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Abstract
6D object pose estimation plays a crucial role in robotic manipulation and grasping tasks. The aim to estimate the 6D object 
pose from RGB or RGB-D images is to detect objects and estimate their orientations and translations relative to the given 
canonical models. RGB-D cameras provide two sensory modalities: RGB and depth images, which could benefit the estima-
tion accuracy. But the exploitation of two different modality sources remains a challenging issue. In this paper, inspired by 
recent works on attention networks that could focus on important regions and ignore unnecessary information, we propose 
a novel network: Channel-Spatial Attention Network (CSA6D) to estimate the 6D object pose from RGB-D camera. The 
proposed CSA6D includes a pre-trained 2D network to segment the interested objects from RGB image. Then it uses two 
separate networks to extract appearance and geometrical features from RGB and depth images for each segmented object. 
Two feature vectors for each pixel are stacked together as a fusion vector which is refined by an attention module to generate 
a aggregated feature vector. The attention module includes a channel attention block and a spatial attention block which can 
effectively leverage the concatenated embeddings into accurate 6D pose prediction on known objects. We evaluate proposed 
network on two benchmark datasets YCB-Video dataset and LineMod dataset and the results show it can outperform previ-
ous state-of-the-art methods under ADD and ADD-S metrics. Also, the attention map demonstrates our proposed network 
searches for the unique geometry information as the most likely features for pose estimation. From experiments, we conclude 
that the proposed network can accurately estimate the object pose by effectively leveraging multi-modality features.

Keywords  6D object pose estimation · Convolutional neural network · Feature fusion · Attention mechanism

Introduction

The aim to solve 6D object pose estimation problem with 
RGB or RGB-D images is to detect objects and estimate 
their orientations and translations relative to the given 
canonical models. It is a long standing problem in computer 
vision and robotics communities. Potentially the solutions to 
the problem could be applied to robot manipulation [1–3], 
self-driving cars [4, 5] or augmented reality [6, 7]. There are 
still some challenging issues in solving the problem when 
the images include severe occlusions, cluttered background, 

lighting variations, texture-less objects, or symmetrical 
objects.

Traditionally geometrical methods were used to solve the 
problem by matching RGB image features with object’s 3D 
models [8, 9]. These methods require well-designed hand-
crafted features which are not robust to lighting variations, 
background clutters, or texture-less objects.

Recently deep learning methods have been proposed to 
solve the problem as CNNs have shown significant robust-
ness to environment variations. Some of them took a holis-
tic method to train end-to-end neural networks and regress 
the 6D pose directly from the networks [10]. Some of them 
exploited a key-point method and solved the problem with 
two stages: first estimate 2D keypoints of the object using 
deep networks and then estimate the 6D pose via 2D-3D 
correspondences with a PnP algorithm [11, 12]. Dense meth-
ods were also explored where a feature is extracted for each 
object pixel or patch and then the best minimal set of points 

 *	 Tao Chen 
	 tc17339@essex.ac.uk

	 Dongbing Gu 
	 dgu@essex.ac.uk

1	 School of Computer Science and Electronic Engineering, 
University of Essex, Colchester CO4 3SQ, UK

http://orcid.org/0000-0003-4909-4020
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-021-09966-y&domain=pdf


	 Cognitive Computation

1 3

is selected via the RANSAC algorithm or each feature casts 
a vote for 6D pose hypotheses [13].

RGB-D cameras have made two data modalities (RGB 
images and depth images) easily available and further 
pushed the research front for better 6D pose estimation. 
Some of RGB-D methods first estimated an initial pose 
from RGB image and then refined it on point clouds using 
an ICP algorithm or other optimization algorithms [14, 15]. 
Others used two separate networks for RGB images and 3D 
point cloud to extract appearance and point-wise geometrical 
features, then concatenated both features to regress the 6D 
pose [16].

Recently attention mechanisms have shown a remarkable 
performance in deep learning applications. The Transformer 
[17] becomes very effective in natural language processing 
tasks. In 2D image and 3D data tasks, it also demonstrates 
powerful capability to enhance the feature representation 
[18–21]. Woo et  al [22] proposed an attention module 
(CBAM) that can process a given feature map in terms of 
spatial and channel dimensions to focus on necessary infor-
mation. Both the transformer and the CBAM use atten-
tion mechanisms to enhance the relevance features while 
weaken the non-relevant features via generating weighted 
parameters. But the transformer generates weighted param-
eters based on the key-value-query concepts in information 
retrieval tasks while the CBAM generates them based on 
channel and spatial dimensions. For graph-structure data, 
Veličković et al [23] introduced a network architecture with 
an attention layer which considers the contribution from dif-
ferent neighbors of a node.

