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Abstract—One of the major challenges of diagnosing rotor
symmetry faults in induction machines is severe modulation of
fault and supply frequency components. In particular, existing
techniques are not able to identify fault components in the case
of low slips. In this paper, this problem is tackled by proposing
a novel approach. First, a new use of singular spectrum analysis
(SSA), as a powerful spectrum analyser, is introduced for fault
detection. Our idea is to treat the stator current signature of the
wound rotor induction machine as a time series. In this approach,
the current signature is decomposed into several eigenvalue
spectra (rather than frequency spectra) to find a subspace where
the fault component is recognisable. Subsequently, the fault
component is detected using some data-driven filters constructed
with the knowledge about characteristics of supply and fault
components. Then, an inexpensive peak localisation procedure
is applied to the power spectrum of the fault component to
identify the exact frequency of the fault. The fault detection and
localisation methods are then combined in a recursive regime to
further improve the diagnosis’ performance particularly at high
rotor speeds and small rotor faults. The proposed approach is
data-driven and is directly applied to the raw signal with no
suppression or filtration of the frequency harmonics with a low
computational complexity. The numerical results obtained with
real data at several rotation speeds and fault severities, unveil
the effectiveness and real-time feature of the proposed approach.

Index Terms—Singular spectrum analysis, power spectrum,
induction machine, unbalanced rotor fault.

I. INTRODUCTION

IAGNOSING mechanical and electrical faults in induc-

tion machines (IMs) are necessary o reduce maintenance
cost and downtime. This is of particular importance due to
the extensive utilisation of these machines in various appli-
cations such as automotive, mining, manufacturing, railway,
and agriculture, where machine malfunction is a major failure
causing huge economical losses [1]. Different types of faults
can occur in induction machines as a result of the harsh
working conditions. These are mainly categorised as bearing
fault, unbalanced rotor winding fault, eccentricity fault, and
broken rotor bar [2]. Many condition monitoring techniques
have been reported in the literature including invasive and non-
invasive approaches. Today, non-invasive approach is widely
preferred as it does not require any external sensors on IMs,
thus, considered as a cost-effective technique [3]. Among
these, motor-current signature analysis (MCSA) is considered
the most popular and effective one. This is mainly because
the current sensors are relatively inexpensive and one can
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easily access the stator and rotor currents to extract the fault
frequencies.

One of the electrical faults that affect the performance and
dynamic behaviour of a machine is related to the inter-turn
and unbalance fault in the rotor and stator windings. This type
of fault in rotor winding of wound-rotor induction machines
(WRIM) induces fault harmonic components in the stator
current which are modulated as sidebands around the supply
frequency. These additive frequencies in the stator current
spectrum occur at [4], [5]:

fi=(1+2ks)fs, k=1,2,3,... (1)

where fs and s are supply frequency and slip, respectively.
Based on (1), the range of fault variations with considering
no-load slip (s,; =~ 0) and rated slip of WRIM (S,qteq) 18
[(1 — 2Spatea)fs fs]- It means that in a lower operational
slip of motor in the presence of the unbalanced fault in the
rotor winding of WRIM, the fault component frequency will
be closer to the main frequency (supply frequency). Therefore,
diagnosing fault location and its discrimination can be more
difficult in the case of low slips. A simple way to emulate the
unbalanced rotor fault is to insert an additional resistance in
series, denoted by R,,,,5, to one phase stator/rotor winding [6].

Fourier analysis (FA) is a common classic approach in this
context. However, this technique has some limitations such
as frequency resolution, noise, spectrum leakage and loss of
time evaluation, and it fails as slip varies, particularly when the
unbalanced fault R,,,,; is small [6]. For clarity, power spectrum
of two 12.8 seconds’ healthy and faulty current signals (equiv-
alent to 40,000 points at sampling frequency Fj,, = 2500
Hz) with Ry, = 0.003 p.u. and s = 0.06 (1450 rpm) are
shown in Figure 1. The power spectrum was preceded with
a Hanning window to reduce the effects of spectral leakage.
As found from Figure 1, the fault component at around 46.66
Hz is not visible from the spectrum which challenges the FA.
Another drawback is that FA is only applicable when enough
samples (points) are captured before calculating the power
spectrum. This limits the ability to perform real-time condition
monitoring which is crucial to the immediate fault detection
process and unwanted downtime in industrial machines [7].
Figure 2 compares the power spectrum of one faulty signal,
preceded with a Hanning window, under different acquisition
intervals (6 and 12.8 seconds) with the same sampling rates.
It is found from this figure that although fault is recognisable
by inspection of a 40000-point FFT (fast Fourier transform),
it is weakened significantly when the frequency resolution is
decreased (Figure 2 (b)).

Existing related studies showed that stator and rotor cur-
rents are directly affected by asymmetry in the rotor and
stator winding of WRIM, respectively [8]-[11]. Hedayati Kia,
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Fig. 1. Healthy (blue) and faulty (red) power spectrum of sample current
signals at s = 0.03 (1450 rpm) and R,,; = 0.003 p.u. The fault has
occurred at 46.66 Hz (dashed line), however, it is not recognisable using
Fourier analysis as can be noticed in the magnified region.
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Fig. 2. Comparison between two different faulty spectra with s = 0.03 (1450
rpm) and R, = 0.156 p.u. (a) and (b) show 40000-point (12.8 seconds) and
15000-point (6 seconds) FFT of current the same signal, respectively. While
the fault location is visible in (a), it can be barely recognised be inspecting

(b).

