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Abstract – 146 words-max 150 
Characterising genetic influences on DNA methylation (DNAm) provides an opportunity 
to understand mechanisms underpinning gene regulation and disease. Here we 
describe results of DNA methylation-quantitative trait loci (mQTL) analyses on 32,851 
participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites 
in blood. We present a database of >270,000 independent mQTL of which 8.5% 
comprise long-range (trans) associations. Identified mQTL associations explain 15-17% 
of the additive genetic variance of DNAm. We reveal that the genetic architecture of 
DNAm levels is highly polygenic. Using shared genetic control between distal DNAm 
sites we construct networks, identifying 405 discrete genomic communities enriched for 
genomic annotations and complex traits. Shared genetic variants are associated with 
both DNAm levels and complex diseases but only in a minority of cases these 
associations reflect causal relationships from DNAm to trait or vice versa indicating a 
more complex genotype-phenotype map than previously anticipated.  

Main – 4996 words - max 5000 
The role of common inter-individual variation in DNA methylation (DNAm) on disease 
mechanisms is not yet well characterised. It has, however, been hypothesised to serve 
as a viable biomarker for risk stratification, early disease detection and the prediction of 
disease prognosis and progression.1 Because genetic influences on DNAm in blood are 
widespread2-4, a powerful avenue into researching the functional consequences of 
differences in DNAm levels is to map genetic differences associated with population-
level variation, identifying DNA methylation quantitative trait loci, (mQTL) that include 
both local (cis mQTL) and distal (trans mQTL) effects. We can harness mQTL as 
natural experiments, allowing us to observe randomly perturbed DNAm levels in a 
manner that is not confounded with environmental factors5,6. In this regard, mapping 
even very small genetic effects on DNAm is valuable for gaining power to evaluate 
whether its variation has a substantial causal role in disease and other biological 
processes.  
 
To date, only a small fraction of the total genetic variation estimated to influence DNAm 
across the genome has been identified7, and the proportion of trans heritability 
explained by trans mQTL (defined as variants >1Mb from the DNAm site) is much 
smaller than the proportion of cis heritability explained by cis mQTL. Therefore, the 
majority of genetic effects are likely to act in trans, have small effect sizes5,7-9, while 
being potentially biologically informative.8,10 Much larger sample sizes are required to 
map associations involving small genetic effects in order to permit greater 
understanding of the genetic architecture and the biological processes underlying 
DNAm7. To this end, we established the Genetics of DNA Methylation Consortium 
(GoDMC), an international collaboration of human epidemiological studies that 
comprises >30,000 study participants with genetic and DNAm data.  
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We use this resource to develop a comprehensive catalogue of cis and trans mQTL, 
which enables us to examine the genetic architecture of DNAm. By constructing 
networks of multiple cis and trans mQTL, we learn about their collective impact on 
pathways and complex traits. Finally, we interrogate the potential role of DNAm in 
disease mechanisms by exhaustively mapping the causal relationships between 
variable DNAm and 116 complex traits and diseases in a bi-directional manner. A 
database of our results is available as a resource to the community at 
http://mqtldb.godmc.org.uk/. 

Results 

Genetic variants influence 45% of tested DNAm sites 
In order to map genetic influences on DNAm, we established an analysis workflow that 
enabled standardized meta-analysis and data integration across 36 population-based 
and disease datasets. Using a two-phase discovery study design, we analysed ~10 
million genotypes imputed to the 1000 Genomes reference panel11 and quantified 
DNAm at 420,509 sites using Illumina HumanMethylation BeadChips in whole blood 
derived from 27,750 European participants (Figure 1a, Supplementary Figures 1-4, 
Extended data 1, Supplementary Tables 1-2, Supplementary Information). The 
microarray technology used in the majority of cohorts limited us to the analysis of only 
1.5% of the ~28M DNAm sites across the genome12, including 96% of CpG islands and 
CpG shores and 99% of RefSeq genes13 and all inferences relate only to these sites. 
 
Using linkage disequilibrium (LD) clumping, we identified 248,607 independent cis-
mQTL associations (p < 1e-8, < 1Mb from the DNAm site, Supplementary Figure 3) 
with a median distance between single nucleotide polymorphisms (SNP) and DNAm 
sites of 36kb (IQR=118 kb, Extended data 2). We found 23,117 independent trans 
mQTL associations (using a conservative threshold of p < 1e-147, Supplementary 
Figure 3, Supplementary Information). These mQTL involved 190,102 DNAm sites, 
representing 45.2% of all those tested (Figure 1b) which is a 1.9x increase of sites with 
a cis association (p<1e-8) and 10x increase of sites with a trans association (p<1e-14) 
over a previous study whose sample size was 7x smaller8. As expected, mQTL effect 
sizes for each DNAm site (the maximum absolute additive change in DNAm level 
measured in standard deviation (SD) per allele) were lower for sites with a trans 
association (as compared to sites with a cis association (per allele SD change = -0.02 
(s.e.=0.002, p=2.1e-14, Extended data 3). The differential improvement in yield 
between cis and trans associations is revealing in terms of the genetic architecture – 
relatively small sample sizes are sufficient to uncover the majority of large cis effects, 
whereas much larger sample sizes are required to identify the polygenic trans 
component.  
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The majority of trans associations (80%) were inter-chromosomal. Of the intra-
chromosomal trans associations, 34% were >5 Mb from the DNAm site, Extended data 
2a). We found a substantially lower number of inter-chromosomal trans associations per 
5 Mb region (1.59) than intra-chromosomal associations (>1 Mb: 7.95; >6 Mb 4.81, 
excluding chromosome 6).  
 
Next, using conditional analysis14 we explored the potential for multiple independent 
SNPs operating within the locus of each mQTL, identifying 758,130 putative 
independent variants. Each DNAm site, for which a mQTL in cis had been detected, had 
a median of 2 independent variants (IQR=4 variants, Supplementary Figure 5). For all 
subsequent analyses, we used index SNPs from clumping procedures to be 
conservative and unbiased due to the non-independence of genetic variants.  
  
We sought to replicate the mQTL in the Generation Scotland (GS) cohort (n = 5,101) 
using an independent analysis pipeline (Supplementary Information). Replication data 
were available for 188,017 of our discovery mQTL (137,709 sites). We found a strong 
correlation of effect sizes for both cis and trans effects (Pearson r=0.97, n=155,191 and 
0.96, n=14,465 at p<1e-3, respectively; Figure 1c); 99.6% of the associations had a 
consistent direction of effect (further discussion in Supplementary Information). At a 
Bonferroni corrected threshold of 0.05/188,017, 142,727 of the discovery mQTL 
replicated in the GS cohort (76%); the replication rate for cis and trans mQTL were 76% 
and 79%, respectively. To evaluate whether our replication rate was in line with 
expectations given the smaller replication sample size, we estimated that under the 
assumption that the discovery mQTL are true positives, 171,824 mQTL would be 
expected to replicate at a nominal threshold of p<1e-3; we found that the actual number 
of mQTL replicating at this level was 169,656, indicating that the majority of our 
discovery mQTL are likely to be true positives (Supplementary Data 1, 
Supplementary Information). Our findings indicate that there is little between-study 
heterogeneity in our analysis and that genetic effects on DNAm are relatively stable 
across samples of European ancestry (Extended data 1, Supplementary Table 2).  
 
Overall, the variance explained by replicated genetic effects on DNAm was small. For 
99% of the associations in cis and trans, mQTL explained less than 21% and 16% of 
the variation in DNAm respectively (Supplementary Figure 6). Aggregating across all 
420,509 tested DNAm sites, our replicated mQTL associations explain 1.3% of the total 
assayed variation in DNAm, 8% of this being due to trans-associations. Restricting to 
sites that have at least one cis-effect or trans-effect, however, we explain 4.2% and 
2.5% of the DNAm variance, respectively.  
 
We then investigated how much of the heritability of variable DNAm can be explained 
by our mQTL associations using family-based heritability studies of DNAm2,15. We found 
a strong positive relationship between variance explained by replication mQTL 
estimates (127,680 sites in GS) and heritability for both studies (family: Pearson r=0.41 
across, 121,582 available sites; twin: Pearson r=0.37 across 118,955 available sites) 
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(Figure 1d, Supplementary Data 2). The mQTL that we identified explain 15%-17% of 
the additive genetic variance of DNAm (Supplementary Figure 7). Finally, there were 
strong positive relationships between the heritability of DNAm levels at a DNAm site and 
the number of independent mQTL (Supplementary Figure 8), heritability and effect 
size (Supplementary Figure 9), variance explained and the number of independent 
mQTL (Supplementary Figure 10) and variance explained and distribution of DNAm 
levels (Supplementary Figure 11). Overall, our results support a mixed genetic 
architecture of polygenic genome-wide effects and larger cis effects.  
 
