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Abstract—In this paper, we first introduce a novel concept,
called Z-paraunitary (ZPU) matrices. These ZPU matrices
include conventional PU matrices as a special case. Then, we
show that there exists an equivalence between a ZPU matrix
and a Z-complementary code set (ZCCS) when the latter is
expressed as a matrix with polynomial entries. The proposed
ZPU matrix has an advantage over the conventional PU
matrix with regard to the availability of wider range of
matrix sizes and sequence lengths. In addition, the proposed
construction framework can accommodate more choices of
ZCCS parameters compared to the existing works.

Index Terms—Paraunitary Matrices, Z-Paraunitary Ma-
trices, Z-Complementary Sequences, Unimodular Sequences.

I. INTRODUCTION

A matrix of polynomials is simply a matrix whose
entries are polynomials. The matrices of polynomials have
many potential applications in the control theory [1] and
filter bank theory [2], but in recent years they have been
applied in the area of complementary sequence design
[3], [4]. A paraunitary (PU) matrix refers to a matrix of
polynomials over the indeterminate variable z−1 which
is unitary on the unit circle. The concept of PU matrices
was introduced by Vaidyanathan [2] in the theory of filter-
banks. The past few decades have witnessed that a family
of PU matrices has been one of the key tools in the area
of filter-bank theory [5], wireless communication [6], [7],
cryptography [8], and so on. In [6], it has been shown
that a binary PU precoded OFDM system has better error
probability performance than the conventional OFDM sys-
tems. Subsequently, the application of PU matrix has been
extended to MIMO-OFDM system [9]. The precoding
applications of PU matrices can also be found in CDMA
systems [7].

In [2], it is shown that any arbitrary PU matrix can be
factorized into a product of unitary and diagonal matrices.
This factorization is said to be an expanded product form
of a PU matrix. Thus, the size of PU matrix is limited
by the existence of unitary matrices for the given number
of phases. For example, a 6 × 6 binary PU matrix does
not exist since a binary unitary matrix of size 6× 6 does
not exist. Note that a binary PU matrix also refers to an
antipodal PU (APU) matrix. In [6], Phoong and Chang
have pointed out that it is still unclear if there exist APU
matrices with odd length ≥ 3 and APU matrices with
dimensions of 4k + 2, for k ≥ 1. Moreover, an M ×K

PU matrix does not exist when K > M , which may limit
their applications in the field of signal processing.

Recently, PU matrix has received very wide interest
in the area of complementary sequence design [3], [10]-
[17]. In [3], a compact formulation has been proposed
for complementary sequence pairs (and sets) by using
PU matrices. The applications of PU matrices have also
been extended to q-ary complementary sequence sets
[10], and QAM complementary sequence sets [13]. Note
that [10] introduced the use of Butson-type Hadamard
(BH) matrices in the PU method to the construction of
complementary sequences. In [16], it is explicitly shown
that there exists an equivalence between a square PU
matrix and complete complementary codes (CCC) when it
is expressed as a matrix with polynomial entries. In [17],
a compact formulation for designing polyphase CCC with
various sequence lengths has been reported. Very recently,
the applications of PU matrices have been extended to the
construction of zero correlation zone (ZCZ) sequence sets
[18].

A limitation of CCC is that the set size is equal to
the number of constituent sequences (i.e., the flock size)
in each set, which restricts their applications to support
more users. It is worth mentioning that the complexity
in a MC-CDMA system increases exponentially with the
flock size. To overcome this weakness, Z-complementary
code sets (ZCCS) are introduced by Fan et al. [19],
where Z denotes the ZCZ width. In the literature, Z-
complementary sequences are also investigated in [20]-
[24]. Most recently, direct constructions based on gener-
alized Boolean functions have been explored in [25] and
[26]. There is another type of code known as inter-group
complementary code set [27] which can be considered as
a special case of ZCCS.

