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Abstract

Container liner shipping is the primary mode of moving manufactured products across continents.

Partly due to inherent uncertainties at sea and ports, the liner shipping industry has long had a

notorious reputation of schedule delays and unreliable on-time performance. This paper formulates

a new approach to incorporate schedule reliability targets in liner shipping timetable design, to

balance bunker consumption, time taken for the voyage, and schedule delays. We first model a

surrogate problem using a copositive program through a moment decomposition approach and solve

it as a convex semidefinite programming relaxation. We next incorporate schedule reliability targets

implicitly by exploiting the optimality condition of this surrogate model.

We use this approach to analyze the trade-offs between the bunker consumption and the schedule

reliability targets for each port call. Furthermore, we derive the optimal speed of the vessel in each

leg of the schedule to control for total bunker consumption. Surprisingly, the analytical analysis

shows that, if a shipping line has the freedom to choose its preferred berthing times at all ports, it

is optimal to set design sailing speeds equal at all legs to maximize schedule reliability.

We validate our model using data from a Daily Maersk service, and demonstrate that our schedule

can achieve an even higher schedule reliability than the innovative Daily Maersk service schedule,

which attained more than 98% reliability in practice, with 11.4% lower bunker consumption. In

comparison with a common schedule design heuristic, our model can design service schedules that

improve the reliability performance by at least five percentage points, consuming the same amount

of bunker. For the same reliability target (of 80%) in schedule design, our model can help reduce

bunker consumption by about 11.6% for an 11-week schedule. The savings in bunker consumption

can be much more substantial when an ocean carrier aims for higher schedule reliability.
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1 Introduction

Since its intervention in the 1950s, container liner shipping has grown to be the primary mode of mov-

ing manufactured products across continents (Notteboom & Rodrigue, 2008). As more operations are

outsourced and an increasing share of goods is containerized, container liner shipping is now the lifeline

of most, if not all, global supply chains (Fransoo & Lee, 2013). The service quality of container liner

shipping services, thus, plays a key part in influencing global supply chain performance.

A standard liner shipping service has a weekly sailing frequency and calls at several ports. Although it

is a routine for shipping lines to publish in advance their service port calls and schedules, the liner shipping

industry has long had a notorious reputation of schedule unreliability. In the 2019 Schedule Reliability

Report published by eeSea, the global liner schedule on-time performance averaged at 47% with the best

performance at only 65%, where the on-time performance counts both arriving early and less than 8

hours delay1. This corresponded to 1.6 days delay on average across 2019. Such low schedule reliability

forces shippers to keep substantial safety stocks (Vernimmen et al., 2007; Zhang & Lam, 2014, 2015),

and makes it nearly impossible for shippers to practice efficient just-in-time production/distribution as

long as maritime container transport is involved (Lam & van de Voorde, 2011).

Schedule unreliability in liner shipping has its root in the inherent operational challenges. A container

vessel faces many uncertainties at sea, for example, extreme weather conditions, adverse sea conditions

including currents and tides, etc. A vessel’s schedule integrity is also affected by uncertainties at ports.

A vessel’s port time is stochastic because the number of containers to be loaded/unloaded is not known

exactly at the planning stage, and port handling productivity fluctuates. More importantly, container

port congestion is commonplace and berth waiting time may be prolonged and hard to predict (Notte-

boom, 2006). This problem is further exaggerated as delays are often propagated in the subsequent port

calls. For these reasons, many industry professionals are skeptical if it is ever possible to ensure schedule

integrity in maritime container transport.

This study is motivated by the experience of the Daily Maersk service, which was rolled out in late

2011. Promising “absolute reliability” (100% reliability), Maersk Line, the world’s largest shipping line,

increased its share of the very competitive Asia-Europe trade from 21% to 25% six months after the

launch of the new service (Leach, 2012). This clearly shows that schedule reliability is a market winning

factor. In fact, there is a growing trend for shippers to value schedule reliability more than a low freight

rate. For this reason, Eivind Kolding, the former chief executive of Maersk Line, stated in 2011 that

“Reliability is the new rate war; we need an end-to-end view on reliability”. This implies that shipping

lines must understand the strategic importance of schedule reliability. They also need to improve their

operations continuously to survive fierce competition. Unfortunately, Maersk had to drop the Daily

Maersk service in 2015 as “Maersk had found that customers were not willing to pay a higher price

1https://www.eesea.com/schedule-reliability-report
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for better service... We had a lot of extra costs to deliver that level of reliability, so we have changed

our strategy.”2 Therefore, it is utmost important in practice to balance the trade-off between schedule

reliability and operating costs.

In academia, research studies of liner ship scheduling have given the most attention to cost, as can

be observed in the reviews of Christiansen et al. (2004) and Kjeldsen (2011). The phenomenon may be

explained by the traditional cost focus of shipping lines, as ocean container transport has long been viewed

as a commoditized service. The upward trend in fuel price in the first decade of the new millennium

sparked research studies that minimize fuel consumption (Qi & Song, 2012) or total operating cost (Wang

& Meng, 2012a,b). However, little research has been devoted to schedule reliability, which has become

increasingly important for efficient global supply chains. Big data firms such as ClipperData and eeSea

have been tracking ships with AIS and terminal data, etc., reporting the performance of different service

schedules (see Figure 1), and influencing the shippers in their choice of carriers in the process.

Figure 1: Big data platform from ClipperData capturing duration, schedule reliability, fuel efficiency and
other features of each route in the shipping lines.

We study the problem of scheduling container liner ships to meet voyage duration, bunker consump-

tion, and schedule reliability targets at selected ports. Port calls and port rotation are given. The journey

time T of a round-trip voyage is predetermined; for example, it is often 11 weeks for a Fast East-Europe

service. The bunker consumption budget of B is also predetermined. The reliability target at each port

call is also fixed—we want the on-time arrival probability to be at least ηi for port i. Note that ηI+1

denotes the probability target that the vessel will return back to the first port on time at the end of time

T . The key question we address in this paper is:

Problem (Q): Suppose a vessel with given port calls leaves the first port promptly at the

beginning of the time horizon (i.e., η1 = 1). Design a timetable for the voyage to determine

2https://www.lloydsloadinglist.com/freight-directory/news/Premium-Daily-Maersk-service-abandoned/61956.

htm\#.XqSmf8zY2w
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the schedule and sailing speed of each leg (if feasible) so that the total voyage time is T , the

schedule reliability (on-time arrival probability) at each port is at least (ηi), and total bunker

consumption is at most B.

Note that this is a feasibility problem with no objective to optimize. Our focus here is the trade-off

between bunker consumption and schedule reliability. The research question aims to determine whether

a set of reliability targets is feasible or not given a limited bunker budget. Although liner schedule

design is not a new problem, to the best of our knowledge, Problem (Q) is still unsolved in the literature,

and there is little understanding of the structural properties of the optimal schedules in the stochastic

environment. It is even unknown if the bunker consumption budget B, voyage time constraint T , and

reliability targets {ηi : i = 1, . . . , I + 1} are viable. The closest we know is the work of Qi (2017), who

studies a version of schedule reliability in the healthcare appointment scheduling problem. However, due

to the difficulty of modeling the impact of delay propagation in this class of problem, the author can

only analyze the problem under a max-min objective, instead of the more refined differentiated reliability

targets posed in this paper.

We choose bunker consumption as a target measure instead of a bunker cost because of two reasons.

First, bunker consumption is directly linked to the environmental impact of the shipping line operations,

which has received increasing attention from both the industries and the general public (Du et al., 2015).

Second, the bunker cost is subject to various risks from the global financial and political environments.

Shipping lines usually adopt specific hedging approaches to mitigate these risks, which is generally beyond

the scope of the schedule decisions. In this paper, we would like to focus on the schedule design problem

given a route and understand the trade-off between bunker consumption and schedule reliability by solely

considering operational risks. Nevertheless, we show in Section 4.1 that our model can be extended to

capture the budget in bunker cost with uncertain bunker price.

Schedule reliability is measure by the difference between the schedule and the (random) arrival times,

which are often caused by port time and sailing time variation against the norm. Figure 2 is a box-

plot of the port times in several ports in the world. The port times are quite random and of varying

patterns. This extends to the travel time between ports. Furthermore, most catastrophic disruptions

to the schedule are caused by extreme weather conditions, like typhoons, which are rare and difficult

to forecast at the schedule planning stage. Therefore, we employ a distributionally robust optimization

(DRO) approach to design a schedule that achieves the best performance under the worst possible dis-

tribution of the uncertainty. Instead of using an estimated distribution for the uncertainty, which could

subject to significant estimation errors due to insufficient data, the DRO framework assumes that the

uncertain parameters could follow any distribution that satisfies some common distributional conditions,

like sharing the same mean and variance, etc. The DRO solution aims to optimize the objective func-

tion under the worst possible distribution. Note that the worst-case distribution could be different for
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different feasible solutions. This provides a lower bound or a worst-case performance guarantee for the

liner schedules, even under extreme scenarios, which aligns with the objective of absolute reliability. We

apply a reformulation technique that transforms the problem into a convex optimization problem, which

allows us to characterize the structure of the optimal solution from the optimality conditions of convex

programming problems.

Figure 2: Port times at different ports in the world based on data from the Maersk Line

The contributions of this paper are multi-fold. First, to the best of our knowledge, this paper is

the first attempt to model the liner scheduling problem using a DRO framework. Second, we design

an innovative solution approach based on the optimality conditions of the convex reformulation of DRO

formulation. Specifically, we first develop a surrogate model to minimize the expected weighted sum of

the delay time at each port using the DRO framework. Next, by analyzing the optimality conditions

of the DRO model, we recover the on-time probability as a function of the weights on the delay times,

based on which we design an iterative search algorithm to obtain a schedule that delivers the on-time

probability targets (if feasible), i.e., solving Problem (Q). Third, we show that the optimal sailing speed

for each leg is identical in a liner service route and that when there is a voyage time limit on the headhaul

route, there will be two optimal sailing speeds for headhaul legs and backhaul legs. This differs our paper

from the general appointment scheduling literature and contributes to the understanding of liner service

planning in practice, where typically a nominal speed (sometimes one for headhaul and another for

backhaul) is used at the planning stage.

The rest of this paper is organized as follows. Section 2 reviews relevant literature. Section 3 describes

our schedule reliability model, followed by the analysis of reliability targets and optimal sailing speeds.

Extensions of the model to capture uncertain bunker prices, shipping network planning and nonidentical

bunker consumption functions are discussed in Section 4. Section 5 validates our approach via simulation

experiments using real data from practice. Insights from our model and numerical results are discussed
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in Section 6. Section 7 concludes the research and suggests areas for further investigation.

2 Literature Review

Research in liner shipping schedule design has focused on cost minimization or profit maximization.

According to the reviews of Christiansen et al. (2004) and Kjeldsen (2011), all the relevant early publica-

tions either minimized cost or maximized profit. Some of the works did not consider uncertainties. For

example, Agarwal & Ergun (2008) formulated a mixed-integer linear program to solve the ship-scheduling

and the cargo-routing problems simultaneously to maximize operating profit. Agarwal & Ergun (2010)

studied the problem of network design and mechanisms for capacity allocation in liner shipping alliances.

Fagerholt et al. (2010) used the shortest path approach to solve a nonlinear continuous program for

reducing fuel emissions by optimizing speed on shipping routes. Wang & Meng (2012c) optimized sailing

speed for container ships on each leg of each ship route in a liner shipping network to minimize total

operating cost.

Driven by the increased bunker prices and pressure on emissions reduction, some studies investigated

the impact of uncertainties in bunker prices to reduce bunker costs or emissions. Among them, Notte-

boom & Vernimmen (2009) and Ronen (2011) analyzed the effect of rising bunker prices on liner service

configuration. They suggested reducing sailing speed and adding more vessels in service design. Yao et

al. (2012) studied bunker fuel management strategies, including ship speeds adjustment, for minimizing

bunker consumption. Wang et al. (2013) reviewed and extended several methods for optimizing bunker

consumption in shipping. Du et al. (2015) dealt with bunker budget and minimized fuel consumption

over a round voyage via robust optimization. Wang et al. (2018) jointly optimized sailing speed and

bunker purchase with distribution-free stochastic bunker prices. Given the difficulties in calibrating

bunker prices into a specific joint probability distribution, they used approximation techniques based on

the descriptive statistics of historical bunker prices.

