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Abstract

We provide a revealed preference characterization of expected utility

maximization in binary lotteries with prize-probability trade-offs. We start

by characterizing optimizing behavior when the empirical analyst exactly

knows the utility function or the probability function of winning. Next,

we consider the situation with both the probability function and the utility

function unknown. In this case utility maximization has empirical content

when imposing the mild shape restriction that at least one of these functions

is log-concave.
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vealed preference characterization, testable implications.

Introduction

e analyze models of expected utility maximization in which the decision maker

DM) faces a binary lottery that is characterized by a prize-probability trade-off.

n particular, we take a framework where a lottery yields a reward r − b with

robability P (b) and a payoff of zero with probability 1 − P (b). Here, the value

f r is exogenously given and P is a cumulative distribution function. The DM’s

roblem is to choose the optimal value of b. In other words, she faces a trade-off

etween the value of the reward and the probability of winning.

This type of decision problem occurs frequently in economics. A notable exam-

le is the (independent private values, sealed-bid) first price auction where the DM

one of the participants. In this case the prize of the lottery is given by the value

of the object for the DM minus the DM’s bid b to win the auction. The DM can

hoose to increase the probability of winning the auction (in a monotone equilib-

ium) by increasing her bid b, but this implies that the final value of winning the

uction, i.e. (r − b), decreases. In what follows, we do not explicitly consider the

trategic aspect of this game and concentrate mainly on the single-agent decision

roblem. Under the assumption that players play a Bayesian Nash equilibrium,

he probability of winning, given the bid P (b), captures all the relevant informa-

ion for the the DM to choose her optimal bid. The first price auction is just one

stance fitting in our general set-up. In Section 2 we will briefly discuss addi-

ional examples of often studied decision problems that are also characterized by

rize-probability trade-offs in –admittedly– settings that are mostly more complex

reality.

Our main contribution is that we develop a revealed preference approach to

haracterize behavior that is expected utility maximizing under price-probability

rade-offs. A distinguishing and attractive feature of our revealed preference char-

cterizations is that they do not require a (non-verifiable) functional specification

f the optimization problem. They define testable conditions for optimizing be-

avior that are intrinsically nonparametric and, therefore, robust to specification
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ias. To define these testable conditions, we will assume that the empirical analyst

an use, for a given DM, a sequence of observations on rewards r (received when

inning the lottery) and on money amounts b (called “bids” in what follows) that

he DM is willing to forego in order to increase her probability of winning. Our

et-up is clearly data restrictive since it assumes multiple observations of the same

gent. This makes our approach more readily applicable to an experimental set-up

hat wants to investigate theoretical properties or identifications strategies for a

iven setting (see Capra, Croson, Rigdon, and Rosenblat, 2020, for a motivating

eview of different games and experiments). Coming back to our first price auction

xample, it is in particular interesting to note that there is a sizeable experimental

terature that focuses on this specific decision situation (see, for example, Kagel

nd Levin (2016) for an overview).

As a preliminary remark, the nonparametric revealed preference approach that

e present in this paper follows the tradition of Afriat (1967), Diewert (1973) and

arian (1982). A sizeable literature has emerged on testing decision theories under

isk using this revealed preference approach. However, this literature has mainly

ocused on choices involving Arrow-Debreu securities from linear budgets (see, for

xample, Varian, 1983; Green and Osband, 1991; Kubler, Selden, and Wei, 2014;

chenique and Saito, 2015; Chambers, Echenique, and Saito, 2016; Polisson, Quah,

nd Renou, 2020), with a few papers focusing on the full mixture space (see, for

xample, Kim, 1996). We complement these earlier studies by considering expected

tility maximization in a distinctively different decision setting.

ain theoretical results. To set the stage, we start by assuming that the an-

lyst perfectly knows either the probability of winning P (as a function of b) or

he DM’s utility function U (as a function of r− b).1 For this set-up, we show that

he assumption of expected utility maximization generates strong testable implica-

ions. Particularly, we derive a revealed preference characterization of optimizing

ehavior that takes the form of a set of inequalities that are linear in unknowns.

he characterization defines necessary and sufficient conditions for the existence of

1Admittedly, the assumption that P is perfectly observed is rather demanding. Therefore, in
ppendix B we also present a statistical test derived from our testable conditions in Section 3
hen P can (only) be estimated from a finite sample of observations.
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utility function (when P is known) or a probability function (when U is known)

uch that the DM’s observed decisions on b are consistent with expected utility

aximization.

In most empirical settings, however, both P and U are unknown and the ques-

ion arises whether we can obtain any testable implications in such a case. Not very

urprisingly, we find that the assumption of optimizing behavior does not generate

ny testable restrictions for observed behavior when not imposing any structure on

and P . However, building on our first set of results, we show that this negative

onclusion can be overcome by imposing minimalistic shape constraints that are

ften used in the literature.2 Specifically, we focus on the following three cases: (1)

is strictly log-concave, (2) U is strictly log-concave, and (3) both P and U are

trictly log-concave. Log-concavity is a very weak assumption that is closely linked

o monotonicity (see, for example, Cox et al., 1988; Bagnoli and Bergstrom, 2005).

ore specifically, log-concavity of U still allows the DM to be risk-loving but (only)

xcludes extremely risk-loving behavior. Intuitively, log-concavity of U imposes a

ingle-crossing property of utility functions that is frequently used in game the-

ry and mechanism design (see, for example, Maskin and Riley, 2000). Similarly,

g-concavity of P is a minimal assumption that holds for most commonly used

istributions in the literature, making it again a fairly weak restriction.

For each of these models, we derive necessary and sufficient testable conditions

or expected utility maximization that are of the law-of-demand type. They require

espectively that (1) higher rewards r must lead to higher payoffs r− b, (2) higher

ewards r must lead to higher bids b, and (3) higher rewards r must lead to both

igher payoffs r − b and higher bids b. These results are in line with comparative

tatic results that have been documented in the literature. A notable implication

f our nonparametric characterizations is that the testable conditions are not only

ecessary but also sufficient for expected utility maximization.

mpirical implications. Our theoretical results can have alternative empirical

pplications. For compactness, we do not provide an empirical illustration of

2Dziewulski (2018) followed a related mathematical approach in a conceptually different set-
ing. Particularly, this author developed revealed preference characterizations of rationalizable
ehavior for common specifications of the discounted utility model by referring to notions of
tochastic dominance.
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ur theoretical characterization of expected utility maximization in the current

aper.3 Next, our results can be employed to empirically test for equilibrium best-

esponding behavior of players in games with prize-probability trade-offs (such as

uctions). If we assume that observed behavior is in equilibrium, then each player

hould maximize her expected utility with the prize-probability trade-off function

P (b)) defined by the equilibrium actions of all other players.

Furthermore, our characterizations entail two important conclusions with di-

ect empirical relevance. First, they show that the assumption of expected utility

aximization does have empirical content even under minimalistic shape restric-

ions for P and/or U . Moreover, as we will discuss in Section 5, even if the rewards

are unobserved, the above comparative static results still enable partial identi-

cation of the reward structure when (only) using information on the observed

ids. Second, our result for scenario (1) shows that, for any log-concave distribu-

ion P and any data set with payoffs r − b increasing in rewards r, we can find a

tility function U such that the combination (P,U) generates this observed data

et. Similarly, it follows from our result for scenario (2) that, for any log concave

tility function U and any data set with bids b increasing in rewards r, we can

onstruct a probability distributions P such that (P,U) generates the data set. In

ther words, even if we assume that either P or U is log-concave, it turns out to

e empirically impossible to (partially) identify more specific properties of these

unctions. These findings are similar in spirit to those of Manski (2002, 2004) on

he impossibility to separately identify decision rules and beliefs.

utline. The remainder of this paper is structured as follows. Section 2 in-

roduces our theoretical set-up and notation. It also provides a more formal de-

cription of the above cited examples of decision problems that fit in our general

ramework. Section 3 considers the case in which the empirical analyst knows

3In an earlier version of the current paper (Cherchye, Demuynck, De Rock, and Freer, 2019) we
sed our revealed preference conditions to analyze Neugebauer and Perote (2008)’s experimental
ata on first-price auctions. For instance, there is a growing literature on the econometric analysis
f auctions that focuses on identifying the distribution of values from the observed distribution of
ids (see, for example, Guerre, Perrigne, and Vuong (2000) and Athey and Haile (2002, 2007)).
ntegrating our results in this econometric work may lead to verifying the underlying model
ssumptions and, consequently, to more robust conclusions (see also Appendix B for related
esults).
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ither the probability function P or the utility function U . Section 4 analyzes

he setting with both P and U unknown. Section 5 discusses the usefulness of

ur theoretical results when the rewards r are unobserved. Section 6 presents our

oncluding discussion.

