
if there is causal-effect heterogeneity, that is, Y1i − Y0i varies between individuals (Hernán
and Robins (2020), Chapter 16). There are two broad families of assumptions: the first is
that selection is monotonic to identify a local average treatment effect (Angrist, Imbens and
Rubin (1996)); and the second constrains causal-effect heterogeneity to identify effects like
the average treatment effect among the treated.

The g-estimator μ̂1 is identical to the classical two-stage least squares (2SLS) estimator
of the effect of Di from the linear regression of Yi on Di using Mi as an IV. However, the
2SLS estimand is ambiguously defined as the coefficient of Di in the regression model rather
than as a specific causal parameter. For example analysts who use 2SLS to make inferences
about the average treatment effect are implicitly assuming that Y1i −Y0i ⊥⊥ Mi,Di ; likewise,
those who use 2SLS to estimate a local average treatment effect are assuming monotonicity.
In contrast, SMM (2) makes explicit that NEM must be assumed to identify μ1 (see Clarke
and Windmeijer (2010) and Clarke and Bao (2022a), section S2).

While NEM is typically taken to hold in conventional analysis using SMMs, we argue that,
for mode effects, it holds only under the generally implausible assumption that the mode
effect is independent of the true value of the characteristic being measured by Y (Clarke
and Bao (2022a), section S1). Hence, we show in Section 4.3 how to extend our structural
moment models to relax NEM and, in Sections 5.3 and 6.2, how to estimate these models
using suitable auxiliary data.
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4. Structural moment models. The specification and identification of a novel family of
structural moment models is set out below which generalizes SMM (2) to enable the esti-
mation of mode effects on arbitrary moments (provided these exist) of the survey variables’
joint distribution. Identification hinges crucially on Mi satisfying the IV core conditions:
specifically, core conditions 1–2 ensure that any finite moment of the joint distribution of the
face-to-face responses is mean independent of Mi , and core condition 3 ensures the result-
ing estimator will exist. We focus initially on univariate mode effects before proceeding to
bivariate and multivariate effects in the following section. The estimation of these models is
discussed in Section 5.

4.1. Univariate mode effects. For univariate mode effects we propose two types of struc-
tural moment model (SMoM) for estimating the mode effect on the distribution of single
survey variable Y . The first of these is the additive SMoM,

E
(
Y k

i − Y k
0i | Di,Mi

) = μkDi,(5)

where μk = E(Y k
1i − Y k

0i | Di = 1) if the attendant NEM assumption that E(Y k
1i − Y k

0i | Di =
1,Mi = 0) = E(Y k

1i −Y k
0i | Di = Mi = 1) holds. This is simply SMM (2) but with Y replaced

by Y k .
The second, appropriate if Y k > 0, is the multiplicative, or log-linear, SMoM

log
{
E

(
Y k

i | Di,Mi

)} − log
{
E

(
Y k

0i | Di,Mi

)} = λkDi,(6)

where exp(λk) = E(Y k
1i | Di = 1)/E(Y k

0i | Di = 1) if the NEM assumption holds that E(Y k
1i |

Di = 1,Mi)/E(Y k
0i | Di = 1,Mi) does not depend on Mi . Parameter exp(λk) is the ratio of

moment k for the web data to that for the face-to-face data among those who choose web.
Note that the log-linear SMoM for k = 1 is the log-linear SMM (Robins (1994)).

Both μk and exp(λk) are valid measures of the effect of mode on moment k �= 0 of the
distribution of Y . The estimating equations for both SMoM (5) and (6) follow because core
conditions 1–2 imply the CMI restriction

E
(
Y k

0i | Mi

) = μ0k,(7)

where μ0k = E(Y k
0i ) and μ01 = μ0. Using exactly the same arguments as for SMM (2), it

follows that the residual Uik , satisfying E(Uik | Mi) = 0 for SMoM (5), is

Uik = Y k
i − μ0k − μkDi,(8)

where μ̂k = {m̄k(1) − m̄k(0)}/{π(1) − π(0)} and m̄k(m) = E(Y k
i | Mi = m), and recalling

that π(m) = Pr(Di = 1 | Mi = m) for m = 0,1. Using similar arguments, the residual for
multiplicative SMoM (6) is

Vik = exp(−λkDi)Y
k
i − μ0k,(9)

which leads to estimator

exp(λ̂k) = m̄k(0) − m̄k(1) + {1 − π(1)}m̄k(1,0) − {1 − π(0)}m̄k(0,0)

m̄k(1) − m̄k(0) + π(0)m̄k(0,1) − π(1)m̄k(1,1)
,

where m̄k(m,d) = E(Y k
i | Mi = m,Di = d).

We now discuss two important special cases of univariate mode effect. The first is the
multiplicative effect of mode on the variance, which we propose to estimate using the novel
Structural Variance Model (SVM)

log
{

var(Yi | Di,Mi)

var(Y0i | Di,Mi)

}
= νDi.(10)
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NEM holds here if var(Y1i | Di,Mi)/var(Y0i | Di,Mi) does not depend on Mi , in which case
the SVM estimand is exp(ν) = var(Y1i | Di = 1)/var(Y0i | Di = 1), that is, the ratio of the
web and face-to-face variances among those who choose web. Core conditions 1–2 again lead
to CMI (7) for k = 1 and 2, and the residual is

Wi = exp(−νDi)ε
2
i + {

β0 + β1Mi + (β2 − μ1)Di + β12MiDi

}2 − μ02,(11)

where εi is the residual of the linear “association model” Yi = β0 + β1Mi + β2Di +
β12MiDi + εi . This depends on the parameter of additive SMM (2) and the parameters of
the association model for Yi as well as ν. The estimator ν̂ and its derivation are detailed in
Clarke and Bao (2022a), section S3.3; it can be viewed as an extension of Vannieuwenhuyze
(2015) to unrestricted sequential designs.

The second special case is for binary and nominal categorical variables, where the mode
effect is most straightforwardly characterized by the effects on the probabilities of the non-
reference categories. If Y ∈ {0,1, . . . ,L} without loss of generality, these effects follow the
multivariate linear SMM

E(Yi − Y0i | Di,Mi) = γ 1Di,(12)

where Yi = (I (Yi = 1), . . . , I (Yi = L))T is a vector of L dummy variables (i.e., excluding
reference category 0), Y0i its face-to-face potential-outcome equivalent, I (·) the indicator
function equalling one if its argument is true or zero otherwise, γ 1 = (γ11, . . . , γ1L)T and
γ1l = Pr(Y1i = l | Di = 1) − Pr(Y0i = l | Di = 1) is the effect of mode on the mass point for
Yi = l for l = 1, . . . ,L. Identification follows from L pairs of NEM and CMI (3) assumptions
for each of the dummy variables (see Clarke and Bao (2022a), section S3.2 and cf. Imbens
and Rubin (1997)).