More recent works integrated uncertain time factors in their models. For instance, Wang & Meng

(2012a) formulated a mixed-integer nonlinear stochastic programming model to hedge against uncertain-

ties in port operations to minimize the ship costs, the expected bunker costs, plus late start handling

costs. Through sensitivity analysis, it analyzed the impact of the number of ships deployed on the

schedule robustness. Wang & Meng (2012b) developed a mixed-integer nonlinear stochastic program-

ming model with sea contingency time and port time uncertainty. The model minimized the vessel cost

and expected bunker cost while maintaining a required transit time service level. Qi & Song (2012)

employed simulation-based stochastic approximation methods to minimize fuel emissions by optimizing

vessel schedules with uncertain port times. Lee et al. (2015) analyzed the impact of slow ocean steaming

on delivery reliability and fuel consumption. They concluded that slow steaming with the flexibility to
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speed up helps improve delivery reliability amid uncertainties in port and sailing times. Note that slow

steaming refers to the practice of reducing sailing speed from a typical 24 knots to 21 knots or under

(Maloni et al., 2013). Song et al. (2015) developed a stochastic multi-objective model to decide on the

number of ships, the planned maximum sailing speed, and the liner service schedule. The objectives

were to simultaneously optimize the expected cost, the schedule reliability and the shipping emission in

the presence of port time uncertainty, and the authors solved the model using a genetic algorithm.

More recently, Aydin et al. (2017) used dynamic programming to optimize sailing speeds and bunker-

ing decisions considering uncertain service times and time windows at ports. Their model minimizes the

total fuel consumption while maintaining schedule reliability. Mulder et al. (2019) developed a stochas-

tic dynamic program to optimize speed and buffer times in schedule design simultaneously. The cost

optimization objective included the costs of delayed port arrivals and departures and the sailing costs of

(optimally) performing recovery actions such as speed adjustments. The authors assumed discrete model

primitives and used long-run average analysis to tackle the problem. Mulder & Dekker (2019) extended

the model in Mulder et al. (2019) to capture port skipping options and both convex and concave cost

functions. The authors further extended the model formulation to include chance constraints on delay

probabilities. However, their models are based on the Markov decision process (MDP) that assumes

Markov transition of the system states, which does not capture any correlation among the uncertainties

in different legs. Furthermore, the model formulation relies on the steady-state probabilities, which are

unlikely to exist given the long period of finishing a shipping route.

Applications of the above paper either require making assumptions on uncertain time factors’ prob-

ability distributions or using sample-average approximation. In reality, port times and sailing delays

may not fit any probability distribution, and the data could be insufficient to represent unseen future

scenarios. Our work overcomes this issue by using a DRO methodology. Furthermore, inspired by Daily

Maersk’s “absolute reliability” ambition, we aim to find a schedule (if feasible) to achieve given target

schedule reliability (on-time arrival probability), which differs from most works. We explicitly capture

the trade-off in bunker consumption and schedule reliability by imposing an upper limit on bunker con-

sumption in the model. Our modeling approach enables us to generate fresh insights on liner shipping

schedule design.

Under the DRO framework, the uncertain parameters follow a joint distribution that is drawn from a

set of distributions, called the ambiguity set, and decision-maker aims to find the optimal decision whose

performance is guaranteed under the worst-case distribution. There are various ways of characterizing

the ambiguity set of distributions. For example, the set of distributions can contain any distribution

whose distance from a nominal distribution is bounded by a given number under certain measures. The

Wasserstein DRO models, which is increasingly popular in the machine learning field, fall under this

category with the distance between distributions measured by the Wasserstein distance (Gao & Kley-
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wegt, 2016; Hanasusanto & Kuhn, 2017; Mohajerin Esfahani et al., 2018; Chen et al., 2018; Kuhn et

al., 2019). Another stream of DRO models describes the ambiguity set of distributions using common

distributional information—e.g., the ambiguity set may contain distributions that share the same mo-

ments and support or follow the same marginal distributions (Delage & Ye, 2010; Li et al., 2014). These

DRO models have been applied in various contexts, including project management (Natarajan et al.,

2011), healthcare appointment scheduling (Kong et al., 2013), consumer choice models (Mishra et al.,

2011), traffic equilibrium analysis (Ahipaşaoğlu et al., 2016), workforce deployment (Yan et al., 2017),

and supply chain risk management (Gao et al., 2019), etc.

In this paper, we adopt the moment-based approach to describe the uncertain parameters arising in

the liner scheduling problems as the moment information (e.g., mean and standard deviation) is easier to

interpret in the shipping context and can be estimated rather reliably from the historical data on schedule

performance. In particular, we model the port time uncertain and extreme weather disruption using the

moment-based DRO framework and follow the conic programming reformulation techniques to transform

the DRO version of the liner scheduling problem into a deterministic convex optimization model. We

further extend the model to capture the uncertainty in bunker prices at different ports. This paper

contributes to the DRO literature by formulating the distributionally robust liner schedule reliability

problem and demonstrating how to calibrate key model inputs through an innovative search algorithm

based on the optimality conditions from the conic reformulation of the DRO model. In the traditional

DRO model, the probabilistic constraints in the reliability targets are also incorporated through explicit

additional constraints via various methods for convex approximation. Here we capture these constraints

directly in a new way through the optimality conditions in our DRO model.

The liner scheduling problem is similar to the appointment scheduling problem in healthcare settings,

including outpatient services and operating theaters (Cayirli & Veral, 2003; Gupta & Denton, 2008). In

the healthcare appointment scheduling problems, the decision is usually to assign appointment times

for a set of patients to arrive at the service locations, and the uncertainties could arise from random

service duration, patient no-show behavior, and unpunctual arrivals, etc. The decision-maker typically

designs the appointment systems to balance the trade-off between patient waiting time, system idling

time and overtime. There is also a stream of literature that tries to apply the DRO approach to solve

the healthcare appointment scheduling problems (Kong et al., 2013; Mak et al., 2015; Bertsimas et al.,

2019). Despite the similarities between these two scheduling problems, a key feature in our problem that

differs from healthcare appointment scheduling problems is that we also need to design the vessel’s sailing

speed in each leg, and the sailing speeds affect the bunker consumption in a nonlinear way. The analog

decision of sailing speed in the healthcare setting would be the service (e.g., consultation or surgery)

speed of the physicians for each patient, which usually is given exogenously and cannot be optimized by

the decision-maker. The main trade-off in our liner scheduling problem is between schedule reliability
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and energy efficiency measured by bunker consumption, which is also very different from the trade-off

concerned in the healthcare appointment scheduling problems.

3 Schedule Reliability Model

The liner shipping industry currently measures schedule reliability by on-time probability or mean arrival

delay time. A ship is considered on time if it arrives at the port of destination on the scheduled day or the

day immediately before the scheduled day of arrival (Notteboom & Rodrigue, 2008). The measurement

of on-time probability does not take into account the differences in delay times. For example, a delay

of 1 day and a delay of 1 week have the same impact on on-time probability. However, they may have

very different implications for shippers, terminal operators and ocean carriers. Analyzing the on-time

probability is already a difficult computational problem even with a fixed schedule. For this reason, we

first solve a surrogate model that measures schedule reliability by mean arrival delay instead of on-time

probability. Specifically, the surrogate model minimizes the expected weighted sum of delay time at

each port. Note that our original research problem is a feasibility problem, but the surrogate model

has a specific objective to optimize. We show later in our model analysis that we can link the on-time

probabilities to the weights on delay times in the objective function, which in turn allows us to calibrate

the weights so that the surrogate model can produce a schedule that achieves the on-time probability

targets (if feasible). In this way, we solve the original feasibility problem, i.e., Problem (Q).

3.1 Surrogate Problem Formulation

Let I denote the total number of port calls in the route. The home port is defined as the 1st port of

call. The ith leg is defined as the voyage from the ith port of call to the (i + 1)th port of call, where

i = 1, 2, . . . , I−1, and the Ith leg is from the Ith port of call back to the home port. For the convenience

of notation, sometimes we also refer to the home port as the (I + 1)thport of call when it means the

last port at the end of the voyage. The planned round-trip journey time, T , is determined by the fleet

size, i.e., the number of weeks for the round-trip time equals the number of vessels required. During the

timetable design stage, we assume that a ship maintains a fixed sailing speed in each leg of the voyage,

which is a common practice in the schedule planning of container ships (Du et al., 2011). Our model

chooses the optimal sailing speed for each leg, subject to the total bunker consumption constraint.

Note that in actual operations, shipping lines often vary the sailing speed dynamically to minimize

cost and to catch up on the schedule. We do not consider these recovery decisions at the operational

level as our model focuses on timetable design which is mainly a tactical level decision. Note that our

moment decomposition approach based on real data has already captured the impact of these recovery

operations implicitly - the port times and sailing times in adjacent legs are highly correlated because a
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delay in one port will likely lead to shortened port and sailing time in the next port, due to the recovery

operations employed by shipping lines.

Bunker Consumption

Let vi represent the designed sailing speed on the ith leg, and it is limited between vmin
i and vmax

i . It

is well known that bunker consumption rate is typically a cubic function of sailing speed (Ronen, 1982;

Fagerholt et al., 2010). In our schedule design problem, we consider a bunker consumption budget for

the route, denoted as B. Then the constraint on bunker consumption can be represented as follows:

I∑
i=1

Di

vi

(
k1v

3
i + k2v

2
i + k3vi + k4

)
≤ B, i.e.,

I∑
i=1

Di

(
k1v

2
i + k2vi + k3 +

k4
vi

)
≤ B, (1)

where k1, k2, k3 and k4 are some constants; and Di is the sailing distance of the ith leg. For all the

consumption functions estimated in the literature, k1 > 0 and k4 ≥ 0 (Ronen, 1982; Fagerholt et al.,

2010; Du et al., 2011, etc.). The first inequality implies that the bunker consumption eventually will

increase as the sailing speed increases, and the second inequality ensures that the bunker consumption

will not be negative when the vessel stays still at sea3. The actual bunker consumption of a voyage

may not strictly obey the given formula because weather conditions, ship payload and other factors can

affect bunker consumption, but the given formula is widely regarded as a good approximation. It is

also necessary to use a model to quantify the relation between sailing speed and bunker consumption

to control the bunker consumption at the timetable design stage. In the practice of slow steaming, the

bunker consumption can be saved by slowing down the vessels from their maximum sailing speeds, which

implies that even for certain (very rare) types of vessels whose bunker consumption can be reduced by

speeding up to a certain threshold, their bunker consumption will eventually increase if the sailing speed

exceeds such threshold (Du et al., 2011). Therefore, it is always the case that the maximum speed of a

vessel is larger than such threshold (if exists). Note that constraint (1) is highly nonlinear and even not

necessarily convex, since we do not impose additional assumptions on the values of the coefficients. We

show in our model reformulation that this constraint can be convexified and expressed as a set of convex

conic constraints using properties of the optimal solution.

Schedule Reliability

Let τ̃i denote the stochastic service time at the the ith port, and ξ̃i be the actual sailing time on the ith

leg defined as ξ̃i = Di/vi + ϵ̃i, where ϵ̃i is the random noise in the sailing time mainly due to external

conditions. In our study, we focus on adverse weather conditions because they are the primary source

of sailing time uncertainty. They are beyond the control of human beings and may have a significant

impact on operational performance compared to other sources of noise, like the current. Since the impact

3When the vessel stays still, the engine may be still working to provide energy for various equipment and systems on
the vessel.
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of adverse weather conditions usually comes in the form of waiting or reduced sailing speed in the sea,

it is valid to assume an additive form of uncertainty in the sailing time.