Set-up and notation

s explained in the introductory section, we consider a setting where the DM can

in a reward r with a certain probability. We assume that r > 0 and r ≤ r for

ome exogenously given r ∈ R. The DM can choose a bid b ∈ [0, r]. Choosing

higher value of b increases the probability of winning the reward. We model

his through a latent random variable b̃ (unobserved by the DM) with cumulative

istribution function (cdf) P such that the award is won whenever b ≥ b̃. In other

ords, the probability of winning is equal to P (b) = Pr(b̃ ≤ b). The downside of

creasing b is that the value of winning is decreasing with the bid. As such, the

M obtains r − b if the reward is won (with probability P (b)), while the DM’s

ayoff is zero if the reward is not won (with probability 1− P (b)).

The standard expected utility model assumes that the DM has a Bernoulli

tility function

U : [0, r]→ R+,

uch that b solves:

max
b∈[0,r]

P (b) U(r − b), (1)

here we normalize the utility associated with zero payoff to zero, i.e. U(0) = 0.

e will assume throughout that P is continuous and strictly increasing on [0, r],

nd that U is continuous and strictly increasing on R.4 Observe that we can

deed restrict b ≤ r in this optimization problem, as any bid b > r gives negative

4For our results, the monotonicity and continuity properties are inherited from P to U and
ice versa. Particularly, we obtain readily similar revealed preference characterizations as in
heorems 1 and 2 and 3 when relaxing a property of P (e.g., assuming that it is just increasing
stead of strictly increasing) and, simultaneously, the corresponding property of U (e.g., equally

ssuming that it is increasing instead of strictly increasing).

6
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xpected utility and is therefore dominated by a choice b = r, which gives zero

xpected utility. Next, we consider P to be independent of r mainly to ease our

xposition. Our results in Section 3 (for known P or U) can be replicated for P

ependent on r without extra assumptions.

In particular, our results would still hold under the assumption that the prob-

bility of winning is conditional on the reward, that is, P (b|r). For instance, this

ould allow us to extend our results from auctions with independent private values

o auctions with affiliated values. However, replicating our results in Section 4 (for

nknown P and U) would require auxiliary assumptions when P can depend on

.

Our general set-up applies to a wide variety of decision problems that are

requently encountered in economics. We illustrate this by discussing in turn first

rice auctions, crowdfunding games, posted price problems and principal-agent

roblems. Clearly our goal is not to claim that all these settings are special cases of

ur set-up. On the contrary, we only want to briefly show that the basic underlying

ame can be formulated to fit into our framework. As such, this paper presents

t least the necessary testable implications that have to be satisfied in a more

omplex and general setting. Among other things, this also illustrates that our

esults can be used in other experimental settings than just first price auctions.

irst price auctions. In a first price auction, the DM (bidder) has a value r for

he object. Placing a bid of b decreases the value of winning the auction to r − b,
hile it increases the probability of winning. In this case, the random variable b̃ is

he value of the highest bid of all other participants, and P (b) = Pr(b̃ ≤ b) is the

robability that the DM wins the auction. Thus, if we consider the Bayesian Nash

quilibrium, the cdf P is generated as the distribution of highest bids given the

quilibrium bidding of other players. As an implication, if we assume equilibrium

lay, the DM must optimize her expected utility as in (1).

rowdfunding games. A crowdfunding game is an example of a mechanism to

rganize private provision of a public good.5 The participants in the game make

5Similar games are discussed by Tabarrok (1998) and Zubrickas (2014). We here consider a
implified version of the game in which there is no lottery reward and only refund of contributions.

7
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ids for the public good. If the sum of these bids is above a certain threshold,

hen the public good is provided. Otherwise the payoff to all participants is zero.

his fits in our general set-up for the DM being a participant of the crowdfunding

ame and r being the DM’s value of the public good. Placing a bid lowers the

alue of the public good to r − b when the public good is provided. Let t̃ be the

andom variable capturing the sum of the bids of all other participants, and let t

e the threshold above which the public good is provided. When using b̃ = t− t̃,
e can define the probability of the public good being provided by:

Pr(b+ t̃ ≥ t) = Pr(t− t̃ ≤ b) = Pr(b̃ ≤ b) = P (b).

n the Bayesian Nash equilibrium of this crowdfunding game, the cdf P equals the

istribution of the sum of contributions of the other players as defined by their

quilibrium bidding. Thus, if we assume equilibrium play, the DM has to maximize

er expected utility as in (1).

osted price problems. In a posted price problem, the DM (buyer) has a

aluation r for the traded good. In order to obtain the good, the DM posts a

rice b at which she is willing to buy the good.6 The seller (second-mover) then

ecides whether or not to accept this offer. The DM receives a reward of r − b if

he seller accepts, and a payoff of zero if the seller rejects. As such, the seller’s

ecision is based on her (unobserved) value b̃ for the good, which we can assume

o be random from the buyer’s point of view. The seller will accept the offer if

nd only if the posted price is at least as large as her reservation price b̃. In this

ase, the probability of the trade is given by:

Pr(b̃ ≤ b) = P (b),

hich is determined by the distribution of the seller’s reservation price. Thus, the

erfect Bayesian Equilibrium generates the DM’s problem in which she maximizes

n this sense, we are closer to Tabarrok (1998). However, we do allow for differentiated (and not
nly binary) contributions, as in Zubrickas (2014).

6The literature also frequently considers the alternative version with the seller posting the
rice. It is easily verified that this seller-posted price problem equally fits in general set-up.

8
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er expected utility as in (1) for this specification of P .

rincipal-agent problems. In a principal-agent model, the DM (as principal)

an receive a reward of size r with a probability that depends on the effort e of the

gent. In order to stimulate the agent to exert effort, the principal can promise

conditional bonus of b to the agent, which the agent only gets if the principal

eceives the prize. Thus, the DM’s payoff in case the effort is high enough equals

− b. It is also natural to assume that e is an increasing function of b, say e(b),

nd that the reward is received only if the value of e is above the value of some

andom variable ẽ. Defining the random variable b̃ = e−1(ẽ), we can set:

Pr(ẽ ≤ e(b)) = Pr(b̃ ≤ b) = P (b).

he agent chooses the effort level that maximizes her utility while accounting for

he cost of effort. At the same time, the probability P (b) depends on b as the

gent’s utility is conditional on the bonus that is promised to her. Therefore, in

Subgame Perfect Nash equilibrium, the DM maximizes her expected utility as

(1), with the cdf P determined by the agent’s optimal effort provision. While,

dmittedly, this constitutes a most basic version of a principal agent problem,

he example illustrates once more that prize-probability trade-offs are relevant in

any different settings.

When P or U is known

e assume that the empirical analyst observes a finite number of rewards and

ids for a given DM.7 As a first step of our analysis, we consider a setting where

he researcher either knows the cdf P or the utility function U . For these cases,

e derive the nonparametric revealed preference conditions for consistency with

xpected utility maximization. A typical instance with observed U occurs when the

mpirical analyst assumes a risk neutral DM. Next, as indicated in the introductory

ection, a prime example of the case with observed P is the first price auction

f which the participants play a symmetric equilibrium, in which case P equals

7We discuss the case of unobserved rewards in Section 5.

9
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he cdf of the player types. In Appendix B, we relax the assumption that P

fully observable and (only) assume that the analyst can estimate the empirical

istribution of P by using a finite sample of observed winning probabilities. Under

his assumption we can develop a statistical test of expected utility maximization

y starting from our results in the current section. In Section 4, we will focus on

he case where both P and U are unobserved.

ationalizability. We assume that the empirical analyst observes a DM who

ecides T times on the value of the bid b for various values of the reward r. This

efines a data set

D = (rt, bt)Tt=1,

hich contains a return rt > 0 and corresponding bid bt ∈ [0, rt] for each observa-

ion t ≤ T .

For a given cdf P and a utility function U , we say that the data set D is

P,U)-rationalizable if the observed bids bt maximize the expected utility of the

M given the primitives P and U . This yields the next definition.

efinition 1. For a given cdf P and utility function U , a data set D = (rt, bt)Tt=1

s (P,U)-rationalizable if U(0) = 0 and, for all observations t = 1, . . . , T ,

bt ∈ argmax
b∈[0,rt]

P (b)U(rt − b).

The following theorem provides the revealed preference conditions for a data

et D to be rationalizable if the researcher knows either P (but not U) or U (but

ot P ).8

heorem 1. Let D = (rt, bt)Tt=1 be a data set.