In this paper, we propose a novel end-to-end network: 
Channel-Spatial Attention Network (CSA6D) for 6D object 
pose estimation from RGB-D images. The proposed CSA6D 
includes a pre-trained 2D network to segment the interested 
objects from RGB image. Then it uses a 2D image detector 
and a 3D point cloud detector to extract appearance fea-
tures and point-wise geometrical features from each seg-
mented object. Two feature vectors for each pixel are stacked 
together as a fusion vector. Next it uses an attention module 
to process the fusion vector along spatial and channel axes 
to obtain an aggregated feature vector. Finally the 6D object 
pose is directly estimated from the aggregated feature vector 
via fully connected layers.

Our innovation is the use of an attention module to refine 
the fusion feature vector alone spatial and channel axes to 
improve the representation of feature map, and this design 
leads to a considerable accuracy improvement, so post-
processing steps are unnecessary in our model. In previ-
ous work [16], the fusion feature vector is directly fed to 
stacked MLP layers to regress the output. Here we argue 
that this process might not exploit the potential of all the 
information well while our proposed attention module could 
focus on more important features for pose regression. Since 

two modality features are simply blending together, the 
spatial-attention and channel-attention blocks are used to 
extract related representative features from their embedding 
space while keeping the original structure. Specifically, 
this design makes a robust representation for the modality 
fusion scheme and does not require a costly refinement step.

We evaluate our model on the LindMod dataset [8] and 
YCB-Video dataset [10]. The quantitative result shows that 
our proposed model can achieve a result with the state-of-
the-art accuracy compared with other learning methods.

Related Works

Classical methods for estimating the 6D object pose mainly 
rely on template matching techniques [8], which are sen-
sitive to cluttered environments and lighting variations. 
Deep learning-based methods have demonstrated resilient 
capability to some challenging scenes. Here we review deep 
learning-based methods for 6D pose estimation.

RGB methods: Normally, the 2D bounding box and seg-
ment mask of an object are usually cropped from images, 
then taken as the input for CNN-based 6D pose estima-
tion approaches. There are many deep learning architec-
tures that achieved excellent performance in object detec-
tion [24, 25] and segmentation tasks [26]. SSD6D [27] 
utilized a SSD detector to find the interested objects first, 
then their viewpoints were roughly approximated through 
classification instead of regressing 6D pose directly. BB8 
[28] took a holistic approach where the 6D pose is directly 
regressed by a network following from a segmentation 
network. Keypoint-based methods [29, 30] first estimated 
some sparse 2D keypoints of an object and then estimated 
the 6D pose through 2D-3D correspondences with a PnP 
algorithm [31]. However, keypoint-based methods are not 
very effective when some keypoints are occluded. DPOD 
estimated dense multi-class 2D-3D correspondence maps 
and allowed for more robust estimation [1]. Pix2Pose [32] 
used an auto-encoder to make pixel-wise prediction for 
object’s 3D coordinate, obtaining the pose through solv-
ing 2D-3D correspondence using the PnP algorithm. They 
also attempted to use a Generative Adversarial Network 
[33] to recover the occlusion part of the object. To consider 
each pixel’s contribution, PVNet [34] made use of a voting 
scheme to select the best keypoint from each pixel’s pre-
diction. PoseCNN [10] proposed a network that regresses 
the center of object and regresses the 3D center distance 
from the camera directly. TrackNet [35] and DeepIM [36] 
captured the discrepancy between the current and previous 
images and used a network to estimate the pose residuals. 
But they required an initial pose to be estimated at the start 
of the process in order to make iterative refinement. These 
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RGB methods are lack of geometrical (depth) information, 
which limits the performance of 6D pose estimation.

RGB-D methods: RGB-D data provides additional geo-
metrical information along with appearance information, 
which offers an opportunity to explore 3D point clouds for 
6D pose estimation. The work in [14] estimated an initial 
6D pose using RGB method and refined the pose iteratively 
via point cloud with an ICP algorithm [37]. PointNet [38] 
pioneered the work in point-wise feature extraction for clas-
sification and segmentation on 3D data. DenseFusion [16] 
proposed to use two separate networks to extract features 
from RGB image and depth image, and a CNN to regress the 
6D pose followed by an ICP-like algorithm. In their work, 
the pose is estimated from the concatenated features of RGB 
image and depth image. Gao et al [39] directly utilized two 
PointNet-like networks to regress the 6D pose from un-
ordered point sets. FFB6D extended Densefusion with a full 
flow bidirectional fusion network and used appearance infor-
mation in RGB image and geometry information in depth 
image as complementary information during their feature 
extraction [40].