Our mQTL coverage was limited by the computational necessity of a multiple stage 
study design (Extended data 4a). The discovered mQTL with r2 <1% are likely a small 
fraction of all the mQTL in this category expected to exist. Across these DNAm sites, 
and within the range of mQTL detected in our study (r2 > 0.22%) we estimate that there 
are twice as many cis mQTL and 22.5 times more trans mQTL yet to discover 
(Extended data 4b). This would likely not explain all estimated heritability, indicating 
that a substantial set of the heritability is due to causal variants with smaller effects or 
due to rare variants.  

Cis and trans mQTL operate through distinct mechanisms 
To infer biological properties of trans-features that were independent of any incidental 
cis-effects7,8,16-18, we categorised mQTL into those only associated with DNAm in cis 
(n=157,095, 69.9%), those only associated with DNAm in trans (n=794, 0.35%), and 
those associated with DNAm in both cis and trans (n=66,759, 29.7%). Similarly, of the 
190,102 DNAm sites influenced by a SNP, 170,986 DNAm sites (89.9%) were cis-only, 
11,902 DNAm sites (6.3%) were cis+trans, and 7,214 DNAm sites (3.8%) were trans-
only.  
 
We first compared the distributions of DNAm levels (weighted mean DNAm level across 
36 studies (Figure 1b). We then performed enrichment analyses on the mQTL SNPs 
and DNAm sites using 25 combinatorial chromatin states from 127 cell types19 and gene 
annotations (Figure 2a, Supplementary Figures 12-15, Supplementary Tables 3-6). 
Consistent with previous studies7,8,18, we found that cis only sites are represented in 
high (32%), low (28%) and intermediate (40%) DNAm levels and these sites are mainly 
enriched for enhancer chromatin states (mean OR=1.37), CpG islands (OR=1.25) and 
shores (OR=1.26). For cis+trans sites, we found that the majority of these sites (66%) 
have intermediate DNAm levels. By replicating this finding in two isolated white-blood-
cell subsets (Supplementary Figure 16), we showed that this is due to cell-to-cell 
variability19,20 or sub cell type differences. In line with the observation that intermediate 
levels of DNAm are found at distal regulatory sequences21,22, these cis+trans sites were 
enriched for enhancer (mean OR=1.65) and promoter states (mean OR=1.41). 
However, for trans only sites, we found a pattern of low DNAm (for 55% of sites) and 
enrichments for promoter states (mean OR=1.39) especially TssA promoter state (mean 
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OR=2.03). These enrichment patterns were consistent if we restricted to only inter-
chromosomal associations (Supplementary Information, Supplementary Figure 17).  
 
Analysing the differences in properties for the SNP categories, we found that cis only 
and cis+trans SNPs were enriched for active chromatin states and genic regions 
whereas trans only SNPs were enriched for intergenic regions and the heterochromatin 
state (Figure 2a, Supplementary Figures 14-15, Supplementary Tables 5-6). 
Overall, these results highlight that a complex relationship between molecular features 
is underlying the mQTL categories and the biological contexts are substantially different 
between cis and trans features.  
 
We found that these inferences were often shared across other tissues. DNAm sites 
with low or intermediate DNAm levels have similar DNAm distributions in 12 tissues 
(Supplementary Figures 18-20) with stronger enrichments in blood datasets for the 
enhancer states indicating some level of tissue specificity for mQTL in these regions 
(Supplementary Figures 12, 14, 21).  
 
To investigate whether mQTL are tissue-specific, we compared the correlation of effect 
estimates of cis and trans mQTL in blood against adipose tissue (n=603)23 and brain 
(n=170)9 (Supplementary Information, Extended data 5). We found a larger extent of 
QTL sharing of blood and adipose tissue as compared to blood and brain which might 
be explained by shared cell types in line with cis eQTL findings24. Generally, the 
between tissue effect correlations were high, in line with a recent comparison of cis-
mQTL effects between brain and blood25. However, we found that the highest 
correlations were for associations involving trans-only sites (Adipose rb=0.92 (se 
=0.004); Brain rb=0.88 (se=0.009)) despite having on average smaller effect sizes than 
cis only associations, implying that they are less tissue specific than cis effects (Adipose 
rb=0.73 (se =0.002); Brain rb=0.59 (se=0.004)) which is in line with the notion that 
DNAm of promoters are less tissue-specific. Stratifying the mQTL categories to low, 
intermediate and high DNAm, showed that the brain-blood correlations are the lowest 
for intermediate DNAm categories and adipose-blood correlations are lowest for high 
DNAm categories, which may suggest cellular heterogeneity for high DNAm levels 
(Extended data 5). These results show the value of large sample sizes in blood to 
detect trans mQTL regardless of the tissue. 

Trans mQTL SNPs and DNAm exhibit patterned TF binding 
Recent studies have uncovered multiple types of transcription factor (TFs)/DNA 
interactions influenced by DNAm including the binding of DNAm-sensitive TFs26-28 and 
cooperativity between TFs27,29. To gain insights into how SNPs induce long-range 
DNAm changes, we mapped enrichments for DNAm sites and SNPs across binding 
sites for 171 TFs in 27 cell types30,31. We found strong enrichments for the majority of 
TFs and cell types amongst DNAm sites with a trans association (cis+trans: 55%; trans 
only: 80%; cis only: 18%) and amongst cis-acting SNPs (cis only: 96%, cis+trans: 91%, 



 
   
 

11 
 

trans only: 1%) (Figures 2b, Supplementary Tables 7-8, Supplementary Figures 22-
23). Consistent with the observation that trans only DNAm sites are enriched for CpG 
islands (Supplementary Figure 13), DNAm sites that overlap TFBS were relatively 
hypomethylated (weighted mean DNAm levels = 21% vs 52%, p<2.2e-16) 
(Supplementary Figure 24). 
 
Next we hypothesized that if a trans mQTL is driven by TF activity8,10 then particular TF-
TF pairs may exhibit preferential enrichment32. A mQTL has a pair of TFBS 
annotations31, one for the SNP and one for the DNAm site. We evaluated if the 
annotation pairs amongst 18,584 inter-chromosomal trans-mQTL were associated to TF 
binding in a non-random pattern (Supplementary Information, Extended Data 6a-b). 
We found that 6.1% (22,962 of 378,225) of possible pairwise combinations of SNP-
DNAm site annotations were more over- or under-represented than expected by chance 
after strict multiple testing correction (Supplementary Information, Supplementary 
Table 9, Extended Data 6c).  
 
After accounting for abundance and other characteristics, the strongest pairwise 
enrichments involved sites close to TFBS for proteins in the cohesin complex, for 
example CTCF, SMC3 and RAD21, as well as TFs such as GATA2 related to cohesin33. 
Bipartite analysis showed that these clustered due to being related to similar sets of 
SNP annotations (Extended Data 6d). Other clusters were also found, for example, 
sites close to TFBS for interferon regulatory factor 1 (IRF1), a gene for which trans-
acting regulatory networks34, and enrichment amongst causally interacting caQTL35 
have been previously reported were more likely to be influenced by SNPs near TFBS 
for EZH2, SMC3, ATF3, BCL3, TR4 and MAX.  
 
Next, we compared the locations of inter-chromosomal trans mQTL (n=18,584) to 
known regions of chromatin interactions36 as alternative mechanism for trans 
coordination8,37. We found 1175 overlaps for 637 SNP-DNAm site pairs (3.4%) where 
the LD region of the mQTL SNP and the corresponding site overlapped with any 
interacting regions (525 SNPs, 602 sites) as compared to a mean of 473 SNP-DNAm 
site pairs in 1000 permuted datasets (OR=1.36, pFisher=6.5e-7, pempirical<1e-3) 
(Supplementary Figure 25). To summarise, our results show that trans mQTL are in 
part driven by long-range cooperative TF interactions and, that for a small proportion of 
interchromosomal trans mQTL the spatial distance in vivo is likely to be small. 

Trans-mQTL effects form DNAm communities 
Genetic variation can perturb chromatin activity32,35,37, DNAm8 or gene expression38 
across multiple sites in cis and trans revealing coordinated activity between regulatory 
elements and genes. We observed that there were 1,728,873 instances where a SNP 
acting in trans also associated with a cis DNAm site (before LD pruning). Genetic 
colocalization analysis indicated that 278,051 of these instances were due to the cis and 
trans sites sharing a genetic factor, representing 3,573 independent cis-trans genomic 
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region pairs, of which 3,270 were inter-chromosomal (Supplementary Table 10, see 
Supplementary Information for sensitivity analysis for the colocalization method used 
in the context of the two-stage mQTL discovery design). These pairs consisted of 1,755 
independent SNPs and 5,109 independent DNAm sites across the genome, indicating 
that some sites with cis associations shared genetic factors with multiple sites with trans 
associations revealing distal coordination between mQTL. From the cis-trans pairs we 
constructed a network linking these genomic regions which elucidated 405 
“communities” of genomic regions that were substantially connected (Supplementary 
Information). Fifty-six of these communities comprised 10 or more sites, and the 
largest community comprised 253 sites (Figure 3a).  
 
