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Abstract 
An accurate measurement of field-grown wheat traits, including spike number, dimension and volume 

are essential for crop phenotyping and yield analysis. A high-throughput method to image field-grown 

wheat in three dimensions is presented with an accompanying unsupervised measuring method to obtain 

individual wheat spike data. Images are captured using four structured light scanners on a field mobile 

platform, creating dimensionally accurate sub-millimetre resolution 3D point clouds for a 4.5 m3 volume 

in less than 10 s. The unsupervised method analyses each trial plot’s 3D point cloud, containing hundreds 

of wheat spikes, calculating the average size of the wheat spike and total spike volume per plot. The 

analysis utilises an adaptive k-means algorithm with dynamic perspectives, to fit each spike's shape and 

measures the dimensions with a random sample consensus algorithm. The method generates small cu-

boids to fit all the wheat spikes and estimate the total spikes volume. Experimental results show that the 

proposed algorithm is a reliable tool for identifying spikes from wheat crops and identifying individual 

spikes. Compared with the manual measurement, according to the results of five scenes, the average error 

rate in the number of spikes, spikes’ height and spikes’ width in tests were 16.27%, 5.24% and 12.38% 

respectively. 
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Nomenclature  

2D Two-dimensional 

3D Three-dimensional 

RANSAC Random sample consensus 

DBSCAN Density-based spatial clustering of applications with noise 
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RGB Red Green Blue 

CAD Computer-aided design 

Alg. 1 Algorithm 1: Obtaining wheat spikes 

Alg. 2 Algorithm 2: Adaptive k-means algorithm based on dynamic perspectives 

Error1 Error rate in the number of spikes 

Error2 Error rate in the spike height 

Error3 Error rate in the spike width 

1.  Introduction 1 

Plant phenotyping is a vital tool for the development of new crop varieties and requires the 2 

undertaking of many trial growth programmes, measuring and analysing trait variations over 3 

many seasons. Accurate and repeatable trait measurement is essential for success in phenotyping 4 

application. The major phenotypes for wheat breeding are the number of spikes, spike 5 

length/wide and volume. However, data collection of spike size is still primarily conducted with 6 

manual sampling (Torres & Pietragalla, 2012). A number of techniques have been explored for 7 

collecting data for quantitative studies of complex traits related to the growth, yield and adapta-8 

tion to biotic or abiotic stress (see (Lei Li et al., 2014) and references therein). Spike counting is 9 

one of the main approaches for predicting grain yield in wheat and other cereals (Pask et al., 10 

2012). To count the number of wheat spikes, Deery et al., (2014) used a simple particle count 11 

algorithm on segmented 2D images but was unable to address the challenge of high crop density 12 

and overlapping spikes. Reducing count errors in dense, close contact spikes was explored by 13 

Fernandez-Gallego et al., (2018), using an automatic spike-counting algorithm and zenithal col-14 

our 2D images of the crop in natural light conditions. Algorithms such as DeepCount (Sadeghi-15 

Tehran et al., 2019; Tan et al., 2020) have been developed to count the number of wheat spikes 16 

in 2D images using the deep convolutional neural networks and machine learning approaches. 17 

Achieving volumetric or dimensional information is challenging, especially when taken from 18 

directly above or from an angle where distortions are introduced and only partial visibility mask 19 

the real size of the spike. Calibration charts can mitigate distortions and mosaicking errors, but 20 

there are complex to implement for high-throughput field studies.  21 

 Generating a 3-D, digital twin of a wheat plot offers a much richer and dimensional correct 22 

representation, overcoming issues of obscured and overlapping spikes. Generating the digital 23 

twin is achieved by combining multiple 2D images or utilising more complex imaging technol-24 

ogy such as Lidar, time-of-flight or structured light scanners (Mohamed & Dudley, 2019). The 25 

field captured data is no longer represented by a 2D RGB image but a 3D point cloud with format 26 