1. Let P be a cdf. Then, there exists a utility function U such that the data set

D is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . , T , P (bt) > 0 and bt < rt, and

8 Appendix A contains the proofs of our main theoretical results. We slightly abuse notation
Theorem 1 by assuming that P (x) = 0 if x < 0.

10
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(b) there exist numbers U t > 0 such that, for all observations t, s = 1, . . . , T ,

P (bt)U t ≥ P (rt − rs + bs)U s.

2. Let U be a utility function. Then, there exists a cdf P such that the data set

D = (rt, bt)Tt=1 is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . T , bt < rt, and

(b) there exists numbers P t > 0 such that, for all observations t, s =

1, . . . , T ,

P tU(rt − bt) ≥ P sU(rt − bs).

Conditions 1.a and 1.b of Theorem 1 present a set of inequalities that give

ecessary and sufficient conditions for rationalizability when the cdf P is given.

he inequalities in 1.b are linear in the unknown numbers U t, which makes them

asy to verify. Intuitively, every number U t represents the utility of winning the

uction in period t, i.e. U t = U(rt − bt). Further, condition 1.b corresponds to

he individual’s maximization problem in Definition 1. In particular, the expected

tility of choosing the observed bid bt should be at least as high as the expected

tility of making any other bid, including the bid rt − rs + bs. This yields the

ondition

P (bt)U t = P (bt)U(rt − bt)
≥ P (rt − rs + bs)U(rt − rt + rs − bs)
= P (rt − rs + bs)U s.

ext, conditions 2.a and 2.b present a set of inequalities that give necessary and

ufficient conditions for rationalizability when the utility function U is given. In

his setting, the numbers P t can be interpreted as the probabilities of winning

the bid equals bt, i.e. P t = P (bt). It is required that the expected utility of

hoosing the bid bt is at least as high as the expected utility of choosing another

11
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id bs, which yields

P tU(rt − bt) = P (bt)U(rt − bt),
≥ P (bs)U(rt − bs) = P sU(rt − bs).

his shows that necessity of the conditions 1.a-1.b and 2.a-2.b in Theorem 1 is

elatively straightforward and may seem a rather weak implication. Interestingly,

owever, Theorem 1 states that data consistency with these condition is not only

ecessary but also sufficient for rationalizability. Particularly, in Appendix A.1 we

rovide a constructive proof that specifies a data rationalizing utility function U

nd a data rationalizing cdf P based on the conditions in statements 1 and 2 of

heorem 1.

As mentioned above, the results of this section can be expanded to the case

hen the probability of winning depends on r. Evidently, this extension is triv-

l when P (b|r) is observed. If P (b|r) is unobserved, we need to slightly modify

heorem 1. Instead of using numbers P t for every t = 1, . . . , T , we need to intro-

uce numbers P t,s for t, s = 1, . . . , T , where index t corresponds to the potential

alue bt and index s to the potential value rs. In addition, we need to ensure

hat these numbers correspond to the same monotone function if rs = rm for some

,m = 1, . . . , T .

mpirical content. We conclude this section by illustrating the empirical con-

ent of the rationalizability conditions in Theorem 1. Particularly, we show that

he conditions can be rejected as soon as the data set D contains (only) two obser-

ations. First, for conditions 1.a-1.b we assume a data set D with the observations

, s such that rs − bs, rt − bt, rt − rs + bs, and rs − rt + bt are all strictly positive

nd

P (bt) =
1

10
P (rt − rs + bs) =

1

4
,

P (bs) =
1

3
P (rs − rt + bt) =

1

2
.

12
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hen, condition 1.b in Theorem 1 requires that there exists strictly positive U t

nd U s such that

1

10
U t ≥ 1

4
U s ⇔ U t

U s
≥ 2.5, and

1

2
U s ≥ 1

3
U t ⇔ U t

U s
≤ 1.5,

hich is impossible. We conclude that the data set is not rationalizable.

Next, for conditions 2.a-2.b we assume that U(x) = x, which means that utility

linear, and that both rt − bt and rs − bs are strictly positive. Then, we must

ave

P t

P s
≥ rt − bs
rt − bt and

P s

P t
≥ rs − bt
rs − bs ,

or any two observations t and s. Since at least one of the two right hand sides

ust be stirctly positive, it must hold that

1 ≥ rt − bs
rt − bt

rs − bt
rs − bs

⇔(rt − bt)(rs − bs) ≥ (rt − bs)(rs − bt)
⇔− btrs − rtbs ≥ −bsrs − btrt

⇔(rs − rt)(bs − bt) ≥ 0.

his is violated as soon as rt > rs and bs > bt (or vice versa).

When P and U are unknown

e next turn to the instance in which both the cdf P and utility function U are

nknown to the empirical analyst. We start by a negative result: if no structure

imposed on P and U , then any data set D is rationalizable (i.e. expected utility

aximization has no empirical content). Subsequently, we show that this negative

onclusion can be overcome by imposing a (strict) log-concavity condition on P or

or on both. As discussed in the Introduction, the assumption of log-concavity

a natural candidate to impose minimal structure on the decision problem.

13



Journal Pre-proof

A

p

a

C

t

r

c

f

c

S

W

o

A

t

e

r

u

C

t

g

L

T

Jo
ur

na
l P

re
-p

ro
of

negative result. A natural first question is whether the assumption of ex-

ected utility maximization generates testable implications if we do not impose

ny structure on P or U . The following corollary shows that the answer is negative.

orollary 1. Let D = (rt, bt)Tt=1 be a data set. If bt < rt for all observations t,

hen there always exists a cdf P and a utility function U such that D is (P,U)-

ationalizable.

We can show this negative conclusion by using the cdf P (b) = eb−r, which is a

ontinuous and strictly increasing cdf on [0, r]. This function satisfies P (bt) > 0

or all t, which makes that condition 1.a of Theorem 1 is satisfied. Thus, to

onclude rationalizability of D we only need to verify condition 1.b in Theorem 1.

pecifically, it suffices to construct numbers U t > 0 such that, for all t, s,

P (bt)U t = eb
t−rU t ≥ P (rt − rs + bs)U s = er

t−rs+bs−rU s,

e meet this last inequality requirement when specifying U t = er
t−bt > 0 for all

bservations t, as this gives

P (bt)U t = eb
t−rer

t−bt = er
t−r = er

t−rs+bs−rer
s−bs = P (rt − rs + bs)U s.

crucial aspect of this rationalizability argument is that we have used a cdf P

hat is log-linear. In such a case, we can always set the utility function U to be

qually log-linear on a suitable interval of [0, r]. Such a combination of P and U

ationalizes any data set D, as any choice of b < r gives the same level of expected

tility (i.e. er
t−r).

In what follows, we will show that we can overcome the negative result in

orollary 1 when imposing strict log-concavity on P or U , thereby also excluding

he log-linear specifications. As we will argue, this minimal structure suffices to

ive specific empirical content to the hypothesis of expected utility maximization.

og-concave P or U . We first consider the case with P strictly log-concave.

ake any two observations t and s from a data set D. When assuming that the

14
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df P is known but not the utility function U , condition 1.b of Theorem 1 requires

P (bt)U t ≥ P (rt − rs + bs)U s, and

P (bs)U s ≥ P (rs − rt + bt)U t.

or P (rt − rs + bs) > 0 and P (rs − rt + bt) > 0, we can take the log of both sides

o obtain

p(rt − rs + bs)− p(bt) ≤ ut − us, and

p(rs − rt + bt)− p(bs) ≤ us − ut,

here p = lnP and u = lnU . Adding up these two conditions gives,

p(rt − rs + bs)− p(bs) ≤ p(bt)− p(rs − rt + bt).

ithout loss of generality, we can assume rt ≥ rs. Using ∆ = rt − rs ≥ 0, we get

p(∆ + bs)− p(bs) ≤ p(bt)− p(bt −∆).

ecause the cdf P is strictly log-concave, the function p is strictly concave. Then,

he above inequality will be satisfied if and only if ∆ + bs ≥ bt or, equivalently,

rt − bt ≥ rs − bs.

hus, strict log-concavity of P requires that, if the rewards r weakly increase (i.e.
t ≥ rs), then the prizes r − b must also weakly increase (i.e. rt − bt ≥ rs − bs).
n Appendix A.2, we show that this testable implication is not only necessary but

lso sufficient for rationalizability of the data set D.

We can develop an analogous argument when U is strictly log-concave. In

his case, we obtain that a weak increase in the rewards r (i.e. rt ≥ rs) must

ply a weak increase in the bids b (i.e. bt ≥ bs). Again, this requirement is both

ecessary and sufficient for rationalizability. The following theorem summarizes

ur conclusions.

heorem 2. Let D = (rt, bt)Tt=1 be a data set.

