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Abstract

The debate over the optimal way of allocating societal surplus (i.e. products and services)

has been raging, in one form or another, practically forever; following the collapse of the

Soviet Union in 1991, the market has taken the lead vs the public sector to do this. Working

within the tradition of Marx, Leontief, Beer and Cockshott, we propose what we deem an

automated planning system that aims to operate on unit level (e.g., factories and citizens),

rather than on aggregate demand and sectors. We explain why it is both a viable and desir-

able alternative to current market conditions and position our solution within current societal

structures. Our experiments show that it would be trivial to plan for up to 50K industrial

goods and 5K final goods in commodity hardware. Our approach bridges the gap between

traditional planning methods and modern AI planning, opening up venues for further

research.

1 Introduction

The historical experience of the late 20th century brought the market to the forefront of socie-

tal organisation. A sequence of events, which includes the collapse of the Soviet Union, the lib-

eral turns in the UK and US and China’s turn to the market under Deng Xioping, made it

clear that all policy (if any) was to be enacted through markets. The “calculation debate” [1, 2],

an open discussion about central (economic) planning vs markets, was resolved; if humanity

was to prosper, the state would have to exercise (at best) a very limited control over market

mechanisms. The demise of economic planning took with it the utopia imperative; grand, state

sponsored, schemes to improve the human condition were judged as inherently flawed [3],

resulting in more pain than anything, so they were better avoided. This backlash was not

completely unjustified; planning, as a technical term, refers to a process where a machine/

group of people spends time “thinking” really hard about the feature and identifies a sequence

of actions that would lead to long term “happyness”. Once this sequence of actions is discov-

ered, it is executed in the real world. In terms of economics, the actions can be conceptualised

as what, when, how etc. to produce goods and services. Without the use of computers and

smart algorithms, the shortcuts one would need to take are simply too crude, and along with

certain political imperatives, resulted in serious economic problems [4]. At the very same time

that in economic sciences planning was ostracised, in Artificial Intelligence (AI) planning
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(using a similar framework as economic planning, but different substrates) saw a tremendous

renaissance, following the wider upheaval of the whole field. We can now create super-human

game (e.g. chess, go) players in artificial environments using a variety of planning methods [5].

With the collapse of state volition for economic planning, it is no surprise that research in

alternatives (or partial alternatives) to the market remained very limited in scope. In this

paper, we revisit one such alternative paradigm of societal distribution, whose invention (or

inspiration) goes back quite some time [6–8]. We will provide a base for removing certain

products from market circulation and provision them directly to citizens. The calculation of

using products and services directly is generally called “planning in natura”[9], and has direct

links to Universal Basic Services. The goal of planning methods is to remove the anarchy (and

uncertainty) of production and provide citizens with consumption guarantees. Contrary to

most of the authors we cite, our ambitions are somewhat social-democratic. We do not aim to

replace the market, but instead focus on removing human reproduction from strictly ideologi-

cal mechanisms. In fact, a conservative government not “tied” to market ideology could easily

start implementing such a programme. The goal of our specific programme is to match citi-

zens and production units directly while monitoring the plan as closely as possible—in order

to take corrective action—on a daily basis. Plan goals are to be formed using data collected

from production units and citizens. We are not aware of any methods that attempt to plan pro-

duction on the individual level, nor has there ever been an automated way to monitor the plan

or amend it using data—though other efforts point to similar direction [10, 11]. Conceptually,

our major contribution is a direct link between AI planning (i.e. MDPs) and traditional input-
output tables, thus allowing to bring forth the power of modern AI methods to traditional eco-
nomic planning problems. The closest a quasi-automated system of planning that reached an

(partial) operational level was Project Cybersyn [12], but this was dismantled in a hurry follow-

ing Pinochet’s coup. Within the Soviet Union there is evidence that planning from final

demand was seen as a “bourgeois” [13] and was never allowed, leaving production planning to

the level of industrial goods (e.g., steel). The insistence to create plans and the focus of soviet

economy to “build machines that build machines” might have contributed to the grim life of

the soviet citizens in terms of consumer products. Prior to the late 1970s, when the demise of

USSR became evident, some form of planning was always accepted within capitalist societies

[14]. Japanese economists were effectively trained in planning by explicitly going through the

works of Marx [15] until the late 80s.

