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Abstract 
 

While a human being can think coherently, physical limitations no matter 

how severe, should never become disabling. Thinking and cognition are 

performed and expressed through language, which is the most natural form of 

human communication. The use of covert speech tasks for BCIs has been 

successfully achieved for invasive and non-invasive systems. In this work, by 

incorporating the most recent discoveries on the spatial, temporal, and spectral 

signatures of word production, a novel system is designed, which is custom-build 

for linguistic tasks. Other than paying attention and waiting for the onset cue, this 

BCI requires absolutely no cognitive effort from the user and operates using 

automatic linguistic functions of the brain in the first 312ms post onset, which is 

also completely out of the control of the user and immune from inconsistencies. 

With four classes, this online BCI achieves classification accuracy of 82.5%. 

Each word produces a signature as unique as its phonetic structure, and the 

number of covert speech tasks used in this work is limited by computational 

power. We demonstrated that this BCI can successfully use wireless dry-

electrode EEG systems, which are becoming as capable as traditional laboratory-

grade systems. This frees the potential user from the confounds of the lab, 

facilitating real-world application. Considering that the number of words used in 

daily life does not exceed 2000, the number of words used by this type of novel 

BCI may indeed reach this number in the future, with no need to change the 

current system design or experimental protocol. As a promising step towards non-

invasive synthetic telepathy, this system has the potential to not only help those 

in desperate need, but to completely change the way we communicate with our 

computers in the future as covert speech is much easier than any form of manual 

communication and control. 
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1.1. Consciousness, cognition, and language in the brain 

The Human body samples the physical world through sensory organs and 

causes changes in the physical world by controlled muscle contractions. Even the 

most minute conscious movements can be effectively used in human-machine 

interaction (i.e. the late Prof. Hawking using ocular-facial tracking). In some 

circumstances, however, conscious control of muscles may be severely limited or 

completely lost (i.e. patients with locked-in syndrome) isolating a conscious 

thinking human from the world. A Brain-Computer Interface (BCI) is a system, 

which determines the “conscious” intention of a person by measuring and 

analysing brain activity and generates appropriate command signals for 

communication or control. So far, BCIs have been successfully used as assistive 

medical tools for the most severe cases.  

Before engaging the technical issues related to BCIs, it is worth asking the 

question: what is consciousness? In recent years, much advancement has been 

made in the fields of Neuroscience and Physiology, which provide a greater 

insight into the operation of the brain. However, the exact nature of our 

consciousness remains unknown and perhaps this is one of the greatest medical, 

technical, and philosophical questions of all time. One interesting theory which 

tries to explain consciousness is “’the Conscious Electromagnetic Information 

(CEMI) field theory” [1, 2]. This theory, the electromagnetic field generated by 
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the brain is considered to influence the sensitive voltage gated Neuron channels 

in the membrane of Neurons. The theory states that digital information in the 

Neurons is summed up from an electromagnetic field containing information. 

Therefore, consciousness is that segment of the field generated by the brain that 

is downloaded to the movement sections of the brain and by movement can 

influence the outside world [1].  In other words, in addition to the unique 

electrical map of the in the brain, the unique EM field plays an essential role in 

the function of the brain. This raises the possibility of downloading and recreating 

the mind, in essence artificial resurrection [3]. Another interesting theory, which 

tries to explain the nature of consciousness, is the Extended Everett’s Concept 

(EEC), which ties Quantum Physics in to the operation of the mind [4]. It states: 

“Consciousness is the inherent ability of living beings to perceive alternative 

classical projections of the objectively quantum world separately from each 

other”. It also progresses a step further and states: “Super-Consciousness, or 

intuition (existing in the state of meditation, trance, or dream) provides access to 

all classical alternatives and usage of the obtained information [4].  

To this date, BCIs have used detectable signatures of user’s conscious 

intent, such as autonomic responses to stimuli or imagined movements (Motor 

Imagery). These approaches have limitations such as requiring constant attention 

or gaze leading to user fatigue, or inconsistency in imagined movements for MI 

leading to poor performance. Insufficient understanding of the brain, sensor’s 
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signal to noise ratio, and computational cost have impeded the use of higher 

cognitive functions such as speech, especially in non-invasive BCIs. In the past 

few years, major research has been conducted on the process of generating 

speech, and the neurological and psychological functions underlying this process. 

Research suggests that it is possible to extract significant and meaningful data 

from EEG measurement of the brain, during mental activity related to the 

generation of covert speech. There is strong evidence that shows the activation of 

the Broca's area during auditory speech perception [5]. The Broca's area has 

involvement in some other functions related to imitation of movement [6]. One 

of the main functions of the Broca's region is generation of speech by sending 

signals to the frontal cortex and the pre-motor area. These signals are processed 

and sent to the motor cortex. Studies have been conducted on the motor signals 

generated by the brain during natural speech and it has been shown that motor 

signals related to language can be detected wit high imaging resolution. Imagined 

speech has been used to transmit the alphabet by producing two syllables in one 

of three different rhythms (similar to Morse code) [7]. These studies suggest that 

there is considerable information in different frequency bands, and feature 

vectors within each band associated with imagined speech. A similar study in 

generation of imagined generation of two syllables (“ba” and “ku”) was 

successfully used to identify states with good success [8]. In the above work, the 

EEG data was pre-processed to reduce the effects of artefacts and noise. Auto 

regressive coefficients were extracted from each electrode's signal and 
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concatenated for user identification. EEG has been extensively used in the study 

of language generation and phoneme monitoring. As mentioned, the focus is on 

event related potentials [9, 10]. However, the generation of covert speech is 

relatively new. In the study of EEG special care must be taken to remove 

muscular related artefacts from the signal [10]. To the present day, a maximum 

of eleven covert speech tasks three covert speech classes have been classified 

using EEG [11], with the majority only classifying three [12], or two word-classes 

successfully [7, 13-22]. In some cases, where due to some underlying medical 

condition brain surgery is required (i.e. treatment for epilepsy), sensors can be 

placed directly on the brain (ECoG). This method provides a much clearer source 

of information compared to EEG as there is no signal degradation due to the 

scattering effects of the scull and skin tissue. The focus of a number of ECoG 

measurements have been on language production [23-25], and in some cases 

covert speech [24]. These studies affirm the conventional findings of EEG 

methods in the location of the language centres (Superior temporal Gyrus STG), 

and increased band power in the higher Gamma band, in addition to increased 

average evoked potentials during speech generation (AEGs) [23]. In addition to 

confirming measurable effects, the location of the brain areas involved in speech 

generation have been especially studied with ECoG sensors [25-27]. These 

investigations have shifted from mapping brain areas related to speech generation 

[28], to testing hypotheses of how the brain works as whole to generate language 

[27]. Based on all the findings related to speech generation, a model that closely 
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describes the experimental results is the internal forward model [29, 30]. In this 

model, the motor state is affected by estimated motor state, predicted perceptual 

consequence, and the somatosensory and perceptual feedback. The motor 

commands are planned in accordance to the intended movement. This signal is 

sent to: The peripheral motor system and a copy is sent to the first internal forward 

model for estimation of the following motor state. A second efference copy 

known as the perceptual efference copy is sent to the second internal forward 

model to predict the perceptual consequence of such motor estimation. Figure 1.1 

demonstrates this model. 

 

Figure 1.1. The model of motor control based on internal forward models and feedback [29]. 
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Although extensive research has been conducted on language, and the 

physiological and psychological functions related to it, not much has been done 

to use language for brain computer interfaces. A recent study in 2011 has 

successfully used imagined speech in conjunction with imagined limb movement 

to control a robotic wheelchair [31]. A recent study has been conducted to 

investigate the possibility of detecting speech using rhythmic activity of the brain 

[32]. With the use of Magneto Encephalography (MEG), the event related de-

synchronization (ERD) related to vocalization or seeing a video of vocalization 

was measured. The measured MEG signals were then transformed into a time-

frequency representation (TFR). Analysis of this data showed promise of 

distinguishing between tasks, with good accuracy.  This method could possibly 

be used to create BCIs to help people with speech impairments. The presence of 

speech during imagination of movement has also been investigated [14]. This 

work suggests the possibility of identifying motor imagery with the presence (or 

in absence) of speech.  The analysis of spectral event related power revealed the 

possibility to distinguish between movement, speech, and speech and movement.  

 

1.2. Bioelectrical and imaging research on word production 
in the brain  

 
Now that we have briefly covered the fundamentals of language in the 

brain, it is time to focus on the specific linguistic activity we wish to use in a BCI. 

With regards to creating a BCI that focuses on using language, the linguistic 



 8 
 

 
 

 

activity must be consciously generated by the user to communicate a intention. 

The most intuitive and natural way for this is generating words. There are four 

areas of interest. Firstly, what frequency range do the signatures of word 

production in the brain cover. Secondly, what is the exact sequence of activities 

in the brain leading to self-generated words. Thirdly, what is the exact temporal 

sequence and duration of these stages, and fourthly, where in the brain do these 

activities take place.  

Much research has been done investigating covert speech production using 

ECoG measurements [33]. The best evidence for covert speech has been obtained 

from an invasive ECoG study by the USA military [34] using the general-purpose 

BCI2000 software connected to a “g.USBamp” amplifier and digitizer (g.tec, 

Graz, Austria). In this work the ECoG signals were amplified, bandpass filtered 

(0.15-500 Hz), digitized at 1200 Hz, and saved with BCI2000. Data was re-

referenced using common average referencing. Every 10 ms, the time-series 

ECoG signals of the previous 167 ms were transformed into the frequency 

domain with an autoregressive model of order 25. With this model, the spectral 

amplitudes between 70 and 170 Hz in 2 Hz bins were discovered. With a window 

size of 167 ms, the temporal accuracy of the frequency estimates was ±83 ms. 

These spectral amplitudes within this band were averaged, generating a time 

course of high Gamma power for each electrode. To determine the task-related 

difference in ECoG high Gamma power for each electrode, the coefficient of 

determination (r^2) between the ECoG HG power for covert word production and 
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idle state were calculated. As a result, the location, time point, and the statistical 

difference between covert speech task and rest were discovered. In regard to the 

frequency signatures of word production, not only the Alpha and Beta bands are 

involved, but there are signatures in the Gamma, and high Gamma band up to 

175Hz [27, 35-39], as seen in figure 1.2.  

 

 

Figure 1.2.   The frequency range and time course of neural activity of two points in the left 

hemisphere of the brain during covert word production [34] 

 

This is well above the traditional frequency range studied in non-invasive 

BCIs to this date. However, invasive studies have been critical in identifying not 

only the frequency of neural operations for word production, but also the 

sequence and timing of each brain region involved in this type of activity [25]. 

As seen in figure 1.3, these areas include Premotor area, primary motor area, 
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middle superior temporal gyrus, posterior superior temporal gyrus, Broca’s Area, 

Angular gyrus, Wernicke’s area, and the posterior middle temporal gyrus [34].  

 
 

 
 

Figure 1.3. The activation of Gamma band in different areas of the brain involved with 

covert word production and the time of activation relative to auditory task onset   [34] 

 

Word production begins with semantic (conceptual preparation), lexical 

(Lemma retrieval), and phonetic (phonological code retrieval and syllabification) 

linguistic processes, followed by planning the movements of language muscles 

(phonetic encoding) for articulation [27, 34]. Figure 1.4 illustrates the 

approximate time course of each stage of word production alongside the brain 

region involved in that stage [39]. 
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Figure 1.4. The staged of word production and their timing (right), and the respective brain 

areas for each stage (left). The focus here is on the left hemisphere [39]. 

 

Linguistic phonetic processing is an automatic brain function, which elicits 

high-Gamma (70-170 Hz) oscillations [40, 41]. In each individual, Phonetic 

processing activity for a specific word does not change over time [42, 43] and is 

not affected by priming, cognitive activity, or task frequency [44, 45]. In contrast, 

semantic and lexical processing, is affected by task frequency, priming, and 

cognitive activity [9, 10, 25], which would also arbitrarily shift the temporal 

course of all following functions. These problems can be avoided by using a 

suitable experimental protocol. In covert speech, the manner of articulation in an 

individual (their ‘accent’) is consolidated over time. Covert articulation tasks 

activate the same language motor centres as their overt form [46, 47]. As a result, 

Indefrey Spatiotemporal signatures of word production

FIGURE 1 | Left column: schematic representation of the
activation time course of brain areas involved in word
production. Identical colors indicate relationships between regions
and functional processing components (right column). The numbers

within regions indicate median peak activation time estimates (in
milliseconds) after picture onset in picture naming (seeTable 3 and
main text). Right column: time course of picture naming as estimated
from chronometric data.

Sahin et al. (2009) found activation of Broca’s area around
200 ms in a recent word production study using intracranial elec-
trodes in neurosurgical patients. Considering that this activation
was sensitive to word-frequency and that I&L suggested a time
window for lemma selection between 175 and 250 ms, the authors
(and also Hagoort and Levelt, 2009) interpreted this result as
indicating a role of Broca’s area in lexical access in word pro-
duction. Note, however, that the tasks used by Sahin et al. (2009)
involved the presentation of a written target word rather than a
picture, so that the activation observed 200 ms after the target
word most likely reflected lexical access in word reading (i.e., from
a graphemic code) rather than the concept-based lemma access in
word production.

In sum, data on the time course of left mid MTG activa-
tion are to date largely compatible with the assumption that this
region is involved in conceptually driven lemma retrieval and
incompatible with an involvement of this region in a later pro-
cessing stage, for example phonological retrieval. If one accepts
an involvement of this region in lemma retrieval based on the
clinical evidence alone (to avoid circularity), the time course
data may also be seen as problematic for interactive mod-
els assuming feedback from a phonological processing stage to
lemma retrieval (cf. Dell et al., 1997). Predictions of modu-
lation due to enhanced competition for lexical selection have

been confirmed in some semantic interference studies, but not
convincingly in semantic blocking studies. Insofar as effects of
enhanced competition have been found, the data also suggested
that competition might affect later processing stages (phono-
logical code retrieval, see next section). These observations are
not in accordance with a strictly serial view of the transi-
tion from the lemma to the word form level, but this mat-
ter is far from settled because an alternative interpretation of
these findings as reflecting increased self-monitoring activity is
possible.