Pn (x, y, z, RGB). Algorithms used for 2D image analysis are no longer applicable for point 27 

clouds and alternative approaches have been developed using supervised neural networks to fit 28 

complex geometric primitives, such as CAD models of mechanical components (Lingxiao Li et 29 

al., 2019; Su et al., 2018). However, by using a more classical clustering algorithm to segment 30 

the wheat, and then subsequently fitting to spikes, the process of training a supervised model can 31 

be omitted, and the fitting results can be obtained with less time cost. For example, Velumani et 32 

al., (2017) performed wheat spike segmentation using two different classical methods: voxel-33 

based segmentation and mean shift segmentation. Additionally, density-based spatial clustering 34 

of applications with noise (DBSCAN) algorithm (Ester et al., 1996) has been developed for the 35 

task of segmentation, and then least-squares curve fitting is used to obtain the size of the wheat 36 

spikes (Thompson et al., 2019). Although the clustering algorithms such as DBSCAN, mean 37 

shift and k-means can be successful in segmentation tasks, the segmentation task can be chal-38 

lenging for these algorithms in specific complex environments, such as when wheat crops are 39 

very dense. Our recent work has proposed an adaptive k-means algorithm with dynamic perspec-40 

tives, which performs segmentation to separate the wheat spikes, to tackle this challenge (Wang 41 

et al., 2020). Although this algorithm can be applied in an environment where multiple wheat 42 

spikes are grown densely, it still cannot address more than one hundred wheat spikes. As shown 43 

in Fig. 1, compared with sample wheat crops in lab, the captured 3D point cloud images from 44 

the field usually have hundreds of spikes and can contain noise, which makes it difficult for the 45 

existing measurement algorithms to obtain a robust measurement result. This paper contributes 46 

to filling this gap by providing an unsupervised framework to tackle 3D point cloud images with 47 

hundreds of wheat crops from the field. 48 

To realise the field application, the proposed k-means algorithm needs to separate the wheat 49 

spikes, remove the stems and then obtain the spikes. Since there are hundreds of wheat spikes, 50 

the method randomly selects some areas as sample areas and calls the adaptive k-means algo-51 

rithm to calculate the average spike size. Meanwhile, the algorithm segments all of the spikes as 52 

thousands of small segments and uses cuboids to fit each segment and estimate the total volume 53 

of all spikes. The number of wheat spikes can be approximately estimated according to the av-54 

erage size and total volume. The proposed method is described in detail in section 3. 55 



 56 

Fig. 1 - 3D point cloud images of wheat crops. 57 

2. The adaptive k-means algorithm with dynamic perspectives 58 

2.1. Classical clustering algorithms 59 

The clustering algorithms are useful tools for the task of separating spikes from wheat crops 60 

in the point cloud. As discussed in the introduction, there are not many complex geometric prim-61 

itives in wheat crops. The DBSCAN and k-means algorithms are well suited to the task, but some 62 

defects still exist when dealing with some practical situations. One of the disadvantages of the 63 

DBSCAN is that the performance depends largely on the selection of parameters, but there is no 64 

theoretical guidance for setting its parameters. Therefore, the trial method is used commonly, 65 

but it relies on experience, which results in the final parameters not necessarily being optimal 66 

(Lai et al., 2019). However, k-means has the characteristics of a single parameter, and its param-67 

eter k represents the cluster number. To compare these two classical algorithms, Fig. 2 demon-68 

strates the segmentation results of the DBSCAN (the minimum number of neighbours is set as 69 

10, the neighbourhood radius is set as 5) and classical k-means (k = 12). As there are 12 spikes, 70 

we set the parameter of k-means as 12 and used the trial method to set the relatively reasonable 71 

parameters of the DBSCAN. The DBSCAN algorithm can only roughly divide the 12 spikes into 72 

four segments; in other words, DBSCAN identifies that there are only four spikes (with different 73 

colours in Fig. 2a), which is quite different from the actual situation. Meanwhile, in the classical 74 



k-means algorithm, even if we set the number of clusters to 12, the output result is still not satis-75 

factory. These narrow results illustrate that the classical clustering algorithm cannot handle some 76 

complex environments such as when wheat crops are very dense. 77 

 78 

Fig. 2 - Results of DBSCAN and classical k-means segmentation. 79 

2.2. The k-means algorithm based on dynamic perspectives 80 

To address the above concerns, the adaptive k-means algorithm with dynamic perspectives 81 

was used. To demonstrate this idea, as is shown in Fig. 3, when wheat crops are observed from 82 

the side, which part is the wheat spike and which part is the stem can be easily distinguished. 83 

Due to overlapping between the spikes, how many spikes cannot be easily judged from the side 84 

view (Fig. 3a). However, the top view can be used to count the number of spikes (Fig. 3b). 85 

Similarly, for the k-means algorithm, if all of the 3D points are projected into the 2D top view, 86 

the point distance in the within-cluster is reduced and clustering performance will be improved. 87 