[8], showed that the energy of a smoothed current in a
healthy WRIM would be significantly smaller than that for a
faulty one. Hence, discrete wavelet transform (DWT) as time-
frequency/time-scale signal processing was used to estimate
and remove the DC current components. Since fault frequency
is so close to the main frequency under the rotor asymmetry
fault, and some frequencies contaminate the spectrum of
stator current, a proper band of frequency for covering fault
frequency cannot be obtained. Therefore, more sensors and
calculations need to be installed to allow an efficient fault
detection process. In [11], an online unbalanced rotor fault
detection based on a combination of time and frequency
features of current and vibration signals were proposed. The
authors considered Fourier and Hilbert transforms, and envelop
detection (ED). The main limitations of this work are the
need to access both current and vibration signals, and to
perform several complicated feature extraction techniques.
In [12], an enhanced field-oriented control approach was
proposed for induction machines to detect the unbalanced
rotor fault. The approach is capable of detecting the so-called
high-resistance connections and consequently regulating the
negative-sequence current.

In a recent research [13], an adaptive fault diagnosis tech-
nique for wind power gearbox was proposed. The researchers
presented a Modified Laplacian of Gaussian filter (MloG).

Their method involves some pre-processing followed by a
marginal envelope spectrum entropy technique to measure the
fault characteristics. The drawback is that the pre-processing
may lead to failed diagnosis of small faults. Other popular al-
gorithms include envelope analysis based on Hilbert transform
(ENV) [14], modulation signal bispectrum [15], and extend
Park’s vector approach [16]. A popular energy operator called
Teager—Kaiser energy operator (TKEO), originally proposed
in [17], has been widely used for machinery fault diagnosis,
including gearbox [18] and bearing faults [19]. In [20], TKEO
was used to demodulate the stator current and removing the
main component of the current. However, it still may destruct
adjacent components, associated to fault, which consequently
decreases the detection accuracy. A frequency-based method
proposed in [21] that requires calculating two spectrograms
using fixed-length windows to segment the spectrograms.
Since this method solely relies on FA, it may fail in low
frequency resolutions.

Recently, the tendency toward using deep neural networks
for induction machine fault diagnosis has been increased. A
one-dimensional convolutional neural network (1D-CNN) was
proposed in [22] to identify, quantify, and localise bearing
damage. In [23], a deep learning network was proposed that
learns the adaptive features without using prior knowledge.
The network was trained to develop features that can dis-
tinguish different fault categories. A semi-supervised deep
learning technique was proposed by Razavi-Far et al. for
diagnosis of gear fault [24]. Their method is capable of
diagnosing multiple defects including simultaneous ones in a
gearbox directly connected to an induction machine shaft. A
time domain current analysis approach was proposed in [25]
for diagnosis of broken rotor bars in squirrel-cage induction
machines. This method extracts histogram of oriented gradient
(HoG) features from input signals which are then fed to a
neural network for classification. Due to high computational
complexity, this method is not suitable for real-time monitor-
ing applications. In general, deep learning-based methods rely
on a large-scale dataset to be trained. This normally requires
a powerful computer due to a high computational complexity
involved. Once the trained network is obtained, the model
can be implemented for online condition monitoring and/or
as a digital twin in real-time settings. However, if the working
conditions of the machine change, then, the network should
be re-trained according to the relevant training dataset.

A common challenge in the existing research is that when
the supply and fault spectra of the current signature in IMs
have significant frequency overlap, frequency-based methods
fail to detect the fault. In order to tackle this issue, in this study
we employ the singular spectrum analysis (SSA) technique.
SSA is a powerful time-series analysis technique which is able
to decompose a time-domain signal into several components
with different trends. Despite the frequency overlap, SSA is
able to calculate these trends in the eigenvalue spectra (rather
than the frequency spectra) leading to finding a subspace
where the fault component can be recognised. Interestingly,
the obtained eigen-space also contains information about the
frequency content of the data. For example, a periodic com-
ponent in the data is reflected as a pair of equal eigenvalues.
These features provide the flexibility to design and incorporate
some data-driven filters along with existing prior knowledge
about the input data to detect a specific trend, e.g., fault
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component, in the data. The aim of this study is to introduce
an efficient SSA-based method both in terms of diagnosis’
accuracy and computational complexity. We first use SSA to
decompose the current signature into its encompassing com-
ponents. Considering that the supply frequency of the current
signature is known, we propose a sequence of simple grouping
and pruning steps (known as data-driven filters) to identify
the fault. This contribution is complemented by proposing a
fast peak localisation algorithm which is then combined with
the aforementioned SSA-based method to increase the fault
diagnosis performance.

The rest of the paper is organised as follows. Next, the
mathematical description of SSA method is given. The pro-
posed approach in this study includes three key parts. First, an
SSA-based method is proposed in Section III for classification
of healthy and faulty signals. Second, a fault localisation
technique along with the mathematical details is provided
in Section IV. Third, the procedure to integrate these two
methods in a recursive manner is described in Section V. In
Section VI, the experimental set up and associated results are
provided. Finally, the discussion and conclusion are drawn in
Sections VIII and VII, respectively.

II. SINGULAR SPECTRUM ANALYSIS
A. Background

SSA is a model-free spectral estimation method, which de-
composes a given signal into several interpretable components
including slowly varying trends, oscillatory components, and
unstructured noise. It is considered as a signal processing
approach which works based on time series analysis and
multivariate statistics principles. SSA is able to recognise
different trends in the eigenvalue spectra irrespective of the
frequency overlap among such components. This leads to
finding a new subspace containing more information about the
underlying components [26]. Although SSA has been widely
used as a standard tool in climatic and meteorological time
series analysis, nonlinear physics, and biomedical engineering,
there is little work carried out to study its applicability for
fault detection in IMs. In a study reported in [27], a vibration-
based method was used to build a baseline space from the
feature space for fault detection in rolling element bearings.
In contrast to [27], our proposed method here is data-driven,
is applied to current signals and does not require any baseline
space. In fact, our work is inspired by a series of recent SSA-
based studies for separation and denoising biomedical signals
such as Electromyography (EMG) and Electrocardiography
(ECG) [28]-[32]. These works have proven that SSA is able
to precisely detect and extract spectral components of interests
event if they are closely located in the frequency domain and
are partially overlapped.

