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Abstract
The absence of collision information in Multi-
player Multi-armed bandits (MMABs) renders
arm availabilities partially observable, impeding
the design of algorithms with regret guarantees
that do not allow inter-player communication. In
this work, we propose a collision resolution (CR)
mechanism for MMABs inspired from sequential
interference mechanisms employed in communi-
cation protocols. In the general case, our collision
resolution mechanism assumes that players can
pull multiple arms during the exploration phase.
We, thus, propose a novel MMAB model that cap-
tures this while still considering strictly bandit
feedback and single-pulls during the exploitation
phase. We theoretically analyze the CR mecha-
nism using tools from information theory in order
to prove the existence of an upper bound on the
probability of its failure that decreases at a rate
exponential in the number of players.

1. Introduction
In a multi-armed bandit (MAB), a player sequentially in-
teracts with a finite set K = {1, ...,K} of arms that incur
rewards following unknown probability distributions with
the aim of maximizing the reward it accrues by the end
of the problem horizon T . Multi-player multi-armed ban-
dits (MMABs) generalize this framework to the case where
M ≥ 2 players compete for this set of arms. Interest in
such algorithms has recently been reignited (Boursier and
Perchet, 2018; Rosenski et al., 2016; Besson and Kaufmann,
2017; Boursier et al., 2020; Shi and Shen, 2020) primarily
due to their applicability in dynamic spectrum access (Zhao
and Sadler, 2007), where channels are viewed as arms and
communication devices as players searching for the optimal
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assignment in an online and decentralized manner.

In this work, we consider problem settings where the re-
wards of an arm k follows a Bernoulli distribution with
mean µk, there is no communication among players, and
their number, M , is unknown a priori. When more than one
player simultaneously pulls the same arm, a collision occurs
and players involved observe zero reward. In our setting,
often referred to as the no-sensing setting, we assume that
only rewards are observable, rendering the bandit feedback
partially observable.

Our work is motivated by the following question: is it pos-
sible to theoretically guarantee that a player can compute
unbiased mean estimations of arms availabilities’ without
communication and without observing collisions? We an-
swer this question in the affirmative by introducing a colli-
sion resolution (CR) mechanism. Due to space limitations,
we focus on the description of this mechanism and its the-
oretical analysis. To illustrate how our mechanism can be
employed in practice, we include the description of a bandit
algorithm that makes use of it, Dynamic CR-UCB (DYN-
CR-UCB) in Appendix 5 and present numerical experiments.
DYN-CR-UCB improves upon previous works that address
the same question, which provided unrealistic regret bounds
(Lugosi and Mehrabian, 2018) or exploited collisions to
communicate information indirectly instead of implicitly
resolving them (Boursier and Perchet, 2018; Shi and Shen,
2020).

The CR mechanism is inspired by the realization that the no-
sensing reward model gives rise to a learning process that
can be studied using the information-theoretic AND-OR tree
analysis, originally proposed by Luby et al. (1998). Our pro-
posed CR mechanism dictates how players should behave
in a CR round. The theoretical analysis of the probability
of failure to resolve collisions in a given round allows us to
upper bound its duration. Our theoretical analysis of the CR
mechanism is based on the evolution of random processes
on bipartite graphs, which represent a resource allocation
problem using a set of nodes for players and another set of
nodes for resources (Luby et al., 1998). The analysis unfolds
in two steps. First, the probability of failure of a CR round
is computed for asymptotic settings (M,K →∞) and the
minimum duration of a round for a target probability is com-
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puted. This analysis is simple because, in an asymptotic
setting, the probability of failure evolves independently for
each player. Then, we compute a concentration inequality
that bounds the deviation of the performance of graphs with
a finite number of nodes from the asymptotic one.

Our CR mechanism requires the introduction of a bandit
model that has not been previously considered in the liter-
ature. During the exploitation phase, our model is identi-
cal to the classical no-sensing MMAB model used by Lu-
gosi and Mehrabian (2018); Besson and Kaufmann (2017);
Rosenski et al. (2016). During the exploration phase, how-
ever, a player has the ability to simultaneously pull multiple
arms and observe their rewards. Until now, bandit models
have been either single-pull or multiple-pull (Agrawal et al.,
1990). Our bandit model is a hybrid appropriate for model-
ing collision resolution mechanisms classically employed in
resource allocation tasks with random access, as is our con-
sidered MMAB setting. The application that we consider,
i.e., cognitive radio, only requires that agents exploit a sin-
gle arm; pulling multiple arms is a mechanism for resolving
collisions during exploration. We should also note that the
setting considers strictly bandit feedback, and the multiple
pulls cannot be considered as side information considered
in other works (Degenne et al., 2018), as they are equally
amenable to collisions.