PHONOLOGICAL CODE (WORD FORM) RETRIEVAL
I&L proposed that left posterior superior temporal lobe might
be involved in lexical phonological code (word form) retrieval
because this region was reliably found in word production tasks
involving the retrieval of lexical word forms but not in pseudoword
reading. A more recent study by Binder et al. (2005) suggests that
this area and the adjacent angular gyrus can even be deactivated
for pseudoword reading compared to a fixation condition.

To date, four MEG studies (Salmelin et al., 1994; Levelt et al.,
1998; Sörös et al., 2003; Hultén et al., 2009) provide timing data
on the activation of posterior STG and MTG. With a median peak
activation of 320–360 ms (see Table 3), these data are in good

Frontiers in Psychology | Language Sciences October 2011 | Volume 2 | Article 255 | 10
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covert speech is produced with the same consistency as overt speech. However, 

in covert speech, the activity of the Primary Motor Cortex is greatly attenuated 

[48] and may be difficult to detect by EEG. 

 

1.3.  Research Objectives 

Although the exact nature and operation of “consciousness” is not fully 

known, that aspect of consciousness called the intellect, which assists us in 

physical survival through cognition and thinking, is closely intertwined with 

language and Linguistic processes in the brain. Speaking is the most natural form 

of human communication and a BCI which can be controlled by thinking of 

words, would be extremely intuitive and easy to use. Considerable research has 

been conducted on language in the brain in the past decade, which have not yet 

been considered in the design of a new purpose-built linguistic BCI system.  

In this work, I explore the capability of non-invasive EEG systems, both 

wet and dry electrode devices, in detecting activity in the Gamma and high 

Gamma bands and how to reduce their susceptibility to EMG and EOG artefacts. 

To this end the objective is to increase the traditional frequency range used in 

BCIs (usually up to 50Hz) and to take advantage in the improved signal to noise 

ratio of modern EEG equipment and push the frequency envelope as far as 

possible. This includes selecting the correct recording sampling rate and 

discovering the most capable artefact removal algorithms.  
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The next  objective is to study the class separability of covert speech tasks 

compared to pure motor imagery tasks to determine how the combination of 

linguistic processing functions and speech motor functions in covert speech tasks 

differ from imagined movement for the purpose of classification.   

After this, I aim to compare the contribution of pure linguistic processing 

stages or word production before articulation to the movement planning and 

motor imagery of articulation and determine which activities are most useful in 

class separation. With this knowledge, I finally aim to create an online BCI and 

refine each, and every stage of the analysis pipeline to maximise classification 

accuracy. The final goal is to demonstrate an online BCI based on the research in 

the previous chapters. 

 

1.4. Hypothesis for the design of a Linguistic BCI 

Hypothesis one: Imagined speech (covert speech) can be detected in the same 

way that imagined movement can be detected. This is by focusing on the motor 

cortex and taking measurements in different frequency bands (theta 3-8 Hz. 

Alpha 8-13 Hz, and beta 13-45 Hz) [49, 50]. Speech is the most complex 

movement generated by the brain and over half the Primary Motor Cortex is 

responsible for controlling muscles involved in speech production. The main 

muscles involved in speech production are shown in figure 1.5. 
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Figure 1.5: Muscles involved in the generation of speech [51]. 

 

Hypothesis two:  Imagined speech can be detected by focusing measurements on 

the language centres of the brain (i.e. Broca's Area). Before the execution of 

speech by the relevant muscle groups (face, mouth, lips, Tongue, larynx, and 

lungs), there is a complex process of planning and linguistic processing. The 

order to execute speech is sent from the Broca's area to the frontal cortex and the 

pre-motor area and then to the motor cortex. This hypothesis suggests that it is 

possible to detect linguistic activity before the command to execute reaches the 

motor cortex.  
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Figure 1.6: The Wernicke and Broca’s area [51]. 

 

Hypothesis three: Before the involvement of the Broca's Area in the execution 

of speech (and the setting of prosody) there is a multitude of activities in the brain, 

which occur in known time intervals [9]. It could be possible to detect these event-

related potentials in a similar wat to P300 systems. These Linguistic ERPs which 

can be used in a BCI include: 

• N400, whole brain, negative peak, lexical-semantic processes 

• ELAN, Left Anterior Negativity, Structure building 
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• P600, late ERP positive Wave, Syntactic integration 

• The CPS component: Prosodic processing      

 
Hypothesis Four: Using language in a BCI requires a completely new approach 

by focusing on specific linguistic processing stages of word production, and using 

the respective temporal, spectral, and spatial signatures of a particular stage (for 

example phonological and phonetic stages). Such an approach has never been 

used.   

 
1.5. Contributions 

The first publication from this work is titled: “The contribution of different 

frequency bands in class separability of covert speech tasks for BCIs” was 

published by IEEE EMB in 2017. In this work, ten volunteers in the age range of 

22-70 years participated in the experiment. Eight of them were neurologically 

healthy, one user was dyslexic, and another was autistic. The four words “back”, 

“forward”, “left”, and “right” were shortened into “BA”, “FO”, “LE”, and “RY”, 

which are phonetically dissimilar and cognitively relevant directional commands. 

Participants were asked to covertly speak each as soon as the letters appeared on 

a screen. Volunteers completed five recording runs. During each run the four 

words were presented in random succession to avoid sequence bias. The recorded 

EEG data from the ten users were analysed to discover the best feature vectors 

within a Gabor Transform of the signals, i.e., those yielding the highest word-pair 
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classification accuracy for this specific type of linguistic mental activity. Using 

this BCI, suitable class separability of covert speech tasks is confirmed for all, 

including disabled users, with consistently high classification accuracy from 75% 

to 88% in all cases. Similar to motor imagery tasks, Alpha and Beta band activity 

were found to contain 12% and 31% of the most important feature vectors, 

respectively. Gamma band activity, which indicates high mental functions, 

contains 57% of the most important feature vectors in this study.  

The second publication from this research with title “Covert Speech vs. 

Motor Imagery: a comparative study of class separability in identical 

environments” was published by IEEE EMB in 2018. In this study a single 

experimental protocol and analysis pipeline is used: once for MI tasks, and once 

for covert speech tasks. The goal of this study is not to maximize classification 

accuracy; rather the main objective is to provide an identical environment for 

both paradigms, while identifying the most important activities related to the most 

class dependent feature vectors. Four volunteers participated in this experiment. 

With four classes, the average classification accuracy for covert speech tasks is 

82.5%, and for motor imagery is 77.2%. The average performance is significantly 

higher than chance level for both paradigms, suggesting that the results are 

meaningful, despite being imperfect. For motor imagery tasks the most important 

activities are the execution of imagined movements, and goal driven executive 

control for suppression of overt movements, which also occur for covert speech 

tasks. However, the most important activity for covert speech tasks is the 
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linguistic processing stages of word production prior to articulation, which does 

not occur in motor imagery. These high-Gamma linguistic processes are 

extremely class dependent, which contribute to the higher performance of covert 

speech tasks, compared to motor imagery in an otherwise identical environment. 

The third publication from this work with title “The Relative Contribution 

of High-Gamma Linguistic Processing Stages of Word Production, and Motor 

Imagery of Articulation in Class Separability of Covert Speech Tasks in EEG 

Data” was published by Springer’s journal of Medical Systems in 2019. Word 

production begins with high-Gamma automatic linguistic processing functions 

followed by speech motor planning and articulation. Phonetic properties are 

processed in both linguistic and motor stages of word production. Four 

phonetically dissimilar phonemic structures “BA”, “FO”, “LE”, and “RY” were 

chosen as covert speech tasks. Ten neurologically healthy volunteers with the age 

range of 21-33 participated in this experiment. Participants were asked to covertly 

speak a phonemic structure when they heard an auditory cue. EEG was recorded 

with 64 electrodes at 2048 samples/s. Initially, one-second trials were used, which 

contained linguistic and motor imagery activities. The four-class true positive rate 

was calculated. In the next stage, 312ms trials were used to exclude covert 

articulation from analysis. By eliminating the covert articulation stage, the four-

class grand average classification accuracy dropped from 96.4% to 94.5%. The 

most valuable feature vectors emerge after Auditory cue recognition (~100ms 
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post onset), and within the 70-128 Hz frequency range. The most significant 

identified brain regions were the Prefrontal Cortex (linked to stimulus driven 

executive control), Wernicke’s area (linked to Phonological code retrieval), the 

right IFG, and Broca’s area (linked to syllabification). Alpha and Beta band 

oscillations associated with motor imagery do not contain enough information to 

fully reflect the complexity of speech movements. Over 90% of the most class-

dependent feature vectors were in the 30-128Hz range, even during the covert 

articulation stage. As a result, compared to linguistic functions, the contribution 

of motor imagery of articulation in class separability of covert speech tasks from 

EEG data is negligible.  

The fourth publication with title “A Novel EEG-Based Four-Class 

Linguistic BCI” was published in the EMBC conference in 2019. In this work, 

we present a novel EEG-based Linguistic BCI, which uses the four phonemic 

structures “BA”, “FO”, “LE”, and “RY” as covert speech task classes. Six 

neurologically healthy volunteers with the age range of 19-37 participated in this 

experiment. Participants were asked to covertly speak a phonemic structure when 

they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 

samples/s. The duration of each trial is 312ms starting with the cue. The BCI was 

trained using a mixed randomized recording run containing 15 trials per class. 

The BCI is tested by playing a simple game of “Wack a mole” containing 5 trials 

per class presented in random order. The average classification accuracy for the 

6 users is 82.5%. The most valuable feature vectors emerge after Auditory cue 
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recognition (~100ms post onset), and within the 70-128 Hz frequency range. The 

most significant identified brain regions were the Prefrontal Cortex (linked to 

stimulus driven executive control), Wernicke’s area (linked to Phonological code 

retrieval), the right IFG, and Broca’s area (linked to syllabification). In this work, 

we have only scratched the surface of using Linguistic tasks for BCIs and the 

potential for creating much more capable systems in the future using this 

approach exists. 

 

1.6. Outline of thesis    

 After the introduction in chapter one, the relevant background literature 

on brain computer interfaces and the use of language in BCIs are presented in the 

second chapter. Problems related to the curse of dimensionality and how they are 

addressed in this work are also in chapter two. 

 Chapter three discusses the selection of covert speech tasks and 

designing the first experimental protocol. This protocol was used to compare 

performance of the design for covert speech tasks vs Motor Imagery tasks in 

identical settings. The validity of the analysis pipeline was tested using random 

permutation tests, rest state vs. task tests, and using fewer features for 

classification. 

 In the fourth chapter, the experimental protocol was modified to 

increase the number of channels from 20 to 64 replacing the dry electrode system 
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with the Biosemi ActiveTwo system. In addition, the time duration of trials was 

reduced from one second, to 312ms with virtually no loss of performance. This 

new protocol is more suitable for online use. Before performing online 

experiments, the validity of the revised analysis pipeline was tested using random 

permutation tests, rest-state vs. task classification, using lees features for 

classification, of the topographical maps of the brain, and using HV-validation 

vs. 10-fold cross validation. 

 Chapter five presents the culmination of this research and presents an 

online demonstration of a Linguistic BCI using the experimental protocols and 

analysis pipeline designed in the previous chapter. The results in chapter five 

show that the system does indeed perform robustly (classification accuracy 

82.5%) and that there was a 12.5% upward estimation bias in the results using 

offline data and block-designed validation processes.  
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CHAPTER TWO: 
BCI SYSTEMS AND THE CURSE OF 

DIMENSIONALITY 
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2.1. Typical BCI systems  
 
The functional structure of a typical BCI is presented in Figure 2.1 The 

BCI interprets the user’s conscious intention by taking measurements of brain 

activity. These measurements, which could be electrophysiological, magnetic, or 

metabolic [52], are pre-processed and converted into features. Using well 

established methods, a subset of the most valuable feature vectors is created. 

These features are used for training the BCI to issue the correct control commands 

for operating an external system [53]. Each of the BCI components shall be 

explained in detail, in the following sections.  

 

 

Figure 2.1. The design and operation of a Brain-computer interface [53]. 
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2.2. Data acquisition from cortical activity 
 
The measurements from brain activity can be made by several devices, 

which fall into three major categories [54]: 

• Electrophysiological: such as ECoG and EEG 

• Magnetic: such as MEG 

• Metabolic: such as FMRI, and FNIRS 

Details of each measurement system are presented in the following sections. 

 

Electrocorticogram (ECoG) 

Cortical Neural activity: since the 60s, there have been many attempts to 

use implants, which directly connect to the human nervous system. The purpose 

of implanting these devices into the human brain varies from stimulation of the 

brain to remedy movement issues or modify the mood for patients with 

depression. Deep Brain Stimulation (DBS) has also been used to help people with 

Parkinson’s disease, dystonia, or Essential tremors [55]. Implants could also be 

used for diagnosis and treating epilepsy [56-58]. From a BCI design point of 

view, a clear advantage of having direct access to the brain via an Eco implant, is 

avoiding the scattering effect of the skull and scalp tissue on the brain signal 

leading to much greater signal to noise ratio. ECoGs are not as susceptible to 

EMG and EOG artifacts.  Also, implants could provide greater spatial resolution 

and reduce time delays [59].  
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An important invasive ECoG-based investigation by Leuthardt et al., 2011 

[56], in which a one-dimensional computer cursor was controlled (left and right) 

with accuracies between 68% and 91%. The importance of the High-Gamma 

range was emphasized greatly in this work. The electrode array of 64 electrodes 

(8x8) 10mm apart. A series of four phonemes (‘oo’, ‘ah’, ‘eh’, and ‘ee’) or rested. 