We hypothesised that cis sites were causally influencing multiple trans sites within their 
communities. We evaluated whether the estimated causal effect (obtained from the 
trans-mQTL effect divided by the cis-mQTL effect i.e. the Wald ratio) of the cis site on 
the trans site was consistent with the observational correlation between the cis- and 
trans-site. While there was an association, the relationship was weak (Pearson r=0.096, 
p=1.73e-6, Supplementary Figure 26), indicating that changes in cis sites causing 
changes in trans sites is likely not the predominant mechanism. We did observe that the 
cis-trans DNAm levels were more strongly correlated than we would expect by chance 
(Supplementary Figure 27), suggesting that they are jointly regulated without generally 
being causally related. 
 
Next, we evaluated if DNAm sites within each community were enriched for regulatory 
annotations and/or gene ontologies (Supplementary Tables 11-14, Supplementary 
Figures 28-29). Multiple communities showed enrichments (FDR <0.001); community 9 
DNAm sites were strongly enriched for TFBS annotations relating to the cohesin 
complex in multiple cell types, community 22 DNAm sites were enriched for NFKB and 
EBF1 in B lymphocytes and community 76 DNAm sites were enriched for EZH2 and 
SUZ12 and bivalent promotor and repressed polycomb states (Figure 3b). Community 
2 (comprising 253 sites) was enriched for active enhancer state in 3 cell types and for 
lymphocyte activation (GO:0046649 FDR = 0.016) and multiple KEGG pathways 
including the JAK-STAT signalling pathway (I04630: FDR =8.53e-7) (Supplementary 
Tables 13 and 14).  
 
Regulatory features within a network may share a set of biological features that are 
related to complex traits. We performed enrichment analysis to evaluate if the loci 
tagged by DNAm sites in a community were related to each of 133 complex traits 
(Supplementary Table 15), accounting for non-random genomic properties of the 
selected loci. Restricting the analysis to only the 56 communities with ten or more sites, 
we found eleven communities that tagged genomic loci that were enriched for small p-
values with 22 complex traits (FDR < 0.05) (Figure 3c, Supplementary Table 16). 
Blood related phenotypes were overrepresented (11 out of 23 enrichments being 
related to metal levels or haematological measures, binomial test p-value = 4.2e-5). 
Amongst the communities enriched for GWAS signals, community 16 was highly 
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associated with iron and haemoglobin traits. Community 9 was associated to plasma 
cortisol (p = 8.27e-5). Finally, we performed enrichment analysis on 36 blood cell count 
traits39. We found that community 16 was enriched for hematocrit (p=4.34e-10) and 
hemoglobin concentration (p=1.99e-8) and community 5 was enriched for reticulocyte 
traits (p=1.67e-6) (Supplementary Figure 30). The enrichments found for these DNAm 
communities indicate that a potentially valuable utility of mapping trans-mQTL is to 
indicate how distal regions of the genome are functionally related. 

DNAm and complex traits share genetic factors 
The majority of GWA loci map to non-coding regions40 and cis mQTL are enriched 
amongst GWA17,41,42. Here we investigated the value of the large number of mQTL 
especially trans mQTL to annotate functional consequences of GWA loci. We first 
compared distributions of enrichment of cis and trans mQTL categories among 41 
complex traits. After accounting for non-random genomic distribution of mQTL43 and 
multiple testing, we identified enrichments for 35% of the complex traits, especially for 
studies with a larger number of GWA signals (Supplementary Figure 31, 
Supplementary Table 17, Supplementary Information). The distribution of 
enrichment effect estimates (ORs) of trans mQTL was substantially closer to the null or 
in depletion when compared to mQTL that included cis effects (Figure 2c). These 
enrichments correspond to the results reported earlier, in which trans-SNPs were 
typically depleted for enhancer and promoter regions, whereas complex trait loci are 
enriched for coding and regulatory regions44. 
 
Though the mQTL discovery pipeline adjusted for predicted cell types45,46 and non-
genetic DNAm PCs, there is a possibility that residual cell-type heterogeneity remains. 
We performed another set of GWAS enrichment analysis, this time using 36 blood cell 
traits39, and found enrichments. These were strongest amongst cis+trans mQTL, as 
seen in the previous enrichments (Supplementary Figure 32). Interrogating this 
further, we found that for 98.9-100% of the mQTL, mQTL SNPs explained more 
variation in DNAm than they explain variation in blood cell counts suggesting a causal 
chain of mQTL to blood trait47. Alternatively, a systematic measurement error difference 
could explain these observations, where DNAm captures blood cell counts more 
accurately than conventional measures. 
 

We next searched for instances of specific DNAm sites sharing the same genetic 
factors against each of 116 complex traits and diseases, and initially found 23,139 
instances of an mQTL strongly associating with a complex trait (Figure 4). To evaluate 
the extent to which these were due to shared genetic factors (and not, for example, LD 
between independent causal variants), we performed genetic colocalization analysis48 
(Supplementary Tables 15 and 18). Excluding genetic variants in the MHC region, we 
found 1,373 putative examples in which at least one DNAm site putatively shared a 
genetic factor with at least one of 71 traits (including 19 diseases). Those DNAm sites 
that had a shared genetic factor with a trait were 6.9 times more likely to be present in a 
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community compared to any other DNAm site with a known mQTL (Fisher’s exact test 
95% CI 4.8-9.7, p =9.2e-19). Next, we evaluated how often the DNAm site that 
colocalised with a known GWAS hit was the closest DNAm site to the lead GWAS 
variant by physical distance. Notably, in only 18.1% of the cases where a GWAS signal 
and an assayed 450k DNAm site colocalised, was that DNAm site the closest DNAm 
site to the signal. This finding is similar to results found for gene expression49, but the 
converse has been found for protein levels50. 
 
It has previously been difficult to conclude whether genetic colocalisation between 
DNAm and complex traits indicates a) a causal relationship where the DNAm level is on 
the pathway from genetic variant to trait (vertical pleiotropy) or b) a non-causal 
relationship where the variant influences the trait and DNAm independently through 
different pathways (horizontal pleiotropy)51. In Mendelian randomisation (MR) it is 
reasoned that under a causal model, multiple independent genetic variants influencing 
DNAm should exhibit consistent causal effects on the complex trait52. Amongst the 
putative colocalising signals, 440 (32%) involved a DNAm site that had at least one 
other independent mQTL. We cannot determine with certainty the causal relationship of 
any specific site with a trait. To test if there was a general trend of DNAm sites causally 
influencing a trait we evaluated if the MR effect estimate based on the colocalising 
signals were consistent with those obtained based on the secondary signals. There 
were substantially more large genetic effects of the secondary mQTL on respective 
traits than expected by chance (70 with p < 0.05, binomial test p = 2.4e-16). However 
only 41 (59%) of these had effect estimates in the same direction as the primary 
colocalising variant, which is not substantially better than chance (binomial test p = 
0.19). Twelve of the 41 mQTL were located in the HLA region. Of the remaining mQTL, 
27 were associated with anthropometric (ESR1 and birth weight), immune response 
(IRF5 and systemic lupus erythematosus) and lipid traits (TBL2 and triglycerides). We 
then performed systematic colocalization analysis of all mQTL against 36 blood cell 
traits39. Here we discovered 94,738 instances of a DNAm site and a blood cell trait 
sharing a causal variant. In 28,138 instances the colocalising DNAm site had an 
independent secondary mQTL, and with these associations we again tested for a 
general trend of DNAm sites causally influencing the blood trait. The association 
between independent signals was very weak (R2 = 0.008). Together, across the sites 
that were analysable in this manner, these results indicate that those blood measured 
DNAm sites that have shared genetic factors with traits cannot be typically thought of as 
mediating the genetic association to the trait (Extended Figure 7, Supplementary 
Table 19). Instead, if DNAm is a coregulatory phenomenon then the colocalising signals 
between DNAm sites and complex traits may be due to a common cause, for example 
genetic variants primarily acting on TF binding.8,10  

The influence of traits on DNAm variation 
Previous studies have not been adequately powered to estimate the causal influences 
of complex traits on DNAm variation through MR, as the sample size of the outcome 
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variable (DNAm) is a predominant factor in statistical power48,53. We systematically 
analysed 109 traits for causal effects on DNAm using two-sample MR54,55, where each 
trait was instrumented using SNPs obtained from their respective previously published 
GWAS (Supplementary Information, Supplementary Table 15). Included amongst 
the traits were 35 disease traits, which when used as exposure variables in MR must be 
interpreted in terms of the influence of liability rather than presence/absence of disease. 
The sample size used to estimate SNP effects in DNAm was up to 27,750 (Figure 4). 
 
We initially identified 4785 associations where risk factors or genetic liability to disease 
influences DNAm levels (multiple testing threshold p < 1.4e-7). However, causal 
inference on omic variables can lead to false positives due to violations in the MR 
assumptions. We developed a filtering process involving a novel causal inference 
method to help protect against these invalid associations (Supplementary Information, 
Supplementary Figure 33). This left 85 associations (involving 84 DNAm sites) in 
which DNAm sites were putatively influenced by 13 traits (nine risk factors or four 
diseases) (Supplementary Table 20). Further filtering that would exclude traits that 
were predominantly instrumented by variants in the HLA region or driven by one SNP 
would reduce the total number of associations substantially from 84 to 19. We replicated 
five associations for triglycerides influencing DNAm sites near CPTA1 and ABCG156 
and found associations for transferrin saturation/iron influencing DNAm sites near HFE. 
 