2. Related Work
The no-sensing reward model has not been extensively stud-
ied in the MMAB literature, arguably due to the difficulty
of theoretically analyzing it and designing algorithms with
practical sample complexity. In the family of Selfish bandit
algorithms (Besson and Kaufmann, 2017; Bonnefoi et al.,
2018), partial observability is ignored, leading to a loss of
regret guarantees as the collected samples are biased due to
collisions. One of the few attempts to address this problem is
the algorithm introduced by Lugosi and Mehrabian (2018),
where players independently compute unbiased estimates
of the means of arms availabilities’ by scaling empirical
means with the probability of collision. In our work, the CR
mechanism offers an alternative way of calculating unbiased
estimates with significantly reduced sample complexity.

An approach orthogonal to ours is the exploitation of col-
lisions to communicate statistical information indirectly
(Boursier and Perchet, 2018; Shi and Shen, 2020). Under
the assumption that all the players start learning simultane-
ously, referred to as a synchronized setting, it is possible
to achieve bounds similar to those of a centralized setting
(Boursier and Perchet, 2018). Recently, EC-SIC (Shi et al.,
2020) improved upon SIC-MMAB2 (Boursier and Perchet,
2018) in the no-sensing setting by introducing channel cod-
ing. Although the observation that indirect communication
can help bridge the gap between centralized and decentralize

settings is inspiring, it comes at the cost of requiring syn-
chronization and communication time that increases sample
complexity.

An important trait of a MMAB algorithm is whether it is
dynamic, i.e., whether regret guarantees can be derived
when players arrive at different time steps. SIC-MMAB
(Boursier and Perchet, 2018) and EC-SIC (Shi and Shen,
2020) require that all the players start learning together in
order to acquire the correct statistics. In contrast, inherently
dynamic algorithms, such as Selfish (Besson and Kaufmann,
2017), DYN-MMAB (Boursier and Perchet, 2018) and our
proposed algorithm, DYN-CR-UCB, naturally deal with
dynamic settings.

The analysis of iterative message passing algorithms on
graphical models has a long history (Liva, 2011; Luby et al.,
2001; Luby et al., 1997) and has served as the basis for
the analysis of belief propagation algorithms, employed
in a variety of applications, such as collision resolution in
Medium Access Control protocols (Liva, 2011) and belief
propagation decoders in channel codes (Luby et al., 2001).
Important steps in this analysis have been the introduction of
density evolution for describing the evolution of messages
in asymptotic settings and the derivation of concentration
bounds characterizing the performance for finite lengths
(Richardson and Urbanke, 2001). To the best of our knowl-
edge, our work is the first attempt to transfer this analysis to
bandits, which differ from previously studied resource allo-
cation problems in that resources are not always available
and there exists no centralized point of control.

3. Bandit model
We consider a K-armed bandit, where each arm is character-
ized by its availability which follows a Bernoulli distribution
with mean µk. We denote by yk(t) the independent and iden-
tically distributed (iid) random variable associated with each
arm, satisfying P

(
(yk(t)) = 1

)
= µk, and refer to it as the

availability of the arm. At each time step t, each one of
the M players chooses a subset D of the K arms to pull,
an action we denote as ~am(t). Upon being pulled, an arm
returns a reward of one if it is available, i.e., yk(t) = 1, and
only one player pulled it. Differently, the returned reward is
zero. The reward model is formally:

rm(t) = ∨{yk(t)(1− nk(t)), ∀k ∈ ~am(t)}, (1)

where ∨ denotes that the logical-or operation is applied on
the vector of rewards collected by all arms pulled by player
m and nam(t) indicates whether players collided on the arm
am. A player observes a set of rewards for each arm pull
in its subset and their final reward is the OR function of the
observed rewards.

The sampling process is repeated for T steps, where T is
termed the problem horizon, fixed and known in advance.
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Figure 1. A bipartite-graph representation of a MMAB with 4 arms
and 3 players. Until now, algorithms for MMABs have considered
that players pull a single arm (solid lines). In this work, players
can pull multiple arms simultaneously (solid and dashed lines).

The players’ objective is to minimize the expected cumula-
tive regret at the end of the horizon, defined as:

R(T ) = T

M∑
k=1

µ∗k −
T∑
t=1

M∑
m=1

rm(t), (2)

where µ∗k is the mean availability of an M -best arm, i.e., an
arm belonging to the set of arms with the M highest means,
which we denote byM∗.

In Figure 1, we illustrate a single time step in a bandit
setting with K = 4 arms and M = 3 players. We adopt the
common practice of representing the problem as a bipartite
graph with two sets of nodes: lower nodes represent players
and upper nodes represent arms.

