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Abstract8

Accurate weed mapping is a prerequisite for site-specific weed management to enable sustainable agriculture. This

work aims to analyse (spectrally) and mapping blackgrass weed in wheat fields by integrating Unmanned Aerial Vehicle

(UAV), multispectral imagery and machine learning techniques. 18 widely-used Spectral Indices (SIs) are generated

from 5 raw spectral bands. Then various feature selection algorithms are adopted to improve model simplicity and

empirical interpretability. Random Forest classifier with Bayesian hyperparameter optimization is preferred as the

classification algorithm. Image spatial information is also incorporated into the classification map by Guided Filter.

The developed framework is illustrated with an experimentation case in a naturally blackgrass infected wheat field

in Nottinghamshire, United Kingdom, where multispectral images were captured by RedEdge on-board DJI S-1000

at an altitude of 20m with a ground spatial resolution of 1.16 cm/pixel. Experimental results show that: (i) a good

result (an average precision, recall and accuracy of 93.8%, 93.8%, 93.0%) is achieved by the developed system; (ii) the

most discriminating SI is triangular greenness index (TGI) composed of Green-NIR, while wrapper feature selection

can not only reduce feature number but also achieve a better result than using all 23 features; (iii) spatial information

from Guided filter also helps improve the classification performance and reduce noises.

Keywords: Blackgrass weed; Guided filter; Random Forest; Spectral Index (SI); Unmanned Aerial Vehicle (UAV).9

1. Introduction10

An increasing world population (9 billion by 2050) is placing an unprecedented demand (a 70% increase) on11

contemporary agriculture. This global grand challenge is even severer in consideration of the scarcity of the arable12

land and natural farming resources, and the societal demand for shrinking agriculture’s environmental footprint [1].13

Weeds, aggressively competing with crops for water, nutrients and sunlight, are responsible for an approximate 35%14

reduction in potential global crop yields [2]. Improved weed monitoring can help reduce agricultural use of chemicals15
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(herbicides in particular) and thus contribute to an increased agriculture sustainability.16

Various weed management strategies are developed in the literature and practice according to various weed growth17

stages. Pre-sowing or pre-emergence herbicides can be applied before the emergence of weeds. Post-emergence herbi-18

cides, tillage, hand weeding and weed surfacing are common practices after weeds’ emergence. However, conventional19

weed management strategies are to broadcast over the entire field irrespective of weeds’ spatial information. This uni-20

form strategy results in economical (a high cost due to overdose), environmental (severer ground water contamination)21

and social (herbicide residues in agriculture products) risks, and also exacerbates the problem of herbicide resistance,22

since weeds are usually patchily distributed within fields leading to many weed-free areas [3].23

To tackle these challenges, there is a trend to adopt Site-Specific Weed Management (SSWM) strategy according24

to weed spatial distribution [4]. In this approach, weed mapping at early stages is desirable for timely herbicide25

applications. However, many challenges still exist in early (seedling) weed mapping due to various reasons including26

the similarity of spectral reflectance [2]. Therefore, late-season weed mapping, although not common yet, may provide27

an alternative in practice. This is because for certain weeds (e.g. blackgrass) weed infestation is relatively stable from28

year to year [5], as a result, late-season weed mapping can be used for the treatment of the subsequent year by using29

pre-sowing or pre-emergence herbicides. Weed mapping also plays a vital role in assessing the effectiveness of various30

herbicide treatments.31

Blackgrass, an annual grass native to Eurasia, is a major weed of cereal crops in the U.K., especially for autumn sown32

crops including winter wheat. This weed has significantly adverse effects on crop yields and is prevalent in northern33

Europe; it is reported that about 70% of fields in the UK are infected by blackgrass [6]. To make it worse, blackgrass34

has gradually developed herbicide resistance, especially to post-emergence herbicides. Consequently, pre-emergence35

herbicides have become the main means of chemical control [7]. In addition, according to their effectiveness, practical36

non-chemical control strategies of blackgrass weeds in wheat fields include spring cropping, pre-sowing plowing, delayed37

autumn drilling, higher seed rates and competitive cultivars [7].38

It is evident that accurate, timely and high-resolution weed maps (including blackgrass weed mapping) are key for39

SSWM practices [3]. Weed mapping by ground sampling is expensive, time-consuming and not suitable for large-scale40

applications [8]. Remote sensing of weed canopies is drawing increasing research interests, which is mainly enabled by41

the rapid development of spectroscopic instruments, the advent of easily-accessed and flexible moving platforms such42

as Unmanned Aerial Vehicle (UAV) and recent advancements in machine/deep learning algorithms. The underlying43

rationale is that various materials (land covers) in fields (crop, weed and bare soil) usually exhibit different spectral44
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reflectance values due to their varied physical and chemical characteristics, which can be captured by spectroscopic45

instruments and subsequently be learnt by machine learning algorithms [9], [10].46