The rest of the paper is organised as follows; in Section 2 we provide a generic discussion

on the background and debate between economic planning and market economics, but also

nudge at the link between economic planning, reinforcement learning and AI planning. Sec-

tion 3 introduces a new model, which we term Open Loop In Natura Economic Planning. In

Section 4 we discuss data collection issues—and generally re-think the problem from the point

of view of individual production units and citizens, while in Section 5 we perform a series of

simulations. We discuss limitations in Section 6; we conclude with a short discussion in Sec-

tion 7.

2 Background

2.1 The state and social democracy

Following the second world war, a large effort to direct the output of national economies was

set in motion. Social democratic and labour parties, reinvigorated in popularity by the horrors

of war, set ambitious programmes of state provision, commonly referred to as “democratic

economic planning”. To quote Sir Stafford Cripps, in his position as the UK’s Chancellor of

Exchequer, who, when discussing democratic planning claimed that [16] “. . .we are out after
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something a great deal more important than a good piece of planning machinery or even than a
particular way of organising our industries and services. Our aim is to create a Happy Country
in which there is equality of opportunity. . .”. A set of industries was nationalised (including the

banks, coal, telecommunications, gas, electricity, public health etc)—for the case of the UK see

[17]. This was roughly the consensus, respected by conservative governments worldwide, that

most of the world has followed until almost the 1980s. From that point onward we see a rever-

sal of the state intervention trend and widespread privatisation. Though there is still a debate

as to why this happened, from the electoral perspective one can observe the collapse of social

democratic parties owing to the breaking down of the electoral coalitions between liberal ele-

ments and the working class (see [18] for a thorough discussion). The reversal of the trend

brought widespread privatisation and the re-introduction of the market. This process of “re-

marketisation” went by different speeds in different countries and different economic sectors,

but arguably the process is still ongoing. Even when certain services are still nominally free at

the point of use (mostly in healthcare), the vast majority of utilities (including education) is

slowly moving to fee-paying models and internal markets. The victory of the market is so abso-

lute that certain authors complain in the popular imagination: “it is easier to envision the end

of the world than the end of capitalism” [19].

2.2 Socialist planning in actually existing socialism

While capitalist counties were moving away from the social-democratic model, the end of his-

torically existing socialism lead to the introduction of “shock therapies”[20] and widespread,

fast, privatisation, with at the very least questionable results. When privatisation did take a

more structured form, as in the case of China, state planning was replaced due to associations

with poverty. Quoting [21]“. . .one of our shortcomings after the founding of the People’s Repub-
lic was that we didn’t pay enough attention to developing the productive forces. Socialism means
eliminating poverty. Pauperism is not socialism, still less communism.” The state took a back sit

into acting as planner and started using financial means to measure (and drive) success. Fiver-

year plans no longer meant exact outputs, but rather strategic visions [22], with specific GDP

per capita’s aims, akin to industrial strategies elsewhere. This failure of planning, can, at least

partially, be attributed to practical factors. Computers and algorithms of the scale required to

plan effectively did not exist a the time, and when the first thoughts of such projects where

entertained (e.g. see [23]) they were not supported adequately. Indeed, if there is anything to

be said is that it is almost a miracle that any form of state planning was attempted given the

means available.

2.3 Why planning?

Von Mises and Hayek [1], writing in the height of socialist revolutions, started putting together

a critique of socialism, and more specifically (economic) planning. Parts of their critique (and

this of their successors) sound still valid—for example same of their points on Marx’s treat-

ment of skilled vs unskilled labour. Here we will concentrate on the arguments of planning

using products and services (i.e. 10 kilos of rice, 20 pounds of flesh, 10 hours of electric supply)

vs a market price allocation mechanism. Whether an optimal (automated or not) planner of

such type could even exist is termed the calculation debate. Arguments against the existence of

an optimal planning mechanism fall into different camps, with some being aligned to moral

questions (“it is unfair to just allocate goods” or “it is undemocratic”), computational (“you

can’t compute the intermediate goods to produce”) or epistemic (“there is no way for the plan-

ner to know what to produce”). We will not discuss the democratic issue in this paper, though

we strongly feel that the market is exceptionally undemocratic. It is now accepted by even the