4. The collision resolution mechanism
The main novelty in our work is the realization that the
reward model presented in (1) can be studied using the AND-
OR tree analysis, which describes the evolution of random
processes on graphs (Luby et al., 1998). Let us revisit the
example of Figure 1 to describe the CR mechanism. We
assume that arms are always available, i.e., µk = 1,∀k ∈
K, which allows us to decouple the CR mechanism from
the sampling process. If we only consider the solid lines,
then each player pulls a single arm, with the end result
of players 2 and 3 colliding and observing a reward of
zero, regardless of the availability. If we now consider both
dashed and solid lines, players 1, 2 and 3 pull three, one
and two arms, respectively. At first sight, this strategy looks
counter-intuitive; players experience more collisions than
previously, while the end result remains the same: only
player 1 observes a reward of one. This, however, changes
if we employ the following CR mechanism: each player
repeats its actions (i.e., pulling the same subset of arms) until
it observes a reward of one from one of them. When this
happens, the player stops pulling the other arms and keeps
pulling the arm that gave the reward of one. If more than
one arm returns a positive reward, one of them is selected
randomly. This process lasts for Imax iterations, which form

a single CR round. In our example, this mechanism will lead
to a collision-free assignment within 3 time steps (remember
that µk = 1,∀k ∈ K). First, player 1 receives a reward of
one from arm 1, and, hence, stops pulling arms 3 and 4.
Then, player 3 receives a reward of one from arm 4 and
stops pulling arm 2, and finally, player 2 receives a reward
of one from arm 2. For the remaining iterations, up to
Imax, the three players continue pulling the arms that gave a
reward of one and collect unbiased observations. We should
note that we kept the size of the problem studied in this
example small to provide an intuitive explanation of the CR
mechanism, which was however conceived for asymptotic
settings (M,K → ∞), where its probability of failure is
arbitrarily small (Luby et al., 1998).

To make the discussion more formal we introduce some
additional notation. Let Λm(t) be the random variable de-
noting the number of arms player m pulls at time step t,
which follows a multinomial probability distribution with
coefficients [Λ1, . . . ,ΛD], where D is the maximum num-
ber of simultaneous pulls allowed to a player and Λd denotes
the probability of pulling d arms. We refer to Λm(x) as a
degree distribution and, as is common in the analysis of
bipartite graphs, describe it using the generating function
Λm(x) =

∑D
d=1 Ldx

d. We consider anonymous settings,
i.e., Λm(x) = Λ(x), ∀m ∈M.

Algorithm 1 contains the pseudocode of a CR round. It
requires as inputs the set of arms K, the degree distribution
Λ(x) and the duration of a CR round, Imax. All algorithms
in our work are presented from the perspective of a single
player, as they are run in parallel by all players. At the
beginning of a round, the player selects D, a subset of arms
to pull (Lines 1-2) whose size is determined by sampling
Λ(x). When a collision-free arm is found (Line 7), all other
arms are removed from the set D, which thus becomes a
singleton, and its estimate is updated (Lines 12-13).

An important step in the theoretical analysis of our proposed
algorithm is to determine the conditions under which the
CR mechanism succeeds with high probability. A round
completes successfully for a player when it has found a
collision-free arm by the end of it. The following theorem
states that the probability of failure of the CR mechanism
is upper bounded by a value that depends on the number of
players and the probabilistic structure of the bipartite graph.
Theorem 4.1. Assume that a CR round of Imax iterations
takes place among M players accessing K arms and the
degree distribution is Λ(x). Then, a CR round fails for a
player with probability at most:

pf = qImax +

√
− ln(δ4)

ηM
,

where qImax is the probability of failure in an asymptotic
setting (M,K → ∞) at the end of the CR round, δ4 is
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Algorithm 1 CR round
1: Decide d, the number of arms to pull simultaneously by

sampling Λ(x)
2: Form a random subset D, by randomly choosing d out

of the K arms
3: free = False
4: for τ ∈ {1, . . . , Imax} do
5: Pull all arms in D,
6: Observe rewards rD,
7: if ∃i : ri == 1 and not free then
8: Remove all elements except i from D {Detect

collision-free arm}
free = True

9: end if
10: if free then
11: SD = SD + rD {Update sum of rewards for

collision-free arm}
12: TD = TD + 1 {Update number of pulls for

collision-free arm}
13: end if
14: end for
15: Return free, D

the probability that the second term on the right-hand side
has been under-estimated and η is a constant whose value
depends on the structure of the graph and is given in Lemma
B.3 in Appendix B.

Proof (Sketch). Our proof requires results found in differ-
ent works from the field of information theory (Luby et al.,
2001; Sipser and Spielman, 1996; Richardson et al., 2001;
Liva, 2011; Luby et al., 1998; 1997). We, therefore, deemed
it necessary for the completeness of our work to gather
these results and adjust them to our problem setting. In
Appendix A, we provide a general description of bipartite
graphs and present Lemma A.1, which bounds the probabil-
ity that a bipartite graph of finite size does not have a tree
structure, and in Appendix B, we present the analysis of the
CR mechanism. The first step of the proof, in Lemma B.1,
is to derive the condition under which the probability of fail-
ure of the CR mechanism is monotonically decreasing with
each iteration in a round. This condition, referred to as the
stability condition, is derived assuming that M is infinite,
which simplifies the analysis as it guarantees that the graph
is cycle-free, meaning that the probability of failure evolves
independently for each player. Thus, we can compute the
duration of a CR round, Imax, based on a target probability
of error for the CR mechanism, qImax . Note that we have
slightly modified the existing analysis to take into account
the effect of arms availabilities’, i.e., µk, have on the calcu-
lation of Imax, as the original proof considered a setting with
µk = 1,∀k ∈ K. In order to transfer the analysis to settings
with finite M and K, where cycles may appear on the bi-

partite graph, in Lemma B.3 we formulate the process of
resolving collisions as a martingale and derive a concentra-
tion inequality that describes how the probability of failure
diverges from its asymptotic expectation. We make use of
Lemma B.3 by setting the right-hand side of (11) to be equal

to δ4, which leads to the value of α =
√
− ln(δ4)
ηM .