There are several studies on weed mapping in crop fields, where the sensors range from low-cost multispectral47

cameras [11, 12] to high-cost spectrometers, from low to high spatial resolution, and from ground-based (harvesters,48

tractors) [13, 14] to airborne-based [15, 16]. UAV remote sensing with a user-defined spatial-temporal resolution, a49

low cost and high flexibility has become an important remote sensing approach [4]. For example, in [17], the problem50

of broad-leaf and grass weed detection in wide-row herbaceous crops are considered by using UAV visible imagery and51

neural network model. Maximum likelihood and Support Vector Machine (SVM) are compared in [18] for weed spatial52

distribution in onion field. In [5], piloted airborne multispectral imagery (MSI) with a resolution of 25 cm/pixel is53

adopted for cruciferous weed mapping among cereal crops by VISible-NIR (VIS-NIR) derived Spectral Indices (SIs).54

To alleviate the problem of crop/weed spectral similarity at early growth stages, crop row spatial information is55

exploited in [2]. Spatial (crop row) and spectral characteristics are also exploited in [19] for weed mapping in maize56

fields by six-band MSI. Visual features and geometric information of detected vegetation are also employed to classify57

crops and weeds in [20] by using RGB-NIR aerial image at an altitude of 3 m.58

Recently, there is also a trend for weed mapping by deep learning approaches [13, 14, 15, 21]. For instance, the59

problem of crop/weed semantic segmentation is considered by using images collected by agricultural robots in [13, 14].60

Deep neural network (e.g. SegNet) was adopted in pioneering work [15, 21] for semantic weed classification from sugar61

beet by aerial MSI collected by a small UAV at an height of 2m. It is noted, however, that a large amount of labelled62

data is usually required in deep learning approaches for images (ideally) with a relatively high spatial resolution [22].63

Deep learning approaches are not applied in the study considering that: (1) only a limited number of pixels are labelled64

for the MSI due to the challenges in labelling aerial images; (2) the labelled pixels are sparely distributed in the field65

of interest (see, Fig 5); (3) the image resolution is far lower than the ones collected by agricultural robots or UAV at66

a very low height [13, 14, 15], since the drone camera in this study can not be operated at a very low altitude (due to67

the image calibration and stitching issue at an altitude lower than 10 m); (4) as described in Section 2.1, the labelling68

approach is not suitable for deep learning approaches, either. The following observations are drawn for the research69

in terms of research motivation, gaps and challenges:70

(1) There is an urgent need for an automatic remote sensing based weed mapping to enable SSWM at field scales;71

(2) In-season weed mapping is significant and possesses new research challenges over early-season mapping due to72
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the lack of crop row information in wheat fields;73

(3) There are studies for weed mapping by using spectral and/or spatial information, little work is available on74

systematically selecting appropriate SIs or their optimal combination for a simple but effective classifier;75

(4) To date, the use of UAV, MSI and machine learning for blackgrass weed mapping has not yet been evaluated.76

The main contribution of this study lies in the initial development of an automatic weed mapping framework by77

integrating five-band MSI, low-altitude UAV platform and machine learning algorithms, and its real-life validation in78

a naturally blackgrass infected wheat field. The specific objectives are to:79

(i) Determine whether or not blackgrass weeds can be discriminated from wheat by applying spectral analysis and80

classification algorithm to aerial MSI;81

(ii) Identify the most discriminating spectral bands, SIs and their optimal combination by using feature generation82

and selection algorithms;83

(iii) Exploit both spectral and spatial information for an accurate blackgrass probabilistic map;84

(iv) Initially experimentally validate the system in a naturally blackgrass infested wheat field.85

2. Materials86

2.1. Study field87

Experiments were carried out in a naturally blackgrass (Alopecurus myosuroides) infected wheat (Triticum aes-88

tivum L.) field (GPS coordinate, latitude: 53o02′45′′N , longitude: 0o45′29′′W , altitude: 14m a.s.l.) of Newark, Not-89

tinghamshire, U.K. (please refer to Fig 1 for the location of the test field). Data collection was done on 05/Jun/201890

(mid-day of a sunny day), when wheat and blackgrass weeds are in the stages of full ear emergence and early seed91

shedding. The late-season imaging is mainly due to the significant challenges in blackgrass groundtruth labelling at an92

early stage in UAV imagery, especially for a naturally blackgrass infected wheat field in this study. As shown in the left93

bottom plot of Fig 1, red rope (treated as background pixels in labelling) has been used to help agronomists label the94

aerial image after acquisition and pre-processing. This will also prohibit the application of deep learning approaches,95

since this information will also be learnt automatically in deep learning framework. It is noted that red rope is to96

help agronomists build the knowledge of blackgrass weed in the aerial images. Upon knowing its characteristics, a97
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370Km 234m

GPS location: 53°02'45.0"N, 0°45'29.0"W

15m

Figure 1: Test wheat field for blackgrass weed mapping including geographic location (Google earth engine), satellite image of the field of

interest, false-color UAV image and ground images of blackgrass weed.