15
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1. Let P be a strictly log-concave cdf. Then, there exists a utility function U

such that the data set D is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . , T , P (bt) > 0 and bt < rt, and

(b) for all observations t, s = 1, . . . , T , rt ≥ rs implies rt − rs ≥ bt − bs.

2. Let U be a strictly log-concave utility function. Then, there exists a cdf P

such that the data set D is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . T , bt < rt, and

(b) for all observations t, s = 1, . . . , T , rt ≥ rs implies bt ≥ bs.

The rationalizability conditions in Theorem 2 are of the law-of-demand type

nd have a clear economic interpretation. If P is strictly log-concave, then any

crease in the reward r must lead to an increase in the prize r− b that is obtained

hen winning the lottery. Analogously, if U is strictly log-concave, then any

crease in the reward r must lead to an increase in the optimal bid b. More

urprisingly, these are the only testable implications for (P,U)-rationalizability.

hey fully exhaust the empirical content of expected utility maximization under

he stated observability conditions.

Importantly, the conditions in statement 1 of Theorem 2 are independent of

particular form for the cdf P . In other words, as soon as the data set D is

P,U)-rationalizable by some utility function U for a strictly log-concave cdf P ,

is rationalizable for any strictly log-concave P that satisfies P (bt) > 0. This is

clear non-identification result. Apart from the property of strict log-concavity

nd the fact that the observed bids must lead to strictly positive probabilities, we

ill never be able to recover any additional property of the function P .

The same non-identification conclusion holds for the rationalizability conditions

statement 2 of Theorem 2. As soon as the data set D is (P,U)-rationalizable

or some strictly log-concave utility function U , it is rationalizable for any strictly

g-concave utility function U .

og-concave P and U . We conclude this section by considering the case where

oth P and U are assumed to be strictly log-concave. In such a situation, ra-

ionalizability requires that the data set D satisfies simultaneously the conditions

16
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statements 1 and 2 of Theorem 2. As we state in the following theorem, this

equirement is both necessary and sufficient for (P,U)-rationalizability.

heorem 3. Let D = (rt, bt)Tt=1 be a data set. Let P be a strictly log-concave

df and let U be a strictly log-concave utility function. Then, the data set D is

P,U)-rationalizable if and only if,

a) for all observations t = 1, . . . , T , P (bt) > 0 and bt < rt, and

b) for all observations t, s = 1, . . . , T ,

rt ≥ rs implies
(
bt ≥ bs and rt − bt ≥ rs − bs

)
.

Interestingly, this (nonparametric) characterization naturally complies with ex-

ting theoretical findings in the (parametric) literature on auctions. In that liter-

ture, it is well-established that, when both P and U are strictly log-concave (and

atisfy some additional smoothness conditions), the DM’s (unique) optimal bid b

increasing in r with a slope less than one (see, for example, Cox and Oaxaca

1996)). We equally obtain that rt ≥ rs requires bt ≥ bs. In addition, in our non-

arametric setting the slope condition corresponds to rt − rs ≥ bt − bs for rt ≥ rs.

rom Theorem 3, we conclude that these conditions are not only necessary but also

ufficient for rationalizability by a strictly log-concave cdf and strictly log-concave

tility function.

When rewards are unobserved

o far we have assumed that the rewards r are observed by the empirical analyst.

his assumption holds well in experimental settings, where the exogenous variables

re usually under the control of the experimental designer. However, in a real life

etting this type of data set is often not available. From this perspective, it is

teresting to investigate the usefulness of our above theoretical results in settings

here the rewards r are unobserved.

In what follows, we start by showing that the model of expected utility maxi-

ization no longer has testable implications in such a case. This conclusion holds

17
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ven when either the cdf P or the utility function U is perfectly observable. For

ompactness, we will only provide the argument for P observed and U unobserved,

ut the reasoning for U observed and P unobserved proceeds analogously. Impor-

antly, however, this non-testability result does not imply that it is impossible to

entify bounds on the rewards that are consistent with the observed bids under

he assumption of rationalizability. We will show this by discussing the (partially)

entifying structure that rationalizable behavior imposes on the unobserved re-

ards.

non-testability result. We consider a setting where the empirical analyst

nly observes a finite number of bids (bt)Tt=1. Further, we assume that the empir-

al analyst knows the true cdf P but not the utility function U . For simplicity,

e assume that P (bt) > 0 for all observations t. If this last condition were vio-

ted, the bids would violate condition 1.a in Theorem 1 and, thus, the observed

ehavior would not be (P,U)-rationalizable. To address the issue of testability,

e must characterize a finite collection of rewards (rt)Tt=1 such that the data set

= (rt, bt)Tt=1 together with P satisfies the rationalizability conditions 1.a and 1.b

Theorem 1.

More formally, we must define (rt)Tt=1 such that bt < rt for all t and there exist

umbers U t > 0 such that, for all observations s, t,

P (bt)U t ≥ P (rt − rs + bs)U s.

e will show that, for any (bt)Tt=1 and cdf P , we can always specify such a set

rt)Tt=1, which effectively implies non-testability of expected utility maximization.

et r be strictly bigger than maxt∈{1,...,T} bt, and take any ∆ > 0 that satisfies

∆ ∈
]
0, r̄ − max

t∈{1,...,T}
bt
[
.

or every observation t = 1, . . . , T , we then consider the value rt = bt + ∆, which

contained in [0, r[. This specification of the rewards ensures rt− bt = ∆, i.e. the

ayoff when winning is the same for each observation t. Furthermore, for all t, s,

18
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e let U t = U s = 1. It then follows that

P (bt)U t = P (bt) and P (rt − rs + bs)U s = P (bt),

hich implies that the rationalizability condition 1.b in Theorem 1 is trivially

atisfied. We thus obtain the following non-testability result.

orollary 2. For every data set D = (bt)Tt=1 and cdf P such that P (bt) > 0 for

ll observations t, there exist values (rt)Tt=1 and a utility function U such that the

ata set D′ = (rt, bt)Tt=1 is (P,U)-rationalizable.

artial identification of rewards. Importantly, the negative conclusion in

orollary 2 does not imply that it is impossible to identify the underlying val-

es rt that (P,U)-rationalize the observed behavior. Since our characterizations

Theorems 1, 2 and 3 define necessary and sufficient conditions for (P,U)-

ationalizability, they can still be used to partially identify the distribution of

ewards. This (partially) identifying structure defines the strongest possible (non-

arametric) restrictions on the unobserved rewards for the given assumptions re-

arding U and P .

Let us first consider identification on the basis of Theorem 1. Assuming P (bt) >

for all observations, we have for any two observations t and s that the values rt

nd rs providing a (P,U)-rationalization for some U must satisfy the inequality:

P (rt − rs + bs)

P (bt)

P (rs − rt + bt)

P (bs)
≤ Ut
Us

Us
Ut

= 1,

hich puts restrictions on the reward differences rt − rs. In general, these restric-

ions will depend on the shape of the cdf P .

This illustrates that, generically, the rewards rt can only be partially identified,

eaning that there are multiple values of (rt)Tt=1 that satisfy the rationalizability

estrictions. As an implication, the distribution of rewards cannot be uniquely

ecovered when only using information on P . This may seem to contradict the vast

terature on auction theory that focuses on identifying the distribution of rewards

rom the distribution of bids (see, for example, Athey and Haile, 2007). However,

hese existing identification results all rely on additional functional structure that
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imposed on the utility function U . By contrast, our result in Theorem 1 is

onparametric in nature, and only assumes that U is strictly increasing.

Next, if the empirical researcher does not know P but assumes that it is strictly

g-concave, then we can use statement 1 of Theorem 2 to partially identify the

ewards. Specifically, these rewards must satisfy bt < rt and, in addition:

rt − rs ≥ 0 implies rt − rs ≥ bt − bs.

his last statement is equivalent to:

bt > bs implies (rt − rs ≥ bt − bs or rt − rs < 0),

hich again puts bounds on the reward differences rt − rs.
Similarly, if U is assumed to be strictly log-concave but P is unconstrained,

hen statement 2 of Theorem 2 imposes bt < rt and:

rt ≥ rs implies bt ≥ bs.

his condition can be rephrased as:

bt > bs implies rt − rs > 0,

hich defines restrictions on the sign of rt − rs.
Finally, if we assume that both P and U are strictly log-concave, then Theo-

em 3 requires bt < rt and:

rt ≥ rs implies (bt ≥ bs and rt − bt ≥ rs − bs),

his is equivalent to:

bt > bs implies rt − rs ≥ bt − bs,

hich once more specifies restrictions on rt − rs.
We conclude with a simple example that illustrates the application of these

entification constraints to retrieve information on latent rewards. Specifically,

20
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e assume a data set with four observations (i.e. T = 4) containing the bids
1 = 1, b2 = 4, b3 = 8 and b4 = 10. Then, if we assume that both P and U are

trictly log-concave, (P,U)-rationalizability imposes the restrictions

r1 > 1,

r2 ≥ r1 + 3,

r3 ≥ r2 + 4,

r4 ≥ r3 + 2.

t follows from our argument that any rewards r1, r2, r3 and r4 satisfying these

onstraints will provide a (P,U)-rationalization of the observed behavior. This

learly shows the partially informative nature of our nonparametric identification

esults.