PLOS ONE Artificial Intelligence inspired methods for the allocation of common goods and services

PLOS ONE | https://doi.org/10.1371/journal.pone.0257399 September 29, 2021 3 / 16

https://doi.org/10.1371/journal.pone.0257399


opponents of planning that computation should not be an issue [24]. The epistemic argument,

which is still very valid, entails that an optimal planner would not know what to compute. A

price mechanism would allow whoever is engaged with the market to express their preferences

of goods in terms of how much they would be willing to pay, i.e. a very subjective preference

function. Prices that (for producers) might, for example, depend on the availability of goods

[25]. In its extreme this holds true for consumers, as we have seen examples of iPad-for-kidney

selling [26], though we think it is safe to class such behaviours as pathological. If one makes the

assumption of truly subjective values that vary continuously and are also widely different from

person to person, then indeed a market might be able to allocate surpluses somewhat better

than a plan. However, if you do accept that the majority of the population shares some similar

preference function, at least in their top priorities (e.g. food, shelter, basic communication

devices, electricity, health), the argument is nonsensical and applies only to incorporeal beings.

Insofar as there are relatively slow changing patterns in consumption, standard machine learn-

ing models, combined with one’s own predictions can be used to forecast demand.

2.4 Why not alternative forms of market organisation?

A popular counterargument against planning is one of efficiency, quite often expressed in

macro-economic aggregates (e.g. GDP growth, the gini coefficient). These tend to hide vast

complexities of the underlying tendencies of the system. In the game-theoretic literature

(which is closely aligned to economic models), different notions of where a system should

equilibrate in terms of specific agent rewards have been explored and unpacked. In effect,

these try to predict where a large population of agents would end up, if left to explore and

learn freely, given imposed game rules. For example, [27] provide four types of correlated equ-

libria: utilitarian (which maximise the sum of rewards for all agents), plutocratic (which maxi-

mise the maximum reward for all agents), dictatorial (which maximise the maximum reward

of a specific agent) and egalitarian (which maximise the minimum reward for all agents).

Instead of planning, the state could play the role of “traffic lights”, and try to stabilise the

whole system by favouring certain equilbria. Arguably, and almost by definition, once a system

stabilises to one set of equilibria it is hard for it to move another, as unilateral movement by

any agent would is strongly disincentivised. Historically, examples like anti-monopoly laws,

taxation, demurrage and the welfare state point to a countermovement towards plutocratic

and dictatorial equilibria, as it looks like markets tend to generate pareto distributions [28], i.e.

very few individuals tend to accumulate overwhelmingly. Monopolies, as explained by their

proponents [29] allow for both innovation and “concentrated application of force”, something

that would not be feasible if one a business is surviving day-to-day due to heavy taxation and

competition. A modern version of planning should not be seen as a fully centralised top-

down-controlled structure, but rather as a game that has egalitarianism baked in and not as an

afterthought; alternatively one can see the whole edifice as a decentralised democratic

monopoly.

2.5 Input-output economics and planning

The problem of planning has been formally defined in [30]. Per unit of time t, a set of demands

d for certain goods (e.g, products, services) are to be satisfied for c citizens. The planner’s goal

is to satisfy the demand of each citizen. In AI terms, we have something akin to a Markov Deci-

sion Process (MDP), with an agent (the planner) receiving information (the state) on the plan

and a set of rewards related as to how closely the demand is met.

The parent of modern mechanisms for planning (in this context) is what is termed the

input-output model, which is thoroughly reviewed by [31]. The model comprises of an nxn

PLOS ONE Artificial Intelligence inspired methods for the allocation of common goods and services