large number of blackgrass samples (within and beyond the red rope regions) are manually labelled for the purpose of98

spectral analysis and model construction. It is also noted that the purple line at the bottom right of Fig 1 is a field99

path (background pixels in labelling).100

2.2. MSI image acquisition101

In this study, multispectral camera is adopted for blackgrass weed mapping. This is because compared to hy-102

perspectral camera [23], multispectral camera is lightweight, with a low cost, and of high spatial resolution and so103

applicable to large areas of interest. While compared to RGB camera [24], multispectral camera possesses additional104

spectral bands and is also less affected by environmental variations due to the availability of reflectance calibration105

panel. To obtain aerial MSI, S1000 Octocopter (DJI, Shenzhen, China) and RedEdge multispectral camera (MicaS-106

ense, Seattle, WA, USA) are adopted, where the developed system is displayed in Fig 2. The specification of DJI107

S1000 is referred to [9, 25]. RedEdge camera is a light-weight (135g), small (5.9cm× 4.1cm× 3.0cm), high-resolution108

(1280 × 960 pixels) camera, which can capture five narrow spectral bands with GPS information. The five bands109

(wavelength/bandwidth) include Blue (475/20 nm), Green (560/20 nm), Red (668/10 nm), RedEdge (717/10 nm) and110

NIR (840/40 nm).111

During the flight, a gimbal is adopted to fix the camera pointing vertically downwards so that the the adverse112

effects of UAV motion/vibration on image quality are attenuated. The flight altitude is set to 20m above ground with113
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Figure 2: UAV-Camera system: DJI S1000 (left), Downwelling light sensor (top), RedEdge camera (middle) and calibration panel (bottom).

a ground spatial resolution of 1.16cm/pixel in the orthomosaic image. DJI Ground Station 4.0 is used to plan, control114

and monitor the UAV flight. The flight path, UAV forward velocity (1m/sec.) and camera triggering are set in the115

Pix4DCapture App to make sure that an overlap and sidelap up to 75% is guaranteed for the purpose of accurate116

image stitching. A total number of 460 x 5 images are obtained in the field trial, where the total covered area after117

image stitching is about 0.004 square km. A selected portion of the stiched image with sever blackgrass weed infection118

is selected for the spectral analysis and model test.119

For image reflectance calibration, both Downwelling Light Sensor (DLS) and MicaSense’s Calibrated Reflectance120

Panel (CRP) are adopted. DLS is to record data on the amount of light from the sky, which is useful for situations121

where ambient light conditions are changing during a flight. While CRP with known reflectance values (i.e. 0.57, 0.57,122

0.56, 0.51 and 0.55 for Blue, Green, Red, NIR and RedEdge) is for absolute reflectance calculation. Before and after123

each flight, an image of the CRP is taken at about 1m without shadow, which will be used for reflectance calibration124

in Pix4DMapper software. Images captured with RedEdge-M conforms to standard formats (TIFF) with standard125

metadata such as GPS information (latitude/longitude/altitude and date/time), attitude data (pitch, roll and heading126

angles) and camera information (e.g. exposure time, ISO speed, black level).127

2.3. Image preprocessing by Pix4DMapper128

Professional photogrammetry software is then required to align the bands, calibrate the images and create georef-129

erenced reflectance maps, based on which various SVIs can be calculated. These tasks are conducted by Pix4DMapper130

software of version 4.3.31 (Pix4D SA, Switzerland), where more detailed information is referred to [25]. To make it131

more intuitive, the overall workflow is displayed in Fig 3, which include UAV-Camera system, flight path planning in132

Pix4DCapture, image pre-processing in Pix4DMapper. The outputs of image preprocessing process are spectral bands133
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and SVI GeoTIFF images of the whole site.

UAV-
Camera

Study 
field

Aerial 
MSIs 

Bands
SVIs

DLS

CRP

Figure 3: Workflow of MSI image acquisition and preprocessing.

134

3. Methods135

This section introduces the methods for blackgrass weed mapping. The task of automatic blackgrass weed mapping136

is formulated as a supervised classification problem. The developed framework seamlessly integrates a number of137

advanced techniques: feature generation to enhance feature discrimination ability, feature selection for dimension138

reduction, Random Forest (RF) for classification, and Guided Filter for spatial information enhancement. The overall139

framework is displayed in Fig 4.

Guided filter

Weed map
Bayesian optimization

5 spectral bands 

Feature 
generation

MI 
Filter

SFS 
Wrapper

Feature selection

RF classifier

ROI

Image acquisition 
and preprocessing

Selected feature 
generation

RF classifierFeatures

Performance evaluation

Classifier
Model training Model application

Figure 4: The developed system for blackgrass weed mapping in wheat fields: model training (left) and model application to RoI (right).