     88 

                     a) Side views                                                                               b) Top view 89 

Fig. 3 - The spikes observation with dynamic perspectives. 90 

To improve segmentation performance, the above idea was introduced into the k-means 91 

algorithm. The flowchart of the k-means algorithm with dynamic perspectives can be seen in Fig. 92 



4. Specifically, given a cluster consisting of points 3nN   (Fig. 4a),  where n is the number of 93 

points, and 3 is the number of dimensions, we denote by  ix ,  iy  and  iz  the x , y  and z  94 

coordinates of the point  i i n . For the side view, we transfer the 3nN   array into an 2nN   array, 95 

which only contains the two dimensions of   ix  and  iz . The 2D points were inputted from 96 

the side view into the k-means, which outputs all point labels. Using the labels to mark all 3D 97 

points, the clustering result in Fig. 4b were achieved. To separate spikes from the wheat (Fig. 98 

4c), Algorithm 1 (Alg. 1) is defined to preserve the top segments. Similarly, transferring the 3D 99 

points of spikes into the top view 2nN 
 , which only contains two dimensions of   ix  and  iy , 100 

we obtain the segmentation result based on the top view in Fig. 4d, which is better than the 101 

classical algorithms results. Finally, a random sample consensus (RANSAC) algorithm 102 

(Schnabel et al., 2007) was used to fit each segment shape and obtain the dimensions as shown 103 

in Fig. 4e. 104 

In Alg. 1 defined below, a value space according to the highest point of all 3D points was 105 

defined which has the max value of  Z . By extracting all the segments in the value space, the 106 

points belonging to spikes are obtained. As is shown in Fig.5, the highlighted area is the value 107 

space which is determined by the parameter  . Once this value space was defined, to preserve 108 

the top segments, only whether the highest point of each segment is located in this space was 109 

required. By using this operation to preserve the top segments, the space value does not have to 110 

be set too accurately; it is sufficient to ensure that   is a small value (Fig. 5a and Fig. 5b are 111 

both the correct spaces that can output the same result). Note that, if we change the conditional 112 

statement in Alg.1 to judge whether the lowest point of each segment is located in this space, the 113 

  would be set to a larger value (in the case of Fig. 5c).  In this paper, the former conditional 114 

statement (with   set to 60 mm) was used and use statistical filtering reduced the noise. 115 



 116 

Fig. 4 - Segmentation results base on the proposed k-means. 117 

 118 

Algorithm 1: Obtaining wheat spikes 

Require: 3D points: 3nN  ; 

Initialize parameter of  ; 

Reduce the noises of 3D points; 

Obtain side view 2D points: 3 2n nN N   

Use the k-means for segmentation based on side view;  

Obtain the point with the highest Z coordinate value: maxZ ; 

Calculating a value space of Z coordinates: 

 max max,Z Z  

For each highest point within its segment: 

        If the highest point is located in the value space: Preserve this segment 

        else: continue; 

return all preserved segments. 

 119 

 120 



Fig. 5 – Three different value spaces for spikes obtaining. From a to c, the value   gradually increases. 121 

As can be seen from Fig. 4, it is sufficient to set the k-means parameter to 3 or 4 for the side 122 

view. Since the shape of the wheat crop is similar to a cuboid or cylinder, selecting the side view 123 

from the X or Y direction will obtain the same final result. Further, shape fitting for each spike 124 

is required with the number of clusters set in advance, that is, the number of spikes. In Fig. 4, k 125 

was set to 12 for the top view. However, in practical application, it is impossible to know how 126 

many wheat spikes there are in advance. This means that it was expected  that the algorithm can 127 

calculate the number of spikes by itself. To realise this function, this paper adds an adaptive 128 

operation to self-update the appropriate parameter values. The detail of this adaptive k-means 129 

algorithm based on dynamic perspectives is described in Alg. 2.  130 

In the algorithm, an initial parameter k  is required to perform the segmentation for the top 131 

view. The value of this initial parameter should be a small number as the algorithm can update 132 

it adaptively. In this paper, to set the initial value, DBSCAN provided by Rolf Harkes, (2018) 133 

was used which makes use of the k-d trees spatial partitioning algorithm, because the DBSCAN 134 

can roughly divide the spikes into a few segments, which is far smaller than the actual number 135 

of spikes. After obtaining the initial parameter k , the algorithm uses k-means to segment the 2D 136 

points of the top view and then calls the RANSAC algorithm to fit a cuboid to each segmentation. 137 