Denote the scheduled arrival time at the ith port by ai. Then the scheduled arrival time interval

between the ith and (i+1)th port is xi = ai+1−ai. Thus, we can make a change in variables and let xi’s

be the decision variables in our problem. Then we have the voyage time constraint,
∑I

i=1 xi = T , i.e.,

aI+1 = T . Let α̃i be the actual arrival time at the ith port. Following the literature, we assume that a

port will not service a ship until its scheduled arrival time (Wang & Meng, 2012a). If a ship arrives early,

the waiting time is not included in the port service time. This is because terminal handling capacity is

a bottleneck in liner shipping and ports/terminals schedule time windows for ships. A ship that arrives

early at a port usually has to wait until its assigned time window for berthing (Qi & Song, 2012). This

means that buffer time not utilized in the previous leg will be forfeited and can not be carried over to

the next leg. Therefore, α̃i is given by the following recursive formula:

α̃i+1 = max {α̃i, ai}+ τ̃i + ξ̃i, ∀i = 1, 2, . . . , I − 1,

where max {α̃i, ai} indicates the starting time of unloading/loading at the ith port. In general, we use the

tilde sign to denote a random variable, and boldface letters to denote the column vectors, for example,

x = (x1, x2, . . . , xI)
T .

We focus on a single round-trip voyage to obtain analytical insights. Let d̃i denote the arrival delay at

the ith port of call. For tactical planning, it is reasonable to assume that a ship starts a round-trip voyage

on time from its home port, i.e., d̃1 ≡ 0. Nevertheless, our model is able to capture the reliability that the

ship returns to the home port on time through ηI+1. Hence, by setting a high-reliability target for ηI+1

and including the buffer time between two voyages into T , we can ensure with a high probability that the

ship starts its next voyage on time. Define c̃i to be the difference between the actual inter arrival time

and the scheduled interval time between the ith and (i+ 1)th port, i.e., c̃i = τ̃i + ξ̃i − xi, i = 1, 2, . . . , I.

Then the arrival delay time at the ith port of call is given by

d̃i = max
{
0, d̃i−1 + c̃i−1

}
= max

{
0, c̃i−1, c̃i−1 + c̃i−2, . . . ,

∑i−1
k=1 c̃k

}
, i = 2, 3, . . . , I + 1.

(2)

The maximum partial sum formula shows the cascading effect of delays in earlier ports on the on-time

arrival performance of the later parts of the voyage. The reliability target translates to choosing a

timetable to ensure that P(d̃i = 0) ≥ ηi for all i = 1, . . . , I + 1. For given distribution c̃i, the analysis of

P(d̃i = 0) is notoriously difficult and is a core challenge in the study of healthcare appointment system.

We take a slightly different approach in this paper and use a distributionally robust model to analyze this

problem in an implicit manner. While this is an inexact analysis, it allows us to perform the trade-offs
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between T , B and the targets {ηi} in a tractable manner.

More formally, to balance the delays at various parts of the voyages, we choose a surrogate objective to

be minimizing the weighted sum of mean arrival delays, i.e., E[
∑I+1

i=2 wid̃i], where wi is the corresponding

weight or the unit delay time cost at the ith port. Interestingly, we show later how the choice of wi relates

to the on-time probability target ηi.

Network Flow Model and Distributionally Robust Surrogate Schedule Reliability

The shipping network is depicted in Figure 3, where the container ship starts from the 1st port of call

and sails to the 2nd one, and so on. The actual movement of the ship follows the solid lines. Note that a

ship can visit the same port multiple times in a single route, but they are labeled with different indices

in a sequence of port calls.

Figure 3: Shipping network

To capture the delay time, we construct a network flow model base on the shipping network such

that the maximum cost flow equals the weighted sum of mean arrival delay. We first introduce reverse

flows from the (i+1)th port to the ith port with cost c̃i. The unit delay time cost wi enters the network

through the ith port as an incoming flow, and seeks the maximum cost path to exit the graph. Every

incoming flow has the possibility to leave the network with zero cost (going down as in Figure 3), which

represents the case of no delay at the ith port. The network flow arcs are represented with dotted lines

in Figure 3. Numbers along the dotted lines represent the costs, and the symbols in brackets are flow

variables. It can be easily verified against Equation (2) that the maximum cost flow of wi is exactly the

actual delay time at the ith port. For example, if a unit of flow enters the 3rd port, it will choose between

the following three options to exit the network: 1) exit from the 3rd port immediately with a zero cost;

2) travel to the 2nd port and exit from there with a cost of c̃2; 3) travel to the 2nd port first and then to

the 1st port and exit from there with a cost of c̃2 + c̃1. Hence, the cost incurred by this unit of flow is

max{0, c̃2, c̃2+ c̃1}, which is exactly the arrival delay at the 3rd port of call, d̃3, as expressed in Equation

(2).

With this construction, the optimal cost of the maximum cost flow problem on this network equals

the weighted sum of mean delay times with given x and v under any realization of the uncertainties τ̃
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and ϵ̃, denoted as f (x,v, τ̃ , ϵ̃), i.e.,

f (x,v, τ̃ , ϵ̃) := max
I∑

i=1

c̃i · yi =
I∑

i=1

(τ̃i +
Di

vi
+ ϵ̃i − xi) · yi

s.t. yi+1 − yi − zi = −wi+1, ∀i = 1, 2, . . . , I − 1

−yI − zI = −wI+1

yi, zi ≥ 0, ∀i = 1, 2, . . . , I.

We simplify the above optimization problem using matrix notation as follows:

f (x,v, τ̃ , ϵ̃) := max c̃Ty

s.t. aT
i y − eTi z = −wi+1, ∀i = 1, 2, . . . I

y, z ≥ 0,

where c̃ = (c̃1, c̃2, . . . , c̃I)
T
, y = (y1, y2, . . . , yI)

T
, and z = (z1, z2, . . . , zI)

T
; and ei ∈ Rn is the unit

vector with its ith entry being one; and (ai)i = −1, for i = 1, 2, . . . I, (ai)i+1 = 1, for i = 1, 2, . . . , I − 1,

and (ai)k = 0, otherwise.

As discussed before, we will apply the distributionally robust concept and solve for reliable schedule

for the worst-case distribution, which means that we need to evaluate

sup
ϕ∈Ω(τ̃ ,ϵ̃)

Eϕ [f (x,v, τ̃ , ϵ̃)] ,

where Ω (τ̃ , ϵ̃) is the set of joint distributions of τ̃ and ϵ̃, and Eϕ [·] denotes that the expectation is

taken over the distribution ϕ. The distributionally robust surrogate schedule reliability problem can be

presented as

(P) min
x,v

sup
ϕ∈Ω(τ̃ ,ϵ̃)

Eϕ [f (x,v, τ̃ , ϵ̃)]

Note that in f (x,v, τ̃ , ϵ̃), τ̃ and ϵ̃ are linked to each other by summation in the objective. We show

next that when (τ̃ + ϵ̃) is characterized by the first two moments and nonnegative support, i.e.,

E [τ̃ + ϵ̃] = µ, E
[
(τ̃ + ϵ̃) (τ̃ + ϵ̃)

T
]
= Σ, P (τ̃ + ϵ̃ ≥ 0) = 1,

supϕ∈Ω(τ̃ ,ϵ̃) Eϕ [f (x,v, τ̃ , ϵ̃)] can be computed via a deterministic convex conic programming problem,

under a mild technical assumption that (1,µ,Σ) lies in the interior of the corresponding moment cone,

which usually holds.
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Proposition 1. [Kong et al. (2013)] Let ui = 1/vi, i = 1, 2, . . . , I. We have

supϕ∈Ω(τ̃ ,ϵ̃) Eϕ [f (x,v, τ̃ , ϵ̃)]

= inf Σ • Γ + µTβ + θ

s.t.



θ βT

2
(x−D◦u)T

2 01×I

β
2 Γ − II

2 0I×I

(x−D◦u)
2 − II

2 0I×I 0I×I

0I×1 0I×I 0I×I 0I×I


+

I∑
i=1

γi



wi+1

0I×1

ai

−ei





wi+1

0I×1

ai

−ei



T

⪰co 0,

where the decision variables are θ ∈ R, β ∈ RI , Γ ∈ RI×I , and γ ∈ RI ; In denotes an identity matrix

of dimension n× n; 0m×n denotes a zero matrix of dimension m× n; (•) denotes the inner product; (◦)

denotes Hadamard product; and A ⪰co 0 denotes that the symmetric matrix A ∈ Rn×n is copositive, i.e.,

vTAv ≥ 0, for all v ∈ Rn
+.

The only constraint in the deterministic reformulation is a copositive cone constraint, which makes

it a copositive program (COP)—i.e.,, the linear program over the cone of copositive matrices. The proof

of this proposition is included in Appendix A for completeness. Proposition 1 gives a concise way to

compute the worst-case weighted sum of the mean delay time of any given schedule and speed design.

We build on this result to incorporate a conic reformulation of the budget bunker consumption constraint

to reformulate Problem (P) into a deterministic convex optimization problem.

Theorem 2. Let Π denote the space of all feasible schedules. The schedule that minimizes the worst-case

weighted sum of mean delay time can be obtained by solving the following copositive program:

(C) inf Σ • Γ + µTβ + θ

s.t.



θ βT

2
(x−D◦u)T

2 01×I

β
2 Γ − II

2 0I×I

(x−D◦u)
2 − II

2 0I×I 0I×I

0I×1 0I×I 0I×I 0I×I


+

I∑
i=1

γi



wi+1

0I×1

a (i)

−e (i)





wi+1

0I×1

a (i)

−e (i)



T

⪰co 0

 gi hi

hi 1

 ⪰ 0, ∀i = 1, 2, . . . , I

 hi − k2

2k1
1

1 ui

 ⪰ 0, ∀i = 1, 2, . . . , I

I∑
i=1

Di

(
k1gi − k2

2

4k1
+ k3 + k4ui

)
≤ B

1
vmax
i

≤ ui ≤ 1
vmin
i

, ∀i = 1, 2, . . . , I

g,h ≥ 0

x ∈ Π
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where the decision variables are θ ∈ R, β ∈ RI , Γ ∈ RI×I , γ ∈ RI , g ∈ RI , h ∈ RI , x ∈ RI and u ∈ RI ;

and A ⪰ 0 denotes that the symmetric matrix A ∈ Rn×n is positive semidefinite.

The proof of the above theorem is relegated to Appendix A. Note that the speed decisions are

embedded in u by a simple variable transformation. As long as Π can be described by convex constraints

on x, we have a deterministic convex programming model to optimize the schedule under the stochastic

environment. The two positive semidefinite constraints are essentially second order cone constraints.

Typical constraints include nonnegativity and total voyage time constraints, i.e.,

x ≥ 0 and

I∑
i=1

xi ≤ T. (3)

Additional constraints will be discussed under respective numerical experiments in Section 5.

Remark 3. Note that although the service time, τ̃ , is nonnegative, the sailing time noise, ϵ̃, can be nega-

tive. Consequently, the assumption that P (τ̃ + ϵ̃ ≥ 0) = 1 needs not hold. However, it is trivial to gener-

alize the conic model to allow this assumption to be relaxed. Instead of requiring the matrix in Theorem

2 to be copositive, we restrict it to the space of
{
A ∈ R(3I+1)×(3I+1) : vTAv ≥ 0, ∀v ∈ R+ × R × R2I

+

}
.

The justification for this extension is included in the proof of Proposition (1) in Appendix A.

3.2 Schedule Reliability

Although our surrogate model captures the schedule reliability through minimizing expected delays, we

show in this section that the on-time probability (or 1 - delay probability) is also reflected in our model,

and we can take advantage of this to calibrate the model inputs, in particular, unit delay costs wi.

Recall Figure 3, the flow entering the ith port can either leave the network or go to the (i − 1)th

port. The probability that the flow goes to the (i − 1)th port is exactly the probability that the vessel

is delayed to arrive at the ith port. Let y∗i (x,v, τ̃ , ϵ̃) denote the optimal flow on the ith leg. From the

above argument, we have

y∗i−1 (x,v, τ̃ , ϵ̃) =

 y∗i (x,v, τ̃ , ϵ̃) + wi, if vessel is delayed to arrive at the ith port, i = 2, 3, . . . , I,

0, otherwise.