Attention mechanisms: Visual attention mechanisms are 
able to focus on certain parts of an image while perceiving 
the surrounding region through a correlation vector. It could 
enhance the global view by using the correlation weights and 
improve the model accuracy. Recently they are successfully 
applied for visual tasks, such as image classification [18, 19], 
image captioning [21], scene segmentation [20]. Spatial and 
channel attentions provide a mechanism to focus where to 
look in a spatial attention block and what to look in a chan-
nel block [22, 41]. Using spatial attention only for 6D pose 
estimation was proposed in [42]. It works under an itera-
tive refinement framework like DeepIM[36] where the pose 
residuals are estimated from a network. A graph attention 

module was added after the feature extraction in [43] for the 
6D pose estimation from RGB-D images.

In this paper, we will fuse appearance features in RGB 
image and geometry features in depth image together, and 
use both spatial and channel attention blocks to refine the 
fusion feature vector along spatial and channel axes to 
improve the representation of the feature map for 6D pose 
estimation.

Methods

In this section, we will describe our network CSA6D in 
details. Our final goal is to estimate the rotation matrix 
R ∈ ℝ

4×1 in quaternion and translation vector T ∈ ℝ
3×1 of 

detected objects. We use RGB-D images as input and no 
refinement or post-processing step required in our system.

Model Architecture

The architecture of our CSA6D is depicted in Fig. 1. An 
input RGB-D image with 640 x 480 pixels is fed to the 
system. Firstly, the RGB image is segmented by using a 
semantic segmentation network and each interested object is 
cropped from the image with its corresponding 2D bounding 
box and masks. By finding the corresponding region in the 
depth image with object masks, the object 3D point cloud 
is recovered by the camera calibration matrix and cropped 
depth region. The pre-trained segmentation network we used 
is an encoder-decoder network Mask R-CNN [26]. This seg-
mentation network outputs N + 1 binary maps in which each 
pixel belonging to that class (background class included) is 
activated and N is the number of object classes. The image 

Fig. 1   Overview of our proposed framework: (a) image segmenta-
tion and point cloud re-construction, (b) appearance and geometrical 
feature extraction, and feature fusion, (c) attention module for fea-

ture refinement, and (d) pose regression. The inputs are RGB image 
and depth image. The final outputs are R:rotation, T:translation, 
C:confidence
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patch that contains interested object is cropped by using 2D 
bounding box obtained from the segmentation network.

Secondly, we extract appearance features of the object 
from the cropped image patch using a CNN. Here we use 
Pyramid Scene Parsing Network (PSPNet) [44] as the 
appearance feature extractor to obtain an image feature map 
shown as the top branch in Fig. 1. The resulted feature map 
has size H ×W × C where C represents the dimension of 
each pixel in their feature space. H and W are the height 
and width of the original image patch. We extract geometry 
features from the 3D point cloud data using a variant of 
PointNet [38] shown as the bottom branch in Fig. 1. The 
correspondence between two features for each pixel is estab-
lished by using projection.

Thirdly, as appearance features in RGB image and geom-
etry features in depth are complementary, they are stacked 
together as a fusion vector to form a compact representation 
of the interested object. We apply an channel attention block 
followed by a spatial attention block to refine the fusion fea-
ture. More specifically, the attention blocks perform max-
pool and average-pool operations in channel and spatial axes 
to get a new aggregated feature vector that has same dimen-
sionality with the fusion feature vector.

Finally we have three separate branches to estimate the 
rotation, translation and confidence, respectively, each of 
them using five fully connected layers. The confidence score 
refers to the confidence the network has on each prediction.

Attention Module

Due to the occlusion of objects or potential segmentation 
errors, we might include the pixels that belong to other 
objects or background. This result could deteriorate the 
robustness of fusion features. To overcome this problem, 
our attention module is to refine the fusion features so that it 
could alleviate the potential problem. Our attention module 
comprises of two blocks, channel attention block and spatial 
attention block and this is inspired by CBAM [22]. They are 
modified to process 1D fusion features used in our network 
instead of 2D image features originally proposed. 