We should note that the bound appearing in Theorem 4.1 is
not valid unconditionally. In particular, Lemma B.3 intro-
duces a condition on the minimum number of players M ,
i.e., M > 2γ/α, where γ is a constant that depends on the
probabilistic structure of the bipartite graph and is defined
in Lemma A.1, and α was defined above, for the result to
be valid. In order to derive this condition, the analysis of
Richardson and Urbanke (2001) makes a very conservative
estimation which relies on the assumption that cycles of any
length in the bipartite graph can lead to failure of the CR
mechanism, by requiring that l = Imax in the estimation
of γ. While it has been empirically observed that only cy-
cles of very small length affect the performance of random
processes on graphs (Richardson and Urbanke, 2001), this
conjecture remains to be theoretically proven.

5. The DYN-CR-UCB algorithm
In the following, we describe an algorithm that employs our
CR mechanism in a dynamic setting considered in previous
works Boursier and Perchet (2018) where players arriving
at different time steps τm ∈ {0, . . . , T − 1}, where τm is
unknown to all. We denote the learning horizon of player
m by Tm. A player knows the time elapsed since joining
the network and observes a common clock with period Imax
and can be in one of the two phases: (i) in the exploration
phase, the player is employing the CR mechanism, as it was
described in Section 4, and experiences CR rounds of equal
duration Imax; (ii) in the exploitation phase, the player is
pulling a single arm until the end of the horizon..

During the exploration phase, a player computes unbiased
estimates µ̂k for all arms availabilities’ and a confidence

bound Bt = 2
√

log (Tm)
t . Thus, it knows that the true mean

of the availability of an arm lies with high certainty in the
range [µ̂k − Bk, µ̂k + Bk]. The player keeps an initially
empty preferences list, ~p and inserts an arm in it once it
detects that its lower bound is higher than the upper bound
of all other arms in the list. The player will exploit an
arm in ~p as soon as it gives a positive reward. As each
player employs the UCB algorithm with confidence bound

Bk(t) =
√

log (Tm)
Tk

, using Hoeffding’s inequality, we can
prove that:

P[|µ̂k − µk| > Bk] ≤ 4/T 2
m, (3)

which suggests that all players will acquire a correct esti-
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Figure 2. Cumulative regret achieved by DYN-CR-UCB and
DYN-MMAB in a dynamic network with K = 10, M = 5
users arriving at different time steps and ∆ = 0.06.

mate of all free arms at the end of their individual horizon
Tm with probability 1−O(1/(Tm)2). In addition, we know
that a sub-optimal arm is detected within K log Tm/∆

2
k

time steps, where ∆k = mini=1,··· ,k |µi − µi+1| indicates
the difficulty of ranking an arm.

An important element of DYN-CR-UCB is how the detec-
tion of exploited arms happens. In contrast to DYN-MMAB,
where players sample arms randomly and cannot discern
between an occupied and an unavailable arm, players in our
setting are employing the CR mechanism. Due to this, they
know that, at the end of a CR round, at least one arm will
be observed as available, provided that the CR round com-
pletes successfully. Thus, the probability of an arm being
unavailable even if it is not exploited is equal to pf and is,
thus, independent of its mean availability. This significantly
reduces the sample complexity compared to DYN-MMAB.

The number of consecutive rounds of observing no re-
wards from an arm required to declare it as occupied,
L, needs to be high enough to guarantee that it is not
falsely detected as occupied and low enough to ensure that
detection does not incur unnecessary regret. By setting
L ≥ 2 log Tm/(1−pf ), we ensure that the probability of ob-
serving L successive rounds with all-zero rewards is smaller
than 1

(Tm)2 , due to the inequality (1 − pf)
L ≤ e−L(1−pf ).

In order to prove that a player will pull an arm L times
with probability 1/T 2

m, we make use of the Hoeffding
bound of the binomial distribution which takes the value
one with probability equal to the probability of sampling
arm k, denoted as pk =

∑d
l=0 Λdl/K. This leads to

L2 =
Lpk±L2((pk−1)pf+log Tm)

pk−log Tm
. Thus, if a player occu-

pies an arm at time step t0 + τj , then it is correctly detected
as occupied within O(ImaxL2) + τj steps, where we have
taken into account that a round lasts for Imax iterations.