4.2. Bivariate and multivariate mode effects. For the bivariate distribution of continuous
X and Y , core conditions 1–2 ensure that the following CMI moment restriction holds:

E
(
X

j
0iY

k
0i | Mi

) = μXY
0jk,(13)

where μ0jk = E(X
j
0iY

k
0i ) for any real-valued j, k �= 0. The generalization of (13) to three or

more variables is straightforward, but this CMI restriction identifies the additive SMoM

E
(
X

j
i Y k

i − X
j
0iY

k
0i | Di,Mi

) = μXY
jk Di,(14)

where μXY
jk = E(X

j
1iY

k
1i − X

j
0iY

k
0i | Di = 1) if the attendant NEM assumption holds. Identifi-

cation follows from solving (13) as before to obtain residual

UXY
ijk = X

j
i Y k

i − μXY
0jk − μXY

jk Di,(15)

which leads to estimator μ̂XY
jk = {m̄XY

jk (1) − m̄XY
jk (0)}/{π(1) − π(0)}, where m̄XY

jk (m) =
E(X

j
i Y k

i | Mi = m).
We now consider two special cases, the bivariate equivalents of the SVM and multivariate

SMM defined above. The additive structural covariance model (SCM) is

cov(Xi, Yi | Di,Mi) − cov(X0i , Y0i | Di,Mi) = σXY Di,(16)

where σXY = cov(X1i , Y1i | Di = 1) − cov(X0i , Y0i | Di = 1) under its attendant NEM as-
sumption. This model is identified by CMI (3) for X and for Y and CMI (13) for k = j = 1,
which lead to residual

WXY
i = εX

i εY
i + (

UX
i + μX

0 − εX
i

)(
UY

i + μY
0 − εY

i

) − σXY Di − μ011,(17)
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satisfying E(WXY
i | Mi) = 0, where εX

i and εY
i are, respectively, the residuals of the associ-

ation models for Xi and for Yi , and UX
i and UY

i are, respectively, the residuals for SMM (2)
for X and for Y . The identification and derivation of estimator σ̂ XY are described in Clarke
and Bao (2022a), section S3.4. As with the SVM, the resulting estimator can be viewed as an
extension of Vannieuwenhuyze (2015) to unrestricted sequential designs.

Lastly, for two nominal categorical (or binary) variables, the mode effect is, again, most
straightforwardly characterized by mode effects on the probabilities of the nonreference cat-
egories. If X ∈ {0,1, . . . ,LX} and Y ∈ {0,1, . . . ,LY } without loss of generality, these effects
follow the multivariate linear SMM

E(Yi ⊗ Xi − Y0i ⊗ X0i | Di,Mi) = γ XY Di,(18)

where Xdi = (I (Xi = 0), . . . , I (Xi = LX))T and Ydi is similarly defined, ⊗ is the Kronecker
product, γ XY = (γ XY

00 , γ XY
10 , γ XY

20 , . . . , γ XY
LXLY

)T and γ XY
lm = Pr(X1i = l, Y1i = m | Di = 1) −

Pr(X0i = l, Y0i = m | Di = 1) is the effect of mode on the mass point for Xi = l and Yi = m.

4.3. Relaxing the NEM assumpion. All of the SMoMs (including the SVM and SCM)
defined above rely on an NEM assumption to ensure the estimands of the g-estimators equal
the target mode effects among those who choose web. To demonstrate how NEM is relaxed,
we focus on additive SMoM (5) for univariate mode effects, but the same approach could
be used for any member of the SMoM family. The approach is based on extended SMoMs
with separate parameters for the mode effect for those randomized to face-to-face and those
randomized to web mode. For the additive SMoM,

E
(
Y k

i1 − Y k
i0 | Di,Mi

) = {
μk(0) + 	μkMi

}
Di,(19)

where 	μk = μk(1)−μk(0) and μk(m) = E(Y k
1i −Y k

0i | Di = 1,Mi = m) is the causal effect
in group m. This model has two parameters, but these cannot be identified by the single CMI
restriction (7): further data constraints are required. In Section 5.3 we show how auxiliary
data from UKHLS Wave 8 can be used to estimate μ0k , which permits identification of the
extended SMoM, SVM and SCM. Hence, we can use the auxiliary data to assess whether
NEM holds by testing 	μk = 0.

5. Parameter estimation.

5.1. The generalized method of moments. In the previous section it was explained how
core conditions 1–3 (via CMI moment restrictions such as (7) and (13)), together with
NEM, identify the SMoM parameter but that NEM can be relaxed if auxiliary data are
available with which to estimate μ0k . The g-estimator θ̂ for one of the SMoMs introduced
above is generally based on residual vector ri = ri (θ) constructed under the model to sat-
isfy conditional moment restriction E(ri | Mi) = 0. The g-estimate is obtained by solv-
ing n−1 ∑

i Ai r̂i = 0, where r̂i = ri (θ̂) and the choice of matrix Ai = Ai(Mi) does not
affect consistency but does affect precision because, under standard regularity conditions,√

n(θ̂ − θ) ∼ N{0,E(AirirT
i AT

i )−1} as n → ∞, where the semiparametrically efficient
choice is A∗

i = E(−∂rT
i /∂θ | Mi) (see Robins (1994) and Clarke and Bao (2022a), sec-

tion S3).
Clarke, Palmer and Windmeijer (2015) showed how g-estimation can be carried out using

the generalized method of moments (GMM). We extend this to the SMoMs (including the
SVM and SCM) specified above. In general, a GMM estimator θ̂ is

θ̂ = arg min
θ

{
n−1

∑
i

gT
i (θ)

}
Ŵn

{
n−1

∑
i

gi (θ)

}
,(20)
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where Ŵn is a consistent estimator of symmetric weight matrix W . The GMM estimator is
consistent and asymptotically normal under standard regularity conditions if E{gi (θ)} = 0
(Hansen (1982)). If the dimension of gi (θ) exceeds that of θ , then g is over-identified and
W should be chosen to minimize the asymptotic variance-covariance matrix. However, if the
dimensions of gi (θ) and θ are equal, then g is just-identified and Ŵn is redundant: θ̂ is simply
a method of moments estimator with asymptotic variance-covariance

var(θ̂) = 1

n

[
E

{
∂gT

i (θ)

∂θ

}
E

{
gi (θ)gT

i (θ)
}−1

E

{
∂gi (θ)

∂θT

}]−1
.(21)

We focus on estimating equations for IV models of the form gi (θ) = Ziri (θ), where Zi is
now the GMM instrument, a matrix that can depend on parameters, and ri (θ) is the GMM
residual satisfying E{ri (θ) | Zi} = 0. Hansen (1982) showed that the GMM estimator is
optimally efficient, given the analyst’s choice of GMM instrument Zi , but, in practice, the
analyst ideally seeks a feasible Zi such that the estimator is efficient in one sense or another
(e.g., locally).