Assuming a fusion feature F has a shape ℝP×C where P 
is the number of pixels, the channel attention block can pro-
duce an 1D channel attention vector Mc ∈ ℝ

P×1 , the spatial 
attention block can refine a new spatial attention feature 
Ms ∈ ℝ

P×C . These two blocks are concatenated together as 
shown in Fig. 1. The channel attention block takes the fusion 
feature as input and generate a channel attention feature F′ . 
These two features are multiplied together and the result is 
fed to the spatial attention block to generate a spatial atten-
tion feature. Again these two features are multiplied together 
to generate an aggregated feature vector F′′ . Hence, the over-
all procedure can be written as follows:

where F′ is the output from the channel attention block and 
F

′′ is the final output that has the same shape with the fusion 
feature. 

⨂
 represents the element-wise multiplication. 

Broadcast operation to attention map is applied if needed.

Channel Attention Block

The details of the channel attention block are shown in 
Fig. 2. It applies point-wise max-pool and average-pool 
operations to the fusion feature map, respectively, and the 
resulted descriptors are summed element-wise. A shared 
multi-layer perceptron network is used to process the 
resulted descriptor, which has three neuron layers. To pre-
vent the network’s parameters overload, the middle neuron 
size is set to W/16 that is suggested by [22]. The feature map 
generated by the MLP has dimension W × 1 and is processed 
by the Sigmoid function to produce the final channel atten-
tion map with size W × 1.

Spatial Attention Module

After the first multiplication shown in Fig. 1 (to enable the 
multiplication, broadcasting operation is applied to the chan-
nel attention map), the channel attention vector is refined 
as F�

∈ ℝ
H×W . To get the spatial attention feature, max-

pool and average-pool operations are applied to generate 
two features F′

avg
 and F′

max
 , and both have size W × 1 , and 

they are concatenated. Average-pooling and Max-pooling 
are commonly used pooling functions. The intuition behind 

(1)
F

�

= Mc(F)
⨂

F

F
��

= Ms(F
�

)
⨂

F
�

Fig. 2   The channel-attention block. H ×W represents the input 
dimensions. Operations are stated inside the box and the fea-
ture dimensions are shown after the operation box. Multi-layer 
perceptron(MLP) has three layers with output dimensions (W, W/16, 
W)
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these two pooling functions is that combining the global 
information captured by average-pool function and the local 
information captured by max-pool function can have a better 
performance for our task than using one of them. Here, we 
use a 1 × 1 convolutional layer to process the concatenated 
feature instead of the convolutional layer with kernel size 
of 7 × 7 , then followed by batch-normalization and ReLu 
operations. So the spatial attention block is calculated as:

where sigmoid denotes the Sigmoid function, which is used 
to output the normalized feature. Finally the aggregated 
feature vector F′′ is obtained by multiplication, and used to 
estimate the object pose by the pose predictor.

Loss Function

In this subsection, we describe the loss function used in our 
model. we train the loss in a mean square error function as 
shown below:

where xj is the jth point randomly selected from points of 
object model, and T is the ground truth transformation and 
�̃ is the predicted transformation from jth refined attention 
features. We also output the confidences of model’s predic-
tions, which we would like to utilize to penalize the bad 
features. So inspired by the DenseFusion [16], we add a 
regularize term to balance overall prediction. Hence, our 
final loss function is described as:

where N is the total number of sampled refined attention 
features, and W is the hyperparameter for confidence. During 
inference, the highest confidence is selected as final output.

Experiments

In this section, we describe the training details of our network. 
The network is evaluated on challenging datasets YCB-Video 
dataset [10] and LindMod dataset [8] . We use a GeForce GTX 
1080 Ti graphic card to train our network, which took appx. 300 
hours to finish the iterations of 500 epochs on the YCB-Video 
dataset, and on the LineMod dataset it costs appx. 200 hours to 
finish 500 epochs. The network is implemented in Pytorch.

(2)

F
�

avg
= AvgPool(F

�

)

F
�

max
= MaxPool(F

�

)

Ms(F
�

) = sigmoid(f 1×1(F
�

avg
,F

�

max
))

(3)Li =
1

m

∑

j

‖‖
‖
(�xj − �̃xj)

‖‖
‖

2

(4)L =
1

N

∑

i

(LiCi −Wlog(Ci))

Datasets

The LineMod and YCB-Video datasets are two commonly 
used benchmark datasets. The YCB-Video dataset contains 
mixed 21 textured and texture-less household objects coming 
from 92 video sequences. Each frame is annotated with 6D 
object pose ground-truth. The LineMod dataset has 13 texture-
less objects placed on the table in the cluttered background. 
The datasets were captured by Kinect camera, and each image 
has its associated depth image and has an object pose annota-
tion. The spilt of training/test sets are unchanged with official 
datasets.