Were used for binary classification. The data recorded during this study were 

converted to the frequency domain by autoregressive spectral estimation in 2 Hz 

bins ranging from 0 to 550 Hz. For each electrode and frequency bin, candidate 

features were chosen by calculating the coefficient of determination (r^2 ) 

between the ‘rest’ spectral power levels and the activity spectral power levels for 

each phoneme, and between spectral power levels for all possible phoneme 

combinations. Those ECoG features (Electrode and frequency bin) with the 

highest r^2 values, i.e. the features that had most of their variance explained by 

the task, were chosen as control features. 99 Trials were recorded for covert 

speech tasks. Classification accuracy was calculated using online performance. 

The next study of note is by Pei et al., 2011a [60], which defined the most 

important cortical areas in word production. Each participant had a maximum of 

64 electrodes implanted. 36 words was composed of one of four different vowels 

(/ε/, /æ/, /i:/ and /u:/) and one of nine consonant pairs (i.e. /b_t/, /c_n/, /h_d/, /l_d/, 

/m_n/, /p_p/, /r_d/, /s_t/, /t_n/). 140 trials were recorded for each subject. Then, 

separately for each channel and analysis (overt or covert speech, vowels or 

consonants), we ranked the ECoG Then, separately for each channel and analysis 
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(overt or covert speech, vowels or consonants), we ranked the ECoG features 

using the MRMR (maximum relevance and minimum redundancy) criterion [57]. 

We submitted the best (35 or 40 for decoding consonants or vowels, respectively) 

features at each location to a Naive Bayes classifier and used the optimized 

features to decode from each trial the vowel and consonant pair group for the 

target word of that trial, respectively. The average classification accuracy for 4-

class covert speech was 38%. 

Later, Pei et al., 2011b [48] took this work to the next stage with focusing 

on the Spatio-temporal dynamics of word production. In this study 9 patients 

were implanted with up to 64 electrodes. 36 words of the nature consonant-vowel-

consonant were used to record covert speech tasks. The small cortical activations 

over primary motor cortex indicated that the dominant processes in covert word 

production were word comprehension and phonological processing rather than 

imagery related to the motor actions of speech production.  

The next important work by Ikeda et al., 2014 [61], used ECoGs to study 

the role of Broca’s area in pre-processing of vowels. Three vowels /a/, /i/, and /u/ 

were selected for classification. A total of 90 trials were recorded for each user. 

For each electrode, the power spectra in the high-Gamma bands were extracted 

from ECoG signals in the blank period of individual trials using fast Fourier 

transform (FFT). The power spectra were used as feature vectors for decoding 

analyses. Classification was performed using 15-fold cross validation and SVM 

classifiers. The cortical areas able to discriminate single vowels were the primary 
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motor area, the premotor cortex, STG, and so on. Decoding accuracies from these 

areas ranged from 42.2 to 46.7% for three classes.  

Later the same year, Martin et al., 2014 [62] conducted another invasive 

study and identified the critical frequency range of 70-150 Hz and emphasized 

the roles of the Wernicke and Broca’s areas in covert speech production. In this 

study 16 electrodes were implanted. The nursery rhyme “Humpty dumpty” was 

spoken overtly and then decoded covertly using the overt speech as baseline. The 

recognition rate was significantly greater than chance level using this approach. 

The next significant study is by Martin et al., 2016 [63] using ECoG 

recordings and classifying covert word pairs. The importance of the High-

Gamma frequency bands and the involvement of the temporal, frontal, and pre-

motor areas in word production are discovered. For binary classification, the six 

words ‘spoon’, ‘cowboy’, ‘battlefield’, ‘swimming’, ‘python’, and ‘telephone’ 

were recorded 24 times each. Time Wrapping was used to generate features. 

Using SVM classifier a word-pair classification accuracy of 88% was reached in 

this study. 

In 2018, Ibayashi et al. [64] Conducted a study using a combination of 

single/multi-unit activity (SUA/MUA), local field potential (LFP), and 

electrocorticography (ECoG) signals. Feature vectors were built from spike 

frequency acquired from SUAs and event-related spectral perturbation derived 

from ECoG and LFP signals. The results indicated that the accuracy for five 

monophthongal vowels (/a/, /i/, / β /, /e/, and /o/) was maximum when features 
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from multiple signals were merged and optimized for each participant and 

reached 59% when averaged for six participants. A silicone-coated electrode 

array consisting of a combination of six microneedles and three macroelectrodes 

was used. Spike firing frequency and LFP and ECoG spectral power for the 

different frequency bands (Alpha 8–12 Hz, Beta 14–30 Hz, Delta 2–4 Hz, Theta 

4–8 Hz, low-Gamma 30–80 Hz, high-Gamma 80160 Hz, ultra-Gamma 160–240 

Hz) epoched from 0 to 600 ms post-cue were analysed for each trial. 100 feature 

vectors were used for each of the 50 trials and results were found using cross-

validation using a Sparse Logistic Regression classifier. The results of the study 

indicate using a combination of signals leads to the best results. 

Also in 2018, Martin et al. [33] conducted a review on the progress and 

challenges in using implanted electrodes in speech BCIs. They suggested that 

improving task design, training the participants, discovering behavioural 

markers, speech recognition models, increasing data, implementing unsupervised 

learning, and improving the design of electrodes may improve covert speech 

BCIs.  

In 2019, Rabbani et al. [65] performed a comprehensive review and study 

on different aspects of speech production and decoding (semantic, auditory, and 

articulatory), increasing the frequency range of interest for linguistic tasks from 

70-170Hz to 70-350Hz within the first 350ms post onset. The advantages and 

problems of using long-term subdural implants are studied and the possibility of 

grater populations using such BCIs are discussed.  
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Table 2.1: The most significant ECoG studies on covert speech 

Publication Classes Nature of classes Trials Features Classifier CA% 

Leuthardt 2011 5 oo, ah, eh, ee, rest. binary classification 99 R^2 Statistical 91% 

Pei 2011a 4 ε, æ, i: and u: 140 40 Naive Bayes 38% 

Pei 2011b 36 Consonant-vowel-consonant 140 R^2 N/A N/A 

Ikeda 2014 3 a, i, and u 90 N/A SVM 46% 

Martin 2014 N/A Nursery rhyme overt and covert 3 N/A Statistical N/A 

Martin 2016 6 Spoon, cowboys, battlefield, swimming, 
python, telephone 

24 N/A SVM 88% 

Ibayashi 2018 5 spoken vowels (a, i, β, e, and o) 50 100 Sparse Logistic Regression 59% 

Martin 2018 N/A Review study  N/A N/A N/A N/A 

Rabbani 2019 N/A Review study, pushing the envelope N/A N/A N/A N/A 

 

Electroencephalogram (EEG) 

EEG is the most commonly used system in BCIs [66-75]. EEG is non-

invasive, provides real-time measurements of brain activity, and is relatively 

cheap [53]. EEG uses several electrodes (64, 128, or 256), which are places over 

the scalp and electrically connected by conductive gel. The downside of EEG is 

limitation of spatial resolution due to the smearing effect of the tissue between 

the cortical surface of the brain and the electrodes. The hardware, which is used 

by the BCI research group at the University of Essex, is the BioSemi ActiveTwo 

system [76]. 

 

Figure 2.2. the 256-channel BioSemi ActiveTwo A/D box with battery [76]. 
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There are three major types of cortical activity that are measured using 

EEG. These include: 

• Evoked potentials [77], such as Steady State Visual Evoked Potentials 

(SSVEPs) [78], Flash Visual Evoked Potentials (FVEPs) [79], and the P300 

[80-84]. VEPs can be measured by EEG, over the visual cortex. BCIs have used 

these signals to determine the direction of gaze to control a computer mouse on 

a screen [78-80, 85]. P300 evoked potentials appear 300ms after a significant 

stimulus, among routine stimuli, and a positive peak can be detected by EEG, 

over the parietal cortex. These “odd-ball” stimuli may be auditory, visual, of 

somatosensory. These signals are difficult to detect. 

• Slow cortical potentials (SCPs): low frequency voltage changes that shift over 

0.5-10sec and can be recorded by EEG over the scalp. Negative SCPs are 

associated with movement and positive SCPs are an indication of reduced 

cortical activity [53, 54, 66, 86, 87]. 

• Mu and Beta rhythms: Brain activity is usually divided into frequency bands: 

in people that are awake, the sensory and cortical areas produce an 8-12Hz 

frequency when they are inactive. The mu rhythm focuses on the 

somatosensory and motor cortex, while the alpha rhythm is focused over the 

visual cortex. Mu rhythms are accompanied by 18-26Hz beta frequencies. 

When movement begins, there is a decrease in mu and beta rhythms also known 

as event related de-synchronization (ERD). With relaxation, there is an increase 

in mu and beta rhythms also known as event related synchronization (ERS). 
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These changes do not require actual movements and imagination of movement 

also produces the same effect [53, 86, 88]. Table 2.2 contains the most recent 

examples of EEG research on covert speech and their use in BCIs [89].  

 

One of the earliest examples of using Covert speech in non-invasive BCIs 

is D’Zmura et al., 2009 [7] where imagined speech of two syllables are spoken in 

one of three rhythms and was discovered that the Alpha, Beta, and Theta bands 

contain significant information. Two syllables “ba” and “ku” in three different 

rhythms were used to create six conditions. 120 trials were recorded per 

condition. EEG was recorded using a 128-channel system. Hilbert transform was 

used to create envelopes. The envelopes serve as input to the matched-filter 

classification and as data used to construct the matched filters. An electrode's 

average envelopes, found by averaging across trials for each of the six conditions, 

serve as matched filters. This is done by finding the pseudoinverse the average 

envelopes for the six conditions for each electrode. The highest classification 

accuracy was achieved in the beta band (80%). 

The next significant work is Porbadnigk et al. 2009 [90], where EEG was 

recorded with 16 electrodes. Five words alpha, bravo, charlie, delta, echo, are 

presented in blocks and classified using an LDA classifier to achieve a 

classification rate of 45.5% . However, when using 20 randomised trials, the 

performance dropped to chance level. This was due to the inconsistency of the 

experimental paradigm. This problem was avoided in my current work.  
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The next important work is Brigham and Kumar 2010 [16], where 7 

volunteers imagined two syllables BA and KU. Autoregressive coefficients were 

used as features and a K-nearest Neighbour classifier was able to distinguish these 

classes. EEG was recorded using 128 channels, and a maximum of 14 trials were 

recorded for each class. The best accuracy achieved was 67%.  

The Next noteworthy research is Deng et al. 2010 [91], where two syllables 

ba and ku were covertly spoken in one of three rhythms. EEG was recorded using 

128 channels. 120 trials were recorded for each of the six conditions. 9 features 

per channel were extracted using Hilbert-Haung transform and it was shown that 

rhythmic structure can be successfully detected using EEG. Using LDA 

classifiers, a maximum accuracy of 26% was achieved for six-class classification. 

The next study come in 2013 by Kim et al. [21] , where two categories of 

meaning (face/number) were classified using support Vector Machines achieving 

accuracies of 71.68%. Thirty channels, 49 frequency bands, and 80 time-steps 

were used as JTF features. When the number of features were reduced to 1928 

from the total of 117600 using SVM based recursive feature elimination, the 

classification accuracy was increased to 92% for two meaning categories. 

The next important study by Song and Sepulveda 2014 [92], used 64 EEG 

sensors to focus on detection of imagined high pitch tone production in inhibited 

and imagined speech for the purpose of onset detection. 40 trials were recorded 

for each user. Autoregressive model of order 6 was used for feature generation. 

The highest classification of 85% was achieved using LDA classifiers.  
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The next important work is Iqbal et al. 2015 [15], which classified between 

sounds /a/ and /u/, and idle state achieving classification accuracies between 77%-

100% using SVM classifiers. EEG was recorded using 4 electrodes over the 

motor cortex. 50 trials were recorded for each class. Features were chosen as the 

variance, entropy, and signal energy in the normalised frequency range of 0.5 to 

0.9 for the four channels (12 features in total).  

In 2015, Zhao et al. [93] managed to classify 7 different phonemic/syllabic 

prompts iy, uw, piy, tiy, diy, m, n, in 3-class classification reaching up to 95% 

accuracy with Deep Belief Network classifiers. EEG was recorded using 62 

electrodes. 12 trials were recorded per class. Various features were generated 

including the mean, median, standard deviation, variance, maximum, minimum, 

maximum ± minimum, sum, spectral entropy, energy, skewness, and kurtosis, 

and the first and second derivates of the above features. This results in 1197 

features for each channel of the trial, for a total of 65,835 features across the 62 

channels. Features were ranked by their Pearson correlations with the given 

classes for each task independently and we select the N features with the highest 

correlation coefficients, where N ∈ [5..100]. The proposed DBN classifier 

outperformed baseline SVM classifiers. Later the next year, Iqbal et al. 2016 [94] 

took this work further by including the time domain analysis of their previous 

study and using features such as mean and standard deviation. The maximum 

classification accuracy of 100% was achieved.  
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The next important work is by Yoshimura et al. 2016 [95] using a 

combination of EEG and FMRI on classification of Japanese vowels /a/ and /i/ 

and enhancing classical EEG with FMRI forming EEG-estimated cortical 

currents. EEG was recorded using 32 electrodes. 50 trials were recorded per task. 

Hyper-parameters were used for classification after estimating EEG cortical 

currents from EEG signals. Sparse Logistic Regression (SLR) classifiers 

achieved a maximum classification accuracy of 55% compared to 40% for EEG. 

The next work is by Gonzalez et al. 2017 [96], where five covert speech 

tasks Left, Right, Up, Down, Select, were used in classification of EEG, sonified 

EEG, and textified EEG. Signals were recorded using 14 channels. DWT features 

were extracted. Each word was recorded 33 times. Using three classifiers, RF, 

SVM, NB, the three types of data were classified. The greatest accuracy was 

achieved with EEG represented as text with accuracy of 89%.  