Concluding discussion

e provided a nonparametric revealed preference characterization of expected util-

y maximization in binary lotteries with trade-offs between the final value of the

rize and the probability of winning the prize. We have assumed an empirical

nalyst who observes a finite set of rewards r and bids b for the DM under study.

e started by characterizing optimizing behavior when the empirical analyst also

erfectly knows either the probability distribution of winning P (as a function of

) or the DM’s utility function U (as a function of r − b).
In a following step, we considered the case where both functions U and P

re fully unknown. For this setting, we first showed that any observed bidding

ehavior is consistent with expected utility maximization if no further structure is

posed on these unknown functions. However, we also established that imposing

g-concavity restrictions does give empirical bite to the hypothesis of expected

tility maximization. Specifically, we derived testable implications of the law-of-

emand type when either the probability distribution P or the utility function U

assumed to be log-concave. Log-concavity of P imposes that rewards and final

rizes should go in the same direction, and log-concavity of U requires that rewards
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nd bids must be co-monotone. Interestingly, these co-monotonicity properties

ully exhaust the empirical content of expected utility maximization under the

tated log-concavity assumptions.

While our main focus was on testing expected utility maximization when both

ewards r and bids b are observed, we have also considered the use of our results

the case where the rewards are no longer observed (which is often relevant in

on-experimental empirical settings). On the negative side, we have shown that

xpected utility maximization is no longer testable in such a case, even if P or U is

ully known. On the positive side, we have demonstrated that our characterizations

o impose partially identifying structure on the rewards r that can rationalize the

bserved behavior in terms of expected utility maximization.

Follow-up research may fruitfully focus on extending our theoretical results

owards a broader range of decision problems characterized by prize-probability

rade-offs. A first avenue could focus on introducing heterogeneity to either P or

. Allowing for P to change across observations would allow for encompassing

broader set of applications such as settings where the DM is competing with

ifferent numbers of bidders. Our results can readily be adapted when P is ob-

erved, but will require extra identifying information if P is not observed. Similar

onclusions hold for allowing U to change in order to capture for instance settings

here one only has one observation from multiple participants (instead of multiple

bservations for one agent).

Next, an interesting alternative application concerns contest or all-pay auc-

ions. The key difference between this setting and our current set-up is that the

M has to pay the bid even if she loses the auction. Thus, increasing the probabil-

y of winning decreases not only the DM’s potential prize but also her payoff when

he does not get the prize. Another possible application pertains to the double-

uction bilateral trade mechanism. This mechanism differs from the posted price

odel presented in Section 2 in that the seller and the buyer simultaneously post a

rice. Trade occurs at the average of these two prices if the seller’s price does not

xceed the buyer’s price, while there is no trade otherwise. Once more, the DMs

ace a clear prize-probability trade-off as posting a higher/lower price increases the

robability of trade for the buyer/seller. However, a main difference with our set-

p is that the potential prize becomes stochastic, as it depends on the (randomly)
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osted price of the other party.
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Proofs

.1 Proof of Theorem 1

tatement 1: P is known but U is not.

⇒) Let D = (rt, bt)Tt=1 be (P,U)-rationalizable. Let us first derive condition 1.a.

iven that P is strictly increasing on [0, r], P (bt) can only be zero if bt = 0. Then,

he expected utility of choosing bt = 0 is given by:

P (0)U(rt) = 0.

otice that, as U is strictly increasing and U(0) = 0, we have that U(rt) > 0.

iven continuity of U and the fact that P is strictly increasing, there must exist

ε > 0 such that P (ε) > 0 and U(rt − ε) > 0. As such:

P (ε)U(rt − ε) > 0,

hich means that bt = 0 can never be an optimal choice.

Next, if bt = rt, and consequentially U(rt − bt) = U(0) = 0, we have that:

P (rt)U(0) = 0.

otice that P (rt) > 0 as rt > 0. Given continuity of P and the fact that U is

trictly increasing, there must exist a ε such that:

P (rt − ε)U(ε) > 0.

gain this implies that bt = rt can never be an optimal bid.

Finally, to derive condition 1.b, let U t = U(rt − bt) > 0. Then, by optimality

f bt, we have that:

P (bt)U t = P (bt)U(rt − bt),
≥ P (rt − (rs − bs))U(rt − (rt − rs + bs)),

= P (rt − rs + bs)U s,
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hich is exactly condition 1.b.

⇐) To prove sufficiency, we construct a regular Bernoulli utility function U : R→
that rationalizes the data set. Define:

U(x) = min

{
αx, min

t=1,...,T

{
U t P (bt)

P (rt − x)
s.t. P (rt − x) > 0

}}
, (2)

here we choose:

α > max
t

U t

rt − bt . (3)

otice that U(x) is well-defined (i.e. finite valued), continuous and strictly in-

reasing as it is the minimum of a finite number of strictly increasing, continuous

unctions. Also, for all observations t:

0 < U tP (bt)

P (rt)
,

hich follows from the fact that P (bt) > 0, strict monotonicity of P and U t > 0.

s such, we have U(0) = α0 = 0.

Next, for all t we have U(rt − bt) = U t. Indeed, from the definition, we

mediately obtain the inequality U(rt − bt) ≤ U t and, by assumption (3), we

ave U t < α(rt − bt). If the inequality would be strict, i.e. U(rt − bt) < U t, then

here must be an observation s such that:

U s P (bs)

P (rs − rt + bt)
< U t.

his, however, contradicts condition 1.b.

Finally, let us show that the data set D = (rt, bt)Tt=1 is (P,U)-rationalizable by

he function U(x) defined in (2). Consider any b ∈ [0, rt], then we have:

P (b)U(rt − b) ≤ P (b)U tP (bt)

P (b)
= P (bt)U t.

tatement 2: U is known but P is not.

⇒) Let D = (rt, bt)Tt=1 be (P,U)-rationalizable. As in our proof of statement 1,
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e can show that bt < rt for all t, which obtains condition 2.a. To derive condition

.b, let us set P t = P (bt). As in our proof of statement 1, we can show that
t > 0. Then, choosing bt should provide at least as much utility as choosing bs.

s such:

P tU(rt − bt) = P (bt)U(rt − bt) ≥ P (bs)U(rt − bs) = P sU(rt − bs),

hich obtains condition 2.b.

⇐) To prove sufficiency, we need to construct a cdf P . Define the function:

V (b) = min

{
αb, min

t=1,...,T

{
P tU(rt − bt)

U(rt − b) s.t. rt > b

}}
, (4)

here we choose:

α > max
t

P t

bt
. (5)

otice that V (b) is well-defined (i.e. finite valued), non-negative, continuous, and

trictly increasing as it is the minimum of a finite number of strictly increasing,

ontinuous functions. Given this, define:

P (b) =
V (b)

V (r)
,

hich obtains that P is a cdf on [0, r].

Next, for all t we have V (bt) = P t. Indeed, as rt > bt, we have that V (bt) ≤ P t.

f the inequality is strict, then P t < αbt (by condition (5)) implies that there is an

bservation s such that:

V (bt) = P sU(rs − bs)
U(rs − bt) < P t.

his, however, contradicts condition 2.b.

Let us finish the proof by showing that the data set D = (rt, bt)Tt=1 is (P,U)-
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ationalizable. If not, then there is a b ∈ [0, rt] such that:

P (b)U(rt − b) > P (bt)U(rt − bt) =
P t

V (r)
U(rt − bt).

his inequality requires that U(rt − b) > 0, which implies that b < rt. As such,

(b) ≤ P t U(rt−bt)
U(rt−b) . Given this:

P (b)U(rt − b) ≤ P t

V (r)

U(rt − bt)
U(rt − b) U(rt − b) =

P t

V (r)
U(rt − bt),

contradiction.

.2 Proof of Theorem 2

n order to give the proof, we need to introduce some definitions and notation.