Training

In the semantic segmentation network for appearance feature 
learning, ResNet-18 [46] is used as backbone network, and 4 
pyramid levels for pooling are 1 × 1 , 2 × 2 , 3 × 3 , and 6 × 6 . 
The dimension of geometry feature is set to 1024 and the 
dimension of appearance feature is 384, hence, the dimension 
of fusion feature is 1024 + 384. To predict the pose, we have 
three independent Multi-layer perceptrons (MLP) applied on 
the aggregated feature in which each MLP has 5 hidden neuron 
layers, (1408-640-256-128-4) are the size of hidden layer for 
the rotation prediction (quaternion), (1408-640-256-128-3) 
for the translation prediction and (1408-640-256-128-1) for 
the confidence prediction. In order to prevent over-fitting, we 
apply data argumentation technique on input RGB patch. For 
instance, we add some random noises to brightness, contrast, 
saturation and hue of image of training set. In point cloud, 
tiny translation error is added. To balance the accuracy and 
computation, we use Farthest Point Sampling (FPS) algorithm 
proposed in PointNet to sample 1000 points from the recov-
ered point cloud before feeding it to PointNet. In this way, we 
can maintain the surface information with limited number of 
points. The hyperparameter W in equation 4 is chosen as 0.01.

Evaluation Metrics

ADD(S) Metrics

To evaluate the network’s performance, we use Average Dis-
tance of Model Points (ADD) [10] as metric to non-symmetric 
objects and Average Closest Point Distance (ADD-S) to sym-
metric objects.

where �̃ and �̃ are the predicted rotation and translation 
matrices, while R and T are the ground-truth of matrices. 
x denotes the points randomly selected from 3D model of 
object of interest. The prediction of rotation and translation 

ADD =
1

m

∑

x∈M

‖
‖(�x + �) − (�̃x + �̃)‖‖2
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is considered as correct if the score of ADD is lower than a 
predefined threshold. To evaluate the model’s performance 
on symmetric objects, the ADD-S is used for evaluation. 
The ADD-S score is calculated as average distance to the 
closest point.

where x1 and x2 are selected from the same 3D model.
In this paper, we report the area under curve (AUC) 

for ADD and ADD-S metrics. Also, we set the maximum 
threshold of both curves to be 0.1m. Beside this, we fur-
ther test the ADD-S under threshold 0.01m to illustrate the 
network’s tolerance to small errors. During evaluation, we 
use ADD metric for non-symmetric objects and ADD-S for 
symmetric objects.

2D Re‑Projection Error

In addition to ADD(S) metrics, we also use the 2D pro-
jection metric to quantify the performance of our network. 
In this way, the object model points are projected to image 

ADD-S =
1

m

∑

x1∈M

min
x2∈M

‖
‖(�x1 + �) − (�̃x2 + �̃)‖‖2

plane by ground-truth pose and predicted pose. The predic-
tion pose is treated as correct if the average distance of cor-
responding points is less than 5 pixels. The 2D Re-projection 
error can be calculated as below:

Fig. 3   The spatial-attention block. The operations inside the box are 
1D convolution, batch-normalization, and ReLu function. Broadcast-
ing operation duplicates its input feature map W × 1 for H times to 
form a feature map with dimension W × H

Table 1   Quantitative evaluation result on the YCB-Video dataset. Objects with bold indicate symmetry objects. Numbers with bold mean the 
best performance in comparison