Clarke, Palmer and Windmeijer (2015) showed that the form of the g-estimator and GMM
estimator are the same if the SMM residual is constructed to have mean zero. Moreover, they
showed that the GMM estimator based on Zi = (1,Mi)

T is exactly the same as that based
on Zi = A∗

i , the efficient choice for g-estimators, if Mi and Di are both binary and ri is
linear. The second condition not only holds for additive SMoMs (5) and SCM (16) but also
for multiplicative SMoM (6) and SVM (10). For example, the multiplicative SMoM residual
(9) can be written Vik = (1 − Di)Y

k
i − μ0k − exp(−λk)Di for binary Di , that is, the residual

of the linear regression of (1 − Di)Y
k
i on Di .

We now outline how to set up the GMM estimator for some of the SMoMs introduced in
Section 4. The Stata code for implementing these models can be found in Clarke and Bao
(2022b), section S10.

EXAMPLE 1 (Univariate SMoM (k = 2) and bivariate SMoM (j = k = 1)). The GMM
residuals for additive SMoM (5) and multiplicative SMoM (6) for k = 2 are, respectively,
ri (μ01,μ1) = Ui and ri (μ01, λ2) = Vi . Likewise, the GMM residual for bivariate additive
SMoM (14) is ri (μ0jk,μjk) = UXY

ijk . In all three cases the IV instrument is Zi = Zi , where

Zi = (1,Mi)
T , that is, the GMM instrument is simply a vector.

EXAMPLE 2 (SVM). The GMM residual for SVM (10) is

ri (θ) = (εi,Ui,Wi)
T ,(22)

where θ = (β0, β1, β2, β12,μ01,μ1,μ02, ν)T and, we recall, εi = Yi − β0 − β1Mi − β2Di −
β12MiDi is the residual of the linear association model. This residual includes that of the
association model as well as those for SMM (2) and (10) so that all the parameters can be
jointly estimated. The instrument combines Zi , the instrument for the additive and multi-
plicative SMMs, together with the predictors of the association model as follows:

Zi =
⎛
⎝Xi 0 0

Zi 0
Zi

⎞
⎠ ,(23)

that is, an 8 × 3 matrix where Xi = (1,Mi,Di,MiDi)
T and 0 indicates a conformable vector

of zeros. The resulting GMM estimator is generally not semiparameterically efficient but
is locally efficient, in the sense of being semiparametrically efficient if εi is homoscedastic
(Tsiatis (2006), page 94).
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EXAMPLE 3 (SCM). The GMM residual for SCM (16) is

ri (θ) = (
εX
i , εY

i ,UX
i ,UY

i ,WXY
i

)T
,(24)

where θ = (βX
0 , . . . , βY

12,μ
X
01,μ

X
1 ,μY

01,μ
Y
1 ,μXY

011, σ
XY )T and εX

i and εY
i are, respectively, the

residuals of the association models for X and Y , and UX
i and UY

i are, respectively, the SMM
residuals for X and Y .

The GMM instrument is

Zi =

⎛
⎜⎜⎜⎜⎜⎝

Xi 0 0 0 0
Xi 0 0 0

Zi 0 0
Zi 0

Zi

⎞
⎟⎟⎟⎟⎟⎠ .(25)

EXAMPLE 4 (Multivariate SMM). The GMM residual for multivariate SMM (12) for
categorical variable Y ∈ {0,1, . . . ,L} is

ri (θ) = (U1i , . . . ,ULi)
T ,(26)

where Uli = I (Yi = l) − γ0l − γ1lDi and γ0l = Pr(Y0i = l). The GMM instrument is the
2L × L matrix

Zi =

⎛
⎜⎜⎜⎝

Zi 0 0 . . . 0
Zi 0 . . . 0

...

0 0 0 . . . Zi

⎞
⎟⎟⎟⎠ .(27)

The Stata code for fitting multivariate SMMs (12) for univariate effects and (18) for bivariate
effects is presented in Clarke and Bao (2022b) sections S10.4 and S10.5, respectfully.

5.2. Adjusting for nonresponse bias and complex sampling designs. In the context of a
single wave from a panel study like UKHLS, wave nonresponse arises whenever the sample
members cannot be contacted, or refuse to participate, in the current wave, and item non-
response arises whenever a participating sample member does not respond to one or more
questions. However it arises, nonresponse leads to incompletely observed data which must
be analyzed carefully. If the nonresponse mechanism is associated with the characteristics
measured by the survey variables, naive estimators of the analytical model parameters will
be biased and inefficient. We treat nonresponse as a nuisance and seek to adjust the GMM
estimating equations set out above by using the survey weights supplied with UKHLS (ISER
(2018), pages 40–44). These weights wi incorporate: (a) design weights to adjust for unequal
probabilities of selection, (b) calibration weights to adjust the sample distribution to match
the known population distributions of certain variables and (c) nonresponse weights to adjust
for the dependence on wave nonresponse at Wave 8 on auxiliary variables and fully observed
survey variables. Hence, for an analysis of the survey variables Yi (or a subset thereof), we
make the working assumption that

Rcc
i ⊥⊥ Yi | Di,Mi,Ci ,(28)

where Rcc
i = I (Yi is observed) and Ci contains the variables used to construct the survey

weights (noting that Ci enters the estimation procedure only through wi). The limitations of
this approach are discussed in Section 8.

Finally, as with many large-scale surveys, UKHLS uses a complex sampling design (in
this case, a stratified multistage cluster sampling design), but the discussion of point and
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interval estimation, so far, has implicitly presumed that a simple random sampling design
was used. We account for the potential effects of unequal selection probabilities, clustering
and stratification on estimation by incorporating the survey weights into GMM estimation
and using a linearized variance estimator rather than (21) to estimate the standard errors.
Further details of the implementation are described in Clarke and Bao (2022a), section S3.5,
with the Stata code provided in Clarke and Bao (2022b), section S10.2.