PLOS ONE | https://doi.org/10.1371/journal.pone.0257399 September 29, 2021 4 / 16

https://doi.org/10.1371/journal.pone.0257399


Matrix A of technical coefficients, a vector x of production level (i.e. how much we should pro-

duce for each product) and a demand vector d. The columns of the coefficient matrix concep-

tually ask the question “how many units of each good to produce a single good of the type

portrayed in this column do we need?”. The dot product of each row with the technical coeffi-

cients represents the consumption of a specific good. The demand vector d represents how

much external demand there is, i.e. that Eq 1 holds:

xi ¼ ai1x1 þ ai2x2 þ . . .þ ainxn þ di ð1Þ

In matrix notation, we have Eq 2:

x ¼ Axþ d) ðI � AÞx ¼ d ð2Þ

Something to note here is that traditional input-output models have no notion of time—

all production is taking place within the same temporal unit. This is somewhat counterintui-

tive (and problematic for actual planning), but it allows a first easy approximation. It is the

model proposed by [32], covered by [33] and, with further additions (based on linear opti-

misation) discussed in [9]. Very similar concepts, without a specific target but with the goal

of directly maximising output are also discussion by in [23]. With no time element, the

model remains suitable for very high level strategic planning—and indeed such models are

widely used currently (e.g. most states publish input-output tables using monetary prices).

There is also very widespread literature on input-output models, but not with state planning

in mind.

3 Open Loop In Natura Economic Planning

Our method (Open Loop In Natura Economic Planning—OLIN-EP) builds upon the basic

input-output framework. It creates a fundamentally different planning landscape than IO

tables and is heavily inspired by current game playing / RL agents. The planning “tick” is no

longer a year, but a day, and we expect the plan to be re-calculated based on observations and

predictions every night. We no longer operate on abstract notions of aggregate demand, but

instead we expect every individual to communicate their demands and projected demands

daily. We also expect the productive units to recalculate their input-output coefficients (which

we will call IO-coeffs—the values of the matrix A) and provide them for plan updates on a

daily basis in the form of a function—more on this later. Closing, we maintain a notion of state

that is missing from all original formulations. More formally, we operate on an MDP [34] that

has the following characteristics:

• Actions x 2 A capture what the production methods, investment profiles and generally
actions that a planner can take to help maximise reward.

• States s 2 S capture sufficient statistics of what we want to operate on, as transmitted every

morning by production units and citizens. In our case, s is simply a goods inventory.

• The transition function T(s0|s, a) is formally unknown to us, but it is captured partially by

the input-output matrix, partially by the semantics we give to the behaviour of different out-

puts of the matrix, and it operates on the inventory and externalities.

• The reward function denotes how happy the planner is in a state and is generally encoded as

R(s, a). We define later a specific reward function that captures how well the plan targets are

met and what damage the plan causes to the world.

• There is a discount factor γ, which attenuates closer vs further rewards.
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Classic input-output tables are more akin to a Markov Reward Process (MRP), an MDP

with no actions. There are no decisions to make; one finds out where the process converges

(i.e. how much to produce for each type of good) and tells the industry to produce it. In con-

trast, we aspire to optimise for production methods, investment etc. The link between MRPs

and input-output tables might be not immediately apparent; it stems from a certain method of

monte carlo matrix inversions [35] for solving systems of linear equations. Eq 2 can be directly

mapped to an MRP, while the addition of production decision (how much to invest, when to

invest, what production methods to use) links to MDPs. The extra semantics above add to this

framework. We will follow a much simpler (and arguably more inefficient route) in this paper,

without converting to an MDP explicitly; for a discussion of the limitations this causes see Sec-

tion 6.

One can obviously claim that economic planning is more akin to a partially observable

MDP (i.e. a POMDP), and this might be true, but unless one is to have the functions that

describe the uncertainty over states, there is no reason to do the modelling this way. We could

also start acting on histories of states and include externalities and rewards [36], but this might

prove computationally infeasible. Claims could also be made that there is strong multi-agent

element for the planner—here we assume that everyone involved in the plan has it in their best

interest to cooperate.

3.1 The model

We adapt a number of innovations to the standard input-output models, by changing the way

we position the plan within the economy. As discussed before, the goal of an input-output

matrix is to plan for demand at the end of a time period. Since our goal is to provide necessities

to sustain humans, we set all “external” demand to zero, and introduce a set of profiles com-

bined with the number of citizens attached to each profile. You can see an example in Table 1.

Our input-output matrix describes the interactions between consumption profiles, a set of

industrial goods, and a set of final goods. Profiles are columns that describe the allocation of

final goods to each citizen that has been assigned this specific profile.