Since the initial value of k  is small, the fitting result is not accurate. As is shown in Fig. 6a, 138 

when the k  is small, some abnormal spike sizes will be outputted (the fitting size of the purple 139 

part is significantly larger than that of regular wheat). Therefore, once the algorithm detects un-140 

reasonable results, the k  will be superimposed until a reasonable final result is outputted (Fig. 141 

6b). The last updated k  value is the number of spikes counted by the algorithm. 142 

Algorithm 2: Adaptive k-means algorithm based on dynamic perspectives 



Obtain the wheat spikes according to Alg.1 

Set the initial parameter k  for the top view 

Obtain top view 2D points: 3 2n nN N 
   

repeat 

Use the k-means for segmentation based on top view; 

Use RANSAC to fit each segment; 

Evaluate the size of each segment; 

if (there is an abnormal size) 

k  ; 

break; 

 end if 

until there is no abnormal size 

return the updated shape model. 

 143 

 144 

Fig. 6 - (a) The shape fitting result with abnormal sizes ( 3k   ); (b) the final shape fitting result ( 4k   ). 145 

Note that the algorithm did not make any intrinsic change to the k-means algorithm, and 146 

instead, it required several iterations of any existing implementation of k-means. Therefore, the 147 

algorithm can call any version of the k-means algorithm. Considering the computational perfor-148 

mance, it is recommended to use Lite k-means (Cai, 2011) or ball k-means (Xia et al., 2020) to 149 

run the proposed algorithm. 150 

3. The framework of the proposed method for wheat field application 151 

Although Alg. 2 can deal with the environment where multiple wheat spikes are grown 152 

densely better than classical algorithms, it is still challenging to directly apply Alg.2 with images 153 

captured over a wide area such as shown in Fig. 1b. Suppose we directly use Alg.2 to deal with 154 



these images, as there are so many noises and wheat crops, the computational efficiency will be 155 

significantly reduced. Besides, due to noise interference, it is difficult to output an ideal result 156 

without abnormal size.  157 

To address the above problem, as is shown in Fig. 7, our proposed method was extended 158 

based on Alg. 2. Firstly, the original field image was divided into a few segments, and some 159 

stems are removed. As can be seen in Fig. 7, the original image was divided into three segments, 160 

then the spikes volume of each segment was calculated separately. To calculate the volume, 161 

3,000 small cuboids were used to fit the shape of all spikes for each segment. There is an illus-162 

tration to show the volume calculation method in Fig. 8; in this example, there are 50 cuboids to 163 

realise the shape fitting of 3 spikes, so the volume of spikes is the sum of the volumes of all 164 

cuboids. After the volume calculation, some small areas were selected as sample areas (the red 165 

highlighted areas in Fig. 7), then Alg. 2 was used to calculate the average size of these areas. 166 

Overall, for images from the wheat field, the total spikes volume and the average size of a single 167 

spike could be estimated by the proposed method.  168 

The above description involves two parameters. The first is the number of segments and the 169 

second is the number of small cuboids. In this paper, all of the original images were divided into 170 

3 segments and 3,000 cuboids used to deal with each segment. If the value of these parameters 171 

increases, the accuracy of the calculation results might be improved, but it would also increase 172 

the calculation cost.  173 



 174 

Fig. 7 - Overall flowchart of the proposed method. 175 

 176 

Fig. 8 – An example of volume calculation method by using cuboids fitting. 177 



4. 3D Field Capture  178 

Imaging technologies applicable for field capture include time-of-flight cameras, structured 179 

light scanners, and stereo RGB. To understand the performance of each system a series of com-180 

missioning tests were undertaken (Mohamed & Dudley, 2019). Our aim was to construct a port-181 

able, field-deployable solution that could completely image a field-grown trial plot, dimension 182 

2 x 5 x 1 m, in less than one second ready for analysis with wheat identification algorithms. The 183 

platform had to be easily moved between plots, deal with typical weather conditions including 184 

direct solar illumination and be self-powered. The solution deployed in the fields during 2020 is 185 

shown in Fig. 9, which included four structured light scanners from Photoneo (Photoneo s.r.o., 186 

Bratislava, Slovakia) each positioned parallel to one side of the trial plot edge and orientated at 187 