By making use of Lemma 10 presented by Boursier and

Perchet (2018) and the preceding discussion we derive the
following regret bound for DYN-CR-UCB:

Theorem 5.1. In the dynamic setting, the regret of DYN-
CR-UCB is upper bounded as follows:

E[RT ] ≤ MK log T

∆2(M)
+MImaxL2,

where ∆̄2(M) = mini=1,...,M |µi − µi+1|, pk =∑d
l=0 Λdl/K and

L2 = min
{ (Lpk + L2((pk − 1)pf + log Tm)

pk − log Tm
,

Lpk − L2((pk − 1)pf + log Tm)

pk − log Tm

)} (4)

5.1. Simulations

We consider a problem setting with K = 10 arms, a horizon
T = 15 · 106, minimum distance ∆ = 0.06 and 5 players
arriving at time steps randomly sampled in [0.05T, 0.575T ],
with the first player always arriving at the first time step. In
Figure 2, we compare the performance of DYN-CR-UCB,
with that of DYN-MMAB (Boursier and Perchet, 2018). We
observe that players using our proposed algorithm DYN-CR-
UCB, find an optimal arm significantly quicker than players
employing DYN-MMAB and exhibit lower variance.

6. Discussion
We have presented a collision resolution mechanism for
multi-player bandits in the no-sensing setting. Our main
motivation has been to show that the problem of exploration
under partial observability in MMABs can be efficiently ad-
dressed by appropriately orchestrating the learning process.
Our work is an important step towards designing algorithms
with improved regret bounds in the no-sensing setting based
on the intuition that collisions can be resolved despite the
absence of sensing information. Crucially, the performance
of the CR mechanism improves with the number of players,
while the communication of statistics (Boursier and Perchet,
2018; Shi et al., 2020) introduces a large overload.

From an application perspective, our solution has some lim-
itations. First, similarly to many recent works in MMABs,
fairness is not taken into account. Our approach satisfies
a weaker notion of fairness; players have equal chances of
finding the best arm across independent trials. Furthermore,
the employed mechanism of simultaneously pulling multi-
ple arms is associated with slightly increased complexity.
However, such an increase is affordable in multiple access
schemes used in wireless communications. To give a clearer
picture of the introduced complexity, the number of multiple
pulls ranges from 1 to 3 for small networks (less than 200
users) and can reach up to 8 for larger networks.
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A. Useful Properties of Bipartite Graphs
This appendix includes results related to bipartite graphs
that are useful for analyzing the CR mechanism.

We denote a bipartite graph describing a problem setting of
M players and K channels as G(M,K, E), where E is the
set of edges representing arms pulled by players at a given
time step. In our analysis, we refer to nodes representing
players as player nodes (PNs), nodes representing arms as
arm nodes (ANs) and denote an edge between player m and
arm k as ~e = (m, k). An example of a bipartite graph is
presented in Figure 3.

Players pull random subsets of arms, with the size of the
subset being determined by sampling the degree distribution
Λ(x) =

∑D
l=1 Λlx

l, where D is the maximum number of
pulls allowed to a player. We denote an ensemble of bipartite
graphs as G(M,K,Λ(x)), i.e., the family of bipartite graphs
that can be generated using this random process. From the
perspective of ANs, Ψ(x) =

∑D
l=1 Ψlx

l is the distribution
describing the number of pulls on each arm. Thus, the
average number of pulls for a player is Λ̄ =

∑D
l=1 lΛl and,

equivalently for an arm, P̄ =
∑D
l=1 lPl. This leads to the

following relationship for the load of the network: L =
M/K = Ψ′(1)/Λ′(1). In addition to the Λ(x) and P (x)
degree distributions, which we term as node-perspective,
we also refer to the edge-perspective degree distributions
λ(x) =

∑D
l=2 λlx

l−1 (ρ(x) =
∑D
l=2 ρlx

l−1), where λl(ρl)
denotes the percentage of edges that are connected to a PN
(AN) of degree l.

An important trait of our theoretical analysis is that it con-
cerns randomly built graphs. As a result, the actual connec-
tions between PNs and ANs cannot be known in advance
and vary for different CR rounds. In order to analyze the
performance of the CR mechanism, and thus the regret of
DYN-CR-UCB, we need to ensure that the performance
of a given graph is close to that of its ensemble. This is
termed the concentration property of the ensemble, and will
be proven in Appendix B for our setting.

An important concept in our analysis is that of a sub-graph,
G2l
~e , which is obtained by the following process: choose an

edge ~e = (m, k) uniformly at random from among all edges
of a bipartite graph G(M,K, E), and then consider the sub-
graph induced by the upper node m and all its neighbors
within distance 2l after deleting the edge (m, k). Sub-graphs
are useful because they help us describe how each step
of the CR mechanism affects the structure of the original
bipartite graph. An alternative way to describe a sub-graph
is through the neighborhood ~N 2l

e , which is the set of all
nodes and edges included in the corresponding sub-graph
G2l
~e . Figure 4 presents a G2

~e sub-graph induced for the edge
~e = (5, 4). As the nodes in the sub-graph are distinct (there
are no loops), the sub-graph is tree-like.

AN 1 AN 2 AN 3 AN 4 AN 5 AN 6 AN 7 AN 8

PN 1 PN 2 PN 3 PN 4 PN 5 PN 6

Figure 3. Illustration of a bipartite graph where player nodes’
(PNs) degrees are either 2 or 3.