3.2 Nonlinearities and learning

The plan formulation we described above inherits a number of limitations from the standard

input-output model; the first one we will build upon is model linearity. The default model lin-

earity is tremendously problematic—for example there is the implicit assumption which is that

labour needs will scale linearly with production demands. To address these issues, a

Table 1. Our example input-output matrix, for a society of 1300 citizens. Two of the IO-coeffs vary with production levels—as there are three production units (see

Fig 1)—the rest are constant. Labour columns are omitted, as all values are zero. There is one industrial good Butter churn and two final goods (Milk and Butter).

Demand now just signifies the number of individuals in each profile. Lb is short form for Labour and Prof for profile.

Type Milk Butter churn Butter Prof 0 Prof 1 Prof Population

Milk 0.001 f01(x0) 2.000 3.0 2.0 0

Butter churn 0.000 0.000 f12(x1) 0.0 0.0 0

Butter 0.000 0.000 0.000 0.1 0.2 0

Lb(Milk) 0.001 0.000 0.000 0.0 0.0 0

Lb(Butter churn) 0.000 0.012 0.000 0.0 0.0 0

Lb(Butter) 0.000 0.000 0.001 0.0 0.0 0

Profile 0 0.000 0.000 0.000 0.0 0.0 800

Profile 1 0.000 0.000 0.000 0.0 0.0 500

https://doi.org/10.1371/journal.pone.0257399.t001
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Fig 1. f01(x0) and f12(x1) derivation from production outputs. There are three fictional production units that follow very

different curves in their models. (a) An example of how many units of Milk and Butter churn are needed to create units

Butter and Butter churn units as portrayed in the y axis, i.e. fij(xi)xi. (b) The derivation of quantities from the left to forms

that we can put in the matrix, i.e. fij(xi).

https://doi.org/10.1371/journal.pone.0257399.g001
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generalisation of the input-output model [30, 37] looks as in Eq 3:

ðI � FðxÞÞx ¼ d ð3Þ

This is profoundly liberating as a proposition, as we can stack production units and have

different IO-coeffs values as production scales. We can also extract from individual citi-

zens how important hitting certain targets in their profile is. Solving for x now becomes a bit

harder, as F(x) could potentially be any function, but in our case, we constrain it to a specific

matrix. Remember that individual columns in the IO matrix represent how much it takes to

produce a single unit of output—it makes sense to define the matrix as in Eq 4

FðxÞ ¼

f00ðx0Þ f01ðx0Þ � � � f0nðx0Þ

f10ðx1Þ f11ðx1Þ � � � f1nðx1Þ

..

. ..
. . .

. ..
.

fn0ðxnÞ fn1ðxnÞ � � � fnnðxnÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð4Þ

Constraining our function to this form has one important benefit; we can ask production

units directly how many other goods they need in order to produce certain output units, and

data scientists in these facilities can use any machine learning method to “fit” a curve and pro-

vide back a function.

When it comes to the actual solution, one can attempt to use the gradient directly. The

mean squared error MSE((I − F(x))x, d) has a gradient that isrMSE((I − F(x))x, d) = 1/n((I −
F(x))x − d)(I − F(x) − F0(x)x), which means that we can solve using any non-linear least squares

algorithm—or in fact any other non-linear optimisation algorithm. Another method (that

comes from [30]) is to go through the power series expansion

ðI � AÞ� 1
¼
P1

i¼0
Ai ¼ I þ Aþ A2 þ . . .. We can then define x(i+1) = F(x(i))x(i) + d, x(0) = d—a

recursive form of calculating x. This is what we are going to use in this paper, as it is based

purely on linear solvers, and will find the global maximum as long as convexity is maintained.

We could also attempt an end-to-end neural network solution (it is very easy to envision), but

there are no (clear) advantages, unless a need arises to model exceptionally complex IO-
coeffs while optimising production at the same time, something we are not doing in this

paper.