RGB RGB-D

PoseCNN [10] PoseCNN [10]+ICP PointFusion [45] DenseFusion [16] Ours

Objects ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

002_master_chef_can 84.0 50.9 95.8 69.0 90.9 - 96.4 73.1 95.8 71.8
003_cracker_box_vi 76.9 51.7 91.8 80.7 80.5 - 95.5 94.0 96.4 95.3
004_sugar_box 84.3 68.6 98.2 97.2 90.4 - 97.5 96.5 97.6 97.0
005_tomato_soup_can 80.9 66.0 94.5 81.6 91.9 - 94.6 85.4 94.5 85.9
006_mustard_bottle 90.2 79.9 98.4 97.0 88.5 - 97.2 94.7 97.9 96.5
007_tuna_fish_can 89.7 70.4 97.1 83.1 93.8 - 96.6 81.7 96.8 81.4
008_pudding_box 79.0 62.9 97.9 96.6 87.5 - 96.5 93.2 96.4 93.7
009_gelatin_box 87.1 75.2 98.8 98.2 95.0 - 98.1 96.6 98.3 97.5
010_potted_meat_can 78.5 59.6 92.8 83.8 86.4 - 91.3 83.5 91.7 82.5
011_banana 85.9 72.3 96.9 91.6 84.7 - 96.6 83.1 96.4 87.0
019_pitcher_base 76.8 52.5 97.8 96.7 85.5 - 97.1 96.8 97.8 97.0
021_bleach_cleanser 71.9 50.5 96.8 92.3 81.0 - 95.8 90.2 96.0 91.1
024_bowl 69.7 69.7 78.3 78.3 75.7 75.7 88.2 88.2 88.6 88.6
025_mug 78.0 57.7 95.1 81.4 94.2 - 97.1 88.9 96.7 93.0
035_power_drill 72.8 55.1 98.0 96.9 71.5 - 96.0 92.8 96.4 95.0
036_wood_block 65.8 65.8 90.5 90.5 68.1 68.1 89.7 89.7 93.2 93.2
037_scissors 56.2 35.8 92.2 78.4 76.7 - 95.2 77.8 90.2 90.2
040_large_marker 71.4 58.0 97.2 85.4 87.9 - 97.5 92.9 97.6 92.2
051_large_clamp 49.9 49.9 75.4 75.4 65.9 65.9 72.9 72.9 73.7 73.7
052_extra_large_clamp 47.0 47.0 65.3 65.3 60.4 60.4 69.8 69.8 70.8 70.8
061_foam_brick 87.8 87.8 97.1 97.1 91.8 91.8 92.5 92.5 95.7 95.7
All 75.9 53.7 93.0 79.3 83.9 - 93.1 87.3 93.3 89.0
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where K is the camera intrinsic matrix.

Results

YCB‑Video Dataset

In this section, we first report the evaluated result of our 
network on the YCB-Video dataset. We also compare our 
network with four state-of-the-art pose estimation algo-
rithms (PoseCNN [10], PoseCNN [10] with ICP refinement, 
PointFusion [45], and DenseFusion [16]). As we can see in 
Table 1, the algorithms are classified into RGB class and 
RGB-D class. Clearly, the RGB method PoseCNN is lack 
of accuracy compared with other methods, no matter under 
which evaluation metrics. We believe this is due to the loss 

2D_Reproj =
1

m

∑

x∈M

‖
‖K(�x + �) − K(�̃x + �̃)‖‖2

of geometry information. By using the result of PoseCNN as 
initial estimation, the refinement algorithm ICP can largely 
improve the performance through optimizing the initial 
estimation in 3D space. PointFusion [45] and DenseFusion 
[16] both used RGB image and depth image as their inputs 
and they can extract appearance and geometrical features for 
pose estimation. Compared with these two RGB-D meth-
ods, our model completely outperform the PointFusion in 
terms of the performance of individual object or average 
performance under the ADD-S and ADD(S). Evaluating by 
ADD-S metric, we lead DenseFusion 0.2% in the perfor-
mance for all objects, 1.7% under ADD(S). Also, we have 
more number of highest score objects compared with Dense-
Fusion. It is worth noting that our method has 3 out of 5 
best performances on symmetry objects (with bold name 
in Table 1). As we know, symmetry objects could cause 
ambiguity for the feature learning. Hence, we can conclude 
that our result shows a strong capability of the proposed 
attention module in learning effective representation from 
those symmetry objects.

Table 2   Quantitative evaluation result on the YCB-Video dataset. Objects with bold indicate symmetry objects. Numbers with bold mean the 
best performance in comparison

RGB-D

DenseFusion [16] PoseCNN [10]+ICP SSD-6D [27]+ICP PVNet [34] Ours Ours(ADD(S)< 0.01m)

ape 92.3 77.0 65 43.6 94.6 94.6
bench vi 93.2 97.5 80 99.9 96.9 92.2
camera 94.4 93.5 78 86.8 98.7 96.4
can 93.1 96.5 86 95.4 97.3 94.5
cat 96.5 82.1 70 79.3 99.3 97.9
driller 87.0 95.0 73 96.4 97.1 86.5
duck 92.3 77.7 66 52.5 97.0 95.3
egg box 99.8 97.1 100 99.1 99.8 97.1
glue 100.0 99.4 100 95.6 99.7 97.3
hole punch 92.1 52.8 49 81.9 97.3 94.1
iron 97.0 98.3 78 98.8 98.6 90.8
lamp 95.3 97.5 73 99.3 98.5 95.4
phone 92.8 87.7 79 92.4 97.7 93.5
mean 94.3 88.6 79 86.2 97.9 94.3