We next evaluated if there was evidence for small, widespread changes in DNAm levels 
in response to complex trait variation, by calculating the genomic control inflation factor 
(GCin) for the p-values obtained from the MR analyses of each trait against all DNAm 
sites. Five traits (fasting glucose, age at menarche, cigarettes smoked per day, 
immunoglobulin G index levels, serum creatinine), showed GCin values above 1.05 
(Extended data 8). GCin calculations were performed at each chromosome singly for 
each trait (Supplementary Figure 34) and in a leave-one-chromosome-out analysis 
(Supplementary Figure 35). The GCin remained consistent (except for immunoglobulin 
G index levels), indicating that the traits have small but widespread influences on DNAm 
levels across the genome. 
 
While most of the traits (n=105, 96%) tested did not appear to induce genome-wide 
enrichment this does not rule out the possibility of them having many localised small 
effects. For example, the smallest MR p-value for the analysis of body mass index on 
DNAm levels was 2.27e-6, which did not withstand genome-wide multiple testing 
correction, and GCin was 0.95. However, restricting GCin to 187 sites known to 
associate with body mass index from previous epigenome-wide association studies 
(EWAS)20 indicated a strong enrichment of low p-values (median GCin = 3.95). A similar 
pattern was found for triglycerides, in which genome-wide median GCin = 0.94 but the 
10 sites known to associate with triglycerides from previous EWAS57 had an MR p-value 
of 8.3e-70 (Fisher’s combined probability test). These results indicate that traits causally 
influencing DNAm levels in blood is the most likely mechanism that gives rise to these 
EWAS hits. It also indicates that the general finding that there were very few filtered 
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putative causal effects of risk factors or genetic liability to disease on DNAm could be 
due to true positives being generally very small, even to the extent that our sample size 
of up to 27,750 individuals was insufficient to find them. 

Discussion 
A map of hundreds of thousands of genetic associations has enabled novel biological 
insights related to DNAm variation. Using a rigorous analytical framework enabled us to 
minimise heterogeneity and expand sample sizes for large omic data. This revealed a 
genetic architecture of DNAm that is polygenic. Given the diverse ranges of age, gender 
proportions and geographical origins between the cohorts in this analysis, the minimal 
extent of heterogeneity across datasets indicates that genetic effects on DNAm are 
relatively stable across contexts, at least when restricted to European ancestries. We 
show that cis and trans mQTL operate through distinct mechanisms, as their genomic 
properties are distinct. A driver of long-range associations may be co-regulated through 
TF binding and nuclear organisation.  
 
Though we found substantial sharing of genetic signals between DNAm sites and 
complex traits, we were able to demonstrate that this was not predominantly due to 
DNAm variation being on the causal path from genotype to phenotype. While our results 
were restricted to 1.5% of the DNAm sites in the genome and are limited by the two-
phase design, these findings have several implications especially in the context of 
EWAS studies that are often based on the same tissue and DNAm array. First, we 
anticipate that some previously reported EWAS associations are likely due to reverse 
causation e.g. the risk factor or genetic liability to disease state itself alters DNAm and 
not vice versa, or confounding. Second, the genetic effects on DNAm that overlap with 
complex traits likely primarily influence other regulatory factors which in turn influence 
complex traits and DNAm through diverging pathways. Third, DNAm might be on the 
causal pathway in a disease-relevant cell type or context. Fourth, if the path from 
genotype to complex traits is non-linear, for example involving the statistical interactions 
between different regulatory features16, then our results indicate that large individual-
level multi-omic datasets will be required to dissect such mechanisms. Higher density 
DNAm microarrays12 or low-cost sequencing technologies58 will expedite detailed 
interrogations of enhancer and other regulatory regions. Given our projection of mQTL 
yields expected for future studies, pleiotropy involving mQTL is likely to be increasingly 
important to model when interpreting genotype-trait pathways. 
 
Overall our data and results have resulted in the most comprehensive atlas of genetic 
effects to date. We expect that this atlas will be of use to the scientific community for 
studies of genome regulation, contribute to the control of confounding in EWAS and to 
perform causality analysis. 



 
   
 

17 
 

Acknowledgements 
C.L.R., G.D.S., G.S., J.L.M., K.B., M.Su., T.G.R. and T.R.G. are supported by the UK 
Medical Research Council Integrative Epidemiology Unit at the University of Bristol 
(MC_UU_00011/1, MC_UU_00011/4, MC_UU_00011/5). C.L.R. receives support from 
a Cancer Research UK Programme Grant (C18281/A191169). G.H. is funded by the 
Wellcome Trust and the Royal Society (208806/Z/17/Z). E.H. and J.M. were supported 
by Medical Research Council (MRC) project grants (MR/K013807/1 and MR/R005176/1 
awarded to J.M.) and a MRC Clinical Infrastructure award (MR/M008924/1 awarded to 
J.M.). The study was also supported by JPI HDHL funded DIMENSION project 
(administered by the BBSRC UK, BB/S020845/1 to J.T.B., and by ZonMW The 
Netherlands, grant 529051021 to B.T.H). B.T.H. is supported by the Netherlands 
CardioVascular Research Initiative (the Dutch Heart Foundation, Dutch Federation of 
University Medical Centres, the Netherlands Organisation for Health Research and 
Development, and the Royal Netherlands Academy of Sciences) for the GENIUS 
project Generating the best evidence-based pharmaceutical targets for atherosclerosis 
(CVON2011-19, CVON2017-20). A.D.B. has been supported by a Wellcome Trust PhD 
Training Fellowship for Clinicians, the Edinburgh Clinical Academic Track (ECAT) 
programme (204979/Z/16/Z). J.Kl. was supported by a DOC fellowship of the Austrian 
Academy of Sciences. Cohort specific acknowledgements and funding are presented in 
Supplementary Information. 

Author Contributions 
Project management: G.H., G.S., J.L.M 
Designed individual studies and contributed data:  
A.A.C., A.Cas., A.D.H., A.G.U, A.Me., A.Mu., A.M.M., B.B., B.T.H.,C.H., C.L.R., C.P., 
C.Sa., C.Sh., C.Sö., D.A.L., D.v.H., D.I.B., D.T., E.A.N., E.B.B., E.J.C.d.G, E.M., F.G., 
F.R., G.E.D, G.H.K., G.P., G.W.M., H.R.E., H.T., H.Z., I.J.D., J.F.F., J.H.V., J.J.C., 
J.Ka., J.L., J.M., J.M.S., J.M.V., J.v.M., J.R., J.R.B.P., J.R.G., J.Sh., J.T.B., J.W., 
J.W.H., K.K.O., K.L.E., K.R., L.A., L.C.S., L.M., M.A.I., M.Bee., M.Bu., M.E.A.R., 
M.H.v.IJ., M.Ke., M.O., N.C., N.G.M., N.J.W., N.R.W., P.E.S., P.Mo., P.M.V., R.H., R.P., 
S.L., S.P., T.D.S., T.E., T.E.M., T.I.A.S, T.P., T.T., V.W.V.J., W.K., Z.P. 
Generated and/or quality-controlled data: A.A.K., A.I., A.S., C.S.M., H.R.E., J.L.M., 
K.B., K.M.H., N.K., S.M.R., T.H., R.M.W., W.L.M. 
Designed new statistical or bioinformatics tools: G.H., J.L.M., M.Su., T.R.G., V.I. 
Analysed the data and/or provided critical interpretation of results:  
A.D.B., A.Car., A.D., A.F.M., A.K., B.T.H., C.B., C.H., C.L.R., C.R.A., C.Sor., C.V., C.X., 
C.W., D.A., D.C., D.J.L., D.L.C., D.M., E.C.M., E.G., E.H., E.M., F.C.M., F.I.R., F.R.D., 
G.B., G.C., G.D.S., G.H., G.H.K., G.M., G.W., I.Y., J.C.F., J.v.D., J.J.H., J.Ka., J.Kl., 
J.L.M., J.M., J.Su., J.T.B., K.B., K.v.E., K.F.D., K.S., L.C.S., M.Ber., M.Bu., M.H.v.IJ., 
M.G., M.Ku., M.L., M.Sm., M.Su., N.K., P.Me., P.Ma., P.M.V., R.E.M., R.G., R.L., R.Z., 
S.B., S.G., S.K., T.C., T.G., T.G.R., T.I.A.S., T.L., T.R.G., Y.A., Y.Z., V.I., V.S. 