140

The system in Fig 4 consists of two stages: model training and model application. In training step, 5 raw spectral141

bands are first manipulated to generate 18 SI features. Then feature selection is used to reduce feature dimensionality142

and improve empirical interpretability, where both filter (Mutual Information (MI) ranking) and wrapper (Sequential143
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Forward Selection (SFS)) feature selection approaches are considered [26] to identify the better one. The selected144

features are to train a classification model, where RF classifier with Bayesian hyperparameter optimization is adopted.145

In applying the model to the Region of Interest (RoI), the trained RF classifier is applied to the selected spectral146

features; then the classification probability maps are further processed by guided filter so that spatial information can147

be incorporated into the final weed map.148

3.1. Aerial imagery with groundtruth labelling149

The aerial imagery is firstly introduced including its groundtruth labelling. The raw aerial images were first150

processed by the procedures in Section 2.3 for spectral band reflectance and SI map generation. The RGB composite151

with image adjustment for intensity enhancement is displayed in Fig 5. Random parts of the image are also manually152

(via zoom in and zoom out) labelled by “Image Labeller” in Matlab. In particular, 125164 out of 3154051 pixels are153

labelled into three classes: Blackgrass (53635), Wheat (47133) and Background (24396).

Training Testing

Figure 5: Upper: RGB composite of the RoI with image intensity enhancement; Lower: labelled classes by visual inspection in Matlab

“Image Labeller” including Un being unlabelled region. Pixel resolution: 1.16cm/pixel, image size: 3000x1050.

154

3.2. Feature generation155

In order to maximally represent image characteristics, 18 widely-used SIs are generated as the potential features156

in addition to 5 raw spectral bands. SI refers to a mathematical expression combining the surface reflectance at157

two or three spectral bands in order to enhance spectral differences of various objects. SI is a common technique158

in precision agriculture and has been widely applied in a number of areas such as weed mapping [2], yellow rust159
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monitoring [9]. Following preceding work [9], 18 widely-used SIs for RedEdge multispectral camera are generated,160

which are summarized in Table 1.161

3.3. Feature selection162

Feature Selection (FS) is to select a subset of features for model construction, which is able to simplify the model,163

reduce the training time, avoid the curse of dimensionality and enhance generalization by reducing the chance of164

overfitting. Suppose the complete feature set is Fs with d being its feature number, selecting the best subset Ss ⊆ Fs165

results in possible 2d − 1 combinations, indicating exhaustive search is impossible due to the NP-hard problem.166

Practical methods usually follow certain heuristics. According to various metrics, the existing FS algorithms can167

be broadly categorised into three classes including filters, wrappers and embedded methods. Filters rely on proxy168

measures (MI, Pearson correlation) to rank features, which is independent of the classifier and also computationally169

efficient. Wrappers rely on predictive models to evaluate feature subsets and usually provide the best performance but170

with a higher computation load. While Embedded methods perform feature selection as part of the model construction171

process and are usually constrained to certain classifiers.172

In this work, to make the classification model simple but effective, both filter and wrapper approaches are con-173

sidered. In particular, MI between features and class label is adopted as the evaluation metric of filter approach,174

where the number of selected features is determined by the performance (Out-Of-Bag (OOB) error) of RF classifier.175

Moreover, Sequential Forward Selection (SFS) is also adopted as the wrapper strategy to identify the best feature176

combination, where RF is adopted to determine whether a feature should be included or not. The framework for MI177

filter and SFS wrapper is displayed in Fig 6. Their principles are briefly introduced in the following subsections.

Features+Labels 

MI ranking

Random 
Forest

Top   features

Feature 
subset

OOB  errors

SFS 
features 

Feature 
subset

Random 
Forest

OOB   errors

Figure 6: Feature selection: MI filter (left) and SFS wrapper (right), where OOB errors is adopted to evaluate the RF performance.

178
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Table 1: SVIs adopted in this study.

Category (No.) Full name ABBRE. Band Formula

VIS(4)

Nitrogen Reflectance Index NRI Green-Red (Rg −Rr)/(Rg +Rr)

Greenness Index GI Green-Red Rg/Rr

Green Leaf Index GLI Blue-Green-

Red

(2Rg −Rr −Rb)/(2Rg +Rr +Rb)

Triangular Greenness Index TGI Blue-Green-

Red

−0.5(λr − λb)(Rr − Rg) − (λr −

λg)(Rr −Rb)

Green-RE(1) Anthocyanin Reflectance Index ARI Green-RE R−1
g −R−1

re

Green-NIR(3)

Green NDVI GNDVI Green-NIR (Rnir −Rg)/(Rnir +Rg)

Triangular Vegetation Index TVI Green-NIR 0.5[120(Rnir − Rg) − 200(Rnir −

Rg)]

ChlorophyII Index-Green CIG Green-NIR Rnir/Rg − 1

Red-NIR(4)

Normalized Difference Vegeta-

tion Index

NDVI Red-NIR (Rnir −Rr)/(Rnir +Rr)

Soil Adjusted Vegetation Index SAVI Red-NIR 1.5(Rnir −Rr)/(Rnir +Rr + 0.5)

Ratio Vegetation Index RVI Red-NIR Rnir/Rr

Optimized Soil Adjusted Vegeta-

tion Index

OSAVI Red-NIR 1.16(Rnir−Rr)/(Rnir+Rr+0.16)