Table 3   Quantitative Evaluation result On the LineMod dataset with 2D projection metrics

ape bench vi camera can cat riller duck egg box glue hole punch iron lamp phone mean

DenseFuion(10 pixels) 96.8 92.5 97.7 94.0 97.1 86.5 95.9 100 99.9 94.9 97.0 95.5 94.6 95.6
Ours(10 pixels) 98.6 95.8 98.8 97.4 99.5 95.1 98.4 99.9 99.9 98.2 97.8 97.5 97.6 98.1
DenseFuion(5 pixels) 92.9 85.0 85.0 90.8 95.3 76.2 90.7 99.7 99.6 86.9 87.4 91.0 87.6 89.9
Ours(5 pixels)  94.7 90.2 94.5 94.1 98.2 85.4 94.5 99.5 99.9 94.0 89.8 93.3 92.2 93.9
DenseFuion(2 pixels) 60.2 48.0 35.3 64.4 66.3 37.0 55.1 67.5 89.1 45.6 41.0 56.4 46.6 55.0
Ours(2 pixels) 63.3 51.3 49.7 67.0 77.7 37.8 61.4 68.4 91.9 56.4 40.2 62.2 48.4 60.0
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LineMod Dataset

We report the evaluated result of our network on the 
LineMod dataset. We also compare our network with four 
state-of-the-art pose estimation algorithms (DenseFusion 
[16], PoseCNN [10], SSD-6D [27], and PVNet [34]). To 
achieve a fair comparison, all segmented masks used in 
these methods are provided by PoseCNN. As we can see 
in Table 2, our method outperforms other methods. Ours 
refer to the evaluation result using AUC threshold under 
0.1m. Our method leads DenseFusion algorithm 3.6% and 
outperforms PoseCNN nearly 9%. Even we use more strict 
criteria (ADD-S<0.01m), our method achieves an equivalent 
performance with DenseFusion 94.3% and still outperforms 
PoseCNN. For the individual object, while DenseFusion has 
100% accuracy on glue, we achieve the highest prediction 
on 8 out of 13 objects.

In Table 3, the accuracy results by evaluating of 2D pro-
jection metric are shown. As DenseFusion does not provide 
its evaluation result, so we re-trained it to obtain the statisti-
cal result shown in Table 3. We evaluate the model in three 
different thresholds(10 pixels, 5 pixels and 2 pixels). Under 
the condition of 10 pixels, our network has the highest accu-
racy almost for every objects, except the egg box object, but 
the gap between them is small(0.1%) and glue object with 
the same accuracy. In 5 pixel criteria, We see our network 
has the highest accuracy almost for every objects, except 
the egg box object, but the gap between them is 0.2%. When 
the threshold decreases to 2 pixels, both methods’ accuracy 
drop sharply. But our network still has the relative better 
performance.

We also test our network’s performance within small 
average distance thresholds (ranged 0 - 0.01meter). In this 
way, we can see how well our model is in the high-precision 
pose estimation tasks. In Fig. 4, we report the accuracy of 
each object in LineMod with varying threshold. As we can 
see that until the threshold of 0.006 meters, our network can 
achieve an accurate prediction (>80%). Less than threshold 
of 0.005, the accuracy curves drop sharply. Note that the 
object egg box has poor prediction when the threshold is 
low than 0.07. This situation may be caused by the hard 
prediction of symmetric object in small tolerance of error 
of ADD-S metric. In Fig. 5, we report the average accu-
racy of all objects in the LineMod dataset for DenseFusion 
and ours. For threshold > 0.03, our curve is in the above of 
curve of DenseFusion, which means our network has a bet-
ter performance. Some samples of our estimation results are 
shown in Fig. 6 by projecting their estimated poses back to 
the image. They provide a clear view on the good quality of 
our estimation results. 

Specifically, we draw the attention maps as shown in 
Fig. 8, where specified region is highlighted as important 
area for object’s pose. The darker the color, the more crucial 

the area. For instance, in the top row object kettle (object 
can in Tables 2 and 3) is highlighted in its handle area and 
this region has the highest confidence to object pose. In the 
second row object driller and fourth row object lamp, their 
heads are being treated as the parts that have the best estima-
tion for their pose, and we believe this is due to their heads’ 
distinct geometrical information. Furthermore, our model 
identifies the edge of symmetry object egg box as its focused 
region which is much reasonable.