 
   
 

18 
 

Designed and/or managed the study: B.T.H., C.B., C.L.R., J.M., J.T.B., T.R.G.  
Wrote the manuscript: A.D.B., B.T.H., C.B., C.L.R., D.J.L., E.C.M, E.H., G.D.S., G.H., 
J.C.F., J.Kl., J.L.M., J.M., J.T.B., K.B., K.F.D., M.Su., P.M.V., R.L., T.G.R., T.R.G., V.I.  

Competing interests 
The authors declare no competing interests. 

Financial disclosures 
T.R.G receives funding from GlaxoSmithKline and Biogen for unrelated research. 
 

References 
 

1. Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and 
diseases. Nature 465, 721-7 (2010). 

2. van Dongen, J. et al. Genetic and environmental influences interact with age and sex in 
shaping the human methylome. Nat Commun 7, 11115 (2016). 

3. Hannon, E. et al. Characterizing genetic and environmental influences on variable DNA 
methylation using monozygotic and dizygotic twins. PLoS Genet 14, e1007544 (2018). 

4. Kerkel, K. et al. Genomic surveys by methylation-sensitive SNP analysis identify 
sequence-dependent allele-specific DNA methylation. Nat Genet 40, 904-8 (2008). 

5. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. 
Nature 422, 297-302 (2003). 

6. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal 
inference in epidemiological studies. Hum Mol Genet 23, R89-98 (2014). 

7. Gaunt, T.R. et al. Systematic identification of genetic influences on methylation across 
the human life course. Genome Biol 17, 61 (2016). 

8. Bonder, M.J. et al. Disease variants alter transcription factor levels and methylation of 
their binding sites. Nat Genet 49, 131-138 (2017). 

9. Hannon, E. et al. Methylation QTLs in the developing brain and their enrichment in 
schizophrenia risk loci. Nat Neurosci 19, 48-54 (2016). 

10. Hop, P.J. et al. Genome-wide identification of genes regulating DNA methylation using 
genetic anchors for causal inference. Genome Biol 21, 220 (2020). 

11. Abecasis, G.R. et al. An integrated map of genetic variation from 1,092 human 
genomes. Nature 491, 56-65 (2012). 

12. Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip 
microarray for whole-genome DNA methylation profiling. Genome Biol 17, 208 (2016). 

13. Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. 
Genomics 98, 288-95 (2011). 

14. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 
identifies additional variants influencing complex traits. Nat Genet 44, 369-75, S1-3 
(2012). 

15. Shah, S. et al. Genetic and environmental exposures constrain epigenetic drift over the 
human life course. Genome Res 24, 1725-33 (2014). 

16. Gutierrez-Arcelus, M. et al. Passive and active DNA methylation and the interplay with 
genetic variation in gene regulation. Elife 2, e00523 (2013). 

17. Chen, L. et al. Genetic Drivers of Epigenetic and Transcriptional Variation in Human 
Immune Cells. Cell 167, 1398-1414.e24 (2016). 

18. McRae, A.F. et al. Identification of 55,000 Replicated DNA Methylation QTL. Sci Rep 8, 
17605 (2018). 



 
   
 

19 
 

19. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 
317-30 (2015). 

20. Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse 
outcomes of adiposity. Nature 541, 81-86 (2017). 

21. Elliott, G. et al. Intermediate DNA methylation is a conserved signature of genome 
regulation. Nat Commun 6, 6363 (2015). 

22. Feldmann, A. et al. Transcription factor occupancy can mediate active turnover of DNA 
methylation at regulatory regions. PLoS Genet 9, e1003994 (2013). 

23. Grundberg, E. et al. Global analysis of DNA methylation variation in adipose tissue from 
twins reveals links to disease-associated variants in distal regulatory elements. Am J 
Hum Genet 93, 876-90 (2013). 

24. Kim-Hellmuth, S. et al. Cell type-specific genetic regulation of gene expression across 
human tissues. Science 369(2020). 

25. Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and 
methylomic data from blood. Nat Commun 9, 2282 (2018). 

26. Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human 
transcription factors. Science 356(2017). 

27. Domcke, S. et al. Competition between DNA methylation and transcription factors 
determines binding of NRF1. Nature 528, 575-9 (2015). 

28. Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for 
DNMT3B in genic methylation. Nature 520, 243-7 (2015). 

29. Ginno, P.A. et al. A genome-scale map of DNA methylation turnover identifies site-
specific dependencies of DNMT and TET activity. Nat Commun 11, 2680 (2020). 

30. Sánchez-Castillo, M. et al. CODEX: a next-generation sequencing experiment database 
for the haematopoietic and embryonic stem cell communities. Nucleic Acids Res 43, 
D1117-23 (2015). 

31. Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. 
Nature 489, 57-74 (2012). 

32. Waszak, S.M. et al. Population Variation and Genetic Control of Modular Chromatin 
Architecture in Humans. Cell 162, 1039-50 (2015). 

33. Viny, A.D. et al. Dose-dependent role of the cohesin complex in normal and malignant 
hematopoiesis. J Exp Med 212, 1819-32 (2015). 

34. Battle, A. et al. Genetic effects on gene expression across human tissues. Nature 550, 
204-213 (2017). 

35. Kumasaka, N., Knights, A.J. & Gaffney, D.J. High-resolution genetic mapping of putative 
causal interactions between regions of open chromatin. Nat Genet 51, 128-137 (2019). 

36. Rao, S.S. et al. A 3D map of the human genome at kilobase resolution reveals principles 
of chromatin looping. Cell 159, 1665-80 (2014). 

37. Delaneau, O. et al. Chromatin three-dimensional interactions mediate genetic effects on 
gene expression. Science 364(2019). 

38. Vosa, U. Unraveling the polygenic architecture of complex traits using blood eQTL 
metaanalysis. bioRXiv (2018). 

39. Astle, W.J. et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to 
Common Complex Disease. Cell 167, 1415-1429.e19 (2016). 

40. Maurano, M.T. et al. Systematic localization of common disease-associated variation in 
regulatory DNA. Science 337, 1190-5 (2012). 

41. Tachmazidou, I. et al. Whole-Genome Sequencing Coupled to Imputation Discovers 
Genetic Signals for Anthropometric Traits. Am J Hum Genet 100, 865-884 (2017). 

42. Kato, N. et al. Trans-ancestry genome-wide association study identifies 12 genetic loci 
influencing blood pressure and implicates a role for DNA methylation. Nat Genet 47, 
1282-1293 (2015). 

43. Iotchkova, V. et al. GARFIELD classifies disease-relevant genomic features through 
integration of functional annotations with association signals. Nat Genet 51, 343-353 
(2019). 



 
   
 

20 
 

44. Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nat Genet 47, 1228-35 (2015). 

45. Reinius, L.E. et al. Differential DNA methylation in purified human blood cells: 
implications for cell lineage and studies on disease susceptibility. PLoS One 7, e41361 
(2012). 

46. Houseman, E.A. et al. Model-based clustering of DNA methylation array data: a 
recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta 
distributions. BMC Bioinformatics 9, 365 (2008). 

47. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between 
imprecisely measured traits using GWAS summary data. PLoS Genet 13, e1007081 
(2017). 

48. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic 
association studies using summary statistics. PLoS Genet 10, e1004383 (2014). 

49. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts 
complex trait gene targets. Nat Genet 48, 481-7 (2016). 

50. Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence of the 
plasma proteome on complex diseases. Nat Genet (2020). 

51. Richardson, T.G. et al. Systematic Mendelian randomization framework elucidates 
hundreds of CpG sites which may mediate the influence of genetic variants on disease. 
Hum Mol Genet 27, 3293-3304 (2018). 

52. Hemani, G., Bowden, J. & Davey Smith, G. Evaluating the potential role of pleiotropy in 
Mendelian randomization studies. Hum Mol Genet 27, R195-R208 (2018). 

53. Brion, M.J., Shakhbazov, K. & Visscher, P.M. Calculating statistical power in Mendelian 
randomization studies. Int J Epidemiol 42, 1497-501 (2013). 

54. Pierce, B.L. & Burgess, S. Efficient design for Mendelian randomization studies: 
subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178, 1177-84 
(2013). 

55. Hemani, G. et al. The MR-Base platform supports systematic causal inference across 
the human phenome. Elife 7(2018). 

56. Dekkers, K.F. et al. Blood lipids influence DNA methylation in circulating cells. Genome 
Biol 17, 138 (2016). 

57. Braun, K.V.E. et al. Epigenome-wide association study (EWAS) on lipids: the Rotterdam 
Study. Clin Epigenetics 9, 15 (2017). 