Therefore, under any distribution of the uncertainties,

E
[
y∗i−1 (x,v, τ̃ , ϵ̃)

]
= E

[
E
[
y∗i−1 (x,v, τ̃ , ϵ̃) |yi (x,v, τ̃ , ϵ̃)

]]
= {E [y∗i (x,v, τ̃ , ϵ̃)] + wi}P

(
vessel is delayed to arrive at the ith port

)
,
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which gives an expression for the delay probability at the ith port:

P
(
vessel is delayed to arrive at the ith port

)
=

E
[
y∗i−1 (x,v, τ̃ , ϵ̃)

]
E [y∗i (x,v, τ̃ , ϵ̃)] + wi

, i = 2, 3, . . . , I. (4)

Similarly, we have the delay probability at the last port of call:

P (vessel is delayed to arrive at the last port) =
E [y∗I (x,v, τ̃ , ϵ̃)]

wI+1
. (5)

Suppose that the constraints for feasible schedules are captured in (3). By the KKT conditions, there

exist dual multipliers such that:


−Eϕ∗ [y∗i (x,v, τ̃ , ϵ̃)] + λ∗ − κ∗

i = 0, ∀i = 1, 2, . . . , I

κ∗
i x

∗
i = 0, ∀i = 1, 2, . . . , I

λ∗ ≥ 0

where λ∗ and κ∗
i are the dual variables of the total voyage time constraint and nonnegativity constraints of

the schedule intervals, respectively, and ϕ∗ denotes the worst-case distribution. The first KKT condition

follows from the copositive cone constraint and decomposition analysis in Kong et al. (2013). Specifically,

Eϕ∗ [y∗i (x,v, τ̃ , ϵ̃)] represent the dual variable of the copositive cone constraint in the (1, I +1+ i)-entry,

which is (xi −Diui)/2, i = 1, 2 . . . , I.

Theoretically, it is possible that if the schedule is extremely tight, the optimal schedule may allocate

zero interarrival times to some legs. However, this is impossible in practice since the total voyage time

is usually determined first with a reasonable duration, and it does not make sense to publish a vessel

schedule that announces to arrive at different ports at the same time, given the strictly positive sailing

distance between any two ports. Therefore, we can safely assume that in an optimal solution, x∗
i > 0,

for all i. Hence, κ∗
i = 0, and consequently, Eϕ∗ [y∗i (x,v, τ̃ , ϵ̃)] = λ∗, for all i. This means the expected

flows are equal to each other under the worst-case distribution as long as the scheduled vessel interarrival

times are positive. We summarize this result below and then discuss how to use it to calibrate our model.

Proposition 4. Suppose that the constraints for feasible schedules are characterized by (3). If in an

optimal solution to Problem (C), the scheduled interarrival times are strictly positive, i.e., x∗
i > 0,

∀i = 1, 2, . . . , I, then the network flow solution must satisfy Eϕ∗ [y∗i (x,v, τ̃ , ϵ̃)] = λ∗, ∀i = 1, 2, . . . , I.

The next result follows immediately from Proposition 4 and Equations (4) and (5).

Corollary 5. Suppose that the constraints for feasible schedules are captured in (3). If in an optimal

solution to Problem (C), the scheduled vessel interarrival times are strictly positive, i.e., x∗
i > 0, ∀i =
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1, 2, . . . , I, then under the worst-case distribution and the optimal schedule from solving Problem (C),

Pϕ∗
(
vessel arrives late at the ith port

)
=

λ∗

λ∗ + wi
, i = 2, 3, . . . , I, and (6)

Pϕ∗
(
vessel arrives late at the (last) (I + 1)th port

)
=

λ∗

wI+1
. (7)

Recall that λ∗ is the optimal dual variable of the total voyage time constraint. When the total voyage

time is sufficient, the marginal benefit from further increasing the total voyage time will be small, i.e., λ∗

will be small, so the probabilities of delaying at each port will be small, which is intuitively true. When

the total voyage time is tight, λ∗ is non-negligible.

We discuss next how we can choose the weights based on the on-time probability targets {ηi : i =

2, . . . I+1}. Note that the on-time arrival probability at the first port is always 100% under our modeling

assumptions. Since the performance of the model does not change if we scale all the weights wi’s in the

model by a common factor, we can set, without loss of generality, wI+1 = 1. Let η̂i(w) denote the

on-time arrival probability for our model using weight w. Our approach relies on Corollary 5 to capture

the relationship between the on-time arrival probability and the weights. To emphasize λ∗’s dependence

on w, we write λ∗(w) in the following analysis.

From Corollary 5, we have:

wi
1− η̂i(w)

η̂i(w)
= λ∗(w) = [1− η̂I+1(w)]

=1︷ ︸︸ ︷
wI+1, i = 2, . . . , I.

Therefore

wi = [1− η̂I+1(w)]
η̂i(w)

1− η̂i(w)
, i = 2, . . . , I. (8)

We want to choose a set of weights wi so that η̂i(w) ≥ ηi, for all i = 2, . . . , I+1. To achieve this, we first

ignore the last condition. Next, we assume that the reliability targets are tight except for the last port,

i.e., η̂i(w) = ηi for i = 2, . . . , I. Then for any value of η̂I+1(w), using Equation (8), we can choose the

weight wi for i = 2, . . . , I, together with wI+1 = 1. We perform a binary search on the value of η̂I+1(w)

until λ∗(w) = 1 − η̂I+1(w). We can then check if the solution obtained satisfies η̂I+1(w) ≥ ηI+1. This

reduces the schedule reliability problem to a one dimensional search problem on η̂I+1(w). To see that a

binary search is valid, note that λ∗(w) is the optimal dual variable of the total voyage time constraint,

so it is concave increasing in wi. As wi is decreasing linearly in η̄I+1, the output λ∗(w) is then convex

decreasing in η̄I+1. Moreover, when η̄I+1 is set to 1, λ∗(w) > 0 = 1 − η̄I+1; when η̄I+1 is set to 0,

λ∗(w) < 1 = 1 − η̄I+1 as λ∗(w) is bounded above by wI+1 = 1. Therefore, there exists a unique fixed

point that can be checked via a binary search on η̄I+1. We state the algorithm formally as Schedule

Reliability Algorithm (SRA) as follows:
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Algorithm SRA.

INPUT: Service route, journey time T , bunker consumption budget B, and schedule reliability

targets ηi, i = 2, . . . , I.

OUTPUT: Achievable schedule reliability for the last port η̄I+1, and a feasible schedule (and sailing

speeds) to achieve ηi for all i = 2, . . . , I and η̄I+1.

1. Conduct a binary search on η̄I+1 ∈ [0, 1] until λ∗(w) = 1− η̄I+1 through the following steps.

2. Initialize a value for η̄I+1, set wi = (1− η̄I+1)
ηi

1−ηi
, i = 2, . . . I, and wI+1 = 1.

3. Solve the convex relaxation to (C) to obtain λ∗(w).

4. Check whether |λ∗(w) − (1 − η̄I+1)| < ϵ, where ϵ > 0 is a predefined precision parameter: if

the inequality is met, terminate the algorithm, and output η̄I+1 and the schedule (including

the sailing speeds); otherwise, continue the binary search and go to Step 2.

For a given bunker budget B, there is no guarantee that the weights chosen in this way (with fixed

point η̄I+1) will necessarily lead to a good liner schedule, since η̄I+1 obtained could be low. Hence, there

is a high probability that the vessel will not return to the first port on time to re-start the voyage. There

is thus a fundamental trade-off between the right amount of bunker budget B and the reliability targets

η2, . . . , ηI+1 that can be attained, assuming T fixed. This approach allows us to analyze this trade-off for

given reliability targets, we can find the relationship between B and the fixed point η̄I+1, and choose B

so that η̄I+1 is reasonably high to ensure that the next voyage can start on time with high probability. In

this way, we obtain a fundamental relationship connecting the bunker budget with the reliability targets.

This understanding is important to avoid the mistake of Daily Maersk, which probably aimed too high at

on-time arrival targets, resulting in additional cost in bunker that cannot be fully offset by the market.

We use Algorithm SRA to address the problem posed in the introduction.

Theorem 6. Suppose the weight w is chosen by Algorithm SRA until λ∗(w) = 1 − η̄I+1. If λ∗(w) ≤

1− ηI+1, then Problem (Q) is feasible, otherwise Problem (Q) is infeasible.

The proof of the above theorem is given in Appendix A. With this result, we close the loop of analysis

and address the fundamental question on how to design a timetable for a liner service that meets the

given schedule reliability targets (if feasible) under a given bunker consumption budget, i.e., solving

Problem (Q).

3.3 Optimal Speed

In this subsection, we also show that, if a shipping line has the freedom to choose its preferred berthing

times at all ports, then the optimal speeds for all legs are identical under minor technical conditions
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(typically satisfied in practice). Note that while we solve the schedule design problem using a convex

approximation, we analyze the structural properties of the optimal speed in this subsection assuming an

underlying distribution for the random parameters in the model, i.e., the results obtained here continue

to hold and do not depend on the distributionally robust model used.

The schedule reliability performance is affected by the speed (and thus bunker consumed) of the

vessel on each leg of the voyage. Given that the on-time arrival targets differ for different ports, it may

seem natural for the vessel to traverse each leg with different speeds. We show next that surprisingly the

optimal speed on each leg is identical in our model when the constraint on the schedule is characterized

in (3) and the minimum and maximum speed constraints are not binding. In practice, the feasible range

of the vessel speed is typically not limiting the liner schedule design. One of the key reasons is that the

extreme speeds (either too fast or too slow) are harmful to the engine, and the liners tend to operate in a

more conservative range compared to the hard limits (Maersk Line, 2011b). Suppose that the constraints

for feasible schedules are again captured in (3). Under these conditions, our surrogate problem can be

written as follows:

(C′) min g
(

D1

v1
− x1,

D2

v2
− x2, . . . ,

DN

vN
− xN

)
s.t.

I∑
i=1

Di

(
k1v

2
i + k2vi + k3 +

k4

vi

)
≤ B

I∑
i=1

xi ≤ T, x ≥ 0

where

g

(
D1

v1
− x1,

D2

v2
− x2, . . . ,

DN

vN
− xN

)
:= sup

ϕ∈Ω(τ̃ ,ϵ̃)

Eϕ [f (x,v, τ̃ , ϵ̃)] ,

is the second stage cost function, which is convex. Note that all the following analysis does not depend

on the specific worst-case form of function g(). In fact, g() can denote the expected weighted sum of

delays under any specifically given distribution, and all the results continue to hold.

To show the identical speed result, we need the same technical condition used in the previous subsec-

tion that in an optimal solution, x∗
i > 0, for all i, which makes the dual variables of the nonnegativity

constraints of the schedule intervals all equal to zero. Then we have the following KKT conditions:


∂

∂vi
g
(

D1

v∗
1
− x∗

1, . . . ,
DN

v∗
N

− x∗
N

)
= − ν∗ ∂

∂vi

(
Di

(
k1v

2
i + k2vi + k3 +

k4

vi

))∣∣∣
vi=v∗

i

∂
∂xi

g
(

D1

v∗
1
− x∗

1, . . . ,
DN

v∗
N

− x∗
N

)
= −λ∗

where ν∗ is the dual variable of the bunker consumption constraint, and λ∗ is the dual variable of the

total voyage time constraint as defined before. Hence, we have


∇gi

(
D1

v∗
1
− x∗

1, . . . ,
DN

v∗
N

− x∗
N

)
∂

∂vi

(
Di

v1
− xi

)∣∣∣
vi=v∗

i ,xi=x∗
i

= − ν∗ ∂
∂vi

(
Di

(
k1v

2
i + k2vi + k3 +

k4

vi

))∣∣∣
vi=v∗

i

∇gi

(
D1

v∗
1
− x∗

1, . . . ,
DN

v∗
N

− x∗
N

)
∂

∂xi

(
Di

vi
− xi

)∣∣∣
vi=v∗

i ,xi=x∗
i

= −λ∗
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which implies

λ∗

(v∗i )
2 = ν∗

∂

∂vi

(
k1v

2
i + k2vi + k3 +

k4
vi

)∣∣∣∣
vi=v∗

i

. (9)

This establishes the next key result in the paper.

Theorem 7. Suppose that the constraint on the schedule is characterized by (3) and a shipping line has

the freedom to choose its preferred berthing times at all ports. If in an optimal solution to Problem (C),

the scheduled interarrival times are strictly positive and minimum and maximum speed constraints are

not binding, i.e., x∗
i > 0 and vmin

i < v∗i < vmax
i , ∀i = 1, 2, . . . , I, then the optimal speed in each leg, v∗i ,

is identical for all legs.