5.3. Incorporating auxiliary data. Up until this point, we have considered only estima-
tion based on data from the survey units S involved in the sequential mixed-modes exper-
iment. However, if suitable auxiliary data are available, then these can be used to improve
inferences about the mode effects in terms of both bias and precision.

Suppose that auxiliary sample A is drawn from the same population as S and measures the
same survey variables Yi . Then, define sample membership indicator Si for all i ∈ C, where
C = S ∪ A is the combined sample such that Si = 1 if i ∈ S and Si = 0 if i ∈ A. Then, μ0k

can be estimated from the auxiliary data if

E
(
Y k

i | Si = 0
) = E

(
Y k

0i

)
(29)

for any survey variable Y for target moment k �= 0. It is thus clear that suitable auxiliary data
must come from a survey administered using only face-to-face mode so that Yi = Y0i for all
i ∈ A. The extension of this result to higher-order moments is obvious.

We can use these auxiliary data for two purposes: if NEM holds the first is better inference.
From Table 1 it can be seen that Mi and Di are strongly associated: the difference in the
proportions choosing web among those randomized to web and face-to-face modes is 0.69 −
(1 − 0.95) = 0.64. This corresponds to an F statistic of 8437 where the rule of thumb for
identifying weak IVs, for which we can expect 2SLS to be severely biased, is a value less
than 10 (Stock and Yogo (2005)). However, the F-statistic rule is, strictly speaking, a guide
that pertains only to 2SLS and the additive SMM.

We hence conduct a simulation study to assess the performance of our estimators for ad-
ditive and multiplicative SMoMs and a SVM. The study design and results are described in
Clarke and Bao (2022a), section S5. The results show that, for sample sizes of order 10,000
(as in the application in this paper), these estimators have small relative biases (for both coef-
ficient and standard error estimates) but not for smaller sample sizes of 100 or 1000. Hence,
the study also investigates whether estimating μ0k , using auxiliary data, improves the perfor-
mance of the GMM estimator for smaller sample sizes. Auxiliary data can be incorporated
into GMM estimation, as shown in the following example. The GMM estimator for SVM
(10) is extended to estimate μ01 and μ02 as follows:

ri (θ) = (
Yi − μ01, Y

2
i − μ02, εi,Ui,Wi

)T
,(30)

and GMM instrument

Zi =

⎛
⎜⎜⎜⎜⎜⎝

1 − Si 0 0 0 0
1 − Si 0 0 0

SiXi 0 0
SiZi 0

SiZi

⎞
⎟⎟⎟⎟⎟⎠ .(31)

The GMM instrument has 10 rows but there are only eight parameters, so the resulting es-
timator is a genuine over-identified GMM rather than a method of moments. Hence, we can
either use two-step GMM, based on the asymptotically optimal choice of W (Hansen (1982)),
or simply replace Zi in (31) with Mi to create a just-identified model. The study results using
both approaches show improved relative bias for smaller sample sizes.
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Relaxing NEM: In a similar manner the auxiliary data can also be used to fit extended
SMoMs like (19). For example, the extended SVM is

log
{
var(Yi | Di,Mi)

} − log
{
var(Y0i | Di,Mi)

} = {
ν(0) + 	νMi

}
Di,(32)

which is fitted jointly with the extended SMoM (19) for k = 1. Each of these models has two
parameters: the first (ν(0) for the extended SVM and μ1(0) for the extended SMoM (k = 1))
correspond to the mode effects, given (Mi,Di) = (0,1), and the second (	ν and 	μ1) to the
differences between the mode effects for (Mi,Di) = (1,1) and (Mi,Di) = (0,1).

The extended residuals W̃i and Ũi , which, respectively, replace Wi and Ui in GMM resid-
ual (30), are

W̃i = ε2
i exp

[−{
ν(0) + 	νMi

}
Di

]
+ [

β0 + β1Mi + {
β2 − μ1(0)

}
Di + (β12 − 	μ1)MiDi

]2 − μ02

(33)

and

Ũi = Yi − μ01 − {
μ1(0) + 	μ1Mi

}
Di.(34)

The GMM instrument is, again, (31). In the absence of auxiliary data, the GMM instrument
would be (23) but with only eight rows for 10 parameters θ would be inestimable.

The design of UKHLS Wave 8, analyzed in Section 6, is more complicated than the sim-
ple auxiliary-data scenario described above because the mixed-mode experiment is a selected
sample, and we have two separate sources of face-to-face auxiliary data available from the
ringfenced and low-propensity groups (Section 2.3). It is thus necessary to extend the defini-
tion of the sample-membership indicator to be Si = 1 if i is in the mixed-mode experiment,
Si = 2 for the low-propensity group, or Si = 3 for the ringfenced group.

Now, recall that the low-propensity group includes those sample members excluded from
the experimental group because their estimated web-mode response probabilities were too
low, so the mode effects being estimated from the UKHLS Wave 8 mixed-mode experiment in
Section 6.1 are all implicitly conditional on Si = 1. Hence, we need to use the auxiliary data to
estimate μ0k = E(Y k

0i |Si = 1), but the ringfenced data only identify E(Y k
i | Si = 3) = E(Y k

0i ).
However, we also know that E(Y k

i | Si = 2) = E(Y k
0i | Si = 2) from the low-propensity group,

and hence that

μ̂0k = E(Y k
i | Si = 3) − plowE(Y k

i | Si = 2)

pexpt
(35)

because E(Y k
0i ) = plowE(Y k

0i | Si = 2) + pexpμ0k by the law of iterated expectations, where
plow = Pr(Si = 2)/Pr(Si < 3) and pexpt = Pr(Si = 1)/Pr(Si < 3) sum to 1. Note that Y k

i can

be replaced by the mean of X
j
i Y k

i in the above, and so on. The Stata code for incorporating
the auxiliary data is given in Clarke and Bao (2022b), section S10.6.