B. Mathematical description of SSA

In essence, SSA decomposes the data into a number of
components, classified as slow-varying, oscillatory, and un-
structured, without leaving the current domain. This is done
through two major stages, i.e., decomposition and reconstruc-
tion. Assume the input real-valued time series is represented by
the vector y = [y1, Y2, ...yn| T of size 1 xn. The corresponding
trajectory matrix denoted by Y can be represented as follows:

Y1 Y2 Ym
Y2 Y3 Ym+1

Y= . ) (2)
Y Y+ - Yn

where 1 < [ < n is an integer, called windows length, and
m = n — 1+ 1. In fact, the trajectory matrix is obtained
by constituting a map of sequential lagged vectors of length
l. The next step is applying the singular value thresholding
(SVD) to the covariance matrix C = YY7”. Assume that
A1, A2, As, ..., Ay are singular values of C arranged in decreas-
ing order so that Ay > Ay > ... > \; > 0. Further, ey, eo, ..., €
are their associated eigenvectors. Every eigenvalue together
with the associated eigenvector reconstructs one specific com-
ponent of the original time series. Projecting the time series
onto the direction of each eigenvector yields the corresponding
temporal principal component (PC). If v; = Y7e;/v/\;, then
the SVD of the trajectory matrix can be written as

Y=Y +Ys+Y3+---+Yy 3)

where d = argmax{)\; >0} and Y; = /Ne;v]. The
set (v/\;,e;,v;) is called i-th eigentriple. The eigentriples
contain information about the frequency content of the data.
For example, a periodic component in the data is reflected as
a pair of (approximately) equal eigenvalues in the output of
SSA. Moreover, the highest peaks in the Fourier transform of
the corresponding eigenvectors are related to the frequency of
the periodic component [30]. Generally, most of the important
information about the signal is buried in the components
corresponding to larger \;’s. However, this is not always the
case and smart grouping techniques (known as data-driven
filters) must be adopted to extract the expected information
from the signal.

III. PROPOSED SSA-BASED FAULT DETECTION

In general, the grouping procedure in SSA is to split the set
of indices i € {1,2,---d} into k disjoint subsets I, Io, - - - I,
where each subset consists of indices of p eigenvalues I =
{#1,42,- - i, }. Bach eigenvalue in the decomposition stage is
equal to the variance of the signal in the direction of the
corresponding PC. Larger eigenvalues correspond to signal
components with greater energy. Therefore, one can divide the
eigenvalues into two subspaces and conclude that the largest
eigenvalues belong to the signal subspace, and interpret the
smallest eigenvalues as noise. However, a greater number of
subspaces can be obtained depending on different groups of
eigenvalues, each interpreting a specific trend in the signal.
It is worth noting that there are no general rules for group-
ing. However, researchers define different grouping strategies
depending on the special requirements of the applications. In
other words, a priori knowledge about the problem is usually
used to design the right grouping technique.

Here, we assume that the input signal y is the stator current
signature decomposed using SSA. Given the knowledge about
supply component and the effects of faults, we propose to ap-
ply the following criteria to reject most unrelated components
and to identify the fault:

o Coarse subspace rejection: In general, eigenvalues related

to signal components are located in the lower subspace
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while those corresponding to unstructured noise belong
to higher subspace. To preserve the lower subspace and
reject the higher subspace, the following criterion is used.
Any component corresponding to the eigenvalue \; that
satisfies ¢ > 7 via (4) is rejected:

T = arg min M >« 4)
L PPV

where a determines a percentage of total variance in the
signal, and a is defined as the number of eigenvalues
whose overall variances are above this percentage. A
small « is not desired as it leads to rejection of a
great number of eigenvalues which may include the fault
component. Hence, it is rational to select a large «
to avoid rejection of fault component and only remove
unwanted higher subspace (equivalent to high frequency
noise). Following the literature [30], [32], and based on
our experimental verification, which will be represented
in Section VI, we select o = 0.95 in this study.
Periodic/Quasi-periodic component extraction: One inter-
esting and useful property of SSA is that it produces
“eigenvalue pairs” associated to any periodic or oscil-
latory time series component in the signal [30]. On the
other hand, it is formerly known that both rotation of the
rotor and the experienced fault lead to periodic/quasi-
periodic components (appearing as eigenvalue pairs) in
the decomposed signal. Thus, SSA seems to be appro-
priate for extracting these components. Figure 3 depicts
an example plot of eigenvalues for both healthy and
faulty time series, which gives an indication of the com-
mon/distinct components between the two. It is evident
from this figure that the first four largest eigenvalues
are pair-wise similar in both healthy and faulty signals.
These eigenvalue pairs correspond to the st and the 3rd
harmonics of the current signal, respectively, which are
known to exist in both healthy and faulty conditions. The
remaining eigenvalues are to be grouped appropriately to
find those corresponding to the fault. In order to find
suitable grouping criteria, the following characteristics
should be considered: 1) noise can also generate equal
eigenvalue pairs, 2) eigenvalue pairs associated to quasi-
periodic components are not exactly equal, and 3) the cor-
responding eigenvectors have almost the same frequency
amplitude. Assuming any pair of eigenvalues (\;, A;), we
propose the following conditions which must be met:

1) (i,7) satisfies (4).

2) 11— % < B.
3) |1 - ngz‘“ < 7, where Fp(e;) is the peak value

of eigenvector e; in the frequency domain.