Theorem 7 suggests that the same nominal sailing speed at all sea legs is the most fuel-efficient for

maximizing schedule reliability, which is in line with the finding of Lee et al. (2015) that it is always

better to keep the speed constant to achieve the same navigation time. This theorem provides insight

into what is preferred in setting sailing speeds. In reality, however, we need to acknowledge that it is

often not feasible to design the same sailing speed at different legs due to operational constraints and

commercial reasons. Liner ship timetable design has to consider the available berthing time windows at

different ports, fixed start times for convoys at the Suez Canal, the presence of sulfur emission control

areas, etc. Consequently, more often than not, the designed speeds are different at different legs, and

they even can be different at different parts of the same leg. It is beyond the scope of this paper to

analyze their effects as we focus on the structural properties of a most reliable schedule. Nevertheless,

our model can be easily extended to capture practical considerations. For example, many shipping lines

operate in tighter schedules for the headhaul route (e.g., from Asia to Europe for a service loop between

Asia and Europe) than the backhaul route (e.g., from Europe to Asia). This is because the headhaul

containers generate most of the revenue, and the shipping lines are under pressure to provide shippers

fast delivery (Brouer et al., 2015). This requirement translates into an additional constraint on x,

H∑
i=1

xi ≤ TH , (10)

where H is the index of the last port of call in the headhaul route, and TH is a given voyage time limit

on the headhaul route. The above argument can be easily revised to incorporate the dual variable of

constraint (10). Consequently, Theorem 7 can be adapted to the following corollary.

Corollary 8. Suppose that the constraint on the schedule is characterized by (3) and (10). If in an

optimal solution to Problem (C), the scheduled interarrival times are strictly positive and minimum and

maximum speed constraints are not binding, i.e., x∗
i > 0 and vmin

i < v∗i < vmax
i , ∀i = 1, 2, . . . , I, then

the optimal speed for each leg in the headhaul route is identical, and the optimal speed for each leg in the
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backhaul route is also identical. The headhaul speed is higher than or equal to the backhaul speed, and

the equality holds when the headhaul voyage time constraint is not binding at the optimal solution.

The last conclusion in the above corollary follows directly from the fact that the dual variable of

the headhaul voyage time constraint is nonnegative, and the complementarity condition implies that the

dual variable is zero when the constraint is not binding. This result reflects a common practice in the

industry that shipping lines usually set backhaul speed several knots slower than headhaul speed to save

bunker (Brouer et al., 2015).

It is worthwhile noting that a similar optimal identical sailing speed result was shown in Wang et

al. (2013) in a very different model, whose objective function is to minimize the bunker cost that is

linear in the bunker consumption function. Their bunker consumption function is assumed to be strictly

convex and non-decreasing in the sailing speed, and the model does not consider scheduling decisions

or any uncertainties. When there are no time window restrictions, the optimal identical sailing speed

follows from the convexity of the objective function. Our results extend such conclusion and confirm that

the identical sailing speed is still optimal in a more complex environment, in which both the schedule

and speeds are optimized simultaneously to minimize the expected weighted sum of delay times with

uncertain port and sea times, and the bunker consumption is cubic in sailing speed.

4 Model Extensions

In this section, we develop several extensions of our model to capture more realistic and complicated

scheduling scenarios. Specifically, we consider the uncertainty in bunker price, the schedule reliability of

a network of fleets, and nonidentical bunker consumption functions at different legs.

4.1 Bunker Cost Uncertainty

In our model, we impose a fixed bunker consumption budget for the entire voyage. This parameter plays

a key role in the design of a reliable schedule. However, in practice, the price of the bunker often affects

the total amount of bunker the shipping line can consume. For instance, Figure 4 shows how the prices

for different classes of fuel oil fluctuate in Singapore over the last six months in 2019–2020. This affects

the speed the vessel will opt to sail in, and thus will affect the schedule reliability of the liner.

When the conditions for Theorem 7 hold, we can incorporate this source of uncertainty into our model

without any side complication, if in an optimal solution to Problem (C), the scheduled interarrival times

are strictly positive and minimum and maximum speed constraints are not binding. To see this, observe

that in the optimal solution, for any fixed bunker consumption budget B, the optimal constant speed v∗
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Figure 4: Singapore Bunker prices in 2019-2020

can be obtained by solving the following equation:

I∑
i=1

Di

(
k1(v

∗)2 + k2v
∗ + k3 +

k4
v∗

)
= B.

In other words, v∗ can be viewed as a function of the given bunker consumption budget B, i.e., v∗(B).

To capture the uncertainty in bunker budget, we replace B in the above equation by an uncertain budget

B̃ := b(p̃), where b() is a function of the random bunker price index p̃. Hence the common speed v∗(B̃)

satisfies

k1v
∗(B̃)2 + k2v

∗(B̃) + k3 +
k4

v∗(B̃)
=

B̃
I∑

i=1

Di

. (11)

We use this relationship to incorporate the uncertainty in B̃ into our formulation by solving the following

problem:

(PB) min
x

sup
ϕ∈Ω(τ̃ ,ϵ̃,B̃)

Eϕ

[
f
(
x, B̃, τ̃ , ϵ̃

)]
where

f
(
x, B̃, τ̃ , ϵ̃

)
:= max

I∑
i=1

c̃i · yi =
I∑

i=1

(
τ̃i +

Di

v∗(B̃)
+ ϵ̃i − xi

)
· yi

s.t. yi+1 − yi − zi = −wi+1, ∀i = 1, 2, . . . , I − 1

−yI − zI = −wI+1

yi, zi ≥ 0, ∀i = 1, 2, . . . , I.

The moment cone is now determined by the random parameters τ̃i +
Di

v∗(B̃)
+ ϵ̃i, and the input moment

information can be obtained by simply simulating the empirical distribution of B̃ based on the historical

data. We state this formally in the next theorem.
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Theorem 9. In the case that the conditions for Theorem 7 holds, the liner timetable design problem,

with random bunker budget B̃ and weights w, can be solved as a distributionally robust appointment

scheduling problem (PB), where the appointment duration has distribution τ̃i +
Di

v∗(B̃)
+ ϵ̃i, and v∗(B̃) is

a solution to Equation (11).

4.2 Multiple Services

A liner shipping network contains several liner services that are connected at different ports. Trans-

shipment imposes huge complexity in optimizing the schedule reliability for a liner shipping network.

In many cases, the schedule reliability of a service is often affected by the reliability of its connecting

services, and vice versa. For instance, Figure 5 shows a network consisting of three liner services, which

are connected to different markets. The port Tangier is a transshipment hub where cargo is transshipped

from one service to another.

Figure 5: Network schedule reliability

Strictly speaking, once the timetable of a liner service is fixed, the vessel should try to follow the

timetable and the reliability of other services should not affect the departure decision of the vessel at a

port. However, in practice, a liner service may sometimes want to wait for connecting services to bring

containers to the transshipment hubs depending on the business arrangements with collaborating liner

services. To help make such decisions, the shipping company needs to know the on-time probability

of transshipment containers. Therefore, we develop this extension based on our model to design and

analyze the schedule reliability of the liner network.

As an illustration, we view the transshipment service at port Tangier where containers are transhipped

from Services II and III to Service I, the main service. Specifically, we consider containers sent from
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Shanghai to Tangier (transshipped at Tangier) to Tilbury and from Alexandria to Tangier (transshipped

at Tangier) to Tilbury. By a slight abuse of notation, let ηJA,B be the on-time arrival target for service

J in the leg from port A to B, in the design of the liner schedule for service J using our model. In

this case, due to transshipment activities at port Tangier, the reliability of service I is affected by the

on-time arrival performance of both service II in the leg from Shanghai to Tangier, and also service III

in the leg from Alexandria to Tangier. Assuming that the on-time arrival probabilities for both services

are independent, then the on-time probability of transshipment containers being ready for service I is

given by ηIIShanghai, Tangier×ηIIIAlexandria, Tangier. If a mainline vessel decides to wait at port Tangier

for transshipment containers from services II and III, the port time for service I at port Tangier is a

random function of the reliability targets ηIIShanghai, Tangier and ηIIIAlexandria, Tangier. By varying the

choices of the reliability targets for individual services, the shipping company can control the schedule

reliability of its transshipment service in timetable design. Following the same logic, we can also extend

the model to capture additional transshipment from Rotterdam to Tangier (transshipped at Tangier) to

Tilbury. However, in calibrating the model, we need to consider the correlation between the schedule

reliability between ηIIShanghai, Tangier and ηIIRotterdam, Tangier. Nevertheless, one can either assume

independence—which is likely to give a conservative lower bound since they are from the same service

and the delay at earlier ports can propagate to later ports—or use simulation to calibrate the port time.

4.3 Nonidentical Bunker Consumption Functions

In the base model, we use an identical bunker consumption function for all legs. In reality, however, the

consumption functions could be different in different legs because of distinct geographic conditions such

as sea currents, waves, route layout, etc., in these legs. We can extend our model to capture nonidentical

bunker consumption functions for different legs. In particular, the bunker consumption budget constraint

can be extended to the following:

I∑
i=1

Di

vi

(
ki,1v

3
i + ki,2v

2
i + ki,3vi + ki,4

)
≤ B, (12)

where ki,1, ki,2, ki,3 and ki,4 are constants used to characterize the bunker consumption functions for

the ith leg, i = 1, 2, . . . , I.

The reformulation result, i.e., Theorem 2, will continue to hold with a slight modification of changing

the parameters kj to ki,j for i = 1, 2, . . . , I and j = 1, 2, 3, 4. Hence, we can solve a convex optimization

model to obtain the solution to the surrogate problem. Moreover, the results in Section 3.2 will also

hold, and we can still use Algorithm SRA to find an optimal schedule that achieves the reliability targets.

Therefore, when there are sufficient data to calibrate bunker consumption functions for different vessels

at different legs, we can deploy the extended model to design the schedule to achieve the target reliability
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at a given bunker consumption budget. However, the optimal constant speed result in Theorem 7 will

not hold universally for all legs. From the proof, we can see that the optimal speeds for two legs will be

identical only when the bunker consumption functions for these two legs are the same.

5 Numerical Experiments

This section validates the approach presented in the previous sections via simulation experiments. We

first use the COP model to incorporate schedule reliability targets at some hub ports in schedule design.

The numerical experiments lead to the discovery of a simple but very effective tactic in schedule design for

guarding the service reliability at hub ports. We then benchmark the performance of the COP schedule

against a former Daily Maersk service between Asia and Europe, AE2. As mentioned earlier, the now-

abandoned Daily Maersk product achieved the best (over 98%) schedule reliability in liner shipping.

Lastly, we compare the performance of the COP model with a heuristic that is widely used by shipping

lines for schedule design. The COP schedules outperform the heuristic in schedule reliability and fuel

efficiency. Our results also suggest that beyond a certain threshold on schedule reliability, a large amount

of bunker needs to be consumed to improve the reliability by a small amount, indicating that absolute

reliability is probably too costly a goal in this problem.

The machine used to conduct the numerical studies is HP Elitebook with Intel Core i5-8365U CPU

1.90 GHz, RAM 16GB, Microsoft Windows 10 Enterprise. MOSEK 9.2 is used to solve the doubly

nonnegative approximation of the COP programs in MATLAB R2017a environment with YALMIP as

the user interface (Lofberg, 2004). All the problem instances are solved within 10 seconds. Although

we are not solving the COP programs exactly, the performance from the approximation is already quite

good from our simulations.

5.1 Case Data

We obtained about 11,000 Daily Maersk port times between mid-2012 and early-2015 from the Maersk

Line. After some analysis, we decided to use only about 1,200 port times for the period from mid-2012

to mid-2013, during which no major changes were made to the AE2 service. This was to ensure all port

times are comparable. During the period, AE2 called at 19 ports, and its total voyage time for a round

trip was 11 weeks. Most of the deployed vessels had a carrying capacity of 8,400 twenty-foot equivalent

units (TEUs). Note that vessel size has a direct impact on port time and schedule design. A larger vessel

usually stays longer in a port for container unloading/loading due to the increased carrying capacity.