AN 4

PN 5

AN 3 AN 7

PN 1 PN 2

Figure 4. The induced sub-graph for edge (5, 4) and l = 1.
This sub-graph is tree-like, because no node appears twice.

As we will see in the analysis of the CR mechanism, a tree-
like structure is essential for ensuring that all players manage
to find a collision-free arm. Lemma A.1 proves that the
probability that a sub-graph is not tree-like is negligible for
a large enough number of players M . We have derived it by
extending existing analysis (Richardson and Urbanke, 2001,
Appendix A), which concerned regular bipartite graphs.

Lemma A.1. Consider a randomly constructed graph G.
Let G2l∗

~e be the sub-graph of fixed length 2l∗ for a given
edge ~e. Then, for some constant γ:

P(N 2l∗

e is not tree-like) ≤ γ

M

Proof. Denote with Λmax the maximum degree of a PN
and Pmax the average degree of an AN. (Note that in other
parts of the paper we also refer to Λmax as D.) Under the
assumption that the sub-graph is tree-like, the number of
PNs in the sub-graph is:

Ml∗ =

l∗∑
i=0

(Λmax − 1)i(Pmax − 1)i (5)

and the number of ANs is:

Kl∗ = 1 + (Λmax − 1)

l∗−1∑
i=0

(Λmax − 1)i(Pmax − 1)i. (6)

The proof proceeds constructively. First, we prove that
removing an edge connected to a PN does not change the
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tree-structure form of a sub-graph with high probability. We,
then, prove an equivalent result for an AN. Then, consider-
ing that a sub-graph with l = 0 trivially has a tree-structure,
we prove a lower bound for the sub-graph of length 2l∗.

Let us consider that l < l∗. Further, let us assume that
N 2l
~e is tree-like and that k edges have been removed so far.

The probability that removing another edge connected to a
PN will not create a loop can be computed by considering
whether expanding the sub-graph from that edge will not,
at any level of the sub-tree, randomly hit an AN that is
already in the neighborhood. This probability is equal to
(K−Kl−k)Pmax
KPmax−Kl−k . Assuming that K is sufficiently large, we

find: (K−Kl−k)Pmax
KPmax−Kl−k = 1− (Kl+k)(Pmax−1)

KPmax−Kl−k ≥ 1− K∗
l

K

Since (Kl+1 −Kl) ANs are added to the sub-graph at this
step, the probability that the edge removal will lead to a
tree-like sub-graph is (1− K∗

l

K )(Kl+1−Kl).

Equivalently for an AN, the probability that removing an
edge connected to it does not create a loop is (M−Ml−k)Λmax

MΛmax−Ml−k .
Assuming that M is sufficiently large, we find that:

(M −Ml − k)Λmax

MΛmax −Ml − k
= 1− (Ml + k)(Λmax − 1)

MΛmax −Ml − k
≥ 1−M

∗
l

M
.

Since (Ml+1 −Ml) PNs are added to the sub-graph at this
step, the probability that this edge removal will lead to a
tree-like sub-graph is at least: (1− M∗

l

M )(Ml+1−Ml).

We now transfer these results to the original sub-graphN 2l∗

~e ,
where the probability that the sub-graph is tree-like is lower-
bounded by

P(N 2l
e is tree-like) ≥

(
1− Kl∗

K

)Kl∗
(

1− Ml∗

M

)Ml∗

.

We then use the Taylor series of (1−x/n)x and approximate
the preceding bound with the first term of the series:

P(N 2l
e is tree-like) ≥

(
1− M2

l∗

M

)(
1− K2

l∗

K

)
.

This leads to

P(N 2l
e is not tree-like) ≤

M2
l∗ + Pmax

Λmax
K2
l∗

M
. (7)

In order for the bound proposed by the above Lemma to
correspond to a probability that converges to 0 as M grows,
we need to make sure that γ < M . Based on the proof,
and in particular Eq. (7), this suggests that the number of
players needs to satisfy the following constraint:

M ≥ 4 ·M2
l (8)

The intuition behind this constraint is that the maximum
number of pulls of a single player, D needs to be adjusted
based on the total number of players, in order to ensure that
the bipartite graph is sparse enough to ensure the resolution
of collisions.

B. Analysis of the CR mechanism
In this section we establish the conditions under which the
CR mechanism succeeds for all players. A CR round is
successful for a player when they have found a collision-
free arm within this round. Exiting a round without having
found a collision-free arm is considered a failure for a player.

We begin by assuming that all sub-graphs are tree-like and
then proceed with relaxing this assumption. The analysis
consists of the following steps: first, we derive a condition
under which the expected value of the probability of failure
is monotonically decreasing with each iteration t of the CR
round (Lemma B.1). Under this condition, which we refer to
as the stability condition of the CR mechanism, a collision-
free arm is found by all players with a probability that
approaches 1 at a rate exponential in t (Lemma B.2). Then,
we prove that the probability of failure concentrates around
its expected value at a rate exponential in M , where the
expectation is taken over all possible realizations of bipartite
graphs (Lemma B.3). Finally, we show in Lemma B.3 that
with high probability, an exponentially small number of
players have not found a collision-free arm by a certain
iteration t.