In this paper, we introduce the idea of Z-paraunitary
(ZPU) matrix which includes conventional PU matrix as
a special case. The key idea is to relax the condition on the
range of time-shifts of interest to Z ≤ L. This allows us
to show there exists a one-to-one correspondence between
a ZPU matrix and ZCCS when the matrix has sequences
as its entries. Moreover, this paper proposes a compact
formulation of optimal ZCCSs described in z-domain
framework. Therefore, the matrix sizes and sequence
lengths of ZPU matrices are more flexible compared to
conventional PU matrices.
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II. PRELIMINARIES
In this section, we will present some basic definitions,

notations and preliminaries.

A. Notations
• The z-transform of aperiodic cross-correlation func-

tion (ACCF) Rx,y[τ ] between two length-L complex-
valued sequences x and y is defined by Rx,y(z) =∑L−1
τ=−(L−1)Rx,y[τ ] · z−τ = x(z) · y∗

(
z−1
)
, where

(·)∗ denotes complex conjugate (see [12]). Since
Rx,y[−τ ] = R∗y,x[τ ], it is sufficient to calculate the
ACCF Rx,y[τ ] only for 0 ≤ τ < L.

• The zero correlation zone (ZCZ) is denoted by the
upper case Z (not to be confused with the indeter-
minate variable z in z-transform).

• The least common multiple between numbers is
denoted by LCM .

• For an M×K matrix X(z) of polynomials over z−1,
the tilde operator is defined by X̃(z) = XH

(
z−1
)
,

where H is the Hermitian operation.
• The Butson-type Hadamard matrix BH(M, q) refers

to a complex Hadamard matrix of size M × M
with qth roots of unity entries [28]. BH(M, 2) rep-
resents a binary Hadamard matrix denoted by HM

for M = 2, 4m and BH(M,M) represents discrete
Fourier transform (DFT) matrix denoted by FM .

Let X(z) =
[
x0(z), x1(z), · · · , xK−1(z)

]
be a polyno-

mial matrix of K column vectors, each of size M , i.e.,

xµ(z) =
[
x0µ(z), x1µ(z), · · · , x(M−1)µ(z)

]T
, (1)

where 0 6 µ 6 K − 1 and xmµ(z) is a polynomial of
complex numbers coefficients and degree L− 1 for each
m ∈ {0, 1, · · · ,M − 1}. The z-transform of ACCF sum
Sxµ,xν [τ ] between two columns xµ(z) and xν(z) (0 ≤
µ, ν ≤M − 1) is given by

Sxµ,xν (z) =

M−1∑
m=0

Rxmµ,xmν (z). (2)

From z-transform of ACCF sum given by (2) and the
tilde operation, the product X̃(z) ·X(z) of matrices can be
expressed as

X̃(z) · X(z) =
[
Sxµ,xν (z)

]
K×K

. (3)

Remark 1: Note that the matrix X̃(z) · X(z) can be
expressed only by the z-transforms of AACF sums and
ACCF sums between sequence sets. We call it as the
matrix of ACCF sums.

B. Paraunitary (PU) Matrix
A PU matrix is a matrix of polynomials over z−1 which

is unitary on the unit circle, i.e., |z| = 1.
Definition 1: An M × K polynomial matrix X(z) is

said to be a PU matrix if the following identity holds:

X̃(z) · X(z) = c · IK , (4)

where IK is the identity matrix of size K ×K and c is a
positive constant.

Equivalently, the above condition (4) can be written by

Sxµ,xν (z) = c · δ(µ− ν), (5)

where δ denotes the delta function. Clearly, the matrix
X(z) satisfies the ideal correlation properties over the
whole range of time-shift Z = L. The degree of a PU
matrix refers to the minimum number of delays required
to implement it. The length of a PU matrix refers to the
length of the constituent sequences. A PU matrix is called
a unimodular PU matrix if it has only unimodular coef-
ficients. For example, a PU matrix with ±1 coefficients
refers to a binary PU matrix.