Starting from the mid-2013, Maersk Line started to upscale AE2 vessels to those of a carrying capacity

of 13,000/15,500 TEUs, and then to Triple-E vessels (18,340 TEUs) in late 2014. To accommodate the

longer port stays, consequently, the number of port calls has been reduced to 13 at the time of this paper.
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The values of coefficients in the bunker consumption function as defined in constraint (1) are given as

follows: k1 = 0.0036, k2 = −0.1015, k3 = 0.8848, and k4 = 0 (Fagerholt et al., 2010). The feasible speed

interval is set from 14 to 25 knots.

Sailing time noises (ϵ̃i) are estimated based on the sea contingency times. Sea contingency times

are the additional times allocated on top of the expected sailing times. Many shipping lines allocate

sea contingency times in the service schedules to buffer against uncertainties at sea (Wang & Meng,

2012b). Based on the information from industry professionals, we set sea contingency time as 1 hour

per 100 nautical miles (nm) for a distance of up to 1,000 nm with 1 hour being the minimum. For the

distance between 1,000 and 4,000 nm, 1 hour sea contingency time is allocated per 200 nm, with 25

hours being the maximum. Sea contingency time is usually sufficient to buffer against random noises in

sailings but not extreme weather conditions. No data is directly available about sailing delays in liner

shipping, partly due to the complexity of sailing operations. We estimate sailing time delay means and

variances by assuming that they follow half-normal distributions, and their standard deviations are equal

to the corresponding sea contingency times, i.e., about 65% of the sailing delays fall within the one sigma

control limits that are equal to the sea contingency times. It is reasonable to assume that the sailing

time noises are independent of the stochastic service time at the ports (i.e., port times, τ̃i), which are

typically resulted from operational uncertainties. Therefore, we can sum up the moments of the sailing

time noises and port times to get the values for µ and Σ. A summary of the data used for the numerical

experiments is provided in Table 1 in Appendix B.

5.2 Incorporating Schedule Reliability Targets in Schedule Design

This subsection employs the COP model to incorporate schedule reliability targets in schedule design.

We pay special attention to schedule reliability at hub ports because they are playing an increasingly

important role in global container trade as the volume of containers being transshipped at hub ports

continues to rise. A hub port’s schedule reliability heavily affects a carrier’s global schedule reliability

because delays at a hub have a ripple effect in the whole service network. This explains why Maersk

Line, as an industry leader in schedule reliability, actively manages schedule reliability at its global hub

terminals. In fact, its sister company, APM Terminals, strategically owns and operates many of its hub

terminals to ensure the best control of services at the hubs. Hub port schedule reliability is also named

as spine reliability by Maersk Line because the hub ports form the spine of its service networks.

We demonstrate the effectiveness of our modeling approach by using the parameters as provided

in Table 1. We single out two major hubs of the Maersk Line: Tanjung Pelepas and Rotterdam. We

consider a 11-week service with a bunker budget of 7,375 tons. Recall that ηI+1 refers to the reliability

target at returning to the home port. Let ηh denote the reliability target at the two hub ports and ηn

the reliability target at all other ports. We consider three sets of schedule reliability targets: Target
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Set I: ηn = ηh = 0.4; Target Set II: ηn = 0.4, ηh = 0.6; Target Set III: ηn = 0.4, ηh = 0.8. Following

Algorithm SRA proposed in Section 3.2, we derive the achievable reliability target for ηI+1. Specifically,

ηI+1 = 0.7925, 0.7425, and 0.539 for the three target sets.

In all the problem instances, the COP model sets a same sailing speed of 20 knots at all legs. This

affirms that the most reliable schedule requires equal sailing speeds at all legs as established in Theorem

4 in the preceding section. From a planning perspective, once a shipping line fixes a bunker budget

for a service, the default sailing speed is determined. We build a simulation model (Simulation A) in

MATLAB to compare the performance of the schedules. The simulation sets a fixed sailing speed based

on the designed sailing speeds, i.e., the vessel will not speed up or slow down based on the realized

uncertainties in the past. In the simulations, delay time at the first port is zero because a vessel always

starts a journey on time. We first calculate schedule reliability by giving no delay allowance to vessel

arrivals when determining whether they are late4. This allows us to compare the actual performance

outcomes with the reliability targets set according to the theoretical analysis presented in Section 3.2.

We also report schedule reliability results based on the standard of Maersk Line, which gives a delay

allowance of 12 hours. The simulation experiments evaluate four common (uniform, normal, Gamma

and two-point) distribution types for stochastic port times and sailing delays, assuming the same first

and second moment values as given in Table 1. We conduct 50,000 simulation runs for each distribution

type.

The detailed reliability performance of three COP schedules are given in Table 2 in Appendix B.

The simulation results show that arrivals at almost all ports including the hub ports meet the reliability

targets when there is zero delay allowance. The few exceptions were only slightly below the targets.

This is understandable due to the nature of approximation used in the solution method. When there is

a delay allowance of 12 hours, the schedule reliability figures are obviously higher, which is no surprise.

Overall the Algorithm SRA is effective for calibrating the weights in the COP model to help design

service schedules that achieve realistic reliability targets at port calls.

These results shed light on the impact of the calibrated weights on the COP schedules and their

reliability performance. In comparison with the Schedule I, the Schedule II achieves higher reliability

performance at the two hub ports by assigning them a higher weight. The reliability performance at the

two hubs is further improved by assigning them a greater weight in the Schedule III. However, when the

reliability at the hub ports increases, the probability of returning to the home port on time is reduced

and the trade-off is reasonable. The key observation from comparing the schedules is more buffer time

being allocated to the schedule intervals right before the hub ports to achieve a higher reliability target.

For example, the schedule interval between Le Havre and Rotterdam increases from 37.1 hours as in the

Schedule I to 42.2 hours as in the Schedule II, and then further to 54.5 hours as in the Schedule III.

4The industry reports typically allow for six to twenty-four hours of delays in their computation of on-time arrival
statistics.
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Allocating more time to this particular schedule interval buffers against the potential delays in arriving

at Rotterdam which may be accumulated at all the preceding schedule intervals.

To capture more realistic speed adjustments at sea, we build another simulation model (Simulation

B). This simulation model allows a vessel to sail at a speed that is different from the designed sailing

speed. When a vessel departs from a port, the captain sets a fixed sailing speed to arrive just on time

at the next port (Aydin et al., 2017). We assume the captain is experienced and has sufficient weather

information for the immediate sailing to the next port. This is not a strong assumption given the

advanced technologies employed for the weather forecast. In reality, the captain may not always keep

the same sailing speed in a leg, depending on the situation at sea. Still, he has an economic incentive

to do so to minimize bunker consumption (Lee et al., 2015). As mentioned in 3.1, a vessel arrives at a

port early has to wait for its scheduled time window (Qi & Song, 2012). If a vessel leaves a port early, it

adopts a lower speed to save bunker, subject to the minimal vessel speed constraint. However, if a vessel

leaves a port late, it speeds up to recover time loss but its speed does not exceed the “planned maximum

sailing speed” (Song et al., 2015). A shipping line’s planned maximum sailing speed is usually well below

the maximum vessel speed to control bunker consumption. According to our knowledge, in the industry,

the planned maximum speed is often the default steaming speed for timetable planning purposes. In real

time, vessel speed is dynamically adjusted between the minimum vessel speed and planned maximum

speed depending on the realizations of uncertain time parameters (Song et al., 2015; Aydin et al., 2017).

Let vmin denote the minimum vessel speed and vp denote the planned maximum speed, the rules for

setting the speed at each leg can be defined as follows:

vi = max

{
vmin,min

{
vp,

Di

xi − d̃i − τ̃i − ϵ̃i

}}
,

where Di is the sailing distance of the ith leg as defined in section 3; τ̃i denotes the stochastic service

time at the the ith port; ϵ̃i represents the noise in the sailing time due to external conditions; xi is the

scheduled arrival time interval between the ith and (i + 1)th port; and d̃i denotes the arrival delay at

the ith port of call. The second term in the min operator, Di/(xi − d̃i − τ̃i − ϵ̃i), denotes the speed

required to reach the next port exactly on time given the delay in the current port and a perfect forecast

of sailing time uncertainty to the next port. However, this speed is not always feasible, and the min and

max operators make sure that the actual sailing speed is between the minimum speed and the planned

maximum speed.

For illustration purposes, we set the minimum sailing speed as 15 knots and the planned maximum

speed as 22 knots, which is 2 knots higher than the default sailing speed of the COP schedules. We run

simulation 50,000 times for Schedule II to observe the effect of dynamic speed adjustments between the

minimum vessel speed and planned maximum speed. The results on schedule reliability are presented
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in Table 3 in Appendix B. In comparison with fixing the sailing speed at 20 knots at all legs, allowing

a vessel to speed up to 22 knots for schedule recovery increases the average reliability from 90.3% to

96.3%. More interestingly, the average bunker consumption is reduced from 7,375 tons to 6,588 tons.

This finding is similar to that of Aydin et al. (2017): in comparison with a deterministic scenario,

bunker consumption can be reduced substantially if dynamic speed decisions are made considering the

uncertainty of port times. This is because the increased bunker consumption for speeding up at some

legs is offset by the reduced bunker consumption in other legs when a vessel can slow down to as slow as

15 knots, the minimum vessel speed. This may not always be achievable in practice because a vessel may

need to sail at a slightly higher speed to arrive early at the next port to avoid missing the scheduled time

window, given that it is unlikely to have perfect information about the uncertain sailing delays at sea.

However, the simulation results still clearly affirm the common practice of dynamic speed adjustments

in liner shipping because it is beneficial for saving bunker while at the same time improving service

reliability.

Besides speeding up, the other possible schedule recovery strategy is to skip one or more ports of call

(Mulder & Dekker, 2019). We extend Simulation B to Simulation C to investigate its effect on service

reliability. Similar to the work of Mulder & Dekker (2019), we consider multiple ports of call that could

be skipped. For the concerned AE2 service, they are Xingang, Hamburg, and Felixstowe ports. Visiting

these ports requires a detour from the main route, so skipping them can reduce sailing distance, allowing

the vessel to catch up the schedule to the following ports. They are also not too far from another AE2

port of call, so it is relatively less costly to organize feeders or landside transport to redirect containers

from or destined for these ports in case they are skipped. We assume that when a vessel arrives at a

preceding port of one of these three ports, the captain decides whether the next port of call will be

skipped based on the accumulated delay of arrival at the current port. If the delay is more than 48

hours, the next port of call will be skipped.

Table 4 in Appendix B shows the simulation results when both speeding up and port skipping can be

used for schedule recovery. Out of 5,000 simulation runs, Hamburg and Felixstowe are skipped 8 and 10

times, respectively. The frequency of port skipping is affected by the distribution type of uncertain time

parameters. For all the 18 times of port skipping, 14 of them are triggered under the Gamma distribution

type. This suggests that big delays are more likely to occur when the uncertain time parameters obey

a Gamma distribution, assuming their first and second moment values are the same. With schedule

recovery by port skipping, service reliability at the next port is better protected. However, given that

port skipping is rare, it does not significantly impact the overall service reliability. Note that port

skipping is very disruptive to cargo operations because the containers destined to a skipped port have to

be discharged at a different port. Consequently, it makes a big change in transport planning to get them

to their final destinations. Therefore, port skipping is practiced only when there is a big delay, mainly
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due to a disruptive event. In fact, there was no single port-skipping event in our data set for the AE2

service. The impact of a disruptive event is best managed at operational-level planning, while regular

uncertainties are managed at tactical level planning (Li et al., 2016).

5.3 Daily Maersk Schedule Comparison

This subsection compares the performance of our COP schedule with the actual AE2 schedule. We first

set COP model parameters comparable to those of AE2. We run the Simulation B 50,000 times for each

distribution type to simulate AE2’s bunker consumption and on-time arrival probability. Given Daily

Maersk’s commitment to absolute reliability, we set its planned maximum speed equal to the maximum

vessel speed, 25 knots. It is observed that the worst-case bunker consumption is 12,335 tons, which

occurs in one scenario under the normal distribution. Therefore, we set the bunker limit for our model

as 12,335 tons for a fair comparison. The worst-case reliability under zero delay allowance is 81.14%

at Rotterdam and Bremerhaven, the two AE2 European ports which were covered by Daily Maersk’s

promise of absolute reliability. Given the nature of the COP model being a distributionally robust

optimization program, we set the reliability targets ηi according to this number.