RE-NIR(2)
ChlorophyII Index-RedEdge CIRE RE-NIR Rnir/Rre − 1

Normalized Difference RedEdge

Index

NDREI RE-NIR (Rnir −Rre)/(Rnir +Rre)

VIS-RE-NIR(4)

Enhanced Vegetation Index EVI Blue-Red-

NIR

2.5(Rnir − Rr)/(Rnir + 6Rr −

7.5Rb + 1)

Transformed ChlorophyII Ab-

sorption and Reflectance Index

TCARI Green-Red-

RE

3[(Rre − Rr) − 0.2 ∗ (Rre −

Rg)(Rre/Rr)]

ChlorophyII Vegetation Index CVI Green-Red-

NIR

RnirRr/R
2
g

Simplified Canopy ChlorophyII

Content Index

SCCCI Red-RE-NIR NDREI/NDVI
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3.3.1. MI filter179

There are various feature scoring algorithms. According to various criteria to evaluate the relationship between180

features and class label, these algorithms include MI, Fisher score, Minimum Redundancy and Maximum Relevance181

(MRMR) and ReliefF based ones. In comparison with other approaches, MI is not only simple but also can reflect the182

statistical dependency between two random variables, and therefore is adopted. MI is usually defined for two discrete183

random variables (feature quantization is adopted to discretize continuous variables into discrete bins) and a higher184

value means a higher statistical relevance. MI value for random variables Y and Z is defined by185

MI(Y,Z) =
∑

y∈Y

∑
z∈Z

P (y, z)log

(
P (y, z)

P (y)P (z)

)
, (1)

where P (y), P (z) and P (y, z) represent marginal probability distribution of Y and Z, and the joint probability distri-186

bution of Y and Z. Then the top features identified by MI ranking can be selected as the features for RF classifier187

construction so that the optimal feature number can be determined.188

3.3.2. Sequential Forward Selection (SFS)189

SFS is a typical search strategy for wrappers feature selection. In this approach, features are added sequentially190

into the feature set, where the evaluation metric for adding a feature is defined as the OOB error of RF. To avoid191

distracting readers from the main contributions, SFS with RF is summarized in Algorithm 1 (see, Appendices).192

3.4. Random forest classifier193

The task of classification can be achieved by many algorithms such as classification tree, K-Nearest Neighbours,194

discriminant analysis, Support Vector Machine [27]. RF is preferred for the task with a small number of labelled data;195

because RF achieves good performance in term of accuracy and robustness while with a relatively low computation196

cost. In addition, it can not only return the class label but also the probability in the range of [0,1]. RF is an197

ensemble learning method, where a number of decision trees are trained (by bootstrap sampling) with the final class198

output being the mode of individual decision trees. RF, in comparison to individual decision tree, can effectively avoid199

overfitting and improve robustness. In order to improve its performance, its hyperparameters are automatically tuned200

by Bayesian optimization. RF classifier with Bayesian optimization is summarized in Algorithm 2 (see, Appendices).201

By applying the trained RF to the RoI, one can obtain the initial pixel-wise classification maps202

P = {P1, · · · , PC} with Pk = {p1
k, · · · , pnk} , (2)
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where Pk, k = 1, · · · , C denotes the probability map for class k with C being the class number; pik ∈ [0, 1] denotes the203

probability that pixel i belongs to class k.204

3.5. Guided filer for spatial information205

In real-life applications, pixels in a local region are more likely to share the same class label. This type of spatial206

information should also be considered. Inspired by the hyperspectral image classification in [28], spatial filtering is207

adopted to regularize the initial spectral classification maps. Guided filter in [29] is preferred due to its fine properties208

in enhancing the smoothness of local areas and preserving the edge information of the reference image.209

Guided filter assumes a local linear model between guidance image I (input image itself or an reference image)210

and filter output Q in a local window wk centred at pixel k:211

Qi = akIi + bk,∀i ∈ wk, (3)

where i denotes pixel index, (ak, bk) are some unknown linear coefficients being constant in wk. To determine the212

coefficients, a cost function is defined, which minimizes the differences between output image Q and input image P ,213

E(ak, bk) =
∑
i∈wk

[(akIi + bk − Pi)2 + εa2
k], (4)

where ε is a regularization parameter preventing ak being too large. The model (3) and the approximation solution214

of (4) ensure that 5Q ≈ ā5 I with ā being the approximation solution of a. Therefore, the edge information in the215

reference image I can be preserved in filtering output image Q.216

In this work, various three-band images including RGB image, the first three principal components of PCA analysis,217

and the first three SIs by SFS feature selection algorithm are adopted as the reference image for the Guided filter.218

Then (3) with the solution of (4) is adopted to regularize the initial probabilistic maps Pi(i = 1, · · · , C) in (2), given219

by220

P̂i = Guided filter(I, Pi). (5)

After all C initial probabilistic maps are processed by Guided filter, the final class label of pixel i is determined by the221

maximum of filtered maps P̂i(i = 1, · · · , C). The overall procedure is summarized in Algorithm 3 (see, Appendices).222