The value of parameter § determines the degree of
periodicity of the signal component associated to (\;, A;).
B = 0 corresponds to exact periodic components, while
B =1 does not enforce any periodicity at all. In reality,
both supply and fault components are periodic, thus, we
empirically select 5 = 0.1 to preserve any components
with this characteristic. Likewise, v = 0.4 is selected to
preserve eigenvector pairs corresponding to components
whose frequency amplitudes are within a specific limit.
In Section VI, we will provide an experiment to discuss
how these values are empirically selected.
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Fig. 3. Sorted eigenvalues in descending order. It is evident that the first two
largest pairs of eigenvalues are exactly similar for Healthy and Faulty time
series.

o Fine subspace rejection: In order to cope with the situ-
ations of faults with associated frequencies close to 50
Hz (high rotor speed), a fine subspace selection is further
conducted. To do this, the frequency associated to the
peak value of the Fourier spectrum in the remaining
eigenvectors (f; (;—2,...;)) are compared to that for the
eigenvector associated to the largest eigenvalue (f7).
Then, the components with frequencies more than the
largest eigenvalue frequency are omitted (i.e. f; > f1).
Note that the Fourier spectrum is calculated from the
eigenvectors and there is no need to reconstruct the
principle components which is an expensive operation.

e Low-power component rejection: The remaining compo-
nents so far are most likely to include the main rotatory
and fault components plus a few low-energy noise-related
ones. In order to reject all other components and only
keep the supply and the fault, we propose the following
criterion that calculates the relative energy of the remain-
ing eigenvectors:

. . ./_‘.p(ei)2
"= {Z' FleE ”} ®

where 1 = 0.65 is a constant selected empirically with
further details provided in Section IV. According to
working principle of IMs, the main rotatory component
centered at 50 Hz has the highest energy in the current
signature’s spectrum [1]. The fault component, though,
has far less energy compared to the rotatory one but
still has a higher energy compared to noise and other
unwanted components. Therefore, the eigenvalues that
fall into the subset x are preserved.

After applying all the above steps, if the number of remaining
eigenvalues is more than ONE, the signal is classified as
faulty otherwise it is regarded as a healthy signature. The
pseudo-code of the proposed algorithm is given in Algorithm
1. Four constants in the grouping stage, ie. «, B, v, 7,
are selected empirically and remained unchanged through the
entire procedure.

IV. PROPOSED FAULT LOCALISATION METHOD

The SSA-based method is only able to classify healthy and
faulty signatures not to locate the fault. In this part of the paper,
we propose a heuristic algorithm called fast peak localisation
(FPL) that searches over the peaks of power spectrum of the
extracted faulty component by SSA to locate the fault. Details
of the proposed method is given as follows.
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Algorithm 1 SSA-based fault diagnosis.

Algorithm 2 FPL-based fault localisation.

Input: Rotor signal y, Sampling frequency F,,.
Initialisation:
1) Signal preparation.
2) Set threshold 7.
Output: Detect fault component in y.
1) Generate the trajectory matrix Y
2) Calculate the covariance matrix C = YY7
3) Perform SVD on C and obtain {)\;,e;}!_,
4) Reject A\;’s with ¢ > 7
5) Reject (A, A;) pairs that do not satisfy |1 — :\\—j| < B,
|1 — F280] < v, and (4)
6) Reject (\;)’s that do not fall into x
0: If kK > 1, y is faulty (F), otherwise it is healthy (H).

Input: Faulty component y, Sampling frequency F,.
Initialisation:
1) Signal preparation.
2) Set threshold h.
3) Calculate FFT spectrum x = F(y) via (6).
4) Denote p as the index of point associated to 50 Hz.

Qutput: Detect fault component in x.
for k=1 to pdo
if (xx, > x1_1) AND (2§ > z41) then
if ;. > h then
Keep z;
end if
end if
end for

Recall from Section II-B, let us define the decomposed
faulty component of current time series by § = [§1, G2, .- 0n]
of size 1 x n. We denote the n-point non-negative frequency

spectrum X = [x1, %2, ..., Tk, ...,a:n]T in which every point
can be calculated using FFT as follows [33]:
n—1
T =Y Gme Mk =0,.,m -1 (6)
m=0

where €727/ is a primitive n-th root of one. By definition, x,
is a peak (local maximum) if it is not smaller than its adjacent
samples, i.e., z > xx_; and x; > x41. Differentiation
(derivative) is the traditional method to find the maximum and
minimum values of a function [33]. Nevertheless, the presence
of random noise in real-life signals normally yields many false
zero-crossing if this technique is used. The typical solution is
to smooth the input signal with some low-pass filters which
usually destroys the original signal samples at the same time.
This would be a major drawback in our work where the fault
could be very small and signal smoothing might completely
remove the fault peak. To avoid this, we omit the traditional
mathematical approach and rather develop a computerised
algorithm to check all the samples in the spectrum and find
the local peaks. We simply define a local peak at the highest

30

Fault Component
201 x Detected Peaks
Supply Component

Amplitude (dB)

230

40

-5i

=}

i
k 3
<0 £ 7 [

25 30 35 m 45 50 55 60

Frequency (Hz)