58. Simpson, J.T. et al. Detecting DNA cytosine methylation using nanopore sequencing. 
Nat Methods 14, 407-410 (2017). 

 



 
   
 

21 
 

Figure Legends 
Figure 1: Discovery and replication of mQTL 
a. Study Design. In the first phase, 22 cohorts performed a complete mQTL analysis of 
up to 480,000 sites against up to 12 million variants; retaining their results for p<1e-5. In 
the second phase, 120 million SNP-DNAm site pairs selected from the first phase, and 
GWA catalog SNPs against 345k DNAm sites, were tested in 36 studies (including 20 
phase 1 studies) and meta-analysed. b. Distributions of the weighted mean of 
DNAm across 36 cohorts for cis only, cis+trans and trans only sites. The weighted 
mean DNAm level across 36 studies was defined as low (<20%), intermediate (20%-
80%) or high (>80%). Plots are coloured with respect to the genomic annotation. Cis 
only sites showed a bimodal distribution of DNAm. Cis+trans sites showed intermediate 
levels of DNAm. Trans only sites showed low levels of DNAm. c. Discovery and 
replication effect size estimates between GoDMC (n=27,750) and Generation 
Scotland (n=5,101) for 169,656 mQTL associations. The regression coefficient is 1.13 
(se=0.0007). d. Relationship between DNAm site heritability estimates and DNAm 
variance explained in Generation Scotland. The center line of a boxplot corresponds 
to the median value. The lower and upper box limits indicate the first and third quartiles 
(the 25th and 75th percentiles). The length of the whiskers corresponds to values up to 
1.5 times the IQR in either direction. The regression coefficient for the twin family study 
was 3.16 (se=0.008) and for the twin study 2.91 (se=0.008) across 403,353 DNAm 
sites. The variance explained for DNAm sites with missing r2 (n=277,428) and/or h2=0 
(Twin family: n=80,726 Twin: 34,537) were set to 0.  
 
Figure 2: Cis and trans mQTL operate through distinct mechanisms 
a. Distributions of enrichments for chromatin states and gene annotations among 
mQTL sites and SNPs. Enrichment analyses were performed using 25 combinatorial 
chromatin states from 127 cell types (including 27 blood cell types) and gene 
annotations. The heatmap represents the distribution of odds ratios for cis only, trans 
only, or cis+trans sites and SNPs. For the enrichment of chromatin states, ORs were 
averaged across cell types. Significance has been categorised as: 
*=FDR<0.001;**=FDR<1e-10;***=FDR<1e-50 b. Distributions of enrichment for 
occupancy of TFBS among mQTL sites and SNPs. Each density curve represents 
the distribution of odds ratios for cis only, trans only, or cis+trans sites (left) and SNPs 
(right). c. Distributions of enrichment of mQTL among 41 complex traits and 
diseases. Each density curve represents the distribution of odds ratios for cis only, 
trans only, or cis+trans SNPs.  
 
Figure 3: Communities constructed from trans-mQTL. a. A network depicting all 
communities in which there were twenty or more sites. Random walks were used to 
generate communities (colours), so occasionally a DNA site connects different 
communities. b. The relationship between genomic annotations, mQTL and 
communities. Communities 9 and 22 are comprised of DNAm sites that are related 
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through shared genetic factors. The sankey plots show the genomic annotations for the 
genetic variants (left) and for the DNAm sites (right). The DNAm sites comprising these 
communities are enriched for TFBS related to the cohesin complex and NFkB, 
respectively. c. Enrichment of GWA traits among community SNPs. The genomic 
loci for each of the 56 largest communities were tested for enrichment of low p-values in 
133 complex trait GWAS (y-axis) against a null background of community SNPs. The x-
axis depicts the two-sided -log10 p-value for enrichment, with the 5% FDR shown by the 
vertical dotted line. Colours represent log odds ratios. Enrichments were particularly 
strong for blood related phenotypes (including circulating metal levels). 
 
Figure 4: Identifying putative causal relationships between sites and traits using 
bi-directional MR. Aggregated results from a systematic bi-directional MR analysis 
between DNAm sites and 116 complex traits. The y-axis represents the two-sided p-
value from MR analysis. The top plot depicts results from tests of DNAm sites 
colocalising with complex traits. The light grey points represent MR estimates that either 
did not surpass multiple testing, or shared small p-values at both the DNAm site and 
complex trait but had weak evidence of colocalisation. Bold, coloured points are those 
that showed strong evidence for colocalisation (H4 > 0.8). The bottom plot shows the 
two-sided -log10 p-values from MR analysis of risk factor or genetic liability of disease 
on DNAm levels. Extensive follow up was performed on DNAm site-trait pairs with 
putative associations, and those that pass filters are plotted in bold and colored 
according to the trait category. A substantial number of MR results in both directions 
exhibited very strong effects but failed to withstand sensitivity analyses. 

Online Methods 

Study design overview 
Initially, 38 independent studies were recruited to contribute data towards a mQTL 
meta-analysis of which 36 studies (Supplementary Table 1, Supplementary 
Information) passed our stringent quality criteria described below. Conventional GWAS 
meta-analyses involve performing complete GWAS in each study, sharing the summary 
data and meta-analysing every tested SNP. As a mQTL analysis involves ~450,000 
GWAS analyses, it is difficult to store and share the complete summary data from 38 
studies. To circumvent this problem, each study performed a genome-wide analysis but 
provided only the associations that surpass a relaxed significance threshold (p < 1e-5) 
in their study. Due to sampling variation the exact mQTL associations reported would 
differ between studies, meaning that the number of studies contributing to the meta-
analysis would be highly variable and could be as low as two studies. This would 
introduce two problems. First, publication bias arises if it is in fact a null association 
because the studies demonstrating null effects would not contribute to counteract the 
inflated effects from those that do happen to surpass the threshold. Second, the 
precision of the effect estimate is limited by the number of studies that happen to 
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contribute data on that association. To mitigate both problems the analysis in this study 
has been performed in two phases.  
 
In Phase 1 of our study we performed mQTL analyses of 420,509 high quality DNAm 
sites59 using data from 22 independent European studies to identify putative 
associations (Supplementary Table 1, Figure 1a) at a threshold of p< 1e-5. We used 
two approaches to exclude DNAm sites from our analyses. First we excluded 50,186 
DNAm sites that were masked by Zhou et al.59 which includes probes with potential 
cross reaction and probes that could not be mapped to genome. Secondly, we removed 
an additional 14,882 probes including multi-mapping probes (bisulfite converted 
sequences allowing two mismatches at any position mapped to the hg19 primary 
assembly) and probes with variants (minor allele frequency (MAF) >5%, UK10K) at the 
CpG dinucleotide or the extension base (for type I probes). 
 
All candidate mQTL associations at p<1e-5 were combined to create a unique 
‘candidate list’ of mQTL associations. In total we identified 102,965,711 candidate 
mQTL associations in cis (p < 1e-5, +/- 1 Mb from DNAm site) and 710,638,230 
candidate mQTL associations in trans (>1Mb from DNAm site) in at least one dataset. 
59% of the candidate mQTL associations in cis (n=61,103,065) and 2.4% of the 
associations in trans (n=17,246,702) were found in at least two datasets 
(Supplementary Figure 1). To reduce the computational burden, we included cis 
associations found in at least one dataset and trans associations in at least two 
datasets. The candidate list (n=120,212,413) was then sent back to all studies, and the 
association estimates were obtained for every mQTL association on the candidate list. 
In Phase 2 of our study we performed association tests for each of the candidate mQTL 
associations in 20 studies from Phase 1 and 16 additional studies with European 
ancestry (total n = 27,750) (Supplementary Table 1). The estimates for the candidate 
list are meta-analysed to obtain the final results (Figure 1a). 
 
This two-phase approach has a single objective: to minimise the computational burdens 
of storing summary data from the complete analysis from every study. However, we 
have effectively performed a complete search of all candidate mQTL associations, 
though with likely loss of coverage. The significant results obtained from the meta-
analysis are identical to what would have been identified had we performed a meta-
analysis on every candidate mQTL association. The only difference between a complete 
scan and our scan is that we will have missed some associations that were not at p<1e-
5 in any study but when combined across all studies would have surpassed an 
experiment wide multiple testing correction. 



 
   
 

24 
 

Data preparation 

Participants 
To study the relationship between common genetic variation and DNAm, we focused on 
studies of European ancestry with genotype data imputed to the 1000 Genomes 
reference panel11 and DNAm profiles quantified from bisulfite-converted genomic whole 
blood DNA using the Infinium HumanMethylation BeadChip (HumanMethylation450 or 
EPIC arrays). Details of the studies for discovery and replication are provided in 
Supplementary Table 1 and Supplementary Information.  

The Genetics of DNA Methylation Consortium (GoDMC) pipeline 
To facilitate the harmonization of the large volume of data we developed a GoDMC 
pipeline that was split into several modules, each focusing on the separate tasks of data 
checking, genotype preparation, phenotype and covariate preparation, DNAm data 
preparation, and subsequent analyses. In the first module the data format of the 
genotype data, DNAm and covariate data was checked. In addition, the number of 
individuals with DNAm and genotype data (requirement of n>100), the number of SNPs, 
the number of sites, covariates including cell counts, genotype build and strand, and the 
number of DNAm outliers were recorded. We also generated matrices with mean and 
SD by DNAm site and study descriptives. The entire pipeline can be viewed at 
https://github.com/MRCIEU/godmc, and the following text describes the procedures that 
were used. 