3.3 Time and the transition function

When it comes to producing goods and services, a model without a time element is severely

limited; real production and consumption obviously have a time dimension. In the case of pro-

duction, this is expressed in various forms like gestation times, production times, business

inventories and depletion of resources. Multiple input-output models that include a time ele-

ment have been developed [38–40]—for an overview, see [41]. An example of such a model,

from [38] is xðtÞ ¼
Pn

0
½Atþsð� sÞxðt þ sÞ� þ

Pn
0
fBtþsþ1ð� sÞ½xðt þ sÞ þ xðt þ sþ 1Þ�g þ zðtÞ,

with A matrices representing circulating capital, all B matrices representing fixed capital, z(t) is

the demand at each point in time, while −s is the ticks before the time t. The problem with

these models is they were (for the most part) not designed with planning (in the AI sense) in

mind. What we need to introduce (as discussed before) is a transition function T(s0|s, a) and a

notion of state s. This can really be anything that makes sense based on the individual compo-

nents of what we have, but to simplify things we can define state as an inventory indicating

how much we hold of everything we have so far, including any unwanted side effects (i.e.

externalities) our methods are generating. The transition function now operates on that
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inventory/externalities vector, by adding things, removing things, showing when something is

ready for consumption, and how much needs to be taken to gestation periods.

3.4 Plan egalitarianism and externalities

The goal of the plan is to deliver a set of products and services (termed goods in our setup) in

real life, so the real rewards can only be measured when the plan has been executed. During

the planning phase, however, we should have a reasonable indication of what is the level of

rewards we have achieved. Let d̂iðaij ¼ 0Þ be the demand for a final good for a certain profile

set to zero, with i coming from final goods C, while j coming from profile consumption P.

When we removed a good from a profile, we generate a surplus. That surplus, divided by how

much that profile was expected to get, we define as the egalitarianism of the plan. More for-

mally, in Eq 5 we define egalitarianism EGp as

EGt
p ¼ min

i2C;j2P fðd̂iðai;j ¼ 0ÞÞ=ðaijdjÞg ð5Þ

Every profile created puts certain requirements on the economy in terms of unwanted side

effects, commonly referred to as externalities (e.g. carbon from milk and meat production).

We model externalities at each point in time as ρ(e(xt)xt), with the total externalities for a plan

being Ep—the sum of all externalities in time as in Eq 6, and ρ being a function that weights

the importance of each externality for each good:

E t
p ¼

Xt

0

rðeðxtÞxtÞ ð6Þ

The difference between the way we measure the unwanted side-effects we get versus the

goals we achieve is by design. In terms of production goals, a plan is as good as its worst perfor-

mance. In terms of damage, we are measuring the cumulative effect. A combination of exter-

nalities is what underlies the reward function.

3.5 Plan execution

Given that we do not have access to the real transition function (akin to training for a robot in

an largely imperfect simulation), we suffer from two problems; first, that our plans are as limited

in their ability to use future states as the imagination of the model creators. We will try to

achieve certain goals every day for a year by following a set of actions that correspond to increas-

ing production, without reference to future states—this is known as open loop planning—and is

basically a vector x per day. The fact that we re-plan on a daily basis means that we execute the

plan in a closed loop setting—so overall we do open loop planning, closed loop execution [42, 43].

This is highly reminiscent of methods like Monte Carlo Tree Search [44] that have shown tre-

mendous success in games. The second problem is that the artificial conditions we optimise on

might not correspond to reality. Again, this is a common problem in robotics and it is currently

attacked by assuming fictional model hyperparameters, as to make the model robust [45].

4 Data collection

The real world execution of the plan entails two steps: (a) The planner provides information to

the production units on their daily targets and requests information on the previous day his-

tory, including IO-coeffs in functional form and externalities. (b) The planner requests

information on previous days demand and future demand from each individual (or discovers

it).
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4.1 Production units

Each production unit would have to effectively fill the columns of Matrix F by providing the

function fij(xi)xi, This can be achieved trivially by some form of active learning (i.e. asking

managers: “how much milk do you need to make one pound of cheese? How about two

pounds? How about three?”) and interpolating accordingly. Alternatively, one can seed a clas-

sic ML model using past production data and combine it with active learning in any gaps.

Now, converting these values into fij(xi) simply required dividing over the number of actual

products xi for all possible values of xi. We expect production units to innovate constantly,

achieving lower externalities and better IO-coeffs, in a very organic process that amounts

to optimisation coming from every part of the system.