Fig. 4. Two spectral components of a current signal with R,,,,; = 0.003 p.u.
and 1450 rpm. The supply (purple) and fault (blue) components are separated
using the proposed SSA method. The red crosses show the detected peaks
using the proposed FPL technique. The green rectangular indicates the location
of fault at f = 46.74 Hz. A sample peak location area is enlarged for better
visibility where the valleys are identified by red circles.
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point between two valleys. Therefore, if the neighbouring
samples around a point is identified as valleys then it should
be marked as a peak. This is done by sweeping through all the
samples and comparing the amplitudes of every sample with
its neighbours. A local peak is flagged once value of a sample
is not smaller than its adjacent samples. It is worth to mention
that this process is applied to the fault component that was
already extracted by SSA in the previous step, and not directly
to the Fourier spectrum of the original current signature. In
other words, the proposed SSA-based method identifies a
subspace where fault can be detected properly. Then, this
subspace is used by the FPL-based method to localise the fault.
Figure 4 illustrates the results of peak localisation (depicted
by red crosses) for a sample of faulty component (depicted
in blue). For better visualisation and comparison, we have
also included the supply component (depicted in purple) in
this figure. It is found from Figure 4 that a faulty spike has
appeared at f = 46.74 Hz. Notably, Figure 4 reveals that
the decomposed components using SSA allow localisation of
fault using the proposed FPL method, while power spectrum
of the input current signature does not give such indication
(Figure 1). FPL algorithm should automatically identify and
locate such faults. In order to do this, FPL compares all the
extracted local peaks within [0 50] Hz, against a predefined
threshold (denoted by h in Algorithm 2). If any local peak
falls above the threshold, it is flagged as fault and its location
is recorded. This process is repeated for all the samples to
detect any existing spike which may represent a fault. The
full procedure of this method is presented in Algorithm 2.

V. PROPOSED INTEGRATED SSA-FPL METHOD

The proposed methods, described in the previous sections,
are capable of diagnosing current signature of IMs. While FPL
is very simple, suitable for real-time fault localisation, SSA-
based method is slower but able to decompose the current
signature into finer frequency contents which might be hidden
under the main frequency sideband. It is therefore rational to
combine these two methods in a way to improve the diagnos-
ing performance, particularly at a challenging case of higher
rotor speed and low fault severity. In this part of the paper,
we describe a topology to integrate SSA and FPL based on
an adaptive strategy as depicted in Figure 5. In this approach,
as observed from this figure, the current signature is captured
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first and then it is diagnosed with SSA method based on a pre-
defined window size. If the outcome is detection of a faulty
component, then, the corresponding component is forwarded
to FPL for fault localisation. However, if SSA is unable to
detect any fault, the signal might either be healthy or include
a small fault. In order to increase the accuracy, we repeat the
SSA diagnosis, this time with a larger window size (equivalent
to higher eigenvalue spectrum resolution). This process is
repeated for several iterations until the location of fault is
found or the signal is classified as healthy. The advantage
of this procedure is that as the window size increases, finer
spectrum contents can be decomposed, therefore, detection
accuracy could be increased. The negative impact, though, is
slight increase in the processing time which is negligible as it
is only fraction of a second.

To summarise the roles and effects of both SSA and FPL,
we refer back to Figure 1 where a sample of faulty signature
with s = 0.03 and R,»s = 0.003 p.u. was given. According to
this figure, FPL fails if applied directly to this signal. However,
applying SSA to this signal will extract the faulty component
from the original spectrum (Figure 4 - solid blue curve). If
FPL is applied to the extracted component, i.e., to the output
of SSA (Figure 5), the fault will be correctly localised (Figure
4 - green box). Such combination of the two methods can
obviously improve the overall diagnosis performance which
will be supported by our experiments in the next section.

VI. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
approaches, fault diagnosis of unbalanced rotor winding in
WRIM by means of stator current signature is investigated. A
three-phase 250 W, 50 Hz, 400 V, four-pole, 1360 rpm WRIM
digitally controlled by brake system is tested in different
operational slips and fault severity. The severity of fault is
controlled by additive serial resistance (R,y;) in the rotor
winding of WRIM as shown Figure 6. In this regard, extensive
range of resistances and slips are considered to show the
validity of the proposed approach in different conditions.
The details of system setup, installed in our laboratory at
Shahrood University of Technology, is illustrated in Figure
6. The numerical analyses in this work were conducted in
MATLAB R2019a environment, on a MacBook Pro laptop
with Quad-Core Intel Core i5 2.4 GHz and 8 GB of Memory.
Two sets of data were collected to validate the performance
of the proposed approach. First dataset (D1) is composed of
three different slips (s) of WRIM 0.06 (1410 rpm), 0.047
(1430 rpm), and 0.033 (1450 rpm), each having 18 trial
signals for faulty and 9 trial signals for healthy class in two
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Fig. 5. Flowchart of the proposed integrated SSA-FPL approach.
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different fault cases (R,,, = 0.156,0.468 p.u.). This dataset
includes 27 healthy signal and 54 faulty signals. In the second
dataset (D2), the speeds were 1370, 1410, and 1450 rpm,
as well as 1477 rpm for the no-load (NL) case. Various
faults at R,,, = 0.003,0.031,0.093,0.156, and 0.218 p.u.
were considered. Totally, there are 900 faulty and 180 healthy
signals of length 40000 samples in this dataset.

A set of well-established performance measures, i.e., Ac-
curacy, Precision, Recall and FI-score, have been considered
to evaluate the performance of the proposed methods. These
metrics are calculated as follows:

N B TP + TN
CCHRASY = TP L FP + FN + TN
Precisio TP
recision —
TP + FP o
Recall = TiP
~ TP+ FN

Fl— 2 x Recall x Precision

Recall 4+ Precision

where TP, TN, FN, and FP, denote True Positive, True Nega-
tive, False Negative, and False Positive, respectively.

In the first experiment, we evaluated the performance of
the SSA-based method and compared it with a simple Fourier
analysis on D1 dataset. The diagnosis results using these
methods are given in Table I. It is found from this table that
SSA-based approach performs very well and have recognised
all healthy signals and failed to detect only 2% of the faulty
signals. Fourier analysis shows perfect detection of healthy
signals, but weaker performance in detecting faulty signals.
The 5% failure mainly corresponds to signals with small
faults (smaller R,,;) as expected. This experiment verifies
the effectiveness of SSA-based method for the purpose of
fault diagnosis from motor current signature. However, more
challenging conditions are to be explored next.