We give one example of a binary PU matrix.
Example 1: Let M = K = 2. A 2×2 binary PU matrix

X(z) with sequence length L = 4 is given by

X(z) =

[
1 + z−1 + z−2 − z−3 1 + z−1 − z−2 + z−3

1− z−1 + z−2 + z−3 1− z−1 − z−2 − z−3

]
2×2

.

(6)
It is easy to verify that Sxµ,xν (z) = 8 · δ(µ− ν), µ, ν =
0, 1. Therefore, the matrix of ACCF sums is given by

X̃(z) · X(z) =

[
Sx0,x0(z) Sx0,x1(z)
Sx1,x0(z) Sx1,x1(z)

]
= 8 · I2, (7)

where Sx0,x0(z) = Sx1,x1(z) = 8 +0z−1 +0z−2 +0z−3

and Sx0,x1(z) = Sx1,x0(z) = 0 +0z−1 +0z−2 +0z−3.
Note that the ZCZ width for this matrix is over the whole
range of time-shifts Z = L = 4.

For an M × K PU matrix, we have the following
relationship between M and K.

Result 1 ([2]): For any arbitrary M × K PU matrix,
the following inequality is true:

K ≤M. (8)

By using Result 1, we can say that an M ×K PU matrix
does not exist when K > M . Later, we will show that an
M ×K ZPU matrix exists when K can be much larger
than M . Also, binary ZPU matrices with odd lengths ≥ 3
exist.

C. Z-Complementary Code Sets (ZCCS)
A set x(z) of M sequences with equal length L is called

a Z-complementary code (ZCC) [19] if

Sx(z) =ML+

L−1∑
τ=Z

Sx[τ ] · z−τ , (9)

where Z denotes the zero correlation zone (ZCZ). When
Z = L, ZCC refers to a conventional complementary set
of sequences. A ZCC y(z) of M sequences with equal
length L is said to be a Z-complementary mate of ZCC
x(z) if

Sx,y(z) = 0 +

L−1∑
τ=Z

Sx,y[τ ] · z−τ . (10)

Clearly, Z-complementary mate becomes a conventional
complementary mate when Z = L. For a given
ZCC of size M , there exist more than M distinct Z-
complementary mates. Note that we are interested only
to calculate the ACCF sum for the time-shifts 0 ≤ τ < L
due to the symmetry.
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Definition 2: The family X(z) is called a Z-
complementary code sets (ZCCS) if each set is ZCC and
two distinct sets are Z-complementary mates.
We denote it as (K,Z)-ZCCSLM . Obviously, (K,Z)-
ZCCSLM becomes a conventional mutually orthogonal
complementary sets of sequences when Z = L. A (K,Z)-
ZCCSLM can be regarded as ZCCC when K =M . In fact,
a (K,Z)-ZCCSLM becomes a conventional CCC when
Z = L and K =M .

For any given (K,Z)-ZCCSLM , the theoretical upper
bound [19], [29] on K is given by

K ≤MbL/Zc, (11)

where bxc represents the largest integer smaller than or
equal to x.

III. CONCEPT OF Z-PARAUNITARY MATRICES
In this section, we first introduce the concept of ZPU

matrices. Then, we show the relationship between ZPU
matrix and (K,Z)-ZCCSLM .

A. Idea of ZPU Matrices
Definition 3: An M ×K matrix X(z) of polynomials

over z−1 is said to be a ZPU matrix if the following
relation holds:

X̃(z) · X(z) =
[
Sxµ,xν (z)

]
K×K

= c · IK within the ZCZ width Z. (12)

It is worth noting that we are focused on the aperiodic
correlation sums between the sets within the zone of
length Z ≤ L. The correlation terms within the time-shifts
from −(Z − 1) to (Z − 1) are taken into consideration in
the right hand side of (12). By applying (3), an equivalent
expression of (12) can be written by

Sxµ,xν (z) = c · δ(µ− ν)+
L−1∑
τ=Z

Sxµ,xν [τ ] · z−τ , (13)

where Z is the ZCZ width and 0 ≤ µ, ν ≤ K − 1. We
call it as ZPU matrix of size M ×K, sequence length L
(i.e., degree L− 1), and the ZCZ width Z.