A directed network G = (T,E) consists of a finite set of nodes T and edges

⊆ T × T . An edge e ∈ E is called an incoming edge for the node t if e = (s, t)

or some s ∈ T and it is called an outgoing edge if e = (t, s) for some s ∈ T . Two

odes t, s are connected if there is a sequence of edges

e1 = (t, n1), e2 = (n1, n2), . . . ek = (nk−1, s),

onnecting t to s. We call e1, . . . , ek a path from t to s.

A cycle C = (e1, . . . , ek) on the network G consists of a collection of edges such

hat

e1 = (n1, n2), e2 = (n2, n3), . . . ek = (nk, n1).

e call {n1, . . . , nk} the nodes of the cycle and k the length of the cycle. For a

ode ni in the cycle , ni+1 is called the successor of ni if i < k and n1 if i = k.

imilarly, ni−1 is called the predecessor of ni if i > 1 and nk if i = 1. We also

enote the successor of ni as ni+ and its predecessor as ni−.

To start, let us give some preliminary results.

reliminary results
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emma 1. Let P be a cdf and let D = (rt, bt)Tt=1 be a data set such that P (bt) > 0

nd bt < rt for all t. Then, there exists a utility function U such that D is (P,U)-

ationalizable if and only if, for all t, there exists numbers ut such that, for all t, s

ith P (rt − rs + bs) > 0,

p(rt − rs + bs)− p(bt) ≤ ut − us,

here p(x) = ln(P (x)).

roof. (⇒) LetD be (P,U)-rationalizable. Then, from condition 1.b in Theorem 1,

e know there exist number U t > 0 such that, for all t, s:

P (bt)U t ≥ P (rt − rs + bs)U s.

f P (rt − rs + bs) > 0 we can take logs on both sides, which gives:

p(rt − rs + bs)− p(bt) ≤ ut − us,

s we wanted to show.

⇐)Assume that there are numbers ut such that, for all t, s with P (rt−rs+bs) > 0:

p(rt − rs + bs)− p(bt) ≤ ut − us.

aking exponents on both sides gives P (rt − rs + bs)U s ≤ P (bt)U t shows that

ondition 1.b of Theorem 1 holds in the case where P (rt − rs + bs) > 0. For the

ase where P (rt − rs + bs) = 0 then condition 1.b is always satisfied as the left

and side is then equal to zero. Applying Theorem 1 shows that there exists a

tility function U such that D is (P,U)-rationalizable.

The following Lemma is close in spirit to the results of Rochet (1987) and

astillo and Freer (2016).

emma 2. Let P be a cdf and let D = (rt, bt)Tt=1 be a data set such that P (bt) > 0

nd bt < rt for all t. Then, there exists a utility function U such that D is (P,U)-

ationalizable if and only if, for all cycles C on the network G = (T, T ×T ), which
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atisfy P (rt − rt+ + bt+) > 0 for all nodes t, we have:

∑

t∈C
p(rt − rt+ + bt+)− p(bt+) ≤ 0.

roof. (⇒) From Lemma 1 we have that there are numbers ut such that, for all

odes t of C:

p(rt − rt+ + bt+)− p(bt) ≤ ut − ut+.

umming the left and right hand sides over all nodes t of the cycle C gives:

0 ≥
∑

t∈C

(
p(rt − rt+ + bt+)− p(bt)

)
=
∑

t∈C

(
p(rt − rt+ + bt+)− p(bt+)

)
.

⇐) Assume m is the node in the cycle with the highest value rm. It follows that,

or all nodes t in the cycle:

rm − rt + bt > 0,

o by strict monotonicity of P , P (rm − rt + bt) > 0. Let E be the set of edges

t, s) such that P (rt − rs + bs) > 0. Let Pt be the set of all paths on the graph
′(N,E) that start at m and end at t. Notice that Pm includes the path (m,m).

iven that P (rm− rt + bt) > 0 exists for all nodes t, the set Pt is non-empty. Now

efine, for all t:

ut = min
π∈Pt

∑

(s,s+)∈π
p(bs)− p(rs − rs+ + bs+).

ecause of the condition in the lemma, an optimal solution to this problem will

e path that does not have a cycle. Indeed, if a path includes a cycle, this makes

he right hand side only larger. This shows that the minimum is bounded from

elow and, therefore, the value ut is well-defined.

Also, if P (rt − rs + bs) > 0 then, for any path in Pt, we can create a path in

s by adding the edge (t, s). Therefore, for all s, t:

us ≤ ut + p(bt)− p(rt − rs + bs).
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sing Lemma 1, we can conclude that the data set D is (P,U)-rationalizable for

ome utility function U .

tatement 1: P is strictly log-concave.

emma 2 shows that there exists a utility function U such that the data set D

(P,U)-rationalizable if and only if, for all cycles C on G = (T, T × T ), which

atisfy P (rt − rt+ + bt+) > 0 for all for all nodes t, we have:

∑

t∈C
p(rt − rt+ + bt+)− p(bt+) ≤ 0, (6)

ith p(x) = ln(P (x)). We will show that this condition is satisfied if and only if

or all observations t, s, rs ≥ rt implies rs − bs ≥ rt − bt.
⇒) Consider two observations t and s. If P (rt − rs + bs) = 0, then it must be

hat rt − rs + bs ≤ 0, since P is strictly increasing. In particular:

rt ≤ rs − bs.

s bs ≥ 0, this implies rt ≤ rs and also rt−bt ≤ rs−bs. Similarly, if P (rs−rt+bs) =

, we obtain rs ≤ rt and rs− bs ≤ rt− bt. So the result holds for both these cases.

Next, consider the case where both P (rt− rs + bs) > 0 and P (rs− rt + bt) > 0.

ithout loss of generality, assume that rs ≥ rt. Then, given the cycle C =

(t, s), (s, t)}, we must have (by (6)):

p(rt − rs + bs)− p(bs) + p(rs − rt + bt)− p(bt) ≤ 0

⇔p(rs − rt + bt)− p(bt) ≤ p(bs)− p(bs − (rs − rt)).

iven strict concavity of p, this can only hold if rs − rt + bt ≥ bs or, equivalently,
s − bs ≥ rt − bt, as we needed to show.

⇐) We work by induction on the length of the cycle C in order to show that

ondition (6) is satisfied. If C has length 2, the proof is similar to the necessity

art above. Let us assume that the condition holds for all cycles up to length n−1

nd consider a cycle of length n. Let t be the node of the cycle with the lowest

alue of rt. Denote by C ′ the cycle where the edges (t−, t) and (t, t+) are removed
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nd the edge (t−, t+) is added. Using this notation we have:

∑

s∈C
p(rs − rs+ + bs+)− p(bs+) =

∑

s∈C′

(
p(rs − rs+ + bs+)− p(bs+)

)

+ p(rt− − rt + bt)− p(bt) + p(rt − rt+ + bt+)

− p(rt− − rt+ + bt+). (7)

otice that P (rt− rt+ + bt+) being strictly positive implies also that P (rt−− rt+ +
t+) > 0 since rt− ≥ rt. As such we can indeed take the logarithm.

The first term on the right hand side of (7) is negative by the induction hy-

othesis. As such, it suffices to show that:

p(rt− − rt + bt)− p(bt) ≤ p(rt− − rt+ + bt+)− p(rt − rt+ + bt+). (8)

efine ∆ = rt− − rt ≥ 0 and set rt− − rt+ + bt+ = b̃ ≥ 0. Then, substituting into

8) gives:

p(∆ + bt)− p(bt) ≤ p(b̃)− p(b̃−∆).

s p is strictly concave and strictly increasing, this holds whenever:

∆ + bt ≥ b̃

⇔rt− − rt + bt ≥ rt− − rt+ + bt+

⇔rt+ − bt+ ≥ rt − bt.

his is indeed the case, as rt+ ≥ rt.

tatement 2: U is strictly log-concave.

his proof is readily analogous to the proof of statement 1.

.3 Proof of Theorem 3

e first state some preliminary results.
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reliminary results

emma 3. Let (zt, yt)Tt=1 be a collection of numbers zt, yt ∈ R. Then, the following
tatements are equivalent:

1. For all cycles C in G = (T, T ×T ) where the values yt are not equal over all

nodes t in C, we have that:

∑

t∈C
zt(yt+ − yt) > 0.

2. For all t, s we have that:

yt > ys ⇒ zt < zs.

roof. (1 ⇒ 2) Suppose the condition in statement 1 holds. Then, given a cycle

= {(t, s), (s, t)} we have that, if yt 6= ys:

zt(ys − yt) + zs(yt − ys) > 0,

⇔(zs − zt)(yt − ys) > 0.

s such, yt > ys implies zt < zs, as we wanted to show.