4.1.1 Citizens. We have defined various profiles, but where do those profiles come from?

This is essential—these profiles are our reward function. Learning a reward function from con-

sumption targets can be done by using any form of inverse reinforcement learning/preference

learning on existing buying habits, direct questions and/or voting all in accordance with pro-

ductive capacities. This should allow for effectively the discovery of basic needs on a funda-

mental level and the provision of relevant goods. From the outset, different profiles aim at

addressing the problem of Variety [46] directly, i.e. we need to be able to act upon as many

world states are possible. Individual profiles for every person would put tremendous strain on

the planning mechanism and make the whole system very brittle, as any errors in production

will result in a series of complaints. Instead, the focus should be on goods that allow for a high

degree of customisation. For example, pre-packaged foods are a really bad production option,

as they allow for very little tinkering. Allowing for very high degree of customisation and per-

sonalisation (i.g. a combination of (generative?) recipes plus food) should help make produc-

tion both more robust and interesting. New types of computing devices, whose aim is to help

so as to have the goods delivered be used in the most efficient and creative fashion possible,

will also prove pivotal.

4.2 Interactions with the market

Since the plan’s aim is to complement, rather than abolish, the market, it is worth discussing

what areas of production the plan will not shape. Goods in scarcity or products whose only

value is their scarcity cannot be delivered through the plan; the subjectivity of the reward func-

tion would make it exceptionally hard to calculate individual preferences (and hence profiles),

and would also open up the possibility of abuses, requiring constant vigilance to stop the crea-

tion of black markets. Goods in scarcity also open questions of multi-objective optimisation

[47]—that will mostly lead to a wealth of equally non-satisfactory solutions. Any invention

that helps the plan should be readily adapted. New products and services could also come from

market forces. This would require the market to turn into activities that look more like pros-

pecting—anything that a plan cannot cover should generate profit. The most important point,

however, when it comes to market, is not to allow it to use the plan as a way of undercutting

wages; once the plan is introduced, it should be followed by a policy of increasing minimum
wages and decreasing working hours, in accordance with productivity gains in order to start

removing human labour from the market and reaping benefits from further automation. For

example, shoe production is still a very manual process, and high wages in the sector should

come from automation. This is extremely important, as current trends point to “reverse cen-

taurs” when it comes to automation [48]. Given that it is easier to manage humans using algo-

rithms (e.g. organise taxi drivers) vs performing the actual task (e.g. autonomous cars), there is

a certain market tendency to extract profits from over-exploitation. Instead of machines aiding

humans (i.e. what is called a “centaur” in chess), we run the risk of economies of very low
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wages where humans help machines (i.e. more akin to a very boring and intensive production

line, hence “reverse centaur’)’.

5 Simulations

We performed a number of simulations on imaginary data. The first set of simulations resolves

around solving (I − A)x = d repeatedly for matrices of different size. Solving this set of linear

Equations fast is fundamental as both our time element and the non-linearity solution depend

it. We have run all possible combinations of industrial goods (i.e. goods not needed by the pro-

files, [500, 1000, 5000, 10000, 50000], final goods of [50, 100, 500, 1000, 5000], a profile of size

200 (i.e. 200 different combinations of final goods), with each good needing [500, 1000, 2000]

other goods in order to be made. The results can be seen in Fig 2—all results were collected on

a CPU: Intel i7-8700K @ 4.800GHz / 64GB RAM, using scipy [49]. Alternative

solutions that include gradient estimations might be faster, but this will probably depend on

the problem. As it stands, the deciding speed factor is the number of dependencies, but every-

thing is solved in well below 20 seconds. Overall, it is trivial to attack the problem.

We also simulate a sample, tiny village economy in Table 1. Note that the table is not

(exactly) in the form described by Leontief. There is no demand (effectively, it is set to 0) and

all consumption is meant to come through the profiles. The economy is made up from two

Fig 2. An example of performance scaling in solving the basic equation of our model (I − A)x = d. Note that though A is sparse, this does not follow that

x would be.

https://doi.org/10.1371/journal.pone.0257399.g002
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final goods (Milk,Butter) and one industrial good (Butter churn). Butter churn
requires a variable amount of Milk to get created (for example, as extra calories for the work-

ers that take part in the process). The initial quantities of each item in inventory are restricted.