Clearly, Definition 3 includes Definition 1 as a special
case when Z = L. That is, a ZPU matrix becomes
a conventional PU matrix when Z = L. Similar to a
conventional PU matrix, we can define the degree and
length for a ZPU matrix. Since unimodular sequences
with good correlation properties are of strong interest in
digital communications, we are focused on unimodular
ZPU matrices throughout this paper.

We give out one example of ZPU matrix to illustrate
our new concept.

Example 2: Let M = K = 2 and L = 3. A binary
polynomial matrix X(z) of size 2 × 2 and length L = 3
is given by

X(z) =

[
1 + z−1 + z−2 1− z−1 + z−2

1− z−1 + z−2 −1− z−1 − z−2
]
2×2

. (14)

In this case, the ACCF sum between two sets x0(z)
and x1(z) is given by Sx0,x1(z) = Sx1,x0(z) =
0 + 0z−1+0z−2. Also, the AACF sums of x0(z)
and x1(z) are given by Sx0,x0(z) = Sx1,x1(z) =

6 + 0z−1+2z−2. Thus, the matrix of ACCF sums be-
comes

X̃(z) · X(z) =

[
Sx0,x0(z) Sx0,x1(z)
Sx1,x0(z) Sx1,x1(z)

]
2×2

=

[
6 + 0z−1+2z−2 0 + 0z−1+0z−2

0 + 0z−1+0z−2 6 + 0z−1+2z−2

]
2×2

= 6 · I2 within the ZCZ width 2. (15)

Note that we can omit the terms which are outside of the
ZCZ width Z = 2 in Sxµ,xν (z). Clearly, the condition (12)
is satisfied for Z = 2 and hence X(z) is a binary 2-PU
matrix.

B. Relationship between ZPU Matrix and ZCCS

From the definitions of ZPU matrix and ZCCS, we have
the following property.

Property 1: A polynomial matrix X(z) is a ZPU matrix
with size M ×K and sequence length L if and only if it
is a (K,Z)-ZCCSLM .

Proof: For any two columns xµ(z) and xν(z) of X(z),
we can write

Sxµ,xν (z) =

M−1∑
m=0

Rxmµ,xmν (z), (16)

where xµ(z) =
[
x0µ(z), x1µ(z), · · · , x(M−1)µ(z)

]T
con-

sisting of M unimodular sequences of equal length L and
0 ≤ µ, ν ≤ K − 1. Then, we have

Sxµ,xν (z) = c · δ(µ− ν) +
L−1∑
τ=Z

Sxµ,xν [τ ] · z−τ

if and only if X̃(z)·X(z) = c·IK within the ZCZ width Z.
Thus, the matrix X(z) is a ZPU matrix⇔ X̃(z)·X(z) = c·
IK within the ZCZ width Z ⇔ Sxµ,xν (z) = c · δ(µ− ν)+∑L−1
τ=Z Sxµ,xν [τ ] · z−τ ⇔ X(z) is a (K,Z)-ZCCSLM . This

completes the proof.
Remark 2: Based on Property 1, we can say that there

exists an equivalence between ZCCS and ZPU matrix.
This equivalence allows us to find more binary ZPU ma-
trices with odd lengths ≥ 3 compared to the conventional
PU matrices.

Remark 3: We observe that Property 1 includes [16,
Th. 1] as a special case when M = K and Z = L.
By using Property 1, we have the following corollary.

Corollary 1: For an M × K ZPU matrix, the mathe-
matical upper bound of K is given by

K ≤MbL/Zc. (17)

A ZPU matrix is said to be an optimal ZPU matrix if
K =MbL/Zc.