We consider a setting with K arms where the mean avail-
ability µk of arm k is randomly sampled in [µmin, 1]. We
assume that M players are using the CR mechanism de-
scribed in Section 4. The following Lemma presents the
stability condition of the CR mechanism. It is based on
Lemma 1 of Luby et al. (1998), which derived a similar
stability condition for a problem setting where arms corre-
sponded to time slots instead of channels and were always
available (µk = 1, ∀k ∈ K). Note that, in the following
Lemma, t refers to an iteration within a single CR round.
Lemma B.1. Consider a cycle-free bipartite graph derived
by the edge-perspective degree distribution λ(x). Denote
with qt the probability that a player has not found a collision-
free arm at iteration t. Then, the probability that a player
has not found a collision-free arm approaches 0 as t grows
to infinity if, for all qt ∈ (0, 1]:

λ(1− ρ(1− qt)) < qt (9)

Proof. We will first prove that the quantity on the left-hand
side represents the probability of failure at the next iteration
of the CR round, qt+1.

Consider a PN of degree l. Denote by q the probability that
an edge has not been removed, given that each of the other
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l − 1 edges has been removed with probability 1− p. The
edge of a player is removed when at least one of the other
edges is removed. Thus, q = pl−1. As edge-perspective
degrees follow the degree distribution λ(x), we can infer
that

qt =

D−1∑
l=1

λlpt−1 = λ(pt−1)

Similarly, consider an AN of degree l, where p denotes
the probability that an edge has not been removed given
that each of the other l − 1 edges have been removed with
probability 1−q. As we know, the edge of an arm is removed
when all other edges have been removed (no collisions) and
the arm is available, which happens with probability µk,
a random variable taking values in [µmin, 1]. As a player
keeps pulling the same set of arms until a reward of one is
observed, we can ignore the effect of µk at this step and set
1− p = (1− q)l−1. Considering that the edge-perspective
degrees of ANs follow the degree distribution P (x), we can
infer that

pt =

D−1∑
l=1

pl(1− (1− qt)) = 1− ρ(1− qt).

By inserting the expression of pt into the expression of qt,
we get:

qt+1 = λ(1− ρ(1− qt)).

In order for the CR mechanism to succeed we need to ensure
that q goes to 0 as t grows. A necessary condition for this
to happen is that qt+1 < qt, ∀qt ∈ [0, 1]. The following
expression is the stability condition of the CR mechanism:

λ
(
1− ρ(1− x)

)
< x,∀x ∈ [0, 1].

An alternative formulation of the stability condition that will
prove useful in the analysis that follows is:

λ
(
1− ρ(1− x)

)
< x(1− ε), ∀x ∈ (0, 1], (10)

where ε is a positive constant.

Thus, in order to make sure that the CR mechanism suc-
ceeds with a target probability δ5, we need to set Imax to
the minimum number of time steps that satisfy qt < δ5,
multiplied by 1/µmin. This multiplication is due to the fact
that any arm needs to be sampled at least 1/µmin to return a
reward of 1, which is necessary for the CR mechanism to
continue.

The following trivial lemma, originally proposed by Luby
et al. (1998), states that the probability of failure for a single
player decreases exponentially with the iteration index t and
that, for any upper bound on the probability of failure, there
exists an iteration that satisfies it.

Lemma B.2. If the stability condition in (10) is satisfied,
then, for any γ > 0 we can set t to a constant such that
yt < γ.

Proof. From the stability condition in Eq. (10) it holds that
xt < xt−1(1− ε) < xt−2(1− ε)2 < · · · < (1− ε)t. If we
set t = c/ε, for some c > 1, then xt < (1 − ε)c/ε ≤ e−c,
where the last inequality can be confirmed by studying the
monotonicity of ln (1− x) + x. We set γ = e−c and the
proof is complete.

Our analysis has so far assumed that all sub-graphs have
a tree structure and does not take into account how perfor-
mance on arbitrary graphs concentrates around its expected
value. Using Lemma A.1, we can prove that all sub-graphs
are tree-like with high probability. We, therefore, need to
just study the concentration of the performance of tree-like
sub-graphs around their expected value, denoted as qt in
Lemma B.1. We should note that the following Lemma,
originally formulated by Luby et al. (2001, Theorem 1),
is valid independently of whether the stability condition is
satisfied.

Lemma B.3. Let t denote the iteration in a CR round and
Zt be the random variable describing the fraction of players
that have not found a collision-free arm after t iterations.
Let E[Zt] denote the expected value of Zt, where the ex-
pectation is over all bipartite graphs and notice that it is
equal to qt, appearing in Lemma B.1. Then, there is a suffi-
ciently large constant M , such that for any α > 0 and some
constant η:

P(|MZt −Mqt| > Mα] < e−ηα
2M (11)

Proof. The proof requires two intermediate steps. First, we
need to bound the probability that the CR mechanism will
create sub-graphs that do not have a tree structure. Then, we
need to prove that the probability of failure for all graphs
with a tree-structure concentrates around its expected value.
We prove both results by formulating the edge removal
process under the CR mechanism as a martingale and em-
ploying Azuma’s inequality to prove a concentration bound.