3.6. Performance evaluation223

Various metrics are adopted for performance evaluation. OOB error is adopted to measure the prediction error of224

RF classifier to avoid overfitting in feature selection algorithms and hyperparameter optimization. OOB error denotes225
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the mean prediction error on each training sample xi, using only the trees that did not have xi in their bootstrap226

aggregating (or bagging) samples. It is reported that OOB error helps avoid the need for an independent validation227

dataset. In addition, other popular metrics are also adopted wherever necessary such as accuracy, precision and recall.228

These metrics rely on a number of definitions including True Positive (TP), False Positive (FP), True Negative (TN)229

and False Negative (FN) [9]. Accuracy, a good measure for symmetric datasets, can then be defined by230

Accuracy =
∑
i

TP/All,with All = TP + FP + TN + FN. (6)

Precision and Recall, effective measures for data with uneven distributions, can also be defined for a specific class,231

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

. (7)

Their mean values for various land cover classes can then be calculated.232

4. Results233

4.1. Spectral analysis234

Spectral analysis is first conducted, where the mean reflectance values (along with 0.5-σ area) of five original bands235

and 18 SVIs for various land cover classes including Blackgrass (Blackg), Wheat and Background (Backg) are displayed236

in Figs 7 and 8. Moreover, the correlation analysis between different spectral bands and SVIs is also performed. The237

correlation map is displayed in Fig 9, where a brighter pixel means a higher correlation value.
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Figure 7: Mean reflectance and 0.5-σ range of five spectral bands for three land cover classes in the wheat field.

238

The following observations can be drawn from Figs 7, 8 and 9. As seen in Fig. 7, various materials have distinct239

spectral reflectance values (curves), which can be learnt by machine learning algorithms for classification. As seen240
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Figure 9: Correlation map of spectral bands & SVIs, where greyscale represents the level of correlation with black (0) and white (1).

in Figs. 7 and 8, reflectance differences are distinct in various spectral bands/SIs for various materials, so various241

spectral bands/SIs have various discriminating abilities. As seen in Fig 9, many features have high correlation values242

(brighter), implying a high feature redundancy.243

These observations on the one hand show the rationale of using classification for blackgrass weed mapping and244

on the other hand imply that feature selection is critical for a simple but effective classification model. The latter245

problem is even severer for the scenario with a limited number of labelled data in this study.246

4.2. Feature selection247

Considering that feature selection is generally time-consuming due to the large number of feature combinations (and248

consequently different machine learning models to be trained), without loss of generality, only 15% of the randomly249

labelled data is used in feature selection. In MI filter, the continuous variables are discretized into 10 discrete bins.250

“TreeBagger” in Matlab with default parameters and 50 trees is first adopted to obtain the OOB error. Their results251
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are displayed in Fig 10, where vertical axis denotes the average OOB error and horizontal axis represents the features252

that are firstly selected by the algorithms. To demonstrate the discriminating ability of top (TGI) and bottom (blue)253

features selected by MI filter, their probability histograms are displayed in Fig 11.
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Figure 10: Results of MI (blue) and SFS (dark) for feature selection.

Figure 11: Histogram of best feature (TGI) and worst feature (blue) features by MI.

254

The following observations can be drawn from Figs 10, 11, and experimental comparisons. First, the best feature255

by MI filter and SFS wrapper is the same, that is TGI. Second, the best performance of MI filter occurs when all 23256

features are selected, where the OOB error is 15.09%; while the best performance of SFS wrapper occurs when selected257

12 features are adopted, where the OOB error is 14.43%. The OOB error of SFS wrapper is 14.68% when selected258

8 features are adopted, which is very close to the best one and better than MI filter. So SFS wrapper generates a259

simple, yet effective model. Third, although Blue band has a very low MI value with class label (Fig 10) and a low260

discriminating ability alone (Fig 11), its combination with other features may result in good performance (Fig 10).261
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This implies that the MI filter is useful in assessing individual features, while SFS wrapper excels in identifying the262

best feature combination. Finally, the training time of SFS wrapper is 12 times of MI filter, since (1+23)*23/2=276263

RF classifiers are built in SFS wrapper compared to 23 classifiers in MI filter. Therefore, the first 8 features by SFS264

wrapper are adopted for model construction. In the following subsection, the parameters of RF classifier are optimized265

to enhance its performance by Bayesian optimization.266

4.3. Algorithm verification267

Bayesian optimization is adopted to tune the hyperparameters of RF classifier, where two key parameters are268

considered: minLS and numPTS. minLS is to specify trees’ depth/complexity and numPTS controls the number of269

predictors to sample at each node in tree growing. minLS ∈ [1,maxMinLS] is selected with maxMinLS being 18 and270

numPTS in [1, numF ] with numF being the feature number. Tree number is chosen 100, ‘AcquisitionFunctionName’ is271

chosen ‘expected-improvement-plus’. Then two algorithm verification approaches are adopted as below.272

4.3.1. Random split273

In random split test, the random 15% of the labelled dataset is for algorithm training and the remaining random274

85% is for algorithm testing, where the confusion matrix (calculated on the validation set) is shown in left plot of Fig275

12. In left plot of Fig 12, the target and output class denote ground truth and predicted class. The diagonal cells
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Figure 12: Confusion matrix for random split test (left) and spatial split test (right).