2⇒ 1) We use induction on the length of the cycle C. For a cycle of length 2 the

roof is similar to the first part of the proof. Assume that the equivalence holds

or all cycles up to length n − 1 and consider a cycle C of length n. If the cycle

= {(t1, t2), (t2, t3), . . . (tn, t1)} contains two nodes ti, tj (i < j) with yti = ytj ,

hen we can break up C into two cycles of smaller length. In particular, we have

he smaller cycles:

C1 = {(t1, t2), . . . , (ti−2, ti−1), (ti−1, tj), (tj, tj+1), . . . , (tn, t1)}, and

C2 = {(ti, ti+1), (ti+1, ti+2), . . . (tj−2, tj−1), (tj−1, ti)}.

lso, as yti = ytj we have:

∑

t∈C
zt(yt+ − yt) =

∑

t∈C1

zt(yt+ − yt) +
∑

t∈C2

zt(yt+ − yt).
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y the induction hypothesis, the sum on the right hand side is greater than 0, so

he sum on the left is then also greater than 0.

Next, we consider the case where there is a cycle C of length n and where, for

ll nodes t, s ∈ C, yt 6= ys. Let t be the node in C with the smallest value of yt,

nd let C ′ be the cycle obtained from C by removing the edges (t−, t), (t, t+) and

dding the edge (t−, t+). Then,

∑

s∈C
zs(ys+ − ys) =

∑

s∈C′

zs(ys+ − ys),

+ zt−(yt − yt−) + zt(yt+ − yt)− zt−(yt+ − yt−).

he first expression on the right hand side is strictly greater than zero by the

duction hypothesis. As such, it suffices to show that,

zt−(yt − yt−) + zt(yt+ − yt)− zt−(yt+ − yt−) ≥ 0

⇔zt−(yt − yt−) + zt(yt+ − yt)− zt−(yt+ − yt)− zt−(yt − yt−) ≥ 0

⇔(zt − zt−)(yt+ − yt) ≥ 0.

y assumption, we have yt+ > yt, so the second part of the product is strictly

ositive. In addition, we have yt− > yt so zt− < zt by statement 2 of the lemma,

hich shows that the first part of the product is also strictly positive.

emma 4. Let (zt, yt)Tt=1 be a collection of numbers zt, yt ∈ R and let C be a cycle

n G = (T, T × T ). Then, there exists a collection of cycles C such that:

1. For all C̃ ∈ C and all nodes t, s ∈ C̃ we have yt 6= ys,

2.
∑

s∈C z
s(ys+ − ys) =

∑
C̃∈C

∑
s∈C̃ z

s(ys+ − ys),

3.
∑

s∈C 1[ys 6= ys+] =
∑

C̃∈C
∑

s∈C̃ 1[ys 6= ys+].

roof. Consider a cycle C in G = (T, T ×T ). We will build the collection C in two

teps. First, we remove from C all edges (t, s) where yt = ys. In order to do this,

C contains an edge (t, s) where yt = ys we construct a new cycle C by deleting

he edges (t−, t) and (t, s) and adding the edge (t−, s). The resulting cycle C ′ has
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he feature that: ∑

s∈C
zs(ys+ − ys) =

∑

s∈C′

zs(ys+ − ys),

nd: ∑

s∈C
1[ys+ 6= ys] =

∑

s∈C′

1[ys+ 6= ys].

his process can be repeated until we finally arrive at a cycle C̃ such that, for any

dge (t, s) we have yt 6= ys together with:

∑

s∈C
zs(ys+ − ys) =

∑

s∈C̃

zs(ys+ − ys),

nd: ∑

s∈C
1[ys+ 6= ys] =

∑

s∈C̃

1[ys+ 6= ys].

e take C̃ as a starting point of the second step. If C̃ contains no two nodes t

nd s (not connected by an edge) such that yt = ys, then we set C = {C̃}. Else,

t C̃ = {(t1, t2), . . . , (tn, t1)} be such that, for at least two nodes ti, tj (i < j) in

, we have yti = ytj . We decompose C̃ into two new cycles C̃1 and C̃2, in the

ollowing way:

C̃1 = {(t1, t2), . . . (ti−2, ti−1), (ti−1, tj), (tj, tj+1), . . . , (tn, t1)} and

C̃2 = {(ti, ti+1), . . . (tj−1, tj)}.

otice that C̃1 and C̃2 satisfy:

∑

s∈C̃

zs(ys+ − ys) =
∑

s∈C̃1

zs(ys+ − ys) +
∑

s∈C̃2

zs(ys+ − ys),

nd: ∑

s∈C̃

1[ys+ 6= ys] =
∑

s∈C̃1

1[ys+ 6= ys] +
∑

s∈C̃2

1[ys+ 6= ys].

gain we can repeat this process over and over until we obtain a collection C of
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ycles such that, for all nodes ti, tj ∈ C̃ ∈ C, we have yti 6= ytj . Moreover:

∑

(t,t+)∈C
zs(ys+ − ys) =

∑

C̃∈C

∑

(t,t+)∈C
zs(ys+ − ys),

nd:

∑

(t,t+)∈C
1[yt 6= yt+] =

∑

C̃∈C

∑

(t,t+)∈C̃

1[yt 6= yt+],

hich we wanted to show.

emma 5. Let (zt, yt)Tt=1 be a collection of numbers such that zt, yt ∈ R. Then,

he following statements are equivalent.

1. For all cycles C in G = (T, T ×T ) where the values yt are not all equal over

the nodes t of C, we have that:

∑

t∈C
zt(yt+ − yt) > 0.

2. There exist numbers ut such that, for all t, s:

ut − us ≤ zs(yt − ys),

with a strict inequality if yt 6= ys.

roof. (2 ⇒ 1) This is easily obtained by summing the inequality in statement 2

ver all edges (t, t+) of the cycle C.

1⇒ 2) Let M be the collection of all cycles in G = (T, T × T ) such that, for all

∈M and all nodes t, s in M , yt 6= ys. Notice that any cycle in M can have at

ost |T | nodes, so the number of elements in M is finite.

Given that there are only finitely many cycles in M, there should exist an ε

uch that, for all M ∈M,

∑

s∈M
zs(ys+ − ys) > ε|M |,
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here |M | is the number of nodes in M .

Now, fix a node m and let Pt denote the collection of all finite paths in G =

T, T × T ) from m to node t. Define:

ut = min
π∈Pt

∑

s∈π
zs(ys+ − ys)− ε1[ys+ 6= ys].

n order to show that this is well-defined, we need to show that there are no cycles

in G = (T, T × T ) such that:

∑

s∈C
zs(ys+ − ys)− ε1[ys+ 6= ys] < 0.

f ys+ = ys for all s ∈ C, then this is obviously satisfied. Else we have, by Lemma 4,

collection of cycles in M such that:

∑

s∈C
zs(ys+ − ys) =

∑

M∈C

∑

s∈M
zs(ys+ − ys),

nd: ∑

s∈C
1[ys+ 6= ys] =

∑

M∈C

∑

s∈M
1[ys+ 6= ys].

hen:

∑

s∈C
zs(ys+ − ys)− ε1[ys+ − ys],

=
∑

M∈C

∑

s∈M
zs(ys+ − ys)− ε

∑

M∈C

∑

s∈M
1[ys+ 6= ys],

=
∑

M∈C

(∑

s∈M
zs(ys+ − ys)− ε1[ys+ 6= ys]

)
> 0,

y assumption on the value of ε. As such, we can restrict the minimization over

he set of all paths without cycles, which shows that ut is bounded from below and

herefore well-defined. Now, for all paths from m to t we can define a path from

to s by adding the edge (t, s). This means that,

us ≤ ut + zt(ys − yt)− ε1[ys 6= yt],
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o us ≤ ut + zt(ys − yt) and us < ut + zt(ys − yt) if ys 6= yt as we wanted to

how.

ain part of the proof of Theorem 3 (⇒) First, notice that, by continuity

nd monotonicity of P and U , we have that P (bt) > 0 and U(rt−bt) > 0. As such,

he choice bt also optimizes the log of P (b)U(rt − b), denoted by p(b) + u(rt − b).
his objective function is strictly concave, so a solution has to satisfy the first

rder condition:

∂pt − ∂ut = 0,

here ∂pt is a suitable supergradient of p(bt) and ∂ut is a suitable supergradient

f u(rt − bt), and where we use that 0 < bt < r.9 Then, strict concavity of u and

gives:

p(bt)− p(bs) ≤ ∂ps(bt − bs) = ∂us(bt − bs), (9)

u(rt − bt)− u(rs − bs) ≤ ∂us
[
(rt − bt)− (rs − bs)

]
, (10)

here the inequality (9) is strict if bs 6= bt and the inequality (10) is strict if
t − bt 6= rs − bs. If we exchange t and s in conditions (9) and (10) and add them

ogether, we obtain:

0 ≤ (∂us − ∂ut)(bt − bs), (11)

0 ≤ (∂us − ∂ut)
[
(rt − bt)− (rs − bs)

]
, (12)

here (11) is strict if bt 6= bs and (12) is strict if rt − bt 6= rs − bs. If bt > bs, then,

or (11) to hold, we must have that ∂ut < ∂us, which implies we need in turn that
t − rs ≥ bt − bs to satisfy (12). As such, we obtain that rs ≥ rt implies bs ≥ bt.