After this, the next important study is by Nguyen et al. 2017 [12], where 

three categories of short words, long words, and vowels (In, out, up, cooperate, 

independent, a, i, u) where a novel method based on covariance matrix 

descriptors, which lie in Riemannian manifold, and the relevance vector machines 

classifier is proposed. EEG was recorded using 64 electrodes and 100 trials per 

class were recorded. CSP was used to generate features and 35 features were used 

in classification using Relevance Vector Machines (RVM) classifiers. The 

highest classification accuracy achieved for binary classification is 90% and for 
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three classes 70%. RVM outperformed SVM due to its Bayesian leaning 

component.    

The next work is by Rezazadeh et al. 2017 [97], where two words YES, 

and NO and a rest state were classified using  Multilayer Perceptron (MLP) ANN 

classifiers. EEG was recorded with 64 electrodes and 60 trials were recorded for 

each class. DWT was used to extract features. The root-mean-square (RMS) and 

standard deviation (SD) of the outputs from each DWT decomposition level were 

used as features for classification. A total of 496 DWT features were generated 

from each trial (62 electrodes x 4 decomposition levels x 2 features, i.e., SD and 

RMS).  For binary classification of speech vs. Rest a maximum classification of 

85% was reached. Classification of yes vs. No had a maximum of 69%. For three 

class classification a maximum of 63% accuracy was reaches. The MLP 

outperformed many traditional classifiers using the data in this work.  

The next important work is by Hashim et al. 2018 [98], where two word 

classes yes and no were distinguished using dry electrodes. EEG was recorded 

using 14 channels, 6 of which were used in the analysis. For each trial, Mel 

Frequency Cepstral Coefficients (MFCC) are extracted and used as features. 

Using KNN classifiers a maximum classification accuracy of 63% is reached 

using the dry electrode EEG system.  

Cooney et al. 2018 [11], classified the impressive number of 11 covert 

speech classes (iy, piy, tiy, diy, uw, m, n, pat, pot, knew, gnaw). EEG was 

recorded from 64 electrodes. Each class was recorded 12 times. Mel Frequency 
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Cepstral Coefficient (MFCC) features were compared with the performance of 

linear and non-linear features. Each of the 13 MFCCs calculated for all 62 

channels and all 17 data windows results in a total of 13,702 features which are 

used as input training features to the classification models. The highest 

classification accuracy was achieved using SVM classifier for 11 classes and 

achieved the impressive accuracy of twice the chance level of 19.6%. 

In 2018, AlSaleh et al. [99] conducted a study to classify five covert words 

(“Left”, “Right”, “Up”, “Down” and “Select”), using four different classifiers 

(Support Vector Machine (SVM), Naive Bayes (NB), Random Forest (RF), and 

Linear discriminant analysis (LDA)) using two experimental settings. The first 

where the start and end of trials are determined by user’s mouse click, and the 

second where start and end within a set time. EEG was recorded using a 12-

channel Emotive system and 144 feature vectors were extracted per trial using 

Discrete Wavelet Transform with 6 levels of decomposition. 100 trials were 

recorded in blocks, and 35 were used for training. The greatest result of 80% were 

obtained using RF classifier and 3.5-4 seconds of fixed trial duration. 

In 2019, Sereshkeh et al. [100] conducted a study combining EEG and 

fNIRS. Three tasks of covertly speaking “yes”, “no”, and rest were classified. 132 

trials were recorded using 30 EEG channels and 40 fNIRS channels. 180 DWT 

features were used. Classification was with LDA and estimation of performance 

was achieved with 10-fold CV. The performance of the system using only EEG 
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compared to using both signal types was improved from 69% to 76%. The results 

demonstrate improvement in BCI performance when both modalities are used. 

 In 2019, Cooney et al. [101] performed a novel experiment using 

Convolutional Neural Networks to classify word pairs. The performance of deep 

CNN, and shallow CNN has been compared with LDA classifier trained with 

filter-bank common spatial patterns features FBCSP focusing on band power 

differences between classes. Nested cross-validation was used to permit 

optimization of two hyper-parameters. For FBCSP the first of these is the number 

of selected spatial filter pairs (1,3,4,5). The second hyper-parameter used here 

was the mutual information quantization level, with the values considered being 

6, 8, 10 and 12. For the CNNs the hyper features were learning rate and the 

number of filters implemented in the final convolutional layer. participants 

imagined the production of six Spanish words: “arriba”, “abajo”, “derecha”, 

“izquierda”, “adelante” and “atrás”. EEG was recorded using 6 channels and a 

frequency range of 2-40 Hz was used. 50 trials per class were recorded. The 

results show that deep CNN outperforms rLDA from 57% to 65%. This approach 

shows great promise for future work. 

 Also in 2019, Cooney et al. [102] used CNN and two transfer learning 

methods to improve generalizability of covert speech tasks in EEG data. Both TL 

approaches involved conditional training of the CNN on all participants, 

excluding the target subject. A subset of the target participant data was then used 

to fine-tune either the input or output layers of the CNN. Participants imagined 
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speaking the five vowels “/a/”, “/e/”, “/i/”, “/o/” and “/u/”. EEG signals were 

recorded using an 18-channel Grass® Analog amplifier. The original dataset was 

filtered between 2 Hz and 40 Hz. The feature extraction section of the network 

consists of six convolution layers. The input of the CNN consists of two 

convolutional layers, the first to perform temporal convolution and the second for 

spatial filtering. This construction has been conceived of as a feature extraction 

stage analogous to that of FBCSP and is designed to decode band power features 

from EEG. The feature map obtained from the feature extraction stage is passed 

to the final block for classification. 5-fold cross-validation scheme was applied 

to split the data into training, validation and test sets. Two different TL methods 

were tested. TL1 involved training the CNN on all source subject data before 

target-subject data was used to finetune the input layers of the CNN. TL2 

employed the same training strategy, but fine-tuning was implemented on later 

layers of the CNN. These TL methods were compared to a non-TL approach to 

training with the same CNN architecture. Both TL approaches outperformed the 

baseline classifier and suggest the possibility to improve the generalization of 

covert speech tasks for BCIs. 

 In 2019, Saha et al. [103] conducted a study on classification of 7 covert 

phonemes /iy/, /piy/, /tiy/, /diy/, /uw/, /m/, /n/, using Hierarchical Deep Learning. 

The proposed network is composed of hierarchical combination of spatial CNN 

and temporal CNN (TCNN) cascaded with a deep autoencoder. For the 

phonological categorization task, input data for CNN and TCNN (covariance 
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matrix) is of length 61×61 and 1,891 respectively, while for the speech 

recognition task, the input data (phonological features) is of length 6 × 256 and 

1,536 respectively. The input data for deep autoencoders pertaining the two tasks 

is of length 2,915 (1,891 TCNN + 1,024 CNN features). EEG signals from the 

KARA database were used. For binary classification, a maximum classification 

accuracy of 83% was achieved.  

 In 2020, Imani et al. [104] used ICA for classification of imagined speech. 

EEG signals were recorded using a 19-channel Micromed helmet in unipolar 

mode. The four directions up, down, left, and right were recorded six times per 

class. Classification was achieved using ANN classifiers with 20 neurons and two 

layers. 10-fold cross validation was used and a maximum accuracy of 60% was 

achieved.  

 In 2020, Bakhshai et al. [105] conducted a study on EEG signal 

classification of imagined speech based on Riemannian distance of correntropy 

spectral density. CSD matrices are evaluated for EEG signals obtained from 

different channels, and the distances between these matrices are considered as 

measures for imagined speech recognition. In this work, channel selection and 

frequency band detection during imagined speech is evaluated with statistical 

methods. Riemannian geometry is used as the framework of feature extraction. 

In this research study, a novel CSD-based Riemannian distance is presented, and 

it is used as a feature for classification of EEG signals during imagined speech. 

Non-parametric cluster-based permutation test is employed to determine the 
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statistical significance of the extracted features and control the false positive rate 

caused by multiple comparisons. The permutation test uses a test statistic that is 

based on clustering of adjacent spatial locations that exhibit a similar P feature 

(sum of CSD values in each frequency band) difference between imagined speech 

and baseline. CSD matrices were considered as inputs to the algorithm and their 

Riemannian distances were considered as features. EEG was recorded from 64 

channels. Imagined speech of either of the four words /gnaw/, /knew/, /pot/, /pat/ 

were used as classes. A total of 43 trials per class were recorded. Using KNN 

classifiers in binary classification, a maximum classification accuracy of was 

achieved.  

 The next significant study is by Krishna et al, 2020 [106] where 9 sentences 

used for identification from continuous EEG recordings using a long short-term 

memory (LSTM) based regression model and Generative Adversarial Network 

(GAN) based model. Wasserstein generative adversarial networks (WGAN) to 

decode the Mel-frequency cepstral coefficients (MFCC) features of the audio that 

the subjects were listening from the EEG signals which were recorded in parallel 

while they were listening to the audio as well as we decode MFCC features of the 

sound that the subjects spoke out from the EEG signals which were recorded in 

parallel with their speech. The sentences were covertly spoken 3 times for each 

user and 150 features were extracted. A maximum of 10% for word recognition 

was achieved in this study using continuous EEG recordings. 
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Table 2.2: Important EEG studies on covert speech and its use for BCIs. 

Publication Classes Nature of classes Trials Features Classifier CA% 

D’Zmura 2009  6 ba, ku, three rhythms, binary classification  120 768 Matched filter 87% 

Porbadnigk 2009 5 alpha, bravo, charlie, delta, echo 20 N/A LDA 19% 

Brigham 2010  2 ba, ku, binary classification 14 128 KNN 67% 

Deng 2010  6 ba, ku, three rhythms, 6-class classification 120 1152 LDA 26% 

Kim 2013  2 Numbers category, face part category N/A 1928 SVM 92% 

Song 2014  2 High-pitch tone vs. rest 40 64 LDA 85% 

Iqbal 2015  3 a, u, rest 50 12 SVM 100% 

Zhao 2015  7 iy, uw, piy, tiy, diy, m, n, 3-class classification 12 100 DBN 95% 

Iqbal 2016  7 iy, uw, piy, tiy, diy, m, n, 3-class classification 50 8 statistical 100% 

Yoshimura 2016  3 a, i, rest 50 Hyper SLR 65% 

Gonzalez 2017  5 Left, Right, Up, Down, Select 33 N/A RF, SVM,NB 89% 

Nguyen 2017  8 In, out, up, cooperate, independent, a, i, u 100 35 RVM 70% 

Rezazadeh 2017  3 Yes, no, rest 60 496 MLP 63% 

Hashim 2018  2 Yes, no 50 N/A KNN 63% 

Cooney 2018  11 iy, piy, tiy, diy, uw, m, n, pat, pot, knew, gnaw 12 546 SVM, DT 20% 

AlSaleh 2018 5 Left, Right, Up, Down, Select 35 144 Random Forest 80% 

Sereshkeh 2019 3 yes, no, and rest 132 180 LDA 77% 

Cooney 2019 6 arriba, abajo, derecha, izquierda, adelante ,atrás 51 Hyper rLDA, CNN 66% 

Cooney 2019 5 a, e, i, o and u 100 Hyper TL, CNN 39% 

Saha 2019 7 iy, piy, tiy, diy, uw, m, n 11 2915 TNN, TCNN 83% 

Imani 2020 4 Up, down, left, right 6 20 ANN 60% 

Bakhshai 2020 4 gnaw, knew, pot, pat 43 N/A KNN 90% 

Krishna 2020 23 9 sentences, continuous EEG 3 150 Statistical 10% 

 

 

Magnetoencephalogram (MEG)   

MEGs measure the magnetic activity of the brain and provide high 

temporal resolution like EEGs [107-110]. MEGs use superconductors and are 

bulky, expensive, and difficult to use [111]. The spatial resolution of MEGs is 

limited due to the smearing effects of the tissue between sensors and the cortical 

surface of the brain. 
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Functional Magnetic Resonance Imaging (FMRI) 

FMRIs measure changes in the hemodynamic response of the brain with 

excellent spatial resolution. However, the temporal resolution of this system is 

poor. FMRIs are bulky and expensive and require expert technicians [111-114]. 

 

Functional Near-Infrared Spectroscopy (FNIRS) 

FNIRs provide a spatial map of the brain’s functional activity based on 

hemodynamic changes. This system is non-invasive and portable and has been 

successfully used for motor imagery BCIs [52, 115-118]. 

 

2.3. Pre-processing 
 
The acquired data is pre-processed before extracting features. The purpose 

of this stage is to maximize signal to noise ratio, and ensure the data has the 

correct temporal and frequential content. For EEG data, pre-processing may 

include down-sampling, referencing, filtering, artifact removal, and epoch 

selection. A notch filter can remove the power line noise (50Hz) and a band pass 

filter can select the appropriate frequency range for analysis. The most common 

referencing methods are common referencing (additional channels at mastoids), 

bipolar referencing, common average referencing, and the surface Laplacian 

[119]. The main sources of noise in EEG recordings are muscle activity (EMG) 

and eye blinks (EOG). These artefacts can be removed using ICA, CSP, PCA, or 
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may be rejected by visual inspection of recorded data [87, 119-121]. The entire 

pre-processing stage can be performed with the use of the open source 

MATLABÔ toolbox EEGLAB [122], which includes automatic artifact removal 

utilities [123]. 

 

2.4. Feature generation 
 
The purpose of feature generation is to extract detailed spatial, temporal, 

and frequential information from the data to identify the user’s intention [53]. 