We used D2 dataset which includes more samples of current
signatures with wider range of faults including a very small
fault (Ryns = 0.003 p.u.) as well as a high speed at 1450
rpm. Figure 7 explains how the amplitude of fault frequency

TABLE I
AVERAGE CLASSIFICATION ACCURACY WITH D1. H AND F REFER TO
HEALTHY AND FAULTY, RESPECTIVELY.

Predicted class

Actual class SSA-based Fourier Analysis
H F H F
H 100% 0%  100% 0%
F 2% 98% 5% 95%
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Fig. 7. Amplitude (power spectrum) of healthy and faulty current signa-
tures versus various speeds. These values are obtained by calculating the
fault frequency using (1) and by manually measuring the amplitude of the
corresponding sample at both faulty and healthy signals spectrum.

component changes at various rotor speeds in this dataset.
It is noticeable from this figure that the amplitude of fault
with Ry,,» = 0.003 p.u. is almost the same as that for
healthy signatures. Therefore, it cannot be distinguished easily.
Furthermore, based on observation from Figure 7, as the rotor
speed increases the amplitude of fault component drops which
makes the fault detection more challenging. Thanks to the
spectral component analysis using SSA-based method most
of these fault components can be recognised.

In Tables II and III, a detailed performance analysis of
various faults and speeds can be found. These results were
calculated with D2 dataset and provide insight on the portion
of correctly diagnosed signals under various working con-
ditions. According to these tables, both methods inevitably
perform weaker at small faults and higher speeds while their
performance is mostly around 100% in other conditions. As
expected, the detection accuracies are considerably low at
no-load (NL) condition. This is mainly due to minimum
interaction between rotor and stator fields leading to significant
modulation of fault and supply components. Nevertheless,
SSA-FPL performs slightly better, especially when severity of
fault increases. In general, when SSA is combined with FPL,
the diagnosis performance is considerably increased. This is
due to the fact that SSA-FPL repeats the spectrum analysis
under various resolutions until diagnosing the fault which is
followed by localisation using FPL.

In order to visualise how the accuracy changes at different
rotor speeds and fault severity, we conducted an experiment
with D2 dataset and recorded the detection accuracy accord-
ingly. Figure 8 illustrates these results for SSA-FPL method. It
is clearly observed from this figure that the proposed method
performs very well for moderate cases, i.e. R,,, =0.031,
0.093, 0.156, and 0.218 p.u.. However, the performance is
lower with small fault (R,,;, = 0.003 p.u.). Except this case,
SSA-FPL still achieves high accuracy under the same fault
conditions but at lowest speed, i.e., 1370 rpm. It is generally
observed that as the motor speed increases the accuracy falls
moderately. According to Figure 8, the proposed method
recorded nearly 100% accuracy of healthy signal detection in
all speeds.

Generally, based on SSA theory, as the window size [

TABLE II
DIAGNOSIS RESULTS WITH D2 USING SSA-BASED METHOD UNDER
DIFFERENT WORKING CONDITIONS.

Rynp (pu.) Speed ipm) TP TN FP FN  Accuracy (%)

1370 30 0 12 73

1410 2 0 0 17 62

0.003 1450 6 0 o0 19 35
477(NL) 5 0 0 40 1

1370 50 0 0 100

1410 8 0 0 2 95

0.031 1450 4 0 0 5 84
477(NL) 7 0 0 38 15

1370 50 0 0 100

1410 5 0 0 0 100

0.093 1450 8 0 0 7 89
477(NL) 3 0 0 7 16

1370 50 0 0 100

1410 5 0 0 0 100

0.156 1450 2 0 0 3 93
477(NL) 10 0 0 35 2

1370 0 0 1 97

1410 5 0 0 0 100

0.218 1450 5 0 0 0 100
477(NL) 13 0 0 32 28

1370 T 40 4 0 o1

o 1410 0 4 0 0 100
1450 0 3 11 0 75

477(NL) 0 29 16 0 64

TABLE III

DIAGNOSIS RESULTS WITH D2 USING ITERATIVE SSA-FPL METHOD
UNDER DIFFERENT WORKING CONDITIONS.

Rynp (pu.) Speed ipm) TP TN FP FN  Accuracy (%)

1370 0 0 7 84

1410 33 0 0 12 73

0.003 1450 31 0 0 14 69
477(NL) 7 0 0 38 15

1370 50 0 0 100

0.031 1410 5 0 0 0 100
1450 B8 0 0 2 95

477(NL) 10 1 0 35 2

1370 350 0 0 100

1410 5 0 0 0 100

0.093 1450 5 0 0 0 100
477(NL) 13 0 0 32 28

1370 50 0 0 100

1410 5 0 0 0 100

0.156 1450 4 0 0 1 97
477(NL) 14 0 0 31 31

1370 50 0 0 100

1410 5 0 0 0 100

0.218 1450 5 0 0 0 100
1477(NL) 17 0 0 28 37

1370 T4 0 0 100

o 1410 0 45 0 0 100
1450 0 4 2 0 95

477(NL) 0 39 6 0 86

increases, finer spectral resolution can be achieved, leading
to increased fault detection accuracy. In order to investigate
the effects of the window size on diagnosis performance a
typical experiment was conducted to demonstrate the trade-
off between the fault diagnosis and the computation time.
We ran the SSA-based algorithm for various window sizes
and recorded the computation time and the corresponding
fault diagnosis accuracy. The result is shown in Figure 9.
As noticed from this figure, when window size increases,
both fault detection accuracy and computation times increase.
However, the variations in the computation time is under
one second even if very large window size is considered.
This property has a positive implication when this system is
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Fig. 8. Fault detection performance at various speeds and faults using SSA-

FPL method with D2 dataset.