Genotype data 
Each study performed quality control on genotype data for all autosomes and 
chromosome X (if available) and imputed to 1000G phase 1 or above using 
hg19/build37. Dosages were converted to bestguess data without a probability cut-off. 
SNPs that failed Hardy Weinberg equilibrium (p<1e-6), had a MAF <0.01, an info score 
<0.8 or missingness in more than 5% of the participants were removed. We recoded 
SNPs to CHR:POS11 format and removed duplicate SNPs. We then harmonized the 
recoded SNPs to the 1000G reference using easyQC_v9.260. This harmonization script 
removed SNPs with mismatched alleles and recoded INDEL alleles to I and D.  
 
We performed a gender check to remove participants with discordant gender to the 
covariate file. We extracted and pruned a set of common HapMap3 SNPs (MAF>0.2, 
without long-range LD regions before we calculated the first 20 genetic principal 
components (PCs) on LD pruned SNPs and excluding regions of high LD from the 
analysis. We used PLINK.2.061 for unrelated participants and GENESIS62 for related 
participants to identify ethnic outliers. Ethnic outliers that deviated 7 SDs from the mean 
were removed. After outlier removal we recalculated genetic PCs for use in subsequent 
analyses. To identify relatedness in unrelated datasets, we pruned the genotype data to 
a set of independent HapMap 3 SNPs with MAF>0.01 and calculated genome-wide 
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average identity by state (IBS) using PLINK2.0. Participants with IBS > 0.125 were 
removed.  

DNAm data normalisation and quality control 
DNAm was measured in whole blood or cord blood using HumanMethylation450 or 
EPIC arrays in at least 100 European individuals. Each study performed normalization 
and quality control on the DNAm data independently, with most studies using functional 
normalisation through the R package meffil v0.1.063 (see Supplementary Table 1). 
Briefly, meffil has been designed to preprocess raw idat files to a normalization matrix 
for large sample sizes without large computational memory requirements and to perform 
quality control in an automated way where the analyst can adjust default parameters 
easily. Sample quality control included removal of participants where more than 10% of 
the DNAm sites failed the detection p-value of 0.1 and/or threshold of 3 beads. In 
addition, mismatched samples were identified by comparing the 65 SNPs on the DNAm 
array to the genotype array and a gender check. Additional DNAm quality was checked 
by the methylated versus unmethylated ratio, dye bias using the normalisation control 
probes and bisulphate control probes. Protocols can be found here: 
https://github.com/perishky/meffil/wiki. For each DNAm site, we replaced outliers that 
were 10 SDs from the mean (3 iterations) with the DNAm site mean.  

Covariates 
We used sex, age at measurement, batch variables (slide, plate, row if available), 
smoking (if available) and recorded cell counts to adjust for possible confounding and to 
reduce residual variation. Additional confounders (genetic PCs, non-genetic DNAm 
PCs, and where necessary predicted smoking and cell counts) were calculated using 
the GoDMC pipeline. After quality control and normalization of the DNAm data, we 
predicted smoking status by using previously reported DNAm associations with 
smoking64. In addition, we predicted cell counts using the Houseman algorithm46 
implemented in meffil v0.1.063. We performed a PC analysis on the 20,000 most 
variable autosomal DNAm sites and kept all PCs that cumulatively explained 80% of the 
variance. We performed a genome wide association analysis on the DNAm PCs and 
retained the PCs that were not associated with a genotype (p > 1e-7). We kept a 
maximum of 20 non-genetic PCs for subsequent adjustment. 

DNAm data adjustment 
We attempted to minimise non-genetic variation in the DNAm data to improve power for 
mQTL detection. We adjusted datasets with predominant family structures (pedigrees, 
twin studies) and population-based studies in slightly different ways. For unrelated 
participants we regressed out age, sex, predicted cell counts, predicted smoking and 
genetic PCs (adjustment 1). For related participants we did the same except also fitting 
the genetic kinship matrix using the method described in GRAMMAR65. 
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We took the residuals from the first adjustment forward to regress out the non-genetic 
DNAm PCs on the adjusted DNAm beta values (adjustment 2). The residuals from 
these analyses were rank transformed and centered to have mean 0 and variance 1. 

Positive and negative controls 
Before we performed the meta-analysis, we checked the number of SNPs and INDELs, 
sites and individuals analysed and the average mean and SD for each DNAm site to 
identify possible inconsistencies. Each of the 38 studies conducted a GWAS of 
cg07959070. We chose this DNAm site as a positive control as it showed a strong cis 
mQTL in several datasets on chr22 and hasn’t been proposed to be excluded from the 
analyses by probe annotation efforts59,66-68. To identify possible errors, we checked the 
cis association on chromosome 22 (p<0.001) for this DNAm site. In addition, we 
checked quantile-quantile and Manhattan plots for this DNAm site. We also used this 
control to identify studies with deflated or inflated lambdas (lambda >1.1 or lambda 
<0.9). We noticed deflation of the genomic lambda after adjustment of the index cis 
SNP in datasets with relatedness. However, lambdas were around 1 when not adjusted. 
After inspection one study was removed from the analysis due to deflation and one 
study was removed due to a lack of the positive control association signal, leaving 36 
studies for the final meta-analysis. 

Association analyses 

Phase 1: creating the candidate list of associations 
We performed a fast, comprehensive analysis of all cis- and trans-associations on 
420,509 reliable59 residualised DNAm sites separately in 22 studies (N=16,907) using 
the R package Matrix eQTL v2.1.069. For each DNAm site 𝑗 the residual value 𝑦!" was 
regressed against each SNP 𝑘 

𝑦!" = 𝛼!# + 𝛽!#𝑥#" + 𝑒!#" 
where genotype values 𝑥#" were coded as allele counts {0,1,2}, 𝛼!# was the intercept 
term, and 𝛽!#was the effect estimate of each SNP 𝑘 on each residualised DNAm site 𝑗.  

Phase 2: obtaining summary data from all studies for meta-analysis 
This candidate list was sent to 36 studies (N=27,750) where effect sizes for all putative 
associations were recalculated by fitting linear models. For putative cis-mQTL we 
performed linear regression as in phase 1. To improve statistical power to estimate the 
trans-mQTL effects we recorded the top cis SNP 𝑥$, for each DNAm site (based on 
lowest p-value within that study) and fit this as a covariate in the trans-mQTL 
regressions 

𝑦!" = 𝛼!# + 𝛽!$𝑥$" + 𝛽!#𝑥#" + 𝑒!#" 
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Evaluation of DNAm data adjustment 
As adjustment for non-genetic DNAm PCs might have substantial benefits on power or 
an adverse effect by inducing collider bias70, we explored the impact by comparing 
mQTL not adjusted for non-genetic PCs to mQTL adjusted for non-genetic PCs in 
ARIES. Specifically, we found 80,890 clumped mQTL associations in the PC-adjusted 
dataset and 74,402 clumped mQTL associations in the PC-unadjusted dataset. The 
Pearson correlation between effect sizes of the PC-unadjusted clumped mQTL vs PC-
adjusted mQTL (cis r=0.998; trans r=0.998) and PC-adjusted clumped mQTL (cis 
r=0.997; trans r=0.997) versus PC-unadjusted mQTL was very high (Supplementary 
Figure 36). These results suggest that if collider bias is impacting the results it is 
extremely small. The simplest explanation for the minimal difference in effect sizes and 
slightly higher mQTL yield amongst the PC-adjusted mQTL is that reduced residual 
variance has improved power. 

Impact of two-stage design on power of study 
Though the multi-stage study design was performed out of practical necessity, we 
evaluated the impact it had on statistical power in comparison to the hypothetical 
situation of analysing all the data together in a standard one stage mQTL design. 
For cis mQTL associations we calculated the power of detecting an association in at 
least one of 22 studies at p < 1e-5. To do this we calculate what is the probability of 
missing an association as being the product of the probability of missing it in study 1 
AND in study 2 AND in study 3 etc. 

𝑝(𝑚𝑖𝑠𝑠) = 6 1− 𝑓(𝑥 = 19.5; 𝑘 = 1, 𝜆 = 𝑛"𝑟%)
&'%%

"'(

 

where 𝑓(𝑥; 𝑘; 𝜆) is the probability density function for the non-central chi-square 
distribution with 𝑘 degrees of freedom and 𝜆 non-centrality parameter based on the 
postulated variance explained by an mQTL (𝑟%) and the study sample size 𝑛" and 19.5 
denotes the chi-square threshold at p = 1e-5 with one degree of freedom. 

For trans mQTL associations we calculated the power to detect an association in at 
least two of 22 studies at p< 1e-5. We calculate what is the probability of missing an 
association as being the product of the probability of missing it in both study 1 and study 
2 AND in study 1 and study 3 AND in study 1 and study 4 etc. 