Next, if rt − bt > rs − bs, then for (12) to hold, we must have that ∂ut < ∂us,

hich implies we need in turn that bt ≥ bs to satisfy (11). As such we obtain
t − rs > bt − bs ≥ 0 and thus also rt > rs. Again, by contraposition, we can

onclude that rs ≥ rt implies rs − bs ≥ rt − bt.
9 For the definition and basic properties of supergradients please see Rockafellar (1970).
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⇐) Taking the contraposition, we have that bt > bs implies rt > rs and rt − bt >
s − bs implies rt > rs. Then, by combining Lemmata 3 and 5 we have that there

re numbers ut and pt such that, for all observations t, s:

ut − us ≤ rs
[
(rt − bt)− (rs − bs)

]
, (13)

pt − ps ≤ rs(bt − bs), (14)

here the inequality (13) is strict if rt − bt 6= rs − bs, and the inequality (14) is

trict if bt 6= bs. As shown in Matzkin and Richter (1991), these inequalities imply

he existence of continuous, strictly increasing and strictly concave functions ũ and

such that, for all t:

ũ(rt − bt) = ut, and p(bt) = pt.

nd rt is a supergradient of u(rt − bt) and p(bt). Define the function:

u(x) = min{ln(αx), ũ(x)},

here we choose α > 0 such that, for all t:

ln(α(rt − bt)) > ut.

he function u(x) is still strictly concave, strictly monotone and continuous. In

ddition, for all t we have that u(rt−bt) = ut and rt is a supergradient of u(rt−bt),
ut now we also have that limx→0 ũ(x) = −∞. Define:

U(x) = exp(u(x)),

nd:

P (b) = exp (p(b)− p(r)) .

hen, U is strictly increasing, strictly log-concave and U(0) = 0 and P is between

and 1, strictly increasing and strictly log-concave on [0, r].

For these definitions of U and P , let us show that the data set D = (rt, bt)Tt=1

(P,U)-rationalizable. That is, that bt maximizes p(b) + u(r− b). We know that
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(bt)U(rt − bt) > 0, so we only need to consider values b < rt with P (b) > 0. By

oncavity of p and u we have, for all such b:

p(b) + u(rt − b)−
(
p(bt)− u(rt − bt)

)
≤ rt(b− bt) + rt

[
(rt − b)− (rt − bt)

]
= 0,

s we needed to show.

When U is unknown and P can be estimated

n this appendix, we show how to use the characterization in statement 1 of The-

rem 1 to derive a statistical test of rationalizability when U is unknown, but the

mpirical analyst can construct an estimate of the cdf P from a finite sample of

bservations.

Let us assume that we have a random sample of m values (b̂j)j≤m, drawn i.i.d.

rom a cdf G. The sample used for the cdf of G is a separate data set than the

ne used for the revealed preference test. We assume that the cdf G can be linked

o the cdf P by a known function Γ : [0, 1]→ [0, 1] such that, for all b ∈ [0, r],

P (b) = Γ (G(b)) .

his function Γ will generally depend on the specific setting at hand. For instance,

a first price auctions we can take G to represent the distribution of bids of a

andom participant in the auction, while P equals the distribution of the highest

id among all participants different from the DM. Then, for an auction with k+ 1

andomly drawn participants in total (i.e. k participants different from the DM)

nd independent bids, we get:

P (b) = (G(b))k,

hich yields the function Γ(x) = xk.10 Of course, if it is possible to directly obtain

i.d. draws from the distribution P , we can set Γ equal to the identity function.

10The sample (b̂j)j≤m of bids can then be obtained via m repetitions of the following procedure.
raw a random subject from the population, endow this subject with a random reward and ask
er for her optimal bid.
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Given the finite sample (b̂j)j≤m, it is possible to construct an estimator of the

df G by using the empirical distribution function:

Gm(b) =
1

m

m∑

j=1

1[b̂j ≤ b],

here 1[.] is the indicator function that equals 1 if the premise is true and zero

therwise. This estimator has a small sample bias equal to:

εm(b) = Gm(b)−G(b).

ext, we recall that our characterization in statement 1 of Theorem 1 only requires

s to evaluate the distribution P (and hence G) at a finite number of values
t − rs + bs, where P (rt − rs + bs) > 0 for t, s ∈ {1, . . . , T}. From now on, we will

ssume that G(rt − rs + bs) > 0 for all such t, s. Correspondingly, we construct a

nite vector of errors εm, with entries:11

(εm)t,s = Gm(rt − rs + bs)−G(rt − rs + bs).

he vector
√
mεm has an asymptotic distribution that is multivariate normal with

ean zero and variance-covariance matrix Ω, where:

(t′,s′),(t,s) =

{
G(rt − rs + bs)(1−G(rt

′ − rs′ + bs
′
)) if rt − rs + bs ≤ rt

′ − rs′ + bs
′

G(rt
′ − rs′ + bs

′
)(1−G(rt − rs + bs)) if rt

′ − rs′ + bs
′
< rt − rs + bs

tandard results yield:

mε′m(Ω)−1εm ∼a χ2(K)),

here ∼a denotes convergence in distribution and K is the size of the vector ε.12

Of course, in practice we do not observe the matrix Ω. We can approximate it

11For simplicity, we assume that all values rt − rs + bs are distinct. Obviously, this does not
ffect the core of our argument.
12See, for example, Sepanski (1994).
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sing the finite sample analogue Ω̂m, where:

Ω̂m)(t′,s′),(t,s) =

{
Gm(rt − rs + bs)

(
1−Gm(rt

′ − rs′ + bs
′
)
)

if rt − rs + bs ≤ rt
′ − rs

Gm(rt
′ − rs′ + bs

′
) (1−Gm(rt − rs + bs)) if rt

′ − rs′ + bs
′
< rt − r

ecause Ω̂m is a consistent estimate of Ω, it follows that:

mε′(Ω̂m)−1ε ∼a χ2(K).

e can use this last result as a basis for an asymptotic test of rationalizability.

pecifically, consider the null hypothesis:

H0 :

{
there is a utility function U such that the data set

D = (rt, bt)Tt=1 is (P,U)-rationalizable.

}
.

o empirically check this hypothesis, we can solve the following minimization

roblem:

OP.I: Zm = inf
em,Ĝt,s∈[0,1],Ut>0

me′m(Ω̂m)−1em,

s.t. ∀t, s : et,s = Gm(rt − rs + bs)− Ĝt,s, (15)

Γ(Ĝt,t)U
t ≥ Γ(Ĝt,s)U

s, (16)

Γ(Ĝt,s) < Γ(Ĝt′,s′) for all rt − rs + bs < rt
′ − rs′ + bs

′
. (17)

f the hypothesis H0 holds true, the above problem has a feasible solution with:

Ĝt,s = G(rt − rs + bs).

s such, we must have:

Zm ≤ mε′m(Ω̂m)−1εm.

et us denote by cα the (1−α)×100th percentile of the χ2(K) distribution. Then,

H0 holds, we obtain:

lim
m→∞

Pr[Zm > cα] ≤ lim
m→∞

Pr
[
mε′m(Ω̂m)−1εm > cα

]
= α,
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hich implies that we can construct an asymptotic test of H0 by solving problem

P.I for the given data set and subsequently verify whether its solution value

xceeds cα.

Two concluding remarks are in order. First, our empirical hypothesis test is

onservative in nature when compared to the theoretical test (based on Theorem 1)

hat uses the true distributions P and G. Second, implementing our hypothesis

est in principle requires solving the minimization problem OP.I, which may be

omputationally difficult due to the constraints (16)-(17) that are nonlinear. For

ome particular instances of the function Γ, however, it may be possible to convert

his problem into a problem that can be solved by standard algorithms. See, for

xample, the working paper version of this paper (Cherchye, Demuynck, De Rock,

nd Freer (2019)) for an application of this procedure to a first price auction

etting.
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