To ensure the performance of the COP schedule is comparable to the Daily Maersk service, we

impose the following two transit time constraints between Ningbo and Rotterdam, and between Ningbo

and Bremerhaven, by following the Daily Maersk’s transit time promise. The Daily Maersk product used

multiple intercontinental services, including AE2 and many regional feeder services, to deliver its transit

time promise between Asia and North Europe. It is beyond the scope of this paper to go into the details

of how Maersk Line organized many services to make up the Daily Maersk product.

12∑
i=6

xi ≤ 702,

13∑
i=6

xi ≤ 769

By following the Algorithm SRA, we generate the optimal COP schedule when the binary search of

ηI+1 converges at 95.35%. The weight wi is derived as 0.20 and wI+1 is fixed as 1.

The COP program performs surprisingly well as its optimal schedule closely resembles the actual

Maersk schedule whose reliability performance was outstanding. Detailed schedules and optimal speeds

from our COP model are provided in Table 5 in Appendix B. For all the 19 legs included in the service

route, the biggest schedule difference is only 20.5 hours. This is exceptional in light of the fact that

a widely used standard in the liner shipping industry considers only a delay of more than 24 hours as

lateness (Drewry, 2013). The COP model sets a lower designed speed of 22.8 knots from Rotterdam to

Ningbo, but a higher speed of 24.5 knots from Ningbo to Rotterdam, in order to meet the Daily Maersk

transit time requirements. For each of these two parts of the voyage, the speeds at all legs are identical,

which affirms the Corollary 8 established in the preceding section.
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Detailed simulation results are presented in Tables 6 and 7 in Appendix B. Following the standard

of Maersk Line, a delay of fewer than 12 hours is not regarded as lateness. Therefore, the reported

on-time probabilities in Tables 6 and 7 incorporate this allowance of 12 hours. Note that the 88.14%

target used in deriving the COP schedule is obtained under zero delay allowance, which is in line with

our surrogate model. The AE2 schedule achieves an average on-time probability of 98.3% (delay time

average of 0.62 hours), with a range of 24.9% considering all ports across four distribution types. This

result is in line with the actual performance of Daily Maersk, which achieved over 98% schedule reliability

in practice. However, our simulations suggest that the COP schedule can further improve the average

on-time probability to 99.6% (delay time average of 0.36 hours), with a range of 3.5% only. We can

observe that the Daily Maersk schedule achieves a quite unbalanced reliability performance with almost

100% reliability in many ports but very poor performance in a few ports. In contrast, the COP schedule

balances the reliability performance in all ports with negligible sacrifice in the reliability of those ports

that achieve almost 100% reliability under the Maersk schedule. It is apparent that uncertain time

parameters’ distributions only have a marginal effect on the reliability performance of the COP schedule.

This affirms that the COP modeling approach is indeed distributionally robust. More importantly, the

bunker consumption of the COP schedule is 7,952 tons on average across four distributions, which is

11.4% lower than that of the AE2 schedule (8,979 tons). This demonstrates the advantage of our model

in balancing the trade-off between schedule reliability and bunker consumption.

We also run Simulation C to allow schedule recovery by port skipping. However, no port is skipped

in 5,000 simulation runs. This is understandable because of the very high schedule reliability at all ports

of call. Therefore, there is no arrival delay of more than 48 hours at any port, which is required for

triggering a port skipping decision.

5.4 Heuristic Schedule Comparison and the Cost of Absolute Reliability

This subsection compares the performance of the COP program with a heuristic that is widely used

in the liner shipping industry for schedule design. When a shipping line designs a service route, the

total voyage time and planned maximum speed are important decisions to be made together with port

rotation (Song et al., 2015). From the perspective of shippers, the total voyage time largely determines

port to port transit time, which has direct implications for door-to-door transportation lead time and

supply chain inventories (Zhang & Lam, 2015). For shipping lines, they are highly concerned about

bunker cost, which is often the largest cost component in maritime transport. At the schedule design

stage, shipping lines set a fixed sailing speed at a leg because it leads to lower bunker consumption than

a variable speed for covering the same distance (Lee et al., 2015). As mentioned earlier, when a vessel is

on a voyage, its speed is dynamically adjusted between the minimum vessel speed and planned maximum

speed depending on the realizations of uncertain time parameters (Song et al., 2015). When facing delays
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at sea or a port, a vessel may sail at the planned maximum speed but usually not faster. Part of the

reason is that it is costly to sail at a higher speed, and they do not have any model to quantify the

associated benefits of making a delivery on time (Lee et al., 2015). Even if they do sail faster to improve

delivery reliability, shippers are not willing to pay for a higher service level, which was the reason why

the innovative Daily Maersk product was discontinued in 2015 (Porter, 2015).

The heuristic (Lee et al., 2015) used by the shipping lines for schedule design can be formulated as

xi = Di/v
p + µi + Kiσi, where Di is the sailing distance of the ith leg; vp is the planned maximum

speed; µi and σi are the mean and standard deviation of stochastic port time; and Ki is a safety factor

that denotes port contingency. Ki is set to distribute the total buffer time of a voyage to all ports. The

total buffer time is the amount of time left after deducting the expected sailing times
∑I

i=1 Di/v
p and

the expected port times
∑I

i=1 µi from the total voyage time. We set Ki equal at all ports to have a fair

allocation of total buffer time. Given a total voyage time and the planned speed, it is easy to calculate

Ki when the port time mean and variance are provided. For example, the voyage time for an 11-week

service is 1,848 hours. Based on the data provided in Table 1, the expected total service times at all

ports are 347.40 hours. The total sailing distance is 25,016 nautical miles. If the planned maximum

speed is 20 knots, the total buffer time can be calculated as 1, 848− 25, 016/20− 347.4 = 249.80 hours.

Given that the standard deviations of port service times are summed up as 102.77 at all ports, Ki can

be computed as 249.80/102.77 = 2.43. Following the formula, schedule interval xi for i = 1, . . . , 19 can

be calculated as 35.4 hours, 43.1 hours, ..., 159.2 hours, respectively.

Apparently, the higher the planned maximum speed is, the greater the total buffer time is with the

same total voyage time, which leads to a more reliable schedule. Our COP model is flexible enough to

set different headhaul and backhaul speeds. However, in this comparison, we follow the industry practice

to set a same planned maximum speed at all legs (Lee et al., 2015; Song et al., 2015). In the COP model,

the last port is assigned a weight, which is three times that of other ports to penalize a vessel returning

late to the home port, therefore upholding the assumption that a vessel always starts a voyage on time.

Based on the same port time data provided in Table 1, we obtain COP schedules and heuristic

schedules for multiple voyage times: 12 weeks, 11 weeks and 10 weeks. To ensure a fair comparison,

we derive each pair of COP and heuristic schedules using the same planned maximum speed between

16 and 25 knots. Note that the planned maximum speed determines the upper bound of actual bunker

consumption, which should not exceed the bunker budget. We run Simulation B, which allows dynamic

speed adjustments at sea, to simulate the performance of some feasible schedules and summarize the

results in Figure 6. Following the practice of Maersk Line, as mentioned earlier, we give an allowance

of 12 hours to vessel arrivals when determining whether they are late. It is encouraging to see that,

in almost all instances, the COP model outperforms the heuristic by at least five percentage points in

schedule reliability under the same planned maximum speed. This suggests that the COP schedules can
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Figure 6: Trade-off between planned speed and schedule reliability

achieve higher schedule reliability given the same bunker budget.

Figure 6 shows the overall pattern in the relationships between the planned speed and schedule

reliability. A higher planned speed helps improve schedule reliability. However, the marginal effect

of a higher sailing speed on schedule reliability will decrease significantly as the on-time probability

approaches about 80% using the heuristic for schedule design. This explains why the global schedule

reliability in liner shipping is generally no better than 80% (Morley, 2019), avoiding burning a lot more

bunker for slightly higher schedule reliability. It suggests that absolute reliability is a costly goal in

practice. The same pattern is observed for schedules designed by the COP model. However, the COP

model can achieve near-perfect schedule reliability when the planned speed is high enough for an 11-week

or a 12-week service.

Figure 6 also reveals the impact of voyage time on schedule reliability. Schedule reliability improves

substantially under the same planned speed when the voyage time is increased from 10 to 11 weeks or

11 to 12 weeks. This is because more buffer time is created in the schedule. For example, at the planned

speed of 21 knots, the reliability of a COP schedule improves from 61.3% to 96.7% when the voyage

time increases from 10 weeks to 11 weeks. The same pattern is observed using the heuristic for schedule

design, albeit with poorer reliability than the COP model. Increasing the voyage time further to 12 weeks

will push schedule reliability even higher to 99.6% for a COP schedule. However, the marginal benefit

in schedule reliability is small because a voyage time of 11 weeks is already sufficient. This observation

is in complete agreement with the theoretical analysis presented in Section 3.2.

Figure 7 illustrates the relationships between the planned speed and bunker consumption. The

general pattern for both heuristic and COP schedules is that a higher sailing speed substantially increases

bunker consumption. However, using heuristic schedules results in a much steeper increase in bunker

consumption than using COP schedules. For example, when an 11-week service targets 80% schedule

reliability, the required planned speed for the COP and heuristic schedules, which can be seen in Figure
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Figure 7: Trade-off between planned speed and bunker consumption

6, are about 19.3 and 20.3 knots, respectively. Their corresponding bunker consumptions, which can be

seen in Figure 7, are about 6,100 and 6,900 tons. This means that the COP schedule can save the bunker

by about 800 tons or 11.6% compared to the heuristic counterpart. The difference increases to about

2,700 tons (6,300 vs 9,000 tons) or 30% equivalent if targeting 90% schedule reliability. This shows that

the COP model is most advantageous for designing schedules that require high schedule reliability. The

reduced bunker consumption is beneficial not only for cost but also for environmental sustainability as

it leads to lower emissions. Overall, the COP model performs much better than the heuristic schedule

in balancing bunker consumption and sailing speed.

6 Managerial Insights

The theoretical analysis and numerical results presented above offer important managerial insights for the

liner shipping schedule design. Firstly, there is great value in data and advanced modeling capabilities, as

demonstrated in the outstanding performance of the distributionally robust COP model developed in this

paper. Ocean carriers should collect port time and sailing time data because such data are very beneficial

to schedule design. Planners can use historical data to aid the design of robust schedules. It is also

worthwhile for ocean carriers to invest in advanced modeling capabilities to help with operations planning.

Some of the leading ocean carriers, including Maersk Line, have developed advanced decision tools for

schedule design. The innovative modeling approach presented in this study is especially advantageous for

designing highly reliable service schedules. In the simulation experiments, our COP schedule outperforms

the schedule reliability of a Daily Maersk service and, at the same time, reduces bunker consumption.
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In comparison with a heuristic widely used for schedule design in liner shipping, our COP schedules

can improve schedule reliability by at least 5% under the same bunker budget. If targeting at the

same schedule reliability level, the COP schedules consume considerably less bunker, especially at a high

service level requirement.

Secondly, despite its simplicity, the industry practice of using a constant nominal sailing speed (Lee

et al., 2015) in timetable design coincides with the structural properties of a liner service schedule, which

optimizes schedule reliability. This is a surprise but confirmed by Theorem 4. The same practice is still

relevant when a shipping line differentiates headhaul and backhaul speeds. A shipping line can set the

same speed for all the legs in the headhaul journey, and another speed for all the legs in the backhaul

journey.

Thirdly, it is possible to improve schedule reliability by increasing the voyage time, but its marginal

benefit will become small when the voyage time is no longer tight. This sheds light on the market and

operations dynamics in the liner shipping industry in the early 2010s. During the time, slow steaming

gained popularity due to an elevated bunker price (Maloni et al., 2013) and the mounting pressure to

save bunker cost. When shipping lines reduced sailing speeds, they also increased the voyage time by

deploying extra vessels in many service routes. Consequently, there was an improvement in schedule

reliability in the liner shipping industry, although the overall service quality was still far from being

ideal. Daily Maersk was the champion in improving schedule reliability, although it was short-lived.