Remark 4: According to Corollary 1, K can be much
larger than M for an M×K ZPU matrix. Thus, ZPU ma-
trices have neither limitation on matrix sizes nor limitation
on the sequence lengths.
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IV. PROPOSED CONSTRUCTION OF
OPTIMAL Z-PARAUNITARY MATRICES

In this section, we provide a novel construction of
optimal ZPU matrices. It is well known that ZCCSs have
potential applications in MC-CDMA system to support
more users. Therefore, we are focused on optimal ZPU
matrices when K is larger than M .

A. Proposed Construction
Theorem 1: Let M and K be two positive integers

such that K = MP for some positive integer P . Let
UK and UM be two BH matrices of size K × K and
M×M , respectively. Let us consider a block matrix G =[
UM UM · · · UM (P times)

]
. Note that G is a block

matrix of size M ×K. Then, a polynomial matrix G(z)
of size M ×K and degree K − 1 is given by

G(z) = G · DK(z) · UK , (18)

where DK(z) = diag
(
1, z−1, · · · , z−(K−1)

)
. Then, the

matrix G(z) given by (18) is an optimal unimodular ZPU
matrix of size M×K, sequence length K and ZCZ width
Z =M .

Proof: We first show that the sequences generated by
(18) are unimodular sequences. Let G = [amk]M×K and
UK = [hµν ]K×K . Let ak be the k-th column vector of
the block matrix G. Note that apM+m = um, where p =
0, 1, · · · , P −1 and um is the m-th column vector of UM .
Thus, we have uHm · um′ =M · δ(m−m′). Consequently,
we can write

aHpM+m · ap′M+m′ = uHm · um′ =M · δ(m−m′). (19)

According to (18), the µ-th column of the matrix G(z) is
given by

gµ(z) =
[
g0µ(z), g1µ(z), · · · , g(M−1)µ(z)

]T
, (20)

where 0 ≤ µ ≤ K−1 and the sequence gmµ(z) of length
K can be written by

gmµ(z) =

K−1∑
k=0

amk · hkµ · z−k, (21)

where m = 0, 1, · · · ,M − 1. Thus, (21) implies that
gmµ(z) are unimodular sequences of length K. The sum
of ACCFs between the µ-th and ν-th columns of the
matrix G(z) is given by

Sgµ,gν (z) =

M−1∑
m=0

Rgmµ,gmν (z)

=

M−1∑
m=0

K−1∑
k=0

K−1∑
k′=0

amk · a∗mk′ · hkµ · h∗k′ν · z−(k
′−k)

=

K−1∑
τ=0

K−τ−1∑
k=0

M−1∑
m=0

amk · a∗m(k+τ) · hkµ · h
∗
(k+τ)ν · z

−τ

=

M−1∑
τ=0

K−τ−1∑
k=0

aHk+τ · ak · hkµ · h∗(k+τ)ν · z
−τ

+

K−1∑
τ=M

K−τ−1∑
k=0

M−1∑
m=0

amk · a∗m(k+τ) · hkµ · h
∗
(k+τ)ν · z

−τ

=

K−1∑
k=0

aHk · ak · hkµ · h∗kν

+

K−1∑
τ=M

K−τ−1∑
k=0

M−1∑
m=0

amk · a∗m(k+τ) · hkµ · h
∗
(k+τ)ν · z

−τ

=M

K−1∑
k=0

hkµ · h∗kν

+

K−1∑
τ=M

K−τ−1∑
k=0

M−1∑
m=0

amk · a∗m(k+τ) · hkµ · h
∗
(k+τ)ν · z

−τ

=MK · δ(µ− ν)

+

K−1∑
τ=M

K−τ−1∑
k=0

M−1∑
m=0

amk · a∗m(k+τ) · hkµ · h
∗
(k+τ)ν · z

−τ .

Thus, the matrix of ACCF sums is given by

G̃(z) · G(z) =MK · IK within the ZCZ width M.