Accuracy (%)

30 —&— Accuracy of diagnosis (%)
Elapsed time (seconds)
T T

0 4[;0 6(;0 850 10‘00 1200 1400
Window size
Fig. 9. Fault detection accuracy and elapsed time versus window size
variation [. The left and right vertical axis show fault detection accuracy and
computation time, respectively.

implemented in practice. It allows integrated SSA-FPL method
to adaptively change the window size while the computation
time might would not be significantly affected. For the sake
of consistency, we have considered window sizes [ ~ 700 as
baseline in all our experiments.

Next, we conducted an experiment to verify the empirical
selection of four key parameters (i.e., o, 3, 7, ) in SSA
grouping stage. During each sub-experiment, we fine-tune the
value of one parameter in a specific range, e.g. [0, 1], while
keeping other parameters fixed. Figure 10 demonstrates the
recorded accuracy (%) of fault detection by SSA, versus varia-
tions of these parameters. To ensure the generalisation of these
parameters, we performed this experiment with D1 dataset,
and then used the selected values through all experiments with
both D1 and D2 datasets. According to Figure 10, a monotonic
trend in accuracy is observed when these parameters vary.
Moreover, the empirical selection of a = 0.95, § = 0.1,
v = 0.4, n = 0.65 ensures a safe margin to provide highest
diagnosis accuracy.

In order to observe and analyse the cases where SSA-
based method fails, we depict in Figure 11 the accuracy of
fault detection against various fault severities. This graph is
for signals at a high speed, i.e., 1450 rpm, where the fault
detection is more challenging. As seen from Figure 11(a) the
poorest performance belongs to the cases with R, = 0.003
p-.u. However, the accuracy is significantly improved when
Rynpy > 0.031 p.u., and it monotonically continues until it
reaches 100% for R,,, = 0.218 p.u. Furthermore, Figures
11(b) and (c) show two sample signature spectrums where
SSA succeeds and fails, respectively.
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Fig. 10. Effects of changes in SSA parameters, i.e. o, 3, v, 1, on the diagnosis
accuracy with D1 dataset.
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Fig. 11. SSA-based method’s failure analysis: (a) fault detection accuracy at
speed 1450 rpm at different fault severities. Sample signatures of the same
speed with R,,,;, = 0.003 where SSA-based method (a) succeeds and (b)
fails.

In the proposed FPL algorithm, the parameter h is empiri-
cally selected. Different choices of h may influence differently
on the diagnosis’ performance. We conducted an experiment to
study how changes in h value can affect the fault localisation
accuracy. This experiment was conducted on the entire signals
in both D1 and D2 datasets where average accuracy against
changes of h € [0 1] was recorded. Figure 12 is a plot of
the result of this experiment. As seen from this figure, highest
accuracy is obtained for h ~ 0.5 indicating the best choice
for h. It is worthwhile to mention that the trend of the graph
in Figure 12 indicates the robustness of the proposed method
against varying h.

In order to assess the quality of proposed fault localisation
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Fig. 12. Average accuracy of fault localisation against varying h, when FPL
applied to both D1 and D2 dataset.
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Fig. 13. Average localisation accuracy of different fault conditions after
applying proposed FPL-based method and traditional differentiation. The
results are averaged over all slips.

method (i.e. FPL) a performance measure is calculated and a
comparison with traditional differentiation method is provided.
Assuming that the number of faulty components and those of
incorrectly localised for all rotor speeds are denoted by Nyotq;
and N;pcorrect, respectively. Then, the localisation accuracy
(LA) is simply obtained via:

LA

Ntotal - Nincorrect
- x 100. (8)
Ntotal

The value of above metric is illustrated in Figure 13 for
both methods. It is found from this figure that FPL-based
method outperforms traditional differentiation method. This
is particularly evident in fault conditions with small R,
where differentiation technique does not perform well due to
smoothing it applies to the signal.

Table IV compares the average performance metrics as well

as running times when different methods applied to dataset
D2. For comparison, we considered nine different methods,
namely FA, DWT, (ENV [14], TKEO [20], KNN (k-nearest
neighbour), MLP (multilayer perceptron), SVM (support vec-
tor machine), ID-CNN [22], and LiftingNet [23]. As already
mentioned, the proposed method (as well as FA, DWT, ENV
and TKEO) is a data-driven technique which does not require
a training phase as opposed to neural networks or traditional
classifiers. It is designed based on the knowledge about the
properties of the current signature such as supply frequency
(which is known and fixed) and the frequency range in which
the fault can potentially occur. Here, we compare various
techniques with different working principles: classic machine
learning (SVM, KNN and MLP), deep neural networks (1D-
CNN and LiftingNet), and data-driven time/frequency domains
(FA, DWT, ENV, TKEO, SSA, and SSA-FPL). A 10-fold
cross validation was applied for methods that require a train-
ing phase. As found from this table, SSA-FPL outperforms
where it achieves highest accuracy, recall and F1. TKEO
and LiftingNet achieve third and fourth highest accuracies,
respectively, comparable to SSA-based method. The main
reason that deep learning models do not perform very well
is their reliance on large-scale training databases which are
not always available. It is also observed that DWT performs
slightly better than FA.
Table IV further shows the average computation time to
diagnose the fault of a current signature under the same
conditions for all methods. Both testing and training times are
reported only for those methods that require such procedure.
According to the table, FA is the fastest technique among
data-driven methods where it can detect the fault within 0.15
seconds. Deep learning methods, i.e. ID-CNN and LiftingNet
require significant training time as expected.