276

in green show the number/percentage of correct classification; the off-diagonal cells are where the misclassification277

occurs. For Blackg class, 39097 in green is TP and 4933 + 45 in red is FP, 6388 + 105 in red is FN. So precision for278

Blackg class is 39097/(39097+4933+45) = 88.7%, while recall for Blackg class is 39097/(39097+6388+105) = 85.8%.279
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Similarly, precision and recall for Wheat and Backg classes are 83.4%, 86.8%, and 97.7%, 97.2%. As a result, the280

mean precision and recall for RF classifier are 89.9% and 89.9%. The cell at bottom right displays the overall accuracy281

(88.4%). Precision and recall for background class are very high, since its reflectance values are significantly different282

from other classes and can be easily classified.283

4.3.2. Spatial split284

Different from random split test, in spatial split test, the ROI in Fig 5 is vertically split into three equal parts,285

where the labelled pixels in the leftmost part is for algorithm training and the remaining two parts are for algorithm286

testing. The confusion matrix is shown in the right plot of Fig 12. One can see that the performance of spatial split is287

slightly worse than the random split, this is mainly due to the lack of diversity in spatial split test. This implies that288

in real-world applications, more diverse datasets from different locations are desirable in order to improve algorithm289

generalization.290

4.4. Application to RoI291

The optimized RF classifier with selected features is then applied to the whole RoI in Section 3.1. The classification292

results by only spectral feature are shown in Fig 13 (a). The Guided filter in Section 3.5 is also applied to the initial293

probabilistic maps to incorporate spatial information in reference images. Three reference images are tested: RGB294

composite (with image enhancement), the top three principal components (the values in each PC are transformed into295

[0, 1]) by PCA (PCA-Top3) and the top three SIs (the values of each SI are also transformed into [0, 1]) identified by296

SFS wrapper (SFS-Top3). Their comparative results are shown in Fig. 13 (b), (c) and (d). Their performance is also297

summarized in Table 2.298

Table 2: Performance comparisons for various reference images.

Approach precision recall accuracy

Spectral 89.9% 89.9% 88.4%

RGB 93.4% 93.5% 92.5%

PCA-Top3 93.9% 94.0% 93.1%

SFS-Top3 93.8% 93.8% 93.0%

The following observations are drawn from Fig 13, and Table 2. First, it follows from Fig 13 that pixel-wise299

classification by only spectral feature may result in random noises and including spatial information by Guided filter300
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Figure 13: Classification map by using only spectral feature (a); Classification results by Guided filter regularization: RGB (b), SFS-Top3

(c) and PCA-Top3 (d).

(Fig 13) can improve the result by reducing the noises while preserving the edge information in reference image.301

Secondly, all Guided filter approaches (Table 2) outperform the purely spectral based ones; PCA and SFS have similar302

performance, slightly better than RGB based one. As a by-product, the probabilistic blackgrass weed map is displayed303

in Fig 14, which can be used for weed management in subsequent year.
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Figure 14: Blackgrass weed probabilistic map with Guided filter regularization by SFS-Top3 reference image.

304

5. Discussions305

Site-specific weed management (SSWM) is paramount for sustainable agriculture (i.e. generating more and better306

outputs with less inputs while with decreased environmental footprint) in order to meet the world’s future food security307

and sustainability needs. Instead of ground field sampling, remote/proximal sensing is drawing increasing research308

interests due to its potential for large scale applications with less human involvement.309

UAV remote sensing for precision agriculture is still a developing technology and has initially been applied to a310
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number of areas such as disease, drought and nitrogen monitoring [4, 9] due to its user-defined spatial, spectral and311

temporal resolutions and suitability for application at farmland scales. Even for weed mapping, there are already312

a number of studies [2, 5, 15, 16, 19, 20, 30]. It is noted, however, that early (seedling) weed detection [2, 19] is313

only possible for certain wheat/weed combinations by using very high-resolution images or hyperspectral images [23].314

Unfortunately, wheat is monocotyledonous crop, which makes it extremely challenging for early (seedling) blackgrass315

mapping by using UAVs due to various reasons such as wheat/blackgrass spectral similarity, low spatial resolution [16],316

challenges in ground truth labelling. Therefore, this work (the first one in using UAV multispectral remote sensing317

for blackgrass weed mapping) is focused on late-season weed mapping, which is still very useful in a number of SSWM318

practices such as designing SSWM for subsequent years, applying in-season post-emergence herbicides, assessing the319

effectiveness of herbicide applications [16, 6]320

Different from conventional studies [2, 5] for weed mapping by using MSI, where only a very limited number321

of spectral vegetation indices are adopted for model learning, this work first generates a relatively large number of322

spectral features to enhance feature discriminating abilities [9]. On this basis, advanced feature selection algorithms323

are further adopted to reduce weak features and identify the best (reduced-order) feature combination. With selected324

features, RF classifier is adopted for classification task in this work (i.e. learning from a limited number of labelled325

data) due to its fine properties in term of accuracy and robustness while with a relatively low computation cost. The326

hyperparameters of RF are further optimized by using Bayesian optimization to guarantee better performance.327