45° to the vertical. The arrangement ensured the capture of the central region of the plot only 188 

neglecting 300 mm around the edges which are normally excluded from analysis in most trials. 189 

Each scanner was triggered in sequence to avoid interference and a region of 2 x 2 x 1.5 m was 190 

captured in approximately 5 s. The scanners were optimised to overcome bright ambient light 191 

using structural netting above and to the sides of the mounting frame, but also critical was the 192 

selection of the scanner’s exposure, laser brightness and processing algorithms. 193 

 194 

Fig. 9 – Field use of 3D capture system incorporating 4 Photoneo L scanners. 195 

Reference Chart 



Reconstructing the four independent Photoneo scans into a single point cloud was achieved 196 

using a common reference chart placed in view of all scanners, this is just visible in Fig. 9. Unlike 197 

single point measurement systems, our final point clouds include information of the complete 198 

surface for all the wheat heads with detail down to grain level. The final point clouds were 199 

cleaned for noise using a statistical outlier filter and the resolution was reduced with a sub-sam-200 

pling algorithm to reduce the computational power needed for the next stage of processing, iden-201 

tifying spikes and performing dimensional measurements.  202 

In total 25 trial plots were captured over three hours with delays primarily caused by phys-203 

ical movement of the platform around rows, failed captures from wind motion and some data 204 

management tasks not yet fully automated. However, with further optimisations, it was estimated 205 

that a single platform of this type would be able to capture between 100 and 250 trial plots per 206 

working day.  207 

5. Experimental results and discussion 208 

In this section, a series of 3D point cloud images captured from the laboratory was used to 209 

test the performance of the proposed k-means algorithm. Five different field plots that were cap-210 

tured by our platform were selected and cropped to test the whole proposed measurement method. 211 

5.1. The analysis of the proposed k-means algorithm 212 

The proposed k-means algorithm is a two-stage method. In the first phase (Alg.1), the pro-213 

jection of a 3D point cloud image into a 2D point cloud (side view) is a dimension reduction 214 

process. In order to test that this dimension reduction can not only output good results but also 215 

improve the speed of the algorithm, some experiments were carried out and the results shown in 216 

Fig. 10.  217 

 218 



 219 

 220 

Fig. 10 -Results of k-means based on 3D and 2D point clouds. 221 

Table 1 – The comparison running time between 3D and 2D point clouds. 222 

Number of points  Running time of 3D point cloud Running time of 2D point cloud  

68868 1.91 s  1.67 s 

902813 9.28 s  8.69 s 

1654467 16.86 s  15.12 s 

 223 

As shown in Fig. 10, for the same scene of the 3D point cloud, the number of points was 224 

adjusted by down sampling. The algorithm was run five times to calculate the average results 225 

that were implemented in MATLAB R2020b based on a Core i9-9980HK CPU 2.40GHz laptop. 226 

The comparison running time between 3D and 2D point clouds is shown in Table.1. It indicates 227 

that using k-means to process 3D and 2D point cloud images, the results were similar, but with 228 

the increase of points, the computational efficiency of the 2D point cloud was improved. Note 229 

that the running time included the whole time from loading the point cloud to drawing the re-230 

sulting picture. Additional, the Lite k-means was used to obtain these results, compared with the 231 

traditional k-measure, Lite k-means process significantly improved the calculation speed by us-232 

ing the operation mechanism of MATLAB. 233 



Further, in the first phase, the parameter (k) of k-means was not expected to have a great 234 

impact on our expected result. To verify this, Fig. 11 shows the clustering results with different 235 

values of k. 236 

 237 

 238 

Fig. 11 – The clustering results with different values of k 239 

Since the proposed algorithm only needs to preserve the top segments to obtain the spikes, 240 

all of the results of Fig. 11 can be used, but if a small k value is selected, a portion of stems will 241 

be considered as part of the top segments. This will introduce an error in spike height. If a bigger 242 

value of k is chosen , the stem points counted might be less. However, it cannot be guaranteed 243 

that there is a perfect parameter value to completely remove all of the stem’s points. Also, as the 244 

value of k increases, the efficiency of the algorithm might be reduced. This will be discussed in 245 

the next section.  246 

For the second phase (Alg.2), the projection of the 3D point cloud image onto the 2D point 247 

cloud (top view) is more important. This is because the height of the spike is longer than the 248 

width and length in 3D space, projecting the 3D image onto a 2D top view can reduce the point 249 

distance in within-cluster, which can improve the algorithm to identify the individual spikes. To 250 

validate the performance of this phase, different scenes were tested with the proposed algorithm. 251 