6. Characterizing the impact of mode on UKHLS Wave 8. We now present estimates
of the mode effects across a wide range of variables from UKHLS Wave 8. An illustrative
selection of these are described in Table 2, and the full set of variables we considered is
listed in Clarke and Bao (2022b), section S9. As set out in Section 2.1, the effect of mode
on the joint distribution is characterized by the univariate effects of mode on the means and
variances of the survey variables and the bivariate effects on the covariances between pairs of
variables. All estimates are weighted using the Wave 8 longitudinal weight h_indinub_xw
to account for unequal selection probabilities and nonresponse (ISER (2018), pages 40–44).
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TABLE 2
Description of selected variables and summary statistics from sequential experiment

Randomization

Continuous or ordinal Face-to-face Web mode

Label Description n Mean (SD) n Mean (SD)

age Age at interview 5220 49.7 (18) 7734 49.9 (18)

scgh1 Subjective wellbeing (GHQ: 0–36) 4780 10.9 (5) 7372 11.1 (5)

sf12mcs SF-12 mental health component (0–100) 4760 49.4 (10) 7335 48.9 (10)

sf12pcs SF-12 physical health component (0–100) 4760 50.0 (11) 7335 50.0 (11)

fiyrdia Annual income from savings etc. (£100) 3776 1.71 (2.7) 5757 1.86 (2.7)

workdis Distance from workplace (miles) 2697 10.1 (16) 3982 11.9 (31)

ncigs No. cigarettes smoked per day 637 12.0 (8) 977 12.5 (10)

j2pay Monthly income from 2nd job (£100) 6766 20.9 (173) 5557 27.1 (261)

Categorical
Label Description (categories) n Prop. n Prop.

paygwc Gross salary payment method 2332 3291
Hourly 0.01 0.02
Weekly 0.11 0.10
4 weeks 0.06 0.11
Monthly 0.54 0.62
Yearly 0.27 0.14
Other 0.01 0.01

huboss Household financial decisions made by 3443 5083
Respondent 0.13 0.10
Spouse/Partner 0.12 0.10
Both 0.74 0.79
Other 0.01 0.00

jbpl Workplace location 2767 3996
Home 0.03 0.03
Employer 0.82 0.83
Travelling 0.09 0.07
Other 0.00 0.01

Note that the summary statistics are not weighted.

6.1. Analysis using only data from the sequential experiment. In this section we estimate
mode effects using data from the mixed-modes experiment implemented for UKHLS Wave
8. These results thus rely on the NEM assumption discussed at length in Sections 3-4, which
we argued to be implausible in Section 4.3. However, for practice, the issue is less whether
this assumption holds perfectly than whether its failure affects the results. Hence, in the next
section we compare the following results with those incorporating the auxiliary data for which
NEM has been relaxed.

In this spirit we begin by focusing on univariate mode effects under NEM. For variables
with interval, ratio and ordinal measurement scales, we summarize the univariate effect of
mode on each variable by the mode effects on its mean μ1 and variance ν; for dichoto-
mous/binary variables, the effect of mode on its mean is sufficient to capture the effect of
mode on its distribution, and, for nominal categorical variables, the mode effect is the set
of mode effects on the mass points of the nonreference categories: if one (or more) of these
effects is significant, then there is evidence to support the presence of a univariate mode
effect on this variable. Table 3 contains the results for a selection of variables. The GMM
estimates are based on the relevant SMM (2), SVM (10) and multivariate SMM (12). Two
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TABLE 3
Estimated effects of mode on the mean (μ1) and variance (ν) of selected variables

Variable Par. Est. SE (i.i.d.) SE (lin)

j2pay μ1 0.065 0.029∗ 0.037+
(ncc = 10,432) ν 1.948 0.581∗∗∗ 0.712∗∗∗
age μ1 0.017 0.036 0.073
(ncc = 10,432) ν −0.024 0.036 0.056
fiyrdia μ1 0.091 0.037∗∗ 0.073
(ncc = 7948) ν 0.050 0.046 0.076
scghq1 μ1 0.103 0.034∗∗∗ 0.055+
(ncc = 10,180) ν 0.048 0.083 0.132
sf12mcs μ1 −0.080 0.035∗∗ 0.057
(ncc = 10,141) ν 0.052 0.069 0.104
sf12pcs μ1 −0.006 0.033 0.057
(ncc = 10,141) ν −0.010 0.065 0.116
workdis μ1 0.112 0.037∗∗ 0.048∗∗
(ncc = 5476) ν 1.486 0.511∗∗∗ 0.638∗∗
ncigs μ1 1.190 0.114+ 0.139
(ncc = 1279) ν 1.022 0.590+ 0.410∗∗

Sig. level: ∗∗∗<0.01, ∗∗0.01–0.025, ∗ 0.025–0.05 and +0.05–0.1 ncc weighted size of complete-cases sample.

sets of standard error estimates are presented: the first is based on the standard formula for
i.i.d. observations; the second is based on the linearized estimator to account for the impact
of stratification and clustering. All continuous variables were standardized to have mean zero
and unit standard deviation.

To validate these results, we look at the age variable because it is mode-invariant, so we
should infer a null mode effect. This is indeed the case: the estimates of μ1 and ν for age are
both smaller than the respective standard error estimates for each. Turning to the other vari-
ables, based on the i.i.d. standard error estimates, there is evidence (using a 0.05 significance
cut-off) for mode effects on the means of scghq1, sf12mcs, fiyrdia, workdis and
j2pay, and evidence for mode effects on the variance of workdis and j2pay. However,
the evidence based on the linearized standard error estimates is less strong: there is only ev-
idence for an effect of mode on the variance of j2pay and for effects of mode on the mean
and variance of workdis. This is because the impact of clustering generally increases the
size of the standard error estimates; the exception to this is for ncigs, where the linearized
estimate of the standard error of ν is slightly smaller so that some evidence emerges that there
is a mode effect on the variance.

The effects on the variance are very large for workdis and j2pay. The variance of
workdis, measured using web mode, is estimated to be exp(1.486) = 4.4 times larger than
it would have been had it been measured using face-to-face mode, among those who chose
web mode; and the ratio for j2pay is 7.0. This could indicate estimators which are biased
or highly imprecise.

More widely, we found evidence for the presence of at least one univariate mode effect
for 22 (13%) of 166 binary, continuous and ordinal variables using linearized standard error
estimates. There was evidence for mode effects on the mean for 18 (11% of the) variables and
on the variance for 12 (7%); there were effects on both mean and variance for eight (5%). The
importance of accounting for the complex sampling design is demonstrated by noting that the
respective figures, based on the i.i.d. standard error estimates, were 42 (25%), 37 (22%), 24
(14%) and 19 (11%).