Another novelty of this work is to adopt Guided filter [29] to regularize the probabilistic maps so that spatial328

information can be incorporated for better classification performance [28]. To identify a suitable reference image for329

Guided filter, different three-band images are extracted from 5 spectral bands and 18 spectral vegetation indices by330

using RGB composite, PCA analysis and SFS Wrapper feature selection. Finally, the blackgrass weed mapping system331

by using aerial MSI is applied to ROI with a promising result in term of Precision, Recall and Accuracy.332

Regarding image segmentation algorithm, this study only considered the random forest algorithm with hyperpa-333

rameter optimization. Interested readers are referred to the recent study [27], which compares and assesses different334

Geographic Object-Based Image Analysis (GEOBIA) and machine learning algorithms using UAV multispectral im-335

agery via a case study in a citrus orchard and an onion crop. More importantly, different from this study, operational336

interest and aspects such as requested time and computing resources as well as the expertise needed to implement337

them are also available in [27] for a practical application.338

Regarding the multispectral sensor in this study, for the time being, the UAV has to be operated at an altitude of339
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about 20 meters so that centimetre-resolution image can be obtained for the purpose of a good image segmentation.340

However, flight height of 30-50 meters and more would be more desirable to cover a relatively large field of interest in a341

short time. Therefore, new multispectral camera of high geometrical and spectral resolution would be more desirable342

for practical implementation.343

Though the experimental results are very positive, there is still much room for further development in terms of344

data, algorithm and experimental verification. Several aspects are as below:345

(1) Only spectral and spatial features are considered in this study; temporal information should also be investigated346

to achieve an early and more reliable weed mapping;347

(2) With the advent of a large volume of labelled (high-resolution) images for precision agriculture applications,348

deep features rather than hand-crafted features may be considered by using end-to-end deep neural network.349

(3) More aerial datasets collected under various conditions (e.g. time, weather, UAV altitude, wheat varieties) will350

be used to enhance the robustness and improve the generalization of the developed framework.351

6. Conclusions352

This work exploits the potentials of five-band multispectral camera, small airborne platform and machine learning353

algorithms (e.g. feature generation and selection, Bayesian parameter optimization, and spatial information enhance-354

ment by Guided filter) for the automatic mapping of blackgrass weeds in winter wheat. A blackgrass weed mapping355

system is initially developed by learning from spectral-spatial features of labelled aerial MSI. The system is initially356

validated on a naturally blackgrass infected wheat field, where aerial MSIs were collected at an altitude of 20m with357

a ground spatial resolution of 1.16cm/pixel. Comparative experimental results show that the developed system can358

achieve a satisfying classification result with an average precision, recall and accuracy of 93.8%, 93.8% and 93.0%359

when wheat and blackgrass weeds are in the stages of full ear emergence and early seed shedding. The SI with the360

best discriminating ability is TGI. It is also discovered that wrapper feature selection can substantially reduce feature361

dimension from original 23 to 8 while achieving better performance than using all 23 features. Spatial information362

from Guided filter is proved to be effective in helping attenuate the noises of pixel-wise spectral classification and363

improve classification performance.364

Appendices365
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Algorithm 1: SFS with Random Forest

(a) Start with an empty set Y0 = ∅, k = 0 with full feature set Y = {y1, · · · , yd};

(b) Select the next best feature x+ by

x+ = arg min
x∈(Y−Yk)

OOBErr(Yk + x),

where OOBErr(Z) denotes OOB error of the Random Forest classifier trained by using feature set Z;

(c) Update Yk+1 = Yk + x+ with k = k + 1;

(d) Repeat Steps (b) (c) until termination rules (desired feature number or OOBErr increment) are satisfied.

Algorithm 2: Random Forest with Bayesian optimization

(a) Set tree number and stopping rules;

(b) Choose hyperparameters as λ ∈ Ω, then train classifier with λ. Define objective function as the mean of OOBErr

λopt = arg min
λ∈Ω

OOBErr(λ);

(c) Sequentially perform: 1. fitting a Gaussian process for data points {λi, OOBErr(λi)} with new data point

updating; 2. identifying new point for evaluation by maximizing the acquisition function;

(d) Terminate iteration when stopping criterion are satisfied.

Algorithm 3: Guided filter for image regularization

(a) Given an initial pixel-wise probabilistic maps P = {P1, · · · , PC} with only spectral information;

(b) Process the initial probabilistic maps by Guided filter, resulting in filtered maps P̂ = {P̂1, · · · , P̂C};

(c) Obtain the class label for pixel j by the maximum of the posterior maps, given by

[Mi] = arg max
j∈[1,C]

{P̂1, · · · , P̂C}.
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