Many methods have been used for feature extraction from EEG signals [119, 124-

126]. In addition to artefact removal, PCA [127], ICA [128], and CSP [13] have 

been successfully used for feature extraction. Among these three methods, only 

Common Spatial Patterns [13, 17-19, 22] maintains electrode location 

information. PCA and ICA lose the connection to EEG channel location. Wavelet 

Transformation (WT) is commonly used for feature extraction [129]. This joint 

time-frequency method used a variable and adaptable analysis window, to 

maintain time information for high frequencies, and accurate frequency 

information for low frequencies. Band Power features can be generated using a 

Fourier Transform, and contain information about signal energy levels in 

different frequency bands [130].  

Time information can be included to such features by performing the 

Discrete Fourier Transform (DFT) for overlapping time windows. This method 
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is known as Power Spectral Density (PSD) [131]. The Gabor transform [132] is 

a windowed Fourier Transform using a Gaussian sliding window. This method 

preserves the information about channel locations in the data and provides 

frequency band information and time step information. Autoregressive 

coefficients [133] require a shorter time period to record EEG and provide good 

frequency resolution [134]. 

 

2.5. Clustering in high dimensional spaces 
 
The purpose of feature selection is to identify a subset of features that 

achieve the best classification accuracy with high computational efficiency [135]. 

There are three general methods for feature selection: the Filter approach, the 

Wrapper approach, and hybrid methods [136]. Filter methods evaluate the 

goodness of features independent of the type of used classifier. For example, the 

Davies-Bouldin index ranks the features based on a distance measure [137]. 

Wrapper methods use a pre-defined classifier to test the classification accuracy 

of a selected subset. This approach has a significantly higher computational cost 

compared to the filter approach [138].  

A solution to this problem is using a combination of filters and wrappers. 

This approach is known as the hybrid approach [139]. For example, a fixed size 

subset of best features identified by a filter, can be further optimized using 

sequential selection [133]. 
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This raises a problem known as “the curse of dimensionality,” that was first 

identified by Richard Bellman, in his book on control theory [140]. High 

dimensions create problems for data mining methods, and to clustering 

specifically. The most important problem in high dimensions is that as the data 

becomes very sparse, there is a loss of discriminative ability [141] for distance, 

proximity, or density measures that would work well for low dimensional spaces 

[142].  

Another problem arises when irrelevant attributes exist among the features 

which is known as the correlation clustering problem. This problem can be 

avoided with the use of subspace clustering methods [143]. Correlation 

Clustering is associated with feature vector of correlations among attributes in a 

high dimensional space. These are consistent to guide the clustering algorithm. 

Depending on the nature of the data, one clustering algorithms may be more 

suitable than others and no algorithms is always superior to the others.  

 
 

2.6. Clustering quality and clustering based feature 
selection 

 
The quality of a clustering result can be measured with a Clustering 

Validation Index (CVI). The purpose of a CVI is to estimate the most suitable 

number of clusters based on the compactness and separation of the clusters [144]. 

Validation indices can be divided into the three categories of internal, external, 

and relative. CVIs can also be used for feature selection by identifying the most 



 46 
 

 
 

 

class separable feature vectors based on their indexes. The validation indices 

measure high similarity within clusters (intra) and high separability between 

clusters (inter), for which lower and higher values are preferred, respectively.  

Examples of such a filtering-based approach are The correlation-based 

filter selection (CFS) method, The fast correlation-based filter (FCBF), and the 

minimum redundancy maximum relevancy (mrMR) method [145]. 

Among the most recent algorithms Affinity Propagation (AP) and Maximal 

Information Coefficient (MIC) are noteworthy [146]. Affinity propagation forms 

clusters using messages exchanged between data points. Given the similarities of 

each two distinct data points as input, AP algorithm considers all the instance as 

potential centroids at the start, then combines small cluster into larger ones, step 

by step. Maximal information coefficient (MIC). With innovative idea, they show 

that MIC could capture a wide range of associations both functional and not. 

Furthermore, the value of MIC is roughly equal to the coefficient of determination 

R2 in statistics. Both MIC and AP require labelled information.  

A combination of these methods called MICAP can be used for 

unsupervised learning with no labels and directly finds the key attributes from the 

data. MICAP makes features with high dependence cluster together keeping only 

the centre feature of each cluster. The algorithm follows a simple idea that takes 

the MICs as the relationship metric for each pair of features, and clusters them 

using the affinity propagation algorithm.  
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Considering that the exact number of classes and their labels are known in 

this work, a filtering feature selection approach based on a non-parametric 

cluster-based permutation is used, in which Gabor features are given a Davis 

Bouldin index, one at a time [93, 105, 147-150]. The DBI is a function of the sum 

of within-cluster scatter to between-cluster separation and the most valuable 

Gabor features have the smallest DBI. Gabor features are sorted based on their 

DBI, and a subset of the most valuable ones are selected for classification.  

       

       
 In this work, we classify four covert speech tasks. In the first experimental 

setting presented in chapter three, EEG data is recorded with 20 electrodes. Ten 

trials were recorded for each class. Using the Gabor transform, EEG data from 

all channels for one trial is converted into 81,920 Gabor features (20 channels 

x 64 frequency-bands x 64 time-steps) as seen in figure 2.3. Instances of 

Gabor features in different trials (value of Gabor coefficient in that trial) are 

referred to as vectors.

Figure 2.3: The Gabor feature space for one trial as implemented in chapter three. EEG 
data from 20 channels for one trial is converted into 81,920 Gabor features (20 channels * 

64 frequency-bands * 64 time-steps)
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In chapter three, ten trials are recorded per class and 8 trials are used for 

training. For each class, there will be 8 vectors of the particular Gabor feature, 

for which a mean and standard deviation are calculated. In binary classification 

(i.e. BA vs. FO)  the DBI is found as (std(BA)+std(FO)) / (mean(BA)-mean(FO)). 

Figure 2.4 illustrates this approach.  

 

Figure 2.4: Eight out of ten trials are used for training. For binary classification, Gabor 
features are assigned a DBI, one at a time. In each class, the mean and standard deviation of 

the 8 vectors of the particular Gabor feature are calculated. The DBI is found as  
(std(BA)+std(FO)) / (mean(BA)-mean(FO)). 

 
 

In binary classification (i.e. BA vs. FO), for assigning a DBI to one Gabor 

feature there are 8 vectors (instances) of that Gabor feature (instances greater than 

number of features). Considering this process is conducted independently for 

each Gabor feature, the curse of dimensionality does not apply here, despite the 

very large number of total Gabor features. The most valuable features have the 

smallest DBI. Based on DBI, Gabor features are sorted in order of their relevance, 
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the indexes of the most valuable Gabor features are saved, and vectors of these 

Gabor features are used for training and testing. Figure 2.5 illustrates such an 

example. In 4-class classification, a conservative estimation of DBI is selected 

based on binary DBIs. This shall be explained in detail in chapter three. 

 
 

 
 

Figure 2.5: Gabor features are sorted based on their DBI (third column). The indexes of the 
most valuable subset of features (first and second column) are saved, and vectors of these 
Gabor features are used for training and testing. In the above example, the most valuable 

Gabor feature is from channel 18, frequency band 60Hand time step 625ms.  
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2.7. Discriminant analysis in high dimensional data 
 

One of the most common methods in designing a classifier, is the use of 

supervised machine learning. In this method, a classification object is created 

using labelled examples of each class. The performance of this classifier is tested 

using new data. Many classification algorithms have been used in BCIs [117]. 

The performance of each algorithm depends on the type of data.  

MATLABÔ provides a “Classification Learner” toolbox, which compares 

the performance of different algorithms. This toolbox can combine several weak 

classifiers to create an ensemble classification model with greater performance 

than any single algorithm [151]. One of the most common classifiers used for 

high-dimensional data is Linear Discriminant Analysis (LDA). Linear 

discriminant analysis is asymptotically optimal and has Bayes risk when the 

dimension of the feature space is fixed and the number of trials are sufficiently 

high [152]. However, when the number of trials is much smaller than the 

dimension of the feature space, LDA cannot be used as LDA computes class 

means and the covariance matrix, which might be unknown [153], or the 

covariance estimates may not have complete ranking, and cannot be inverted 

[154]. One solution to this problem is the use of Genetic Algorithms, which takes 

in an initial population, evaluates the fitness, selects fittest values, performs 

mutation, and finally makes a crossover to produce the next generation [155]. 
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2 Pseudo Linear Discriminant Analysis (PLDA)

Let the training set composed of C classes, and xij be a d -dimensional column

vector which denotes the j -th sample from the i -th class. The within-class and

between-class scatter matrices can be defined as:
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m̄ is the mean sample of the total training set, Ni is the number of training

samples for the i -th class and N (=N1 + N2 + . . . + NC) is the total number of

training samples from these C classes.

To calculate pseudo inverse S+
w , PLDA performs the Singular Value Decom-

position (SVD) [5] of Sw as:

Sw = Q1§QT
1 (7)

where § = diag(∏1,∏2, . . . , ∏k) contains the positive eigenvalues of Sw, k (gen-

erally equals N-C ) is rank of Sw and Q1 consists of the eigenvectors of Sw

corresponding to the k positive eigenvalues. According to [5], the pseudo inverse

of Sw is:

S+
w = Q1§

°1QT
1 (8)

Then PLDA calculates the eigenvectors of S+
w Sb corresponding to positive eigen-

values as the projection vectors.

Although simple in form, PLDA is expensive in both storage and compu-

tation. An analysis is given as follows: 1) the SVD in (7) can be calculated

indirectly [3] through applying SVD to HT
wHw first in O(dN2

) floating point

operations (flops) [5], and the space complexity is O(dN); 2) calculating the

eigenvalues and corresponding eigenvectors of S+
w Sb is expensive, since it costs

O(d3
) flops in computation and O(d2

) in storage. In total, the space and time

complexity for PLDA is O(d2
) and O(d3

) respectively. In such applications as

face recognition, the sample dimensionality d is typically large, e.g., for 100£100

face image, d equals 10000. As a result, it will cost several hundred Mega Bytes

(MB) to store the matrix S+
w Sb, and flops in the order of 10

12
to calculate its

eigenvalues and eigenvectors.

              

             

    

However, the most common approach for using LDA in high-dimensional 

data is the Pseudo LDA [157     sed in this work for 

supervised learning and classification. If the training set has C classes, and 𝑥!"is 

a d-dimensional matrix (j-th sample from i-th class) then the within class and 

between-class scatter matrices are presented as: 
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 Another approach to the problem of small number of trials is to use a naive 

Bayes version of the LDA, which is related to the diagonal LDA and assumes 

features to be uncorrelated [156] .   
  
  

, 220, 221, 222] and also u
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𝑚%  is the mean sample of the entire training set, 𝑁! is the number of training 

samples for the i-th class and N (=𝑁&+ 𝑁'+ . . . +𝑁() is the total number of 

training samples from these C classes. To calculate pseudo inverse 𝑆#), the PLDA 

finds the Singular Value Decomposition of 𝑆# as: 

 

                                                     2.6     
 

 

where Λ=diag( 𝜆&, 𝜆' , . . . , 𝜆* ) contains the positive eigenvalues of S# , 

k (usually equals N-C ) is rank of 𝑆# and 𝑄& consists of the eigenvectors of 𝑆# 

corresponding to the k positive eigenvalues. Then, the pseudo inverse of 𝑆# is: 

 

                                                                               2.7 

 

Then the PLDA algorithm finds the eigenvectors of 𝑆#)𝑆%  corresponding 

to the positive eigenvalues as the projection vectors. In this work, PLDA is used 

for classification. In order to determine if and how the curse of dimensionality is 

affecting classification, different sizes of Gabor feature subsets (20, 50, 100, 300, 

1000, ..., 4000) were used to demonstrate how performance is affected as a result.  
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2.8. Limitations of cross-validation  
 
With offline datasets, a common method for testing the performance of an 

analysis pipeline and a classifier is to use cross validation. The most common 

scheme is 10-fold cross validation, in which the data is divided into ten equal 

portions, and each time one portion is set aside only for testing and the training 

is performed using the rest of the data. The average performance of these ten folds 

is used to estimate classification accuracy. Using CV to estimate an error rate for 

a classifier which has also been trained using CV produces highly biased estimate 

of the true error. The correct approach for using CV for estimating true error of a 

classifier trained by a consistent analysis pipeline is for all steps of the pipeline, 

including classifier parameter tuning, be repeated in each CV loop [158]. 

 The bias in the estimated error found by cross validation is generally 

reduced if a larger sample size is used for training. studies based on predictive 

modelling require larger sample sizes compared to standard statistical 

approaches. As the sample size of the simulated data goes up, the estimation bias 

is significantly reduced [159].  

In chapter four, where block design is used, in addition to 10-fold cross 

validation, HV cross validation is used which separates test trials from training 

trials with number of buffering trials. The exact details are presented in chapter 

four.  
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2.9. Summary 
 
 Based on the literature presented in this chapter, the following points shall 

be addressed in the following chapters:  

• Selecting suitable covert speech tasks and designing a novel experimental 

protocol, which uses state of the art discoveries on the stages of word 

production and the spatial, temporal, and spectral signatures of each stage. 

The objective is to accurately target specific linguistic activities that are 

consistent, yielding high classification accuracy.  

• Using joint time-frequency analysis, which also maintains information on 

EEG channel location. To this end, the Discrete Gabor Transform is a 

suitable method to generate high-resolution features. 

• Due to the high resolution of the Gabor features, the dimensionality of the 

feature space is extremely high. To avoid the curse of dimensionality, a 

non-parametric cluster-based permutation with the use of DBI is selected. 

The DBI evaluates Gabor features one at a time, independent from other 

features and their total number. 