Our analysis results decode the operational strategies behind the Daily Maersk’s promise of absolute

reliability—it is indeed feasible to achieve near-perfect schedule reliability by adding extra vessels and

slowing them down. When the voyage time is tight, the benefit of adding an extra vessel to schedule

reliability can be significant. However, the marginal benefit will become small when the voyage time

is no longer tight. Shipping lines need to find the right trade-off between vessel cost, bunker cost, and

schedule reliability targets. Although the Daily Maersk product did succeed in fulfilling its absolute

reliability promise, its operational cost was too high to be sustainable when the shippers were not willing

to pay more for a higher service level.

Fourthly, there is a fundamental trade-off between the bunker budget and the reliability targets that

can be achieved when the voyage time is fixed. With a generous bunker budget, a vessel can sail at high

speed to reduce the sailing time, which in turn creates more buffer time for achieving better reliability

performance. The innovative algorithm presented in Section 3.2 can help calibrate weights assigned to

ports as inputs to the COP model for schedule design. When the bunker budget is generous, all reliability

targets can be attained. However, an insufficient bunker budget cannot ensure the vessel to return to the

home port with a reasonably high probability for starting the next voyage on time. Therefore, shipping

lines need to set schedule reliability targets realistically in relation to their bunker budgets.

Last but not least, schedule reliability at hub ports can be protected by applying a simple but very
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effective tactic derived from the numerical experiments, i.e., to allocate additional buffer time to the

scheduled intervals, which are right before the hub ports. This tactic is useful for ensuring the overall

reliability of the service networks because delays at hub ports affect many transshipment activities. The

trade-off is a reduced probability of the vessel returning to the home port on time.

7 Conclusions

Liner shipping is the primary mode of transporting manufactured goods across continents. Its service

quality has a direct impact on the global supply chain performance of many products. However, the

liner shipping industry has long had a notorious reputation of schedule unreliability, mainly due to the

ocean carriers’ operational focus on cost as well as inherent uncertainties at sea and ports. The existing

literature on liner shipping schedule design has focused on cost minimization, and limited attention

has been given to incorporating schedule reliability in timetable design. In practice, shippers do care

about schedule reliability, but few of them are willing to pay a premium price for a higher service level.

Therefore, ocean carriers need to design reliable schedules without incurring a higher bunker consumption

than their competitors or to design schedules that meet a schedule reliability target. To the best of

our knowledge, this problem has not been adequately defined and investigated in the literature. This

paper addresses this knowledge gap by formulating a distributionally robust model to optimize schedule

reliability in liner shipping and using an innovative copositive program to solve the equivalent non-linear

stochastic optimization problem.

While we focus on the static timetable design problem in the paper, we note that the model can be

used in a real-time manner to guide the selection of sailing speed and schedule adjustment to downstream

ports by re-solving the convex relaxation based on the latest update on the remaining voyage duration,

latest estimates of the port and sailing delays, and also the remaining bunker budget available. In

this way, the speed that we can use to solve the convex relaxation of the timetable design problem

becomes an advantage. Nevertheless, this research also has its limitations. It focuses on a tactical level

decision, timetable design, and does not consider recovery decisions at an operational level. To obtain

the structural properties of the most reliable schedule, the analytical results require some assumptions to

simplify the problem. Nevertheless, the model does capture the unique and complex delay propagation

issue in liner shipping, and it can be easily extended to incorporate practical considerations, including

transit time constraints and berthing time windows. The models developed in this study are for a single-

liner shipping service. Future works need to extend the models for designing schedules of all services

involved in a liner shipping network. The focus of this study is on schedule reliability. It is possible to

relax some of the numerical experiments’ assumptions to investigate further the trade-offs between bunker

consumption, voyage time constraint, and schedule reliability in various practical settings. Depending
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on the vessels being deployed, the bunker consumption function used in the model formulation may need

to be calibrated or revised. We leave these and other issues to future research.
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Appendix A. Technical Proofs

Proof of Proposition 1

From Theorem 3.3 in Natarajan et al. (2011), we can reformulate supϕ∈Ω(τ̃ ,ϵ̃) Eϕ [f (x,v, τ̃ , ϵ̃)] as a

completely positive cone programming problem as follows:

supϕ∈Ω(τ̃ ,ϵ̃) Eϕ [f (x,v, τ̃ , ϵ̃)]

= sup II • Yu + (D ◦ u− x)
T
y

s.t.

 ai

−ei


T  y

z

 = −wi+1, ∀i = 1, 2, . . . I

 ai

−ei


T  Y Y T

Z

YZ Z


 ai

−ei

 = w2
i+1, ∀i = 1, 2, . . . I



1 µT yT zT

µ Σ Y T
u ZT

u

y Yu Y Y T
Z

z Zu YZ Z


⪰cp 0

(13)

where the decision variables are y ∈ RI , z ∈ RI , and Y, Yu, YZ , Z, Zu ∈ RI×I . The cone of completely

matrix of dimension n× n is defined as
{
A ∈ Sn×n : ∃v ∈ Rn

+, such that A = vvT
}
, where Sn×n is the

set of n × n symmetric matrices. We denote a completely positive matrix A as A ⪰cp 0. The linear

program over the cone of completely positive matrices is called completely positive program (CPP).

Taking the dual of the above CPP, we obtain the copositive program shown in the proposition. The

strong duality follows from the generalized Slater’s constraint qualification guaranteed by the technical

assumption on (1,µ,Σ) and the fact that
∑n

i=1 aia
T
i is strictly copositive (Kong et al., 2013; Hanasusanto

& Kuhn, 2017; Yan et al., 2017; Gao et al., 2019). The extension of the model to allow (τ̃ + ϵ̃) to be

negative follows from Theorem 4.1 established in Natarajan et al. (2011). As a result, the completely

cone constraint in the above CPP is relaxed to



1 µT yT zT

µ Σ Y T
u ZT

u

y Yu Y Y T
Z

z Zu YZ Z


∈
{
A ∈ S(3I+1)×(3I+1) : ∃v ∈ R+ × RI × R2I

+ , such that A = vvT
}
,

whose dual conic constraint is the one described in Remark 3 after Theorem 2.
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Proof of Theorem 2

We only need to reformulate the bunker consumption budget constraint to complete the reformulation.

Details of the transformation are shown below:

I∑
i=1

Di

(
k1v

2
i + k2vi + k3 +

k4
vi

)
≤ B

⇐⇒
I∑

i=1

Di

(
k1
u2
i

+
k2
ui

+ k3 + k4ui

)
≤ B

⇐⇒
I∑

i=1

Di

[
k1

(
1

ui
+

k2
2k1

)2

− k22
4k1

+ k3 + k4ui

]
≤ B

⇐⇒ ∃gi ≥ 0, i = 1, 2 . . . , I, such that


(

1
ui

+ k2

2k1

)2

≤ gi, ∀i = 1, 2, . . . , I
I∑

i=1

Di

[
k1gi − k2

2

4k1
+ k3 + k4ui

]
≤ B

The above two steps follow from k1 > 0. To further reformulate the constraints, we introduce another

auxiliary variable hi:

⇐⇒ ∃gi, hi ≥ 0, i = 1, 2 . . . , I, such that


h2
i ≤ gi, ∀i = 1, 2, . . . , I

1
ui

+ k2

2k1
≤ hi, ∀i = 1, 2, . . . , I

I∑
i=1

Di

[
k1gi − k2

2

4k1
+ k3 + k4ui

]
≤ B

For the above transformation to work, we need to show that at the optimal solution, 1
u∗
i
+ k2

2k1
≥ 0,

where u∗
i denotes the optimal value of ui. In general, we use the asterisk sign (∗) to indicate optimal

solutions of corresponding decision variables. By our assumption that the bunker consumption eventually

increases in sailing speed and there is room to save bunker by slowing down the vessel from the maximum

speed, the maximum speed of a vessel is larger than the turning point even if the bunker consumption

is decreasing in speed initially before the turning point. It can be easily verified that the turning point

(if exists), will always be greater or equal to − k2

2k1
, where the equality holds when k4 = 0. Hence, we

have vmax
i ≥ − k2

2k1
. If at the optimal solution, we have 1

u∗
i
+ k2

2k1
< 0 (in this case, k2 < 0 since k1 > 0),

obviously h∗
i and g∗ will be set to zero if the bunker consumption constraint is tight. Recall that u∗

i = 1
v∗
i
.

Then one can always decrease ui from u∗
i (equivalently, increase vi from v∗i ) to the point that 1

ui
+ k2

2k1
= 0

(equivalently, vi +
k2

2k1
= 0) , since vmax

i + k2

2k1
≥ 0. The values of hi and gi can still be kept at zero for

the last constraint above to hold since k4 ≥ 0. By doing so, all the constraints will be honored including

the original bunker consumption constraint. Since objective function of Problem (C), which equals to

the objective function of its dual formulation in Eaquation (13) as a result of strong duality, is increasing

in ui (equivalently, decreasing in vi), the objective value of Problem (C) can be reduced by decreasing
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ui from u∗
i to − 2k1

k2
. This contradicts the optimality of u∗

i . Therefore, at the optimal solution, we always

have 1
u∗
i
+ k2

2k1
≥ 0. Such property allows us to reformulate the bunker consumption constraint as shown

above and eventually convexify everything. We continue the transformation as follows:

⇐⇒ ∃gi, hi ≥ 0, i = 1, 2 . . . , I, such that



 gi hi

hi 1

 ⪰ 0, ∀i = 1, 2, . . . , I

(
hi − k2

2k1

)
ui ≥ 1, ∀i = 1, 2, . . . , I

I∑
i=1

Di

[
k1gi − k2

2

4k1
+ k3 + k4ui

]
≤ B

⇐⇒ ∃gi, hi ≥ 0, i = 1, 2 . . . , I, such that



 gi hi

hi 1

 ⪰ 0, ∀i = 1, 2, . . . , I

 hi − k2

2k1
1

1 ui

 ⪰ 0, ∀i = 1, 2, . . . , I

I∑
i=1

Di

[
k1gi − k2

2

4k1
+ k3 + k4ui

]
≤ B

Combined the above constraints with the copositive constraint from Proposition 1, we have the results

in Theorem 2.

Proof of Theorem 6

For the chosen w, if λ∗(w) ≤ 1− ηI+1, then by Corollary 5 and Algorithm SRA,

η̂i(w) = 1− λ∗(w)

λ∗(w) + wi
=

wi

1− η̄I+1 + wi
= ηi, ∀i = 2, . . . , I, and

η̂I+1(w) = 1− λ∗(w)

wI+1
≥ ηI+1.

Thus, Problem (Q) is feasible.

On the other hand, suppose λ∗(w) > 1− ηI+1 but Problem (Q) is feasible. Then there exists η̃i ≥ ηi

for all i that can be obtained using a schedule, and the new targets are tight. Note that η̃i > ηi for at

least some i ∈ {2, . . . , I}, otherwise our earlier argument would have obtained the feasible schedule.

Let w̃ be the corresponding weights obtained from Algorithm SRA for the new targets η̃i, with

converging fixed point λ∗(w̃) = 1− η̃I+1 in the algorithm. Then λ∗(w̃) = 1− η̃I+1 ≤ 1−ηI+1 < λ∗(w). If

we choose η̄I+1 = η̃I+1 in Algorithm SRA for the original target ηi, i = 2, . . . , I, we would have calculated

weight w′
i = (1 − η̃I+1)

ηi

1−ηi
≤ (1 − η̃I+1)

η̃i

1−η̃i
= w̃i for all i = 2, . . . , I. Hence, η̂I+1(w

′) ≥ η̂I+1(w̃),

since the weights w′
I+1 = w̃I+1 = 1 remain the same in both instances but w̃ put higher weights on the

reliability of all the ports except for the last port. Now λ∗(w′) = 1− η̂I+1(w
′) ≤ 1− η̂I+1(w̃) = λ∗(w̃) =

1− η̃I+1. From our argument on the existence of a unique fixed point in Algorithm SRA, the algorithm
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would have converged to 1− η̄I+1 ≤ 1− η̃I+1 ≤ 1− ηI+1, which contradicts the original assumption that

the algorithm converges to λ∗(w) > 1− ηI+1.

Appendix B. Tables for Parameters and Results in Numerical

Experiments
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