Ablation Study

To investigate how our attention modules affect the per-
formance, we test our model with different setups in the 
LineMod dataset. As shown in Table 4, Channel Block and 

Fig. 4   Accuracy–threshold curve for each object in LineMod

Fig. 5   Average accuracy by varying average distance thresholds
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Spatial Block indicate that only corresponding attention 
block is used in our model, and Channel + Spatial Blocks 
refers to our complete framework. From the perspective of 
estimation accuracy, the configuration of Channel + Spa-
tial Blocks show the best accuracy in terms of ADD(S) and 
ADD-S metrics. But it also has the longest inference time 
(18.2 milliseconds per image) for each input image and the 
largest number of parameters in memory. The parameters 
column indicates the parameters for block itself. In the 
contrary, the System parameters column means the full 
number of parameters of our model with the existence of 
corresponding block. As we can see from the table, the 
Spatial block only has 16 parameters, which is quite tiny 

compared with the Channel block, and it makes sense that 
the Spatial block can run with the fastest inference time. 
Note that the number of parameters in the Spatial block 
contributes much less to the entire model, because we only 
have learnable parameters in two convolutional layers as 
depicted in Fig. 3. The Channel block has almost the same 
system parameters with the Channel + Spatial blocks. In 
summary, the combination of Channel block and Spatial 
block do improve the accuracy and they are lightweight 
compared with the entire model.

We believe that the potential of this attention module 
could also be used in object pose tracking tasks with a 
framework of pose refinement that predicts the residual of 
pose within two consecutive frames. As indicated in Fig. 8, 
our model could focus on some particular regions of the 
object for pose estimation. This might improve the tracking 
performance when the occlusion occurs in some scenes.

Robustness to Occlusion

To explore how robust of our network with occlusion 
objects, we proposed a occlusion rate to reflect how much 
of an object being occluded. We take p as the total num-
ber of pixels of an interested object in ground truth data, 
and � as the number of pixels being projected by object 
model with ground truth pose. Due to self-occlusion of the 
object, we treat the number of pixels projected in image as 
�∕2 . So the occlusion rate r can be represented as below:

r = 1 − p∕(�∕2)

Fig. 6   Quality results on the LineMod dataset

Table 4   Ablation study Time(ms/image) Parameters System 
parameters(Millions)

ADD(S) ADD-S

Channel Block 18.1 2184 23.624M 96.5 99.5
Spatial Block  17.7 16 23.374M 97.2 99.6
Channel+Spatial Blocks 18.3 2200 23.624M 97.9 99.7

Fig. 7   Prediction accuracy against object occlusion rate
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Therefore, the bigger values of r, the more occlusion of 
an object. In experiment, we calculated r for each labeled 
object in the LineMod dataset and averaged them. In Fig. 7, 
we show the performance of our network against different 
occlusion rates. The blue curve represents our network’s 
estimation accuracy in terms of different occlusion rates. 
When the r increases, our accuracy remains stable but the 
curve of DenseFusion (Orange color) has some fluctuations 
as r increases.

Conclusions

In this work, we present a network CSA6D that can estimate 
the 6D object pose from RGB-D image. Both appearance 
features from RGB image and geometry features from depth 
image are densely fused together for direct pose regression. 

Our main innovation includes the use of channel and spa-
tial attention modules to refine the dense fusion feature in 
order to improve the network performance without adding 
too much computational burden. Our evaluation results on 
public datasets show that our network is accurate and robust 
compared with some existing methods.

The attention module is lightweight and efficient and 
could be easily inserted into other leaning tasks. We demon-
strate that our model can extract features of specific regions 
for object pose estimation tasks. In our future work, we aim 
to reduce the computational complexity further in real-time 
applications. Based on our ablation study of attention blocks, 
the inference time of our model can be reduced using the 
spatial attention block only without sacrificing too much 
accuracy. Also, we believe that making our model (espe-
cially the image feature extraction model) lighter could 
significantly reduce the inference time, which can make it 
possible to work in real-time applications.

Fig. 8   Visualization of attention 
regions
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Appendix

6D 6 Degrees of Freedom
ADD Average Distance
ADD-S Average Distance to the Closest Point.
AUC​ Area Under Curve
CSA6D Channel-Spatial Attention Network
CNN Convolutional Neural Network
FPS Farthest Point Sampling
ICP Iterative Closest Point
MLP Multi-Layer Perceptron
PnP Perspective-n-Point
RANSAC Random Sample Consensus
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