Table 4 displays the estimates for three nominal categorical variables paygwc, hubos
and jbpl. These are obtained using the multivariate SMM (12). The reference category
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TABLE 4
Estimated effects of mode on the distribution of selected nominal categorical variables

Variable ncc Est. SE (i.i.d.) SE (lin)

paygwc 5548
Hourly 78 0.025 0.01∗∗∗ 0.01∗
Weekly 594 −0.014 0.02 0.02
4 weeks 508 0.090 0.01∗∗∗ 0.02∗∗∗
Monthly 3251 0.096 0.02∗∗∗ 0.04∗∗
Annually 1042 −0.195 0.02∗∗∗ 0.03∗∗∗
Other (ref.) 75
huboss 8354
Respondent 957 −0.053 0.01∗∗∗ 0.02∗∗∗
Spouse/Partner 918 −0.033 0.01∗∗∗ 0.02∗
Equal say 6440 0.086 0.02∗∗∗ 0.03∗
Other (ref.) 39
jbpl 6677
At home 210 0.004 0.01 0.01
Employer’s premises 5506 0.017 0.02 0.03
Travelling 532 −0.045 0.01∗∗∗ 0.02∗∗
Other place 398 0.020 0.01+ 0.02
Spontaneous (ref.) 31

Sig. level: ∗∗∗<0.01, ∗∗0.01–0.025, ∗0.025–0.05 and +0.05–0.1. Note: The estimates are the effects on the prob-
ability of being in that category, not contrasts with the reference category.

is chosen either because it is the least substantively interesting or it contains the smallest
frequency of individuals and is dropped because it is redundant: the mode effects across
all categories are constrained to sum to zero. All three variables are subject to significant
mode effects, but those on paygwc and huboss are particularly large. Most notably, the
probability of those who chose web mode reporting they were paid annually is estimated to
be 0.2 higher than it would have been had they been asked by an interviewer. Conversely, the
probability that web users indicate household decisions are made jointly is estimated to be
0.09 lower. The former effect could be due to survey satisficing whereas the latter could be
because of social desirability bias (D’Ardenne et al. (2017)).

Table 5 displays estimates of the effect of mode on the pairwise covariances between the
continuous variables. These effects were all estimated to be small with no evidence to reject
the null hypothesis that there is no mode effect on the covariance. More widely among the 166
variables in the analysis, the 13,695 pairwise estimates yielded 925 significant mode effects
using the i.i.d. standard errors, but only 677 using the linearized standard errors: the latter
figure is less than the 684 false positives one would have expected so there is little evidence
for the presence of mode effects on the covariance.

6.2. Incorporating auxiliary data. In order to reduce bias and improve the accuracy of
the IV estimators, we incorporated data from two auxiliary sources into the analysis, as de-
scribed in Sections 5.3. The first role of these data was to improve the accuracy of the GMM
estimator while still taking the NEM assumption to hold: we refer to these as the augmented
estimates. The second role was to enable us to estimate the extended models (from Sec-
tion 4.3) to test NEM and estimate the target parameter without making the NEM assumption:
we, respectively, refer to these as the NEM test and the extended estimates.

The new estimates are displayed in Table 6. It can be seen that, in most cases, the aug-
mented estimates are very similar to those obtained using only the experimental data. The
potential for improved precision, in the sense of smaller standard errors, was not realized
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TABLE 5
Estimated effects of mode on the covariance (σ ) between selected variables

age j2pay fiyrdia scghq1 sf12mcs sf12pcs workdis

j2pay 0.002
[ncc = 10,432]

fiyrdia 0.027 0.043
[7948] [7948]

scghq1 −0.063 0.012 −0.033
[10,180] [10,180] [7766]

sf12mcs 0.005 0.022 −0.004 −0.0448
[10,141] [10,141] [7755] [10,103]

sf12pcs −0.025 0.001 −0.029 0.034 0.028
[10,141] [10,141] [7755] [10,103] [10,141]

workdis 0.000 −0.005 −0.031 0.044 −0.111 −0.003
[5476] [5476] [4455] [5396] [5397] [5397]

ncigs 0.035 0.065 −0.058 0.127 −0.170 −0.103 0.020
[1279] [1279] [1108] [1249] [1245] [1245] [716]

because the estimated standard errors were designed to reflect the sampling error of the ad-
justment term; simply treating the adjustment as true, on the other hand, would underesti-
mate the standard errors and potentially lead us to conclude the presence of a mode effect.
For workdis and ncigs, we were unable to obtain augmented estimates of the effect of
mode on the variance, due to nonconvergence: such nonconvergence with relatively small
samples sizes is not uncommon for method-of-moments estimators. Testing for NEM, none
of the variables for which the estimation procedure converged led to rejection of the null hy-
pothesis that NEM holds; for the other variables the estimation procedure did not converge.
The extended estimates of the mode effects are, again, very similar to those displayed in Ta-

TABLE 6
Estimated effects of mode on the mean (μ1) and variance (ν) of selected variables incorporating data from

ringfenced and low-propensity groups

Variable Par. Previous (SE) Augmented (SE) NEM test1 Extended (SE)

j2pay_dv μ1 0.065 (0.037) −0.063 (0.095) 0.42 −0.136 (0.243)

ν 1.948 (0.712) −0.790 (0.906) 0.00 −1.262 (1.427)

age μ1 0.017 (0.073) −0.049 (0.082) – –
ν −0.024 (0.056) 0.083 (0.076) – –

fiyrdia μ1 0.091 (0.067) −0.018 (0.087) 0.45 −0.085 (0.217)

ν 0.050 (0.076) −0.071 (0.077) 0.95 −0.132 (0.170)

scghq1 μ1 0.103 (0.055)+ 0.127 (0.062)∗ 0.83 0.141 (0.157)

ν 0.048 (0.132) 0.057 (0.155) 0.94 0.073 (0.411)

sf12mcs μ1 −0.080 (0.057) −0.132 (0.062)∗ – –
ν 0.052 (0.104) 0.104 (0.126) – –

sf12pcs μ1 −0.006 (0.057) 0.014 (0.062) 0.84 0.025 (0.151)

ν −0.010 (0.116) −0.020 (0.130) 0.92 −0.021 (0.320)

workdis μ1 0.112 (0.048)∗∗ 0.119 (0.056)∗ – –
ν 1.486 (0.638)∗∗ 3.534 (13.59) – –

ncigs μ1 0.190 (0.139) 0.081 (0.078)+ 0.08 0.196 (0.108)+
ν 1.022 (1.190) – – –

Note: 1p-values; and – indicates the fitting procedure did not converge.
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ble 3, with inflated standard errors due to imprecision from estimating the 	 parameters of
the extended SMoMs.

A similar picture emerges for the SCM results: there is little difference to the results ob-
tained, using the experimental data alone, with no evidence for failure of the NEM assump-
tion, so we do not present these results.