• Pseudo Linear Discriminant Analysis is used for classification as it has 

been shown to deal adequately with high dimensional feature spaces. In 

addition, different sizes of feature subsets will be used to determine the 

extent of the curse of dimensionality.  
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CHAPTER THREE: 
Motor Imagery vs. Covert speech 
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3.1. Introduction 

Motor imagery (MI) is a well-established paradigm in BCIs. The low-

frequency oscillations (< 35 Hz) elicited by “MI” activity, have been detectable in 

EEG for many decades. MI does not occur independently and is the end-result of 

many cognitive functions. For example, anticipating an onset cue and initiating 

“imagined” movement after cue recognition requires stimulus-driven executive 

control, with high-Gamma activity in regions such as the pre-frontal cortex [160, 

161]. To take advantage of such class dependent cognitive activity [162, 163], the 

entire bandwidth of the EEG signal must be utilized [164] (and not only Alpha 

and Beta bands). Covert word production begins with high-Gamma (>70 Hz) 

linguistic processing stages [40, 41, 48], followed by motor imagery of 

articulation [27, 34]. Language is exceedingly more complex than movement 

[165] and requires analysis with much higher resolution than traditional MI band 

power [166]. However, covert speech is more intuitive and natural for BCI 

communication compared to MI. In this chapter, four covert speech classes are 

selected based on meaning and phonetic properties. Four MI tasks in hands and 

feet are chosen. An experimental protocol and analysis pipeline is designed and 

evaluated by classifying both categories of mental activity: covert speech and MI. 

The performance of the system for each paradigm is calculated and the results are 

discussed. MI provides a well-established baseline to compare with covert speech. 
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3.2. Selecting covert speech tasks  

Brain-Computer Interface systems (BCIs) measure a user’s brain activity 

by employing a range of devices and methods, to determine the intent of the user. 

The measured brain activity may be consciously generated by the user, or may be 

an unconscious neural response to stimuli. Among the different measurement 

methods, EEG has many advantages, namely it is non-invasive, relatively cheap, 

and it provides relatively high time resolution [53]. The most commonly used 

cognitive task in EEG based BCIs is Motor Imagery, in which the cortical 

somatotopic representation of different parts of the body is measured. In theses 

systems, the user imagines moving a limb in a specific way, to generate a 

command [147, 167]. Although motor imagery provides a useful way to 

consciously generate distinguishable brain activity, it requires user training and 

changes in the imagined movement usually occur in time, which could lead to 

frequent errors in classification [168]. In addition, some disabled users may 

experience difficulty with motor tasks even if they are imagery-based [169]. 

Other cognitive tasks [170], such as mental navigation, covert tone production, 

solving a multiplication problem, imagining a 3D object, and covert syllable 

production (speech which is internally generated, but not articulated) have also 

been shown to generate distinct, task specific EEG patterns for BCI use [110, 

169, 171, 172]. Some reseachers have used a combination of covert syllable 

production and motor imagery [14, 17, 173]. In recent years, more attention has 
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been dedicated to BCIs based on linguistic tasks alone [7, 13, 15, 16, 18-20, 22, 

92, 164, 174-180]. Using EEG recordings and a range of processing methods 

[181], only pair-wise classification has been successfull, and for three classes, or 

more, the performance is not much better than chance [179, 182, 183]. Only 

ECoG based BCIs have successfully classified four covert speech clases [56, 184, 

185]. Considering the fact that speech is the most natural and intutitive form of 

human communication, and that language and cognition are closely related 

processes, a BCI system designed to understand commands,  covertly spoken in 

the user’s mind, is highly desirable. In addition to ease of use and intuitiveness, 

the manner of articulation  in each individual (their accent) is consolidated over 

time. Similar to Motor Imagery, covert speech tasks activate the same language 

motor centres of their overt form [46, 47]. However, their activity is attenuated 

during covert speech. As a result, covert speech is produced with the same 

consistency as overt speech, however detecting the attenuated activity of the 

language motor centres might be difficult.  

Figure 3.1, illustrates the functional division of the primary motor cortex, 

also known as the “Homunculus”. Speech production is the most complex motor 

skill, which takes many years to learn and master. Almost half of the Primary 

Motor Cortex is allocated to muscles producing speech, which reflects this 

complexity [186]. Each word uses a unique combination of language producing 

muscles when articulated. The selected covert speech tasks must be chosen to 
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maximise these differences in the Motor Imagery stage of speech, occuring 

approximately 600 ms post onset [27, 34]. 

 

Figure 3.1. The functional division of primary motor cortex based on [186], also known as 
the “Homunculus”. A significantly large proportion, controls muscles in the face, jaw, lips, 

tongue, and larynx responsible for speech. 
 

Dissimilar covert speech tasks also create distinctive neural activity 

associated with the Phonological Code Retrieval stage (Syllabification) of 

linguistic processing, which occurs approximately 200 ms post onset [187]. Most 

neocrtical territories in both hemisphers, as well as many subcortical brain regions 

are involved in language [165, 188]. Based on the unique cognitive neuroanatomy 

of each individual, the spatial, temporal, and spectral signatures may vary from 

person to person [39]. A linguistic BCI with four degrees of freedom, is sufficient 

for controling a smart device, or using a computer. In this study, the four directions 

(back, forward, left, and right) are shortened into “BA”, “FO”, “LE”, and “RY” 

and used as covert speech tasks. These phonemic structures are used as “non-

words” in the first half of the experiment. Participants are informed of the meaning 
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in the second half, converting the phonemic structures into “words”. Other than 

this, the first, and second half of the experiment are identical in every other way; 

making it possible to study the effects of assigning meaning on classification 

accuracy. These covert speech classes are cognitively appropriate directional 

commands, have little or no overlap with typical mind-wandering states, and 

provide an intuitive method of communication. For example, the user can move a 

cursor to the left by covertly speaking “LE”. In addition, these word classes are 

phonetically dissimilar, thus the motor planning for articulation is completely 

different for each. In order to demonstrate these differences in a quantitative 

manner, the properties of each consonant and vowel, such as place of articulation 

and manner of articulation [189, 190] are presented in figure 3.2. For example, the 

consonant /b/ is voiced, plosive, and bilabial. 

 

 

Figure 3.2. Properties of the consonants and vowels in the word classes such as place of 
articulation and manner of articulation. 
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3.3. Stages of word production  
 

Speech is the most natural and intuitive form of human communication. 

Language and cognition are closely related processes. A BCI system designed to 

understand commands covertly spoken in the user’s mind, is highly desirable. 

Most neocortical territories in both hemispheres, as well as many subcortical 

brain regions are involved in language [165]. EEG signals can successfully 

identify 200-600 Hz cortical spikes [191-193] for medical diagnostic 

applications. In artefact-free conditions, EEG signals accurately measure 

induced/evoked high-Gamma brain activity, up to 150 Hz  [35, 36, 38, 194]. 

Based on the unique cognitive Neuroanatomy of each individual, the spatial, 

temporal, and spectral patterns of activity may vary from person to person [39].  

Word production begins with semantic (conceptual preparation), lexical 

(Lemma retrieval), and phonetic (phonological code retrieval and syllabification) 

linguistic processes, followed by planning the movements of language muscles 

(phonetic encoding) for articulation [27, 34].  

Linguistic phonetic processing is an automatic brain function, which elicits 

high-Gamma (70-160 Hz) oscillations [40, 41]. In each individual, Phonetic 

processing activity for a specific word does not change over time [42, 43] and is 

not affected by priming, cognitive activity, or task frequency [44, 45]. In contrast, 

semantic and lexical processing, is affected by task frequency, priming, and 

cognitive activity [9, 10, 25], which would also arbitrarily shift the temporal 
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course of all following functions. These problems can be avoided by using a 

suitable experimental protocol. 

In covert speech, the manner of articulation in an individual (their ‘accent’) 

is consolidated over time. Covert articulation tasks activate the same language 

motor centres as their overt form [46, 47]. As a result, covert speech is produced 

with the same consistency as overt speech. However, in covert speech, the activity 

of the Primary Motor Cortex is greatly attenuated [48] and may be difficult to 

detect by EEG. Speech production is the most complex motor skill, which takes 

many years to learn and master. Almost one third of the Primary Motor Cortex is 

allocated to muscles producing speech, which reflects this complexity [186].  

Phonetically dissimilar covert speech tasks create distinctive neural 

activity associated with the phonological code retrieval and syllabification stages 

of linguistic processing [187] and involve different language muscle 

combinations during covert articulation. A linguistic BCI with four classes is 

sufficiently capable of controlling a smart device with a suitable user interface. 

In this study, the four directions (back, forward, left, and right) are shortened into 

Phonemic structures “BA”, “FO”, “LE”, and “RY” and used as covert speech 

tasks. These covert speech classes are cognitively appropriate directional 

commands, have little or no overlap with typical mind-wandering states, and 

provide an intuitive method of communication. For example, the user can move 

a cursor to the left by covertly speaking “LE”. In addition, these Phonemic 

structures are phonetically dissimilar.  
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If the word class is known by the user before the trials, the conceptual 

preparation stage will be completed in advance. The Lemma selection stage, with 

multiple competing lemmas will have temporal inconsistencies. If trials are 

recorded in blocks, only one Lemma is activated and selected. In block 

recordings, the same auditory time cue, in the form of a “beep’ sound, can be used 

for task onset in all word classes, thus eliminating class-dependent auditory 

evoked responses from trials. By consolidated the semantic and lexical activities, 

conceptual preparation and lemma selection are complete before task onset. As a 

result, trials only contain automatic phonetic linguistic processing stages, and will 

not be affected by the temporal inconsistency of cognitive activity. Mental effort 

causes activation of scalp and neck muscles [195], which can mask high-Gamma 

cortical components. In this work, no mental effort is required from the user 

during trials. These conditions can be easily reproduced for the online application 

of this Linguistic BCI, with the same block recordings used for training. 

After cue recognition (~100ms post-onset), the following stages are [48]: Lemma 

activation (~100-175ms post-onset), phonological code retrieval (~175-250ms 

post-onset) and syllabification (~250-300ms post-onset). Covert articulation 

(~500-800ms post-onset) and the corresponding Motor imagery activity, are 

separated from the linguistic stages by a ~200ms interval, during which covert 

articulation is designed by an internal perceptual process using the working 

memory and the somatosensory association cortex [39]. 
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3.4. Designing experimental protocol 

In this chapter, each recording run contains four classes, which are shown 

in the user interface by four arrows: up, down, left, and right. Within a recording 

run, 10 examples of each task are presented in a random order (each run has 40 

trials) to avoid user fatigue. During recording, a new task is determined by an 

arrow appearing on the screen for 3 seconds. After the arrow disappears, there is 

a 3 second standby state. Task onset is presented as a beep sound for all classes. 

A second beep indicates a rest period before the next trial. The experimental 

protocol is presented in figure 3.3.  

 

 

Figure 3.3. The experiment protocol for recording four randomly presented trials. Each class 
corresponds to a directional arrow. After task presentation, a beep sound is used for all 

classes as task onset. A second beep indicates a rest period before the next task. 

   
 

Each user completes two recording runs, which are identical in every way 

except for type of mental task (MI, covert speech). For MI tasks, the four arrows 

represent left hand movement (left arrow), right hand (right arrow), left foot 

(down arrow), and right foot (up arrow). In covert speech tasks, the user imagines 

speaking the phonemic structures: BA (back/down arrow), FO (forward/up 
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arrow), LE (left arrow), and RY (right arrow), which are phonetically very 

dissimilar tasks [196]. 1-second epochs sufficiently capture both linguistic 

activities and motor imagery activities for both paradigms. 

 

3.5. Data acquisition and pre-processing 

Four neurologically healthy volunteers participated in this experiment. The 

EEG signals were recorded using an Enobio dry electrode system with 20 

channels and 10/10 configuration [197]. Data was recorded at a sampling rate of 

500 Hz and saved in “gdf” format. Compared to wet electrode systems, setting 

up the Enobio is extremely easy. However, the quality of recorded signals may 

restrict the number of classes it can use simultaneously. This study provides an 

evaluation of the system’s capability. Recorded data was pre-processed using 

EEGLAB [122]. Data was down sampled to 256Hz and re-referenced using 

common average. Line noise was removed with a FIR notch filter (49.5,50.5Hz). 

The AAR toolkit [123] was used for artefact rejection. EOG and EMG artifacts 

were reduced, with SOBI [198] and CCA algorithms [199], respectively. These 

methods outperform ICA, which is ineffective beyond 70 Hz [200, 201]. One-

second epochs were extracted from the pre-processed data and saved as a numeric 

matrix for further analysis. Details of data acquisition and pre-processing are 

presented in appendix B. 
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3.6. Feature generation and subset selection 

The Discrete Gabor Transform [202, 203] was used to generate features. 

The original data can be reconstructed from the features with no information loss. 

Each Gabor coefficient contains information on both time and frequency. In this 

chapter, a time step of 0.015625 seconds (1-second trials, 64 steps) and a 

frequency band of 2Hz (0-128Hz range, 64 bands) is used for the DGT.  

For one trial, using the DGT, EEG data from one channel (256 samples) is 

converted into a 64x64 coefficient matrix (2Hz bands 0-128Hz, and 64 time-steps 

in  1 second). So, for all 20 channels, the dimension of the Gabor feature space 

is 1280x64. Using this definition, the indexes of the Gabor features contain 

information on the EEG channel recording the data, frequency band of the 

feature, and time of feature. For example, Gabor feature with indexes 32x65 is 

linked to time 0.5 seconds, channel 2 (1 through 64 are in channel one, 65 through 

128 in channel 2, and so on), frequency band 2Hz.  

Instances of a Gabor feature in different trials (the respective Gabor 

coefficient value in that trial) are referred to as “vectors” of that Gabor feature. 

So, in each trial, there are 81,920 vectors (64x81920) and for each user, there are 

ten trials containing 819,200 vectors in total. Figure 3.4 demonstrates the Gabor 

feature space for one trial. 
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Figure 3.4: The feature space for one trial. EEG data from 20 channels for one trial 
is converted into 81,920 Gabor features (20 channels * 64 frequency-bands * 64 time-steps). 
 

Figure 3.5 presents the definition of the Discrete Gabor Transform.  

 

 

Figure 3.5: Definition of Gabor coefficients by implementation of the direct discrete Gabor 
transform and a Gaussian window function. 