As shown in Fig. 12, in these three scenes, some of the wheat crops were dense or mutually 252 

overlapping (highlight areas), but from the clustering results, the proposed method still shows 253 



some robustness and feasibility, especially compared with the traditional algorithm results in 254 

section 2.1.  255 

 256 

 257 

 258 

Fig. 12 – Clustering results with different scenes. 259 

5.2. The efficiency analysis of the proposed algorithm 260 

To analyse the efficiency of the algorithm, the same laptop mentioned above ran the algo-261 

rithms for different situations of the wheat crops. For the three situations in Fig. 12, the algorithm 262 

was run 5 times for each situation and the average time recorded. The value of k was set as 6 for 263 

phase one (Alg. 1) and max iterations of the RANSAC algorithm (in phase two) as 1,000. The 264 

average running time of phase one and phase two is recorded separately in Table 2. 265 

  266 



 267 

Table 2 – The average running time of the proposed algorithm. 268 

Scene 
number 

Number of points  Running time for phase one Running time for phase two  

1 166283 3.26 s  44.27 s 

2 747982 8.84 s  184.13 s 

3 902813 12.51 s  377.68 s 

 269 

As can be seen from Table 2, thanks to the performance of Lite k-means, the k-means in the 270 

proposed algorithm did not consume many computing resources. Comparing Table 1 with Table 271 

2, the different parameter values that can influence the calculation time can be seen but the 272 

changes are not large (in Table 1, k is 3). However, in phase two, the algorithm operates with  273 

self-adaptive updating of the parameters and calls the RANSAC to fit the shape of each cuboid, 274 

and this part plays a key role in the efficiency of the algorithm. Throughout the whole process, 275 

the efficiency of the algorithm in processing wheat was good. Furthermore, the running time for 276 

handling a field image was tested. The testing image is shown in Fig.13. For the volume calcu-277 

lation, the main calculation time was to divide all spikes into 3,000 segments, and the RANSAC 278 

called to fit each segment to evaluate the total volume. Therefore, the parameter k was set as 279 

3,000 to carry out the segmentation and then realise shape fitting. The whole running time was 280 

36.7 minutes. 281 

 282 

Fig. 13 – Example of a segment of field image for the run-time test. 283 



According to the above experiments, it can be seen that the proposed method consumes 284 

most computing time when calculating the total volume of spikes. This is because the method 285 

needs to call the RANSAC 3,000 times to fit the shape of each small segment. Overall, the pro-286 

posed algorithm can evaluate the sampled spike size with high efficiency. For the volume calcu-287 

lation of spikes, using the proposed method, it takes about 30 to 40 minutes to complete the  288 

volume calculation once on a standard modern laptop. 289 

5.3. Comparison of  manual measurement with the proposed method 290 

The method proposed in this paper can be applied to the scenario of hundreds of wheat 291 

crops. Therefore, this section describes experiments to validate the proposed method compared 292 

with manual measurement. Five different scenarios were tested with this method, each scenario 293 

is around one square metre of a wheat field, and the original images used are shown in Fig. 14. 294 

For manual measurement, a sample area is usually selected in the field. The number and 295 

size of spikes in the sample area are measured to infer the total number and average size of wheat 296 

crops in the entire field. In this experiment, for each scenario, we selected a 0.25 m2 square as 297 

the sample area. The number of spikes 
mn  were counted and the average size of spikes (height 298 

mh and width mw ) in the sample area was measured. The amount of wheat (spikes m-2) was cal-299 

culated according to the following equation: 300 

0.25

m
m

n
num                                                             (1) 301 

The proposed method calculated all spike total volume aV  and the average size of the single 302 

spike. Note that Alg. 2 can output the height, length and width ( , ,a a ah l w ) of the spike and cuboid 303 

fitting was used to facilitate comparison with manual measurement. The values ah  and  304 

 
2

a a
a

l w
w


   were used to compare with mh  and mw . As each tested scenario is about one 305 

square meter of a wheat field, for the proposed method, spikes total volume was divided by the 306 

single spike volume to estimate the number of spikes in each scenario according to the following 307 

equation: 308 

  
a

a

a

a

ah

V

w
num

w  
                                                          (2) 309 



310 

 311 

Fig. 14 – Five different 3D point field images from the field. 312 

The comparison results are recorded in Table 3. To compare the proposed method with the 313 

manual method, the following equations were used to estimate the error rate of each plot: 314 