The results of the simulation can be seen in Fig 3. The village plans to provide the final goods

in two profiles. The village starts without being able to fulfil the goals of each profile, hence

they are forced to produce a limited amount of goods at each daily tick and invest the rest.

What this means in practical terms is that units of Milk we create get “consumed”, while

units of Butter churn just get added on. Notice the exponential rise in egalitarianism of

the plan. We perform a second experiment, where with a certain probability a portion of the

inventory would just vanish. Here (see Fig 3(b)) lower investment leads to collapse, with the

egalitarianism of the plan never recovering. This effect would not be visible without including

some noise to the model. Finally, also note that the only real difference between a simulation

and a plan comes from the fact that we think that the simulation is closer to reality—there is

no way to execute it in real life.

6 Limitations

We have introduced a planning method based on a non-linear version of input-output tables.

Our model is a first attempt to revitalise in-natura economic planning. We identify five major

limitations below, alongside potential speculative solutions.

1. Function approximation: all input-output methods treat each individual good and service

as unique. This would create an explosion of goods one would need to plan for; for example,

every shoe size would be a different type of good, every slightly different health plan a differ-

ent service and so forth. A common way to address this is through function approximation.

All goods of a certain type would be parameterised using a specific feature set, and the prob-

lem attacked using algorithms similar to expert iteration [50] or any other modern RL

method.

2. Introducing partial observably and stochasticity: the knowledge assumed by the plan so far

is far more absolute than one should expect. It would be prudent to assume latent variables

in the production/consumption process and general randomness, to account for things that

we cannot directly measure. As discussed, this would move the modelling closer POMDP-

inspired methods.

3. Lack of realistic simulations: the simulations used in this paper are toy versions compared

to what a real world process would look like. As such, they do not allow for a qualitative

assessment of the algorithms proposed. In contrast, fields like games have elaborate simula-

tions that allow for exact results and AI has a long tradition of measuring progress this way

—see for example [51]. We do not have any such framework here, which would make the

measurement of quality of subsequent planning algorithms impossible.

4. Adversarial elements: the current setup implicitly assumes that nobody has an incentive in

breaking the plan. There are good reasons to believe that this might not be the case. What is

the optimal way of in-natura planning within a (partially) adversarial domain?

5. Sector heuristics: general methods, such as the ones presented here, can greatly improved

with the addition of heuristics tailored to the domain under question. Without further field

research, such heuristics cannot be uncovered. Thus, a practical application of the methods

proposed would require serious research on both household needs and industry production

methods.
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Fig 3. Egalitarianism of the plan vs investment profiles. Note the exponential curves. The x-axis represents “time”

ticks, while the y-axis represents the egalitarianism of the plan. (a) A simulation without noise. (b) A simulation with

noise—certain investment profiles fail to achieve self-sustainability.

https://doi.org/10.1371/journal.pone.0257399.g003
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The above, if seen optimistically, set out a research programme. The combination of func-

tion approximation, non-linearity, monte-carlo methods and partial observability would help

revolutionise the way we think about our economic future.

7 Conclusion

We have presented an in-natura economic planning system, roughly inspired by modern AI

developments. It allows for the creation of various consumption profiles and the modelling of

arbitrary production capacity of individual production units. As per Section 6, the repeated

open-loop planning element mitigates some of the worst problems of missing local informa-

tion, but the modelling we have done is really basic. We do not capture the sensory issues that

would result from the point of view of a decentralised planner adequately (in the form of a

belief function) and we have not included any game-theoretic effects in our modelling (e.g.

what if a production unit goes rogue and decides to persistently mismanage or misreport its

productive capacity?). Overall, we think its time to re-start a research programme on economic

planning. We hope that this paper re-starts the discussion on a technical level, with ever

increasing planning methods and simulations coming to light. There is no reason for the plan

to be as simple as the one discussed here—in fact Facebook is currently performing large scale

simulations [52] that include “fake users” and certain corporations use extremely sophisticated

systems to manage distribution and production [53]—there is no reason simliar ideas cannot

be adopted for a more fair system.
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