 

Classification true positive rate is estimated by a 5-fold cross validation 

process [204]. In each fold, 8 trials are used for feature selection and training the 

classification object, and 2 trials are set aside for testing. The most valuable Gabor 

features for distinguishing four classes are discovered by the Davies-Bouldin 
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index [205]. The process of finding two-class DBIs has been explained in section 

2.6 and illustrated in figure 2.4. For calculating 4-class DBI, the process focuses 

on one Gabor feature at a time, completely independent of other Gabor features. 

In this chapter, 8 out of ten trials are used for training. Figure 3.6 shows the 

selection of vectors of the same Gabor feature in all four classes. 

 

              
                  

   
 

 
Initially, all pairwise DBIs are calculated (BA-FO, BA-LE, BA-RY, RY-

FO, RY-LE, FO-LE). For example, DBI(BA-FO) is found by calculating  

       

              
                 

                          

              
                 

          

Figure 3.6: DBI is calculated for one Gabor feature at a time, independently. For example, 
vectors of the top right Gabor feature in all classes for all 8 training trials are used to find 
DBI. The curse of dimensionality does not apply here as only mean and standard deviation 

of 8 vectors are used for a single Gabor featurein in each class.
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(std(BA)+std(FO)) / (mean(BA)-mean(FO)), where std(BA), and mean(BA) are 

the standard deviation and mean of the 8 green vectors in figure 3.6 respectively. 

The four-class DBI is a conservative approximation based on the two-class DBIs:  

 

     

     

     

     

       

 

Figure 3.7: Definition of the Davies-Bouldin index for 4 classes. The most valuable features 
have the smallest DBI. 

 

Like figure 2.5, Gabor features are sorted and ranked based on their DBI, 

the 3K most valuable Gabor features (from a total of 81,920 per trial) are 

identified. Vectors of these Gabor features (Gabor coefficients located at the same 

indexes), within the training trials (8 out of 10 trials in each classification fold) 

are used to train the Pseudo-LDA classifier. Vectors of the same Gabor features 

  

  

  

    

     

DBI_ALL=0.25*(max([DBI_BA_FO, DBI_BA_LE, DBI_BA_RY])+  

max([DBI_BA_FO, DBI_LE_FO, DBI_RY_FO])+  

max([DBI_BA_LE, DBI_LE_FO, DBI_LE_RY])+ 

max([DBI_BA_RY, DBI_RY_FO, DBI_LE_RY]));  

which is defined in figure 3.7.
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3.7. Classification accuracy and analysis of results 
 

The true positive rates for one class vs. all, are estimated as the mean and 

standard deviation of the five-fold cross validation process. Table 3.1 contains 

these results for the four participants and both types of cognitive task. The reader 

should kindly consider that the objective of this study is not to maximize 

classification accuracy. The experimental protocol and analysis pipeline provided 

identical environments for both paradigms, while identifying the most important 

activities related to the selected features.  

 Covert Speech Motor Imagery 

User 1 85 ± 33.3 80.1 ± 32.7 

User 2 80.5 ± 30.8 68.5 ± 28.1 

User 3 87.3 ± 21.2 83.4 ± 33.4 

User 4 78 ± 18.9 78 ± 30.9 

Average 82.5 ± 24.1 77.2 ± 31.2 

 
Table 3.1. True positive rates of one class vs. all. These are estimated using a five-fold cross 
validation process. With four classes, the average performance is significantly higher than 
chance level for both paradigms, suggesting that the results are meaningful, despite being 

imperfect. 

                

             

            

within the testing portion of the data (2 out of 10 trials per classification fold) are 

used to test the performance of the PLDA classifier. The PLDA has been 

described in detail in section 2.7 in the previous chapter. The 4-class DBI,which 

is based on binary DBI is also immune from the curse of dimensionality.
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To demonstrate feature separability of covert speech tasks, vectors of the 

Gabor features (Gabor coefficients) in one trial are plotted for each of the four 

classes, and presented in figures 3.8, 3.9, 3.10, and 3.11 for users 1, 2, 3, and 4 

respectively. The vertical axis has 64 time-steps, and the horizontal axis has 1280 

points from (20 channels with 64 bands per channel). There are visible differences 

in the patterns. 

 
 

Figure 3.8: Vectors of the Gabor features from covert speech tasks of one trial, recorded 
from user 1. The vertical axis has 64 time-steps, and the horizontal axis has 1280 points from 

20 channels with 64 frequency bands per channel. 
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                              BA                                                                      FO 

  
                             LE                                                                       RY 
 
3K most valuable Gabor features from covert speech tasks used for the classification of one 
trial, recorded from user 1. The vertical axis has 64 time-steps, and the horizontal axis has 

1280 points from 20 channels with 64 frequency bands per channel. 
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Figure 3.9: Vectors of the Gabor features from covert speech tasks of one trial, recorded 
from user 2. The vertical axis has 64 time-steps, and the horizontal axis has 1280 points from 

20 channels with 64 frequency bands per channel. 
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                                BA                                                                     FO 

  
                                LE                                                                     RY 
 
3K most valuable Gabor features from covert speech tasks used for the classification of one 
trial, recorded from user 2. The vertical axis has 64 time-steps, and the horizontal axis has 

1280 points from 20 channels with 64 frequency bands per channel. 
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Figure 3.10: Vectors pf the Gabor features from covert speech of one trial, recorded from 
user 3. The vertical axis has 64 time-steps, and the horizontal axis has 1280 points from 20 

channels with 64 frequency bands per channel. 
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                                BA                                                                    FO 

  
                               LE                                                                      RY 
 
3K most valuable Gabor features from covert speech tasks used for the classification of one 
trial, recorded from user 3. The vertical axis has 64 time-steps, and the horizontal axis has 

1280 points from 20 channels with 64 frequency bands per channel. 
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Figure 3.11: Vectors of the Gabor features from covert speech tasks of one trial, recorded 
from user 4. The vertical axis has 64 time-steps, and the horizontal axis has 1280 points from 

20 channels with 64 frequency bands per channel. 
 
 

With four classes, the classification accuracy is significantly higher than 

chance level for both paradigms, suggesting that the results are meaningful, 

despite being imperfect. The outstanding times and frequencies, based on the 

number of times they have been identified in the most valuable Gabor features, 

in all validation folds, for all users are sown in figure 3.12. As expected, valuable 
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                                BA                                                                     FO 

  
                                LE                                                                      RY 
 

Dry electrodes: 3K most valuable Gabor features from covert speech tasks used for the 
classification of one trial, recorded from user 4. The vertical axis has 64 time-steps, and the 

horizontal axis has 1280 points from 20 channels with 64 frequency bands per channel. 
 
 

 

 

 

With four classes, the classification accuracy is significantly higher than 

chance level for both paradigms, suggesting that the results are meaningful, 

despite being imperfect. The 60K features identified in the motor imagery 
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class dependent activity is not limited to the Alpha and Beta bands. In addition, 

the nominal bandwidth of (1-125) Hz given by Enobio is confirmed, as valuable 

vectors are identified in the entire frequency range.  

 

 

Figure 3.12: The cumulative joint time-frequency plot containing the most valuable 60K 
features identified in the motor imagery experiments (4 users, five validation folds, and 3K 

vectors per fold). The (0.73,0.875) second band contains 15.1% of vectors.  
 

For motor imagery tasks in this experiment 15.1% of all the most valuable 

vectors are significantly concentrated within the (0.73-0.875) second range. This 

time period corresponds with performing imagined movements and the 

suppression of the Primary Motor Cortex (stopping actual movements) via “goal 
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driven executive control”. Such executive control involves high-frequency 

cognitive activity in brain regions such as the Superior Parietal Cortex and the 

Pre-Frontal Cortex [160, 161]. 23.2% of all the most valuable vectors are within 

the Alpha and Beta bands (MI). The other 76.8% of the vectors are in the Gamma, 

and high-Gamma bands (cognitive functions). This suggests that in motor 

imagery tasks, cognitive functions generate a significantly greater amount of 

class dependent activity compared to the execution movement. In Figure 3.13 the 

outstanding times and frequencies, based on the number of times they have been 

identified in the most valuable Gabor features, in all validation folds, for all users 

(3K/fold, 4 users, 5 folds/user=60K) are shown for covert speech experiments.  

 

 
Figure 3.13: The cumulative joint time-frequency plot containing the most valuable 60K 

Gabor features identified in the covert speech experiments (4 users, five validation folds, and 
3K features per fold). 48.8% of these are above 70 Hz. The (0.73,0.875sec) band is not as 

prominent as the MI paradigm from figure 3.12. 



 77 
 

 
 

 

48.8% of these vectors are above 70 Hz, which correspond with the 

linguistic processing functions [48]. These linguistic functions, which are entirely 

class dependent, do not exist in motor imagery. This provides a possible 

explanation for the higher classification accuracy of covert speech tasks (82.5%) 

compared to motor imagery tasks (77.2%) in an identical environment, 

considering there is a direct positive correlation (with R=0.8822 and P=0) 

between their performances. Considering that tasks are identified before trials 

begin, the cognitively demanding linguistic functions (conceptual preparation, 

Lemma selection) are completed before onset. The linguistic functions occurring 

within trials (phonological code retrieval, syllabification) are performed 

automatically by the brain [27] and require no user effort. All other cognitive 

functions within trials (executive control, imagined movement) are also present 

in MI tasks. As a result, the cognitive effort of using covert speech tasks and MI 

tasks are virtually identical in this study. 

 

3.8. Discussion 
 
The linguistic processing stages of word production prior to articulation, 

which are entirely class-dependent, consist of conceptual preparation, Lemma 

selection, phonological code retrieval, and syllabification [39]. By incorporating 

difference in meaning, and difference in phonetic structure, for selecting covert 

speech tasks, class separability can be significantly enhanced. In this experiment, 
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linguistic class separability is maximized by selecting phonetically dissimilar 

covert speech classes [196]. This explains the superior performance of covert 

speech tasks compared to MI tasks in the otherwise identical environment 

designed in this study.  

 Linguistic studies using intra-cranial implants have demonstrated that 

these linguistic processing stages have high-Gamma signatures in the (70-170Hz) 

range [23-25, 34, 206]. As bandwidth of EEG systems increases and EMG 

removal algorithms become more reliable, covert speech BCIs will become much 

more capable. Although other BCI systems (such as MI) will also improve, 

language, which is the most intuitive and natural form of human communication, 

would logically be the preferred paradigm of choice for a BCI. In this chapter we 

used mixed randomized recording sessions containing all four classes.  

In order to test the hypothesis that classification accuracy of the covert 

speech tasks has been achieved by chance, accuracies obtained on the baseline 

resting state data, and on data with random label permutations are calculated 

using the same analysis pipeline. This allows the evaluation of the obtained actual 

class data classification accuracy against the chance level accuracy. As seen in 

table 3.2, the rest state accuracy from 1 second pre-cue data, and that of data with 

randomized labels are close to chance level. Thus, the above hypothesis is 

rejected. 
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 Covert speech 1s epoch  1 second pre-cue  Randomised Labels 
User 1 85 ± 33.3 27.5±20.5 20±18.9 
User 2 80.5 ± 30.8 25±8.83 17.5±14.2 
User 3 87.3 ± 21.2 17.5±6.8 17.5±11.1 
User 4 78 ± 18.9 20±6.9 20±11.1 

Average 82.5 ± 24.1 22.5±10.75 18.75±13.8 
 

Table 3.2: classification accuracy for four covert speech tasks “BA”, “FO”, “LE”, and 
“RY” are presented in the first column.. 1-sec pre-cue (Idle) performance, and randomised 

labels performance are below chance level. 
 
 
 
             

          

         

          

  

 
 

  1 to 2 sec 2 to 3 sec 3 to 4 sec 4 to 5 sec 
User 1 30±18.9 22.5±10.4 35±5.5 29±11.1 
User 2 20±6.8 12.5±12.5 20±14.2 25±8.8 
User 3 17.5±11.1 22.6±16.2 10±10.4 17.5±6.8 
User 4 20±18.9 35±10.4 22.5±20.5 27.5±10.4 

Average 21.9±13.9 23.2±12.4 21.8±12.7 24.8±9.2 
  

Table 3.3: The time course of accuracy after cue, excluding the first trial containing 
Linguistic activity. 

 
 
 

Finally, to demonstrate that the Pseudo-LDA classifier is not affected by 

the curse of dimensionality when 3K Gabor features are used, the performance 

for fewer Gabor features are calculated. As seem in table 3.4, with the increase in 

the number of Gabor features, performance increases consistently and steadily.  

 
 

       

       
 In addition, to demonstrate that the only time range in the data with high 

feature seperability is only within the task duration (0-1sec post-onset), 

classification accuracy for trials 1-2 sec, 2-3 sec, 3-4 sec, and 4-5 sec post-onset, 

are calculated. As seen in table 3.3, the classification accuracy for all these 

rest-state trials is close to chance level.
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 20 features 100 features 300 features 1000 features 2000 features 3000 features 
User 1 67.5±18.9 57.5±14.2 60±22.3 77.5±29.8 82.5±32.5 85 ± 33.3 
User 2 47.5±18.5 77±24 80±32.5 82.5±25.9 80±31.3 80.5 ± 30.8 
User 3 40±10.4 57.5±14.2 67.5±16.7 87.5±15 90±16.2 87.3 ± 21.2 
User 4 57.5±16.7 60±5.5 72.5±13.6 75±19.7 75±15.3 78 ± 18.9 

Average 53.1±16.1 63±14.5 70±21.3 80.6±22.6 81.9±23.8 82.5 ± 24.1 

 
Table 3.4: Predicted performance with 3000 vectors vs. performance with less vectors using 

Pseudo Linear Discriminant Analysis. As more vector are used, performance increases 
steadily and consistently.   