TABLE IV
COMPARISON OF CLASSIFICATION RESULTS WITH D2 DATABASE USING
DIFFERENT METHODS. COMPUTATION TIME IS PROVIDED FOR BOTH
TRAINING (IF APPLICABLE) AND TESTING PHASES: TESTING/TRAINING.

Method Accuracy  Precision Recall F1 Time (s)
FA 85.80% 97.52% 82.12% 89.16% 0.15/—
DWT 87.10% 96.42% 85.83% 90.82% 0.33/—
TKEO 90.85% 95.93% 88.04% 91.81% 0.25/—
ENV 87.32% 93.72% 86.26%  89.83%  0.54/—
KNN 68.34% 80.21% 69.62%  74.54%  0.17/10.7
SVM 75.24% 83.86% 71.04% 76.91%  0.09/3.41
MLP 78.16% 84.77% 79.36% 81.97%  1.26/87.3
1D-CNN 82.22% 88.05% 81.15%  84.45%  2.69/328
LiftingNet 89.63% 96.34% 84.70% 90.14%  4.23/510
SSA-based 91.37% 98.25% 91.42% 94.71% 0.22/—
SSA-FPL 94.57% 99.07% 94.53%  96.75%  0.28/—

For further comparison and verification of the results, we
calculated the relative differentiation (RD) of the detection
results are calculated using:

Ap — Ap

RD= —©———
max{Ar, Ay}

©))
where Ap and Ap represent the amplitudes of fault compo-
nent and the associated frequency component in the healthy
spectrum, respectively. We calculated average value of RD
with D2 database at three differed rotor speeds. Figure 14
shows the results of this comparison where RD rates are
depicted versus varying fault severity at i.e. 1370, 1410, and
1450 rpm rotor speeds. This experiment can be performed only
with methods with the ability to locate the fault. Therefore,
we considered FA, ENV [14], and TKEO [20] to compare
RD values. According to this figure, SSA-FPL demonstrates
highest RD values among all methods. This is noticeable at
fault with R,,, = 0.031 which is considered a challenging
case. For severe faults, e.g. at R,,,;, = 0.218, the performance
of TKEO is slightly less than SSA-FPL but comparable.
Moreover, analysing all the RD values reveals that as the rotor
speed increases the RD rate drops where the lowest rate occurs
at fault with R,,, = 0.003 with 1450 rpm. The negative
RD values obtained at this case is an indication of failing to
correctly detect the fault due to its ultra-small amplitude and
closeness to the main supply frequency. Notably, FA fails to
diagnose small faults, particularly at high rotor speeds, while it
performs promisingly in severe faults. We conclude that higher
RD values, obtained using the proposed method, is mainly
due to the fact that the proposed method does not apply any
suppression on the frequency harmonics as opposed to other
methods in this comparison.

VII. DISCUSSION

Induction machine faults have many types, and the proposed
method mainly focuses on the unbalanced rotor fault. Gener-
ally, low torque oscillations (LTOs), which occur because of
defect in the drive-train of system, may lead to false alarm
due to interaction with rotor asymmetry faults (RAFs). RAFs
(frars) and LTOs (frros) stator current sidebands due to
rotor asymmetry and rotational frequency of rotor can be
observed as:

frars = (1 £2ks)fs, k=1,2,...

fros = fo £ kfo = fo 01— ) fufp, 9= 1,2,3, 1O
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where f; is supply frequency, s is the slip and p is the number
of pole pair. The f, component is generated in the stator
current of induction machines due to mechanical non-idealities
in the motor, coupling or alignment issues. In this paper,
the validity of proposed technique was tested with line-fed
induction machines in different fault severities and load levels.
In a line-fed induction machine, f,- component would approach
the RAFs characteristic frequencies often due to gearbox or
other reduction coupling systems (frros) which was not
present in the drive-train of our system [34]. Therefore, it can
be easily detected near the RAFs characteristic frequency. It
has been reported that the distinction between LTOs and RAFs
characteristic frequency in line-fed or inverter-fed induction
machines in case of 2f; ~ f, under the process characteristic
or in the presences of reduction components (e.g. gearbox) can
be carried out through other indices placed at the space har-
monics or by start-up current and positive sequences of stator
current [34], [35]. Therefore, LTOs can be feasibly tracked and
detected in the spectrum through other indices. It is necessary
to note that the proposed method cannot separate the effects
of LTOs and RAFs under the load torque oscillations related
to the process characteristic without considering other indices
introduced in [34].

VIII. CONCLUSION

In this paper, a novel technique for unbalanced rotor fault
diagnosis in induction machines was presented. The proposed
method uses singular spectrum analysis to decompose the
input current signal into several spectral components. A set
of data-driven filters was proposed and utilised to detect the
faulty component. In order to locate the fault, a fast peak
localisation technique was applied to the extracted components
by SSA. The two proposed methods were then combined
and performed in a recursive mode. In order to quantify the
extension of the rotor asymmetry, five different fault severities
as well as a healthy condition were examined. The proposed
method was tested under these conditions and the results were
reported. Our extensive experiments has shown effectiveness
of this method for unbalanced rotor fault diagnosis. The results

suggest that proposed method is able to diagnose the input
current signature within a quarter of a second on a general
computer. Moreover, it is a data-driven and unsupervised ap-
proach, not requiring a training phase. Hence, it can be simply
implemented in industrial applications where the MCSA is of
concern. For future work, we aim to examine the performance
of the proposed method to detect other fault types, such as
broken rotor bar and bearing faults. Extending the proposed
method to diagnose multiple faults as well as the ability to
deliver the severity of the faults are of our future plans too.
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