7. Mode effects on parameter estimates. The framework developed above has so far
been used to estimate the effect of mode on the survey variables’ joint distribution. The
presence of mode effects involving the variables in a particular analysis would tell us whether
the results, obtained from fitting a statistical model, were affected by the move to a mixed-
mode design but not the size of this effect. Estimating the difference between the observed
estimate and that which would have been obtained had only face-to-face mode been used
is not generally straightforward if both outcome and predictors are subject to mode effects
(Park, Kim and Park (2016)).

To illustrate the problem, we begin by considering the ordinary least squares estimator of θ

from Yi = θXi +ei , that is, the linear regression model of mean-centered Yi on mean-centered
Xi . The mode effect can be written θ̂ − θ̂0, that is, the difference between the observed
estimator, based on observed {Xi,Yi}, and the counterfactual estimator based on {X0i , Y0i}.
An intuitively appealing approach in this case would be to modify the indicator method in
which Di and its interaction with Xi are included in the model (Jäckle, Roberts and Lynn
(2010)). The modification would be to use Mi as an IV to handle nonrandom selection of Di

as follows: Stage 1: Regress Di on Mi to obtain D̂i , and Stage 2: Regress Yi on Xi , D̂i and
interaction D̂i .Xi . The coefficient of the interaction term is an estimate of θ̂ − θ̂0. However,
we show in Clarke and Bao ((2022a), Section S6) that this estimator is only consistent if
either Xi is mode-invariant or the mode effect on the mean of X does not depend on the true
value of the characteristic measured by X, but we have already argued that this assumption
is generally too strong.

Instead, we propose a more general and robust way to estimate the impact of mode on
the maximum likelihood estimator (MLE) of parameter θ from parametric model f (y; θ).
This follows from inspecting the Taylor series expansions of the observed and counterfactual
MLEs to show that

θ̂ − θ̂0 ≈ π̂V
(
θ∗){

s̄1
(
θ∗;Y ) − s̄1

(
θ∗;Y0

)}
,(36)

where π̂ = ∑
i Di/n, θ∗ is the probability limit of θ̂ , s̄1(θ

∗;Y) = ∑
i Dis(θ∗;yi )

/
∑

i Di , s̄1(θ
∗;Y0) = ∑

i Dis(θ∗;y0i )/
∑

i Di and V (θ∗) is the inverse of the (single obser-
vation) Fisher information matrix for θ based on the observed data. This approximation relies
on V (θ∗) ≈ V0(θ

∗), where V0 is the inverse Fisher information based on the face-to-face data.
Furthermore, for large samples,

θ̂ − θ̂0 ∼ N
{
πV

(
θ∗)

	s1,V
(
θ∗)

Q1
(
θ∗)

V
(
θ∗)

/n
}
,

where π = Pr(Di = 1) is the marginal probability of choosing web mode, 	s1 = E{s(θ∗;
yi ) − s(θ∗;y0i ) | Di = 1} and Q1(θ

∗) is the covariance of this difference.
To estimate θ̂ − θ̂0 within the SMoM framework, the form of f (yi; θ) must allow the

estimated mode effects to be straightforwardly plugged in to adjust the observed data score.
For example, suppose that f is a member of the (curved) exponential family such that

f (yi; θ) = h(yi ) exp
{
ηT (θ)T(yi ) − A(η)

}
,

where T(yi ) is the sufficient statistic for natural parameter η, dim(θ) ≤ dim(η) and A(η) is
the normalization factor; then, (36) reduces to

θ̂ − θ̂0 ≈ πV (θ̂)
∂ηT

∂θ
μ1T,(37)
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where

μ1T = E
{
T(Y1i ) − T(Y0i ) | Di = 1

}
can be estimated using a multivariate linear SMoM for T(Yi ). Alternatively, an exact solu-
tion, which does not require V (θ∗) ≈ V0(θ

∗), is given by the difference between θ̂ and

θ̂0 =
[
θ : ∂ηT

∂θ

n∑
i=1

{
T(yi ) − ∂A

∂η
− Diμ̂1T

}
= 0

]
.(38)

The form of T is simple for a wide range of exponential family distributions. The derivations
of (36)–(38) are set out in Clarke and Bao (2022a), Section S7.1.

To illustrate how to apply (37) and (38), we consider a simple multiple regression example
involving variables from Table 2: Yi = fiyrdia on X1i = age and X2i = scghq1 where
all three variables are mean-centered. The analysis model is

Yi = θ1X1i + θ2X2i + ei,

where residual ei ∼ N(0, σ 2
e ). To simplify further, we ignore UKHLS’s complex sampling

design and estimate standard errors using the nonparametric bootstrap. However, it is gen-
erally possible to obtain bootstrap estimates of the standard errors for complex sampling
designs (Field and Welsh (2007)).

We fit a multivariate linear SMoM for the sufficient statistics for η, namely, Y 2
i , X2

1i ,
X2

2i , YiX1i , YiX2i and X1iX2i . The conditional maximum likelihood estimate θ̂ and its
estimated variance-covariance matrix V̂ are obtained using mlexp in Stata (noting that
nV̂ is an estimate of V (θ̂) above). The coefficient estimates are θ̂1 = 0.048 (0.002) and
θ̂2 = −0.040 (0.004) (estimated standard errors in parentheses). The impact of mode on
these estimates is estimated by plugging in estimates of the mode effects on the sufficient
statistics to (37). The estimates of the mode effects are as follows: Y 2 = 0.463 (0.34);
X2

1 = −1.186 (10.5); X2
2 = 0.912 (2.22); YX1 = 2.357 (1.48); YX2 = 0.226 (0.44) and

X1X2 = −2.884 (3.07). Finally, the effects of mode on the coefficient estimates are

θ̂1 − θ̂01 = 0.003 (0.002) approx; = 0.004 (0.002) exact;
θ̂2 − θ̂02 = 0.005 (0.005) approx; = 0.006 (0.006) exact.

In other words, the estimates of the coefficients would have been smaller by around 7% and
12–15%, respectively, had only face-to-face mode been available. However, the estimated
standard errors indicate that these effects are not statistically significant. The Stata code for
this example is given in Clarke and Bao (2022b), Section S10.7.

An important application of this idea for practice is for generalized linear models when
both outcome and predictors are subject to mode effects. In short, these models are specified
by link function g{E(Yi | Xi = xi}} = xT

i β and density

f (yi | xi;β, φ) = h(yi, φ) exp
{
ηiT (yi) − A(ηi)

φ

}

from the (overdispersed) exponential family with overdispersion parameter φ and nuisance
parameter ηi now varying between individuals because of its dependence on xi . For simple
canonical models where ηi = xT

i β , T (yi) = yi and φ is a known constant, the resulting score
for β is

s(β) = φ−1
∑
i

XiYi − Xig
−1(

XT
i β

)
,
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which must be solved iteratively if g is nonlinear. The exact solution for β̂ − β̂0 is the differ-
ence between the solution to s(β) = 0 and s0(β) = 0, where s0(β) is the mode-effect-adjusted
score function.