That is, G(z) is a ZPU matrix of size M ×K, sequence
length K and ZCZ width Z = M . Now, K/M =
MP/M = P = bL/Zc. So, G(z) is an optimal M -PU
matrix. This completes the proof.

Remark 5: The number of phases of the constructed
sequences is LCM(q0, q1), where UK = BH(K, q0) and
UM = BH(M, q1) with 2 ≤ q0 ≤ K and 2 ≤ q1 ≤M .

We illustrate our proposed construction of optimal ZPU
matrices by the following example. We give a new 3-
PU matrix of size 3 × 6 and sequence length 6 with 3-
phase-shift keying (PSK) constellation as opposed to the
case when we will use DFT matrix where the generated
sequences belong to the 6-PSK constellation.

Example 3: Let M = 3 and K = 6 with P = 2.
Let UK = S6 = BH(6, 3) given by [12, eq.(19)]. Let
UM = F3 and G =

[
F3 F3

]
. Clearly, G is a 3×6 matrix

with 3-PSK constellation. Note that LCM (q0, q1) = 3
with q0 = q1 = 3. According to our proposed construction
method, a 3-PU matrix of size 3× 6 and sequence length
6 is given by

G(z) = G · DK(z) · UK = G · D6(z) · S6, (22)

where D6(z) = diag
(
1, z−1, z−2, z−3, z−4, z−5

)
. The

matrix of ACCF sums is given by

G̃(z) · G(z) = 18 · I6 within the ZCZ width 3. (23)

Also, we have K/M = P = bL/Zc and hence G(z)
is an optimal 3-PU matrix of size 3 × 6 and sequence
length 6 with 3-PSK constellation. We have written out
this 3-PU matrix by Table I in which only the exponents
of ω = e−2π

√
−1/3 are given.

Table I: A 3× 6 Optimal 3-PU Matrix
with Sequence Length 6

000000 001122 010221 012012 022101 021210

x0 012012 x1 010101 x2 022200 x3 021021 x4 001110 x5 000222

021021 022110 001212 000000 010122 012201

According to Theorem 1, we have the following corol-
lary for the construction of binary sequences.

Corollary 2: Let H2m+k and H2m be two binary
Hadamard matrices of size 2m+k × 2m+k and 2m × 2m,
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respectively. Let us consider a block matrix G =
[
H2m

H2m · · · H2m (2k times)
]

with size 2m × 2m+k. Then,
the matrix G(z) given by (18) is an optimal binary 2m-PU
matrix of size 2m × 2m+k and sequence length 2m+k.

B. Comparison with Previous Works on ZCCSs
In the literature, there are main three types of construc-

tion methods for ZCCSs. The first type is based on seed Z-
complementary sequence pairs [19], [22]. The second type
is based on complementary sequence pairs [20], [21], [24].
The third type is the direct construction methods based
on generalized Boolean functions [25], [26]. According
to this classification, we can see that most algorithms
have been concerned with ZCCSs when the number of
constituent sequences is restricted to two. [25], and [26]
studied ZCCSs when the number of constituent sequences
can be more than two. However, the constructed ZCCS
parameters for their construction methods are all limited
to powers of two. Our proposed construction framework
offers more flexibilities on the ZCCSs parameters com-
pared to the previously known works. For example, an
optimal (6, 3)-ZCCS6

3 with 3-PSK constellation given by
Table I may not be obtained by the previously known
methods.

V. CONCLUSION AND FUTURE WORK
In this paper, we have investigated a new concept of

ZPU matrices. It is shown that there exists an equivalence
between a ZPU matrix and ZCCS. Thus, the proposed
ZPU matrices have neither limitation on the sequence
lengths nor limitation on the matrix sizes. In addition,
we have investigated a simple construction of optimal
ZPU matrices based on BH matrices. The proposed con-
struction method offers more choices in ZCCS parameters
compared to the previous works.
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