Let M∗ be the number of players for which the sub-graph
of up to 2l levels is a tree. From Lemma A.1, we know
that the probability that this sub-graph fails to be a tree is
upper bounded by γ/M . For large M , this bound can be
upper bounded as follows: γ/M < α/4. Thus, the expected
number of players with tree-structured sub-graphs is lower
bounded as: E[M∗] ≥M(1− α/4).

We now obtain a concentration result for M∗ by describ-
ing edge removal as a martingale. We define Zt to be the
expected value for M∗, given the effect of the first t re-
movals. In particular, Y0 = E[M∗], YM = M∗ and we
define a filtration {F0, · · · ,Ft}, where Ft is a σ-algebra
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containing the sub-graph at step t. Then, the sequence
Zt = E[Y |Ft] forms a standard Doob’s martingale with
E[Yt+1|Yt

] = E[Yt]. Using the additional observation that
consecutive values of Yt differ only by a constant (Luby
et al., 2001, Lemma 1) and Azuma’s inequality, we can de-
rive the following concentration inequality for the number
of players with sub-graphs without a tree-structure:

P(|M∗ −M | > Mα/2) <
1

eη1α2M
, (12)

where η1 is an appropriate constant.

Now, let M ′ denote the number of players, out of M∗ total
players, which have not found a collision-free arm after t
steps. By definition, E[M ′] = M∗qt. Again, we define Yt
as the expected value of M ′, given the results of the first t
rounds. Since resolving collisions for a PN can only affect
players in its sub-graph, the expression |Yt+1 − Yt| is a
constant. Thus, using Azuma’s inequality for the martingale
Zt = E[Y |Ft] we get the following concentration result:

P(|M ′ −M∗qk| > Mε/2) <
1

eη2ε2M
, (13)

where η2 is another constant. It is easy to verify that the
random variables M,M∗,M ′ satisfy the following inequal-
ities:

M ′ ≤MZl ≤M ′ + |M∗ −M |, (14)

where the final inequality is due to the observation that the
inability of a player to resolve its collisions may be either
due to that player not having a tree-structured sub-graph or
having a tree-structured sub-graph but not having resolved
a collision yet.

By combining the concentration inequalities in (12) and
(13), we get a new concentration inequality:

P(|M∗ −M +M −M∗ql| > Mε) <
1

eηε2M

→ P(|MZl −M∗ql| > Mε) <
1

eηε2M
,

where the last inequality is due to (14) and η = η1 + η2.
We use the value η = 1/(544Λ̄2l−1P̄ 2l) for this constant,
as proposed by Richardson and Urbanke (2001, Theorem
2), who advised however that it does not lead to a tight
bound.

A direct conclusion from Lemma B.3 is that the probability
that more than γ′M players have not found a collision-
free arm at iteration t is exponentially small in M . As Mt

corresponds to the size of the sub-graph at time-step t, its
value increases quickly with t and depends on Λ̄. Thus, the
right-hand side of (11) can be very large for small values of
M . We should note that Lemma B.3 is only valid when the
condition M > 2γ/α is satisfied.

C. Pseudocode for DYN-CR-UCB
We present the pseudocode of DYN-CR-UCB in Algorithm
2. In addition to the preferences list that a player updates
when high quality arms are detected (Lines 27-29) and
checks to find an arm to exploit (Lines 6-8), a player also
updates an unresolved list, with arms that have given only
zero consecutive rewards and are potentially being exploited
by other players. If an arm remains in this list for more than
L2 time steps, it is transferred to the occupied list.

Algorithm 2 DYN-CR-UCB
1: Initialize p = 0, occupied = [], preferences= [], unre-

solved = [], phase=“explore”, L2 as in (4)
2: while phase ==“explore” do
3: free, k = CR Round(K,Λ, Imax)
4: µ̂k = Sk/Tk

5: Bt = 2
√

log Tm

t

6: if k == Preferences[p] and free then
7: phase = ”exploit”
8: end if
9: if Preferences[p] ∈ Occupied then

10: p = p+ 1
11: end if
12: if not free then
13: if k not in unresolved then
14: Insert k to unresolved {arm is potentially occu-

pied}
15: Ck = 1
16: else
17: Ck = Ck + 1
18: if Ck > L2 then
19: Insert k to occupied {arm is certainly occu-

pied}
20: end if
21: end if
22: else
23: if k in unresolved then
24: Ck = 0 {arm is certainly not occupied}
25: end if
26: end if
27: if ∃i, µmin[i] > µmax[k]∀k not in
28: Preferences and Occupied then
29: Insert k to Preferences
30: end if
31: if ∃i not in Preferences[1:p] such that µmin[i] >

µmax[Preferences[p]] then
32: Insert Preferences[p] to Occupied
33: end if
34: end while
35: Pull k until Tm {Exploitation phase}