For example, the logistic regression model for Bernoulli-distributed Yi has link g(p) =
logit(p) = log{p/(1 − p)}, E(Yi | Xi = xi ) = g−1(xT

i β) = 1/{1 + exp(−xT
i β)}, T (yi) = yi ,

ηi = xT
i β , A(ηi) = log{1 + exp(ηi)} and φ = 1. The iterative estimation procedure is as

follows: choose starting value β0, and set j = 1; then, apply g-estimation to the SMoM

E
{
Xig

−1(
Xiβ

j−1) − X0ig
−1(

X0iβ
j−1) | Di,Mi

} = τ
j
XgDi

to obtain τ̂
j
Xg ; the updated estimate βj is the solution to

s0(β) = ∑
i

XiYi − Xig
−1(

XT
i β

) − (
ψ̂XY − τ̂

j
Xg

)
Di,

where ψ̂XY is the g-estimate based on a linear SMoM for XiYi . Finally, increment j , and
repeat until convergence is achieved. The second stage relies on treating βj−1 as “known” so
that Xig

−1(Xiβ
j−1) is simply a random variable.

Note that if g is the identity link, then

β̂0 =
(∑

i

XiXT
i − τ̂XXDi

)−1(∑
i

XiYi − ψ̂XY Di

)
,

where τXX is the mode effect on XiXT
i , defined using an appropriate linear SMoM. For the

normal linear regression example above, the results obtained using this approach are identical
to the exact solution described above.

To illustrate this, we use the same variables as before but derive the following binary
outcome from the semicontinuous Yi = fiyrdia: Y bin

i = I (Yi > 0) which equals 0 if Yi = 0
or 1 if Yi > 0. The estimated coefficients of logit{Pr(Y bin

i = 1 | X1i ,X2i)} = θ0 + θ1X1i +
θ2X2i , based on the mixed-mode data, are θ̂0 = −1.716 (0.09), θ̂1 = 0.0315 (0.001) and θ̂2 =
−0.0333 (0.004). Taking these estimates as starting values, the method took six iterations
to converge (as determined by a successive relative difference smaller than 1 × 10−7) to
θ̂00 = −1.708 (0.13), θ̂01 = 0.0305 (0.002) and θ̂02 = −0.0407 (0.007). The mode effects are
thus both small and nonsignificant: θ̂0 − θ̂00 = −0.008 (0.10), θ̂1 − θ̂01 = +0.0010 (0.002)

and θ̂2 − θ̂20 = 0.0068 (0.005). The Stata code for this example can be found in Clarke and
Bao (2022b), Section 10.8.

Clarke and Bao ((2022a), Section S7.2) report some results from a simulation study to
assess the performance of this method for normal linear and logistic regression. The exact
methods were more likely not to converge than the approximate method but almost always
converged for sample sizes 1000 or larger. The relative bias of the coefficient estimates could
be quite large, even for sample sizes of order 1000, in line with the extent to which the mode-
effect estimates are biased; but the relative bias was small for sample sizes of order 10,000
which is the same as the sample size for the application in this paper.

8. Discussion. We have developed a very general framework for efficiently using IVs to
estimate the effects of mode (or causal effects) on the survey variable distribution of UKHLS
Wave 8. The mode effects were identified because the sequential experiment provided us with
an instrumental variable in the form of the initial randomization of households to either face-
to-face or web mode. While we found evidence for some univariate mode effects (especially
for some categorical variables), there was little evidence for the pairwise mode effects that
could potentially affect multivariate analyses of the survey data. This finding was robust to



STRUCTURAL MOMENT MODELS FOR MODE EFFECTS 1583

the no effect modification assumption we would have had to make had auxiliary data been
unavailable. The importance of accounting for the multistage stratified sampling design of
UKHLS was apparent here because failing to account for it would have led to attenuated
standard error estimates that overstated the impact of mode.

The generalized method of moments (GMM) proved to be a relatively simple but flexi-
ble estimation procedure that was straightforwardly adapted to produce linearized estimates
of the standard errors and incorporate auxiliary data from UKHLS Wave 8. Our approach
for estimating mode effects on parameter estimates can be viewed as a complement to the
parametric fractional imputation approach developed by Park, Kim and Park (2016). Their
method requires the analyst to specify jointly an analytical model and a measurement model
and can be adapted for IV estimation, but our method is more flexible and, we argue, con-
siderably simpler to implement. Our simulation studies found there could be issues with
nonconvergence and bias for sample sizes of order 1000 and below, but these problems were
not apparent for sample sizes of order 10,000, as with this application.

In terms of handling nonresponse, we used the survey weights supplied with the UKHLS
which incorporate inverse probability weights to adjust for nonresponse. This approach
is not fully efficient, but it is robust in that it will correct for the effect of nonresponse
to the extent that assumption (28) holds for a particular analysis. Furthermore, even if
this assumption were true, these weights would not correct for nonresponse bias if there
were a mode effect-covariate interaction, that is, the SMoM depended on Ci such that
E(Y k

1i − Y k
0i | Di,Mi,Ci) = μ1k(Ci)Di . In this case the induced marginal model (5) (ob-

tained by integrating over Ci) would not satisfy NEM because of IV core condition 3. An
alternative set of weights that will theoretically overcome this problem for additive SMoMs
is proposed in Clarke and Bao, ((2022a, Section S8), but the assessment of these weights is
left for future work.
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SUPPLEMENTARY MATERIAL

Part A: Supplement on derivations, further information and simulation studies (DOI:
10.1214/21-AOAS1557SUPPA; .pdf). This supplement includes further details about the fol-
lowing: g-estimation; derivations of the structural variance, covariance and multivariate mean
models; a derivation of the estimator of the mode effect on maximum likelihood estimates; an
elaboration of arguments in the text about plausible data generating processes for mode se-
lection and the limitations of the instrumental variable-based version of the indicator method
for mode-effect estimation; and the design and results of the simulation studies used to assess
the performance of these estimators.

Part B: Supplement on the UKHLS data and Stata code (DOI: 10.1214/21-
AOAS1557SUPPB; .pdf). This supplement includes a list of the variables from Wave 8 of
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UKHLS for which mode effects were estimated in Section 6, and Stata code for all the struc-
tural moment, variance, covariance and (multivariate) mean models fitted in the paper.
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