Error rate in the number of spikes: 1

m a

m

num num
Error

num


                                          (3)                                                315 

Error rate in the spike height: 2

m a

m

h h
Error

h


                                                     (4) 316 

Error rate in the spike width: 3

m a

m

w w
Error

w


                                                     (5) 317 

As we can see in Table 4, in the five experiments, the three average error rates defined 318 

above  were 16.27%, 5.24% and 12.38% respectively. 319 
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 321 

Table 3 – Comparison results between manual measurement and the proposed method. 322 

Plot number  Average size Number of spikes Total volume 

Manual  

mh / mw  

Proposed method 

ah / aw  

Manual  

mnum  

Proposed method 

anum  

aV  

1  83.4/13.5 mm 76.7/12.4 mm 212 173 2042491 mm³ 

2 71.9/15.5 mm 63.6/14.6 mm 260 202 2766830 mm³ 

3 84.2/14.2 mm 81.8/18.2 mm 200 259 7020030 mm³ 

4 82.4/15.2 mm 81.3/17.6 mm 212 207 5179640 mm³ 

5 78.3/15.0 mm 76.4/15.6 mm 228 208 3866860 mm³ 

Standard Deviation 5.1/0.8 mm 7.4/2.3 mm / / / 

 323 

Table 4 – Error rates of the proposed method. 324 

Plot Number  Error1 Error2 Error3 

1 18.40% 8.03% 8.15% 

2 22.31% 11.54% 5.81% 

3 29.5% 2.85% 28.17% 

4 2.36% 1.34% 15.79% 

5 8.77% 2.43% 4% 

Average 16.27% 5.24% 12.38% 

 325 

5.4. Discussion 326 

From all of our experiments, we made a detailed analysis of the proposed k-means algorithm. 327 

Although k-means is an uncertain algorithm that cannot guarantee that the output is always the 328 

same, for our proposed algorithm the clustering result was good enough for shape fitting. Addi-329 

tionally, the shape fitting algorithm is not the focus of this paper although it was discovered by 330 

using the cuboid fitting that the fitting result for straight spikes was better than for the curved 331 

ones. This is because cuboids cannot accurately fit the height of curved wheat spikes. Further-332 

more, as shown in Table 3, all of the average heights obtained by the proposed algorithm were 333 

slightly smaller than that measured manually. This was because most of the tested wheat spikes 334 

were slightly curved, and there would be some errors when using cuboid shape fitting. Besides 335 



the shape fitting algorithm, with the spikes being more curved, the overlapping in the plan view 336 

will be obvious. This might influence the clustering result of the proposed k-means algorithm.  337 

Further, there are still a few issues in our method which might be considered to address in 338 

future work. First, a self-adaptive k-means algorithm to update the k iteratively in Alg.2 was 339 

proposed for spikes counting. However, for volume calculation, the computational efficiency 340 

was not very good. Therefore, when we dealt with the field images, we divide the whole image 341 

into three segments. Secondly, as mentioned above, the accuracy of this method was affected by 342 

the curvature of the spike. Five field data set results were used and the average error in the num-343 

ber of spikes was greater than 16%, of which two errors were greater than 20%. The performance 344 

of the algorithm might decrease if this analysis was extended to spike dimensions assessment for 345 

other field data sets. 346 

Overall, all of the experiment results imply that our method has a good potential to be de-347 

veloped as a tool to evaluate the size and yield of wheat spikes, especially for straight spikes, 348 

whilst avoiding the time-consuming and tedious manual measurements.  349 

6. Conclusion  350 

A high-throughput field capture platform for wheat combined with an unsupervised auto-351 

matic measurement of wheat spikes based on an adaptive k-means algorithm with dynamic per-352 

spectives is proposed, which can deal with the complex environment where hundreds of wheat 353 

spikes are grown densely. This method has provided a novel framework to obtain wheat spike 354 

dimensions and total volume in the place of manual measurement. The results demonstrate a 355 

level of robustness of our method to measure the wheat spike dimensions and volume in the 356 

wheat field scenario. As method performance can still be improved to handle curved wheat 357 

spikes, our future work will further optimise our algorithm to deal with the environment where 358 

the wheat spike is arched. 359 
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