𝑝(𝑚𝑖𝑠𝑠) = 6 61− 𝑓(𝑥 = 19.5; 𝑘 = 1, 𝜆 = 𝑛"𝑟%)
"'(

!'(

&'%%
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𝑓(𝑥 = 19.5; 𝑘 = 1, 𝜆 = 𝑛"𝑟%) 

where 𝑓(𝑥; 𝑘; 𝜆)is the probability density function for the non-central chi-square 
distribution with 𝑘degrees of freedom and 𝜆 non-centrality parameter based on the 
postulated variance explained by an mQTL (𝑟%) and the study sample sizes 𝑛"and 𝑛!; 
and 19.5 denotes the chi-square threshold at p = 1e-5 with one degree of freedom. 
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We found that we have no loss of power (<1%) for loci that explain more than 1.2% or 
less than 0.1% of the variance. Within these bounds >80% of power is lost for cis-mQTL 
with r2 0.16% to 0.38%. For trans-mQTL, power suffers slightly more because of 
requiring detection by at least two studies in the first stage (r2 0.27% to 0.64%) 
(Extended data 4a). 

Meta-analyses 
We used the SNP effect estimates and standard errors for each SNP-DNAm site pair in 
the candidate list in the meta-analyses. Inverse variance fixed effects (FE) meta-
analyses of the 36 studies was performed using METAL71. We modified METAL 
(https://github.com/explodecomputer/random-metal) to incorporate the DerSimonian 
and Laird random effect (RE) models72 and multiplicative random effects (MRE) 
models73. These results are available here: http://mqtldb.godmc.org.uk/. We also 
inspected the meta-analysis and conditional analysis (see below) logfiles and removed 
any SNPs that had inconsistent allele codes between studies, which were in almost all 
cases multi-allelic SNPs. 
We inspected our results by counting the number of associations against the direction of 
the effect size (+ or -) for each study. A high number of associations was found if the 
direction of the effect sizes agreed across studies (Supplementary Figure 2a). In 
addition, the average I2 heterogeneity estimate for the effect size direction categories 
was 44% (min=0%, max 100%). For categories with more than 100 associations, 
average I2 was 49% (min=36%, max 61%) (Supplementary Figure 2b). We also 
explored whether the number of phase 1 studies was correlated to I2 and tau2. We 
found a nonsignificant correlation (r=0.002, p=0.23, r=-0.001, p=0.32) indicating that 
mQTL associations found in a low number of phase 1 studies didn’t show more 
heterogeneity than mQTL associations found in a high number of phase 1 studies.  
 
To explore heterogeneity further, we meta-analysed our SNP-DNAm pairs using FE, RE 
and MRE models and found that associations that were dropped in MRE analyses 
showed higher I2 and tau2 and smaller effect sizes and DNAm site SDs 
(Supplementary Figures 3-4).  
Further inspection showed that trans only sites had higher I2 heterogeneity statistics 
than associations from cis only or cis+trans sites (mean I2 values of 53%, 46% and 
39%, respectively). However, as I2 and tau2 were positively correlated to effect sizes 
(Supplementary Figure 2c) we deem the use of FE meta-analysis to be appropriate for 
reducing false negative rates. 
 
Further downstream analyses have been described in Supplementary Information. 

Data Availability 
A database of our results is available as a resource to the community at 
http://mqtldb.godmc.org.uk. The individual level genotype and DNAm data are available 
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by request from each individual study or can be downloaded from Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), European Genome-phenome 
Archive (EGA, https://ega-archive.org/) or Array Express 
(https://www.ebi.ac.uk/arrayexpress/). As the consents for most studies require the data 
to be under managed access, the individual level genotype and DNAm data are not 
available from a public repository unless stated.  
ALS BATCH1 & 2 data are available to researchers by request as outlined in the 
Project MinE access policy. ARIES data are available to researchers by request from 
the Avon Longitudinal Study of Parents and Children Executive Committee 
(http://www.bristol.ac.uk/alspac/researchers/access/) as outlined in the study's access 
policy http://www.bristol.ac.uk/media-library/sites/alspac/documents/researchers/data-
access/ALSPAC_Access_Policy.pdf. BAMSE data are available from the GABRIEL 
consortium as well as from the study portal at http://ki.se/en/imm/medallomics. 
BASICMAR DNAm data are available under accession number GSE69138. Born in 
Bradford data are available to researchers who submit an expression of interest to the 
Born in Bradford Executive Group (https://borninbradford.nhs.uk/research/). BSGS 
DNAm data are available under accession code GSE56105. GOYA data are available 
by request from DNBC, https://www.dnbc.dk/. DunedIn data are available via a 
managed access system (contact: ac115@duke.edu). E-Risk DNAm data are available 
under accession number GSE105018. Estonian biobank (ECGUT) data can be 
accessed upon ethical approval by submitting a data release request to the Estonian 
Genome Center, University of Tartu (http://www.geenivaramu.ee/en/access-
biopank/data-access). EPIC-Norfolk data can be accessed by contacting the study 
management committee http://www.srl.cam.ac.uk/epic/contact/. Requests for EPICOR 
data accession may be sent to Prof. Giuseppe Matullo (giuseppe.matullo@unito.it). FTC 
data can be accessed upon approval from the Data Access Committee of the Institute 
for Molecular Medicine Finland FIMM (fimm-dac@helsinki.fi). Requests for Generation 
R data access are evaluated by the Generation R Management Team. Researchers can 
obtain a de-identified GLAKU dataset after having obtained an approval from the 
GLAKU Study Board. GSK DNAm data are available under accession number 
GSE125105. INMA data are available by request from the INfancia y Medio Ambiente 
Executive Committee for researchers who meet the criteria for access to confidential 
data. IOW F2 data are available by request from Isle of Third Generation Study 
(http://www.allergyresearch.org.uk/contact-us/. LLS DNAm data were submitted to the 
EGA under accession EGAS00001001077. LBC1921 and LBC1936 data are available 
on request from the Lothian Birth Cohort Study, Centre for Cognitive Ageing and 
Cognitive Epidemiology, University of Edinburgh (email: I.Deary@ed.ac.uk). DNAm 
from MARTHA participants are available under accession number E-MTAB-3127. NTR 
DNAm data are available upon request in EGA, under the accession code 
EGAD00010000887. PIAMA data are available upon request. Requests can be 
submitted to the PIAMA Principal Investigators (https://piama.iras.uu.nl/english/). 
PRECISESADS data are available through ELIXIR at doi:10.17881/th9v-xt85. 
Collaboration in data analysis of PREDO is possible through specific research 
proposals sent to the PREDO Study Board (predo.study@helsinki.fi) or primary 
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investigators Katri Räikkönen [katri.raikkonen@helsinki.fi] or Hannele Laivuori 
[hannele.laivuori@helsinki.fi]. Data is available upon request at project MinE 
(https://www.projectmine.com). Raine data are available upon request 
(https://ross.rainestudy.org.au). Requests for the data accession of the Rotterdam 
Study may be sent to: Frank van Rooij (f.vanrooij@erasmusmc.nl). SABRE data are 
available by request from SABRE (https://www.sabrestudy.org). SCZ1 DNAm data are 
available under accession number GSE80417. SCZ2 DNAm data are available under 
accession number GSE84727. SYS data are available upon request addressed to Dr 
Zdenka Pausova [zdenka.pausova@sickkids.ca] and Dr Tomas Paus 
[tpausresearch@gmail.com]. Further details about the protocol can be found at 
[http://www.saguenay-youth-study.org/]. TwinsUK DNAm data are available in GEO 
under accession numbers GSE62992 and GSE121633. TwinsUK adipose DNAm data 
are stored in EGA under the accession number E-MTAB-1866. Access to additional 
individual-level genotype and phenotype data can be applied for through the TwinsUK 
data access committee http://twinsuk.ac.uk/resources-for-researchers/access-our-data/. 
Individual level DNAm and genetic data from the UK Household Longitudinal Study 
are available on application through EGA under accession EGAS00001001232. Non-
identifiable Generation Scotland data from this study will be made available to 
researchers through GS:SFHS Access Committee. MESA DNAm data are available 
under accession GSE56046 and GSE56581. Tissue DNAm data are available from 
GSE78743. Brain DNAm data can be found under accession number GSE58885.  
Cohort descriptions and further contact details can be found in the Supplementary 
Information.  
For the enrichments, we used chromatin states from the Epigenome Roadmap 
(https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmMod
els/imputed12marks/jointModel/final/), transcription factor binding sites TFBS from the 
ENCODE project 
(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUnifo
rm/ downloaded from the LOLA core database (http://databio.org/regiondb) and gene 
annotations from https://zwdzwd.github.io/InfiniumAnnotation or from GARFIELD 
(https://www.ebi.ac.uk/birney-srv/GARFIELD/). To extract genome-wide association 
signals for colocalization, we used the MRBase database (https://www.mrbase.org/). 

Code Availability 
Datasets were processed using https://github.com/perishky/meffil unless stated 
otherwise. Individual study analysts used a github pipeline 
https://github.com/MRCIEU/godmc to conduct the mQTL analysis. We used 
https://github.com/MRCIEU/godmc_phase1_analysis for the phase1 analysis, 
https://github.com/explodecomputer/random-metal for the meta analyses and 
https://github.com/MRCIEU/godmc_phase2_analysis for the follow-up analyses. 
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