 
 
 

       

               

       

         
  

 Table 3.4 will us to compare the estimated performance and the real-world 

performance of the BCI in chapter five, to see if there is overfitting, and if so, to 

what extent this is true. 

 

   

      

        

       

 

            

            

              

              

         

      

      

Finally, to completely reject the Null Hypothesis, for each user, within each 

validation fold, 100 randomised lable tests are performed. the average of these 

100 randomised tests are compare with the correct lable test. These are shown in 

table 3.5. The grand average spectrogram for each user for each class in the 

central channel Cz are presented in figures 3.14 to 3.17. There are clear 

differences in the plots for each class. Although feature power is not used for 

classification and the lower frequency bands are much more visible in the plots, 

there are still clear differences in the plots for each class.



 
 
 
 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5  

User 1 Correct 100 87.5 100 87.5 50 P-value=0.0079 
h=1 Random 21.5 19.38 20.63 21.75 16.75 

 

User 2 Correct 87.5 87.5 75 100 50 P-value=0.0081 
h=1 Random 17.5 18.13 17.25 17.62 17.12 

 

User 3 Correct 100 100 87.5 100 50 P-value=0.0082 
h=1 Random 18.37 17.25 17.5 17.87 16.62 

 

User 4 Correct 100 87.5 75 75 50 P-value=0.008 
h=1 Random 21.5 18.75 19.62 20.62 19.5 

 
 

Table 3.5: Rejecting Null Hypothesis: For each user, within each of the 5 cross validation 
folds, the performance is tested with randomised labels 100 times. The average of these 100 
tests with randomised labels is shown under the performance with correct labels for each 

cross-validation fold. Wilcoxon rank-sum tests are performed. The value of h=1 rejects the 
null hypothesis suggesting the results are indeed statistically significant and have not been 

achieved by chance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

81

 

Amir Jahangiri

Amir Jahangiri



 
                              BA                                                                      FO 

 
                             LE                                                                         RY 
 

    
  

     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                          
 

60

0

60

30

5
128 0

1

60

0

50

25

5

128 0

1

60

0

60

30

5

128 0

1

100

0

90

45

20

128 0

1

DB
DB

DB DB

Frequency Hz Frequency Hz

Frequency Hz Frequency Hz

Time sec Time sec

Time sec Time sec

82
Click here 
Back to list

Figure 3.14: User 1: Grand average spectrogram of each class from all 10 trials and 
all channels.
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Figure 3.15: User 2: Grand average spectrogram of each class from all 10 trials and 
all channels.
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Figure 3.16: User 3: Grand average spectrogram of each class from all 10 trials and 
all channels.
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Figure 3.17: User 4: Grand average spectrogram of each class from all 10 trials and 
all channels.
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4.1. Refining the experimental protocol 

 In chapter three, the experimental protocol was designed to show the user 

the next task in advance. As a result, the conceptual preparation and lemma 

selection stages of linguistic processing is completed. The, a constant stand-by 

period of 3 seconds was used. The user could guess the time of activation cue in 

advance, and as a result, the phonological code retrieval and syllabification stages 

of linguistic processing would be completed before the start of trials. The only 

activity recorded in these trials would be the motor imagery of articulation. In 

this chapter, the stand-by period after representing the next task, and prior to the 

onset cue, is a random duration of 3-7 seconds. This is critically important.  

As a result, after conceptual preparation and lemma selection, the user 

waits for cue recognition, to perform the remaining activities. Such trials would 

contain signatures of cue recognition, and the remaining linguistic processing 

stages, which are phonological code retrieval, syllabification, and planning 

movements for motor imagery of articulation. 1-second trials would contain all 

these stages. Auditory cue recognition, phonological code retrieval, and 

syllabification are complete within 300ms. By using trials with 312ms duration, 

only linguistic activity is recorded, and trials are complete before motor imagery 

of articulation has even begun. By comparing 1-second trials as a baseline, to 

312ms trials, the contribution of motor imagery of articulation to classification 
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compared to linguistic activity alone, is studied. Figure 4.1 presents the refined 

experimental protocol.  

 

 

Figure 6.1. Imagination protocol. The user imagines speaking a word when an auditory cue 
in the form of a beep is presented. One second after each cue are used for the first 

experiment, and 312ms for the second. A random rest period of 3-7 seconds occurs between 
trials. This sufficiently separated the tasks from one another. Also, the random duration 
prevents the user from anticipating the task onset based on rhythm. As a result, the next 

stages of linguistic functions begin exactly after cue recognition and the system is perfectly 
synchronized. 

 
4.2. Methods  

 
This study was conducted with 10 neurologically healthy volunteers in the 

age group of 21-33. All volunteers signed a consent form based on the 

recommendations of the Ethical Committee of the University of Essex. 

Participants were seated in a comfortable armchair. The experiment consists of 4 

recording runs for a participant, each containing 30 trials of only one class. For 

all classes, an identical “beep” sound was used as the auditory cue.  

The EEG signals were recorded using a 64 channel Biosemi ActiveTwoTM 

system [207]. One computer generated the graphical user interface and sent 
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trigger signals to the ActiveTwo device at the instant a time cue was presented to 

the user. The triggers were sent via the parallel port and were visible in the 

recorded data. A second computer saved the EEG recordings and was connected 

to the ActiveTwo’s A/D box via USB. Electrode placement was done per the 

international ABC system, which for 64 channels corresponds to the 10/10 

system. The ActiveTwo has a pre-amplifier stage on the electrode and can correct 

for high impedances. However, the offset voltage between the A/D box and the 

body was kept between 25mV and 50mV as recommended by the manufacturer. 

The data were recorded at a sampling rate of 2048 samples/s, with guaranteed 

data frequency content of 0-409Hz according to BioSemi.  

The pre-processing was done with the use of EEGLAB [122], Similar to 

the previous chapter, and the description in appendix A. The final stage of pre-

processing is extracting epochs from the continuous EEG recordings. Each epoch 

begins when beep sound is generated and ends exactly one second (or 312ms for 

shortened trials) later. 

            

             

              

             

              

  

 The Discrete Gabor transform is used for feature extraction in this chapter 

also. A time-step of 0.03125 seconds (32 steps per second) and frequency band 

of 2Hz (64 frequency bands) were chosen. A 1-second epoch from a single EEG 

channel (256 samples) is converted into a 64x32 matrix. For the 312ms trials 

(80 samples), one epoch from one channel is converted into a 64x10 matrix.
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For the 312ms trials, there are 10 time-steps, 64 channels, and 64 frequency 

bans, and the Gabor feature space for one trial has the dimension of 10x4096 as 

seen in figure 4.2. There are 30 trials, and a total of 1,220,700 vectors of these 

Gabor feature (40960 vectors per trial x 30 trials). 

 

 
 

Figure 4.4: The Gabor feature space for the 312ms trials. There are 10 time-steps, and 64 
channels containing 64 frequency bands each. 

 
 

            

             

              

                 

  

The mean and standard deviation of a 10-fold cross validation process 

[204] were used to estimate the true positive rate. For each validation fold, 27 

trials were used for training, and 3 remaining trials were set aside for testing only. 

Testing trials change from one validation fold to the next, and over 10 folds, all 

 Feature selection using DBI is performed in a similar manner to the 

previous chapter. The only difference is that the most valuable 4K Gabor features 

are selected. Similarly, the DBI for each Gabor feature is found by using vectors 

of that Gabor feature in the training data (27 out of 30 trials this chapter) for all 

four classes.
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30 trials are used at least once in testing. The process of cross validation, feature 

selection, training, and testing used in this work is presented in figure 4.5.  

Pseudo-Linear discriminant analysis was applied for classification, as it 

consistently out-performed all other supervised machine learning methods, for 

EEG recorded covert speech data [208]. Compared to the training process, the 

computational cost of testing is negligible.  

 

 
 

Figure 4.5 The process of cross validation, feature selection, training, and testing used in this 
work is presented here. The grand average true positive rate is the mean and standard 

deviation of “Accuracy_1” through “Accuracy_10”. 
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4.3 Results 
 

 
The true positive rates of one word vs. all classified by PLDA, are 

generated by a standard ten-fold cross validation method. Table 4.1 presents these 

values for 1-second epochs, and for 312ms epochs. By eliminating the covert 

articulation stage from trials, the relative contribution of Motor Imagery of speech 

and linguistic processing stages, in classification accuracy can be determined.  

 

 

Table 4.1: The true positive rates of one word vs. all, estimated by a ten-fold cross validation 
method. Eliminating the covert articulation stage from analysis has less than 2% effect on 

grand average classification accuracy. Considering the Wilcoxon p-value of 0.9269, 
compared to the high-Gamma linguistic processing stages, the contribution of motor imagery 

of articulation in class separation of covert speech tasks from EEG data is negligible. 
 

The Wilcoxon rank-sum test on both columns returns a p-value of 0.9269. 

By using 312ms trials instead of 1-second trials to exclude covert articulation, the 
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computational cost is reduced to one third, with less than 2% penalty in 

classification accuracy. During covert speech, the language motor regions are 

suppressed, but not completely deactivated [48]. As a result, during the covert 

articulation stage, there will be minute involuntary muscle movements related to 

each phonemic structure, which will create class-related, high-Gamma 

Myoelectric artefacts. The 312ms trials are complete before the covert 

articulation stage begins (~500ms post onset) and are guaranteed to be free from 

class-related EMG. Possible involuntary early muscle ticks (i.e. lip movements 

~160ms after cue) can cause significant EMG contamination. The CCA algorithm 

used here, only removes such artefacts from the first 400ms of data (312ms trials 

included) [209].  

As seen in table 4.1, the contribution of motor imagery of articulation, 

compare to that of the linguistic processing stage, in classification accuracy is 

negligible. So, the experimental settings and analysis pipeline for the 312ms trials 

are chosen as the final design option for use in an online system in the next 

chapter. To demonstrate feature separability of covert speech tasks, the vectors 

of Gabor features (Gabor coefficients) from one trial, and for all four classes are 

presented in figures 4.6 to 4.15, for users 1 to 10 respectively. There are visible 

differences in the patterns of the vectors for each word class.  
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Figure 4.6: Vectors of the Gabor features from covert speech tasks of one trial, recorded 

from user 1. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points from 
64 channels with 64 frequency bands per channel. 
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Figure 4.7: Vectors of the Gabor features from covert speech tasks of one trial, recorded 

from user 2. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points from 
64 channels with 64 frequency bands per channel. 
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Figure 4.8: Vectors of the Gabor features from covert speech of one trial, recorded from user 

3. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points from 64 
channels with 64 frequency bands per channel. 
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Figure 4.9: Vectors of the Gabor features from covert speech tasks of one trial, recorded 

from user 4. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points from 
64 channels with 64 frequency bands per channel. 
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Figure 4.10: Vectors of the Gabor features from covert speech of one trial, recorded from 
user 5. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points from 64 

channels with 64 frequency bands per channel. 
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Figure 4.11: Vectors of the Gabor features from covert speech tasks of one trial, recorded 

from user 6. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points from 
64 channels with 64 frequency bands per channel. 
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Figure 4.12: Vectors of the Gabor features from covert speech tasks of one trial, recorded 

from user 7. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points from 
64 channels with 64 frequency bands per channel. 
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Figure 4.13: Vectors of the Gabor features from covert speech tasks of one trial, recorded 

from user 8. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points from 
64 channels with 64 frequency bands per channel. 
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Figure 4.14: Vectors of the Gabor features from covert speech tasks of one trial, recorded 

from user 9. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points from 
64 channels with 64 frequency bands per channel. 
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Figure 4.15: Vectors of the Gabor features from covert speech tasks of one trial, recorded 
from user 10. The vertical axis has 10 time-steps, and the horizontal axis has 4096 points 

from 64 channels with 64 frequency bands per channel. 
 
 

 

4.4. Time, frequency, and location of Linguistic activity 
 

             

           

               

                

              

           

              

            

   

 Each Gabor feature is linked to a frequency band, time step, and EEG 

electrode. The outstanding times, frequencies, and locations based on the number 

of times they have been identified in the most valuable 4K Gabor features, in 

each of the ten validation folds, for each of the ten users (4e5 in total) are sown 

in figure 4.16. 
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The most significant regions are the Prefrontal Cortex [160] (stimulus 

driven executive control), the left Superior Temporal Gyrus [39] (Wernicke’s 

area, phonological code retrieval), the right, and left Inferior Frontal Gyrus [39] 

(Broca’s area, syllabification).  

   

   

 
Figure 4.16: The cumulative colour-coded joint time-frequency representation of 4e5 Gabor 

features, 312ms trials (Left). The associated topographical plot (Right). Most important 
regions: Prefrontal Cortex, left STG (Wernicke’s area), right, and left IFG (Broca’s area).  

 

 

Information from the indexes of the 4e5 Gabor features identified in the 312ms 

trials are cumulatively placed in the 64x10 colour coded time-frequency 

plot (312ms, 0-128Hz) and used to create a topographical map of the brain 

based on the location of the EEG electrodes [210, 211].
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Using the same Gabor features as figure 4.16, to demonstrate the sequence 

of neural activations, topographical plots with 62ms intervals are created and 

presented in figure 4.17. Each plot only uses the information from Gabor features 

which lie inside the specified time period. 

 

 

Figure 4.17: Topographical maps of brain regions generating the most distinctive Gabor 
features within the indicated 62ms interval. The plot for the 248-312ms interval indicates the 

early stages of perceptual planning, before activation of the SMA (~500ms) and covert 
articulation.  

 

The sequence of activation is as follows [39]: 

• [0-62ms] Left, and right Auditory Cortex: response to auditory cue. 

• [62-124ms] Prefrontal Cortex [160]: Stimulus-driven executive control, 

initiating covert speech with auditory cue recognition (100ms). Left 

Middle Temporal Gyrus: Lemma activation (100-124ms). 

• [124-186ms] left Superior Temporal Gyrus: Phonological code retrieval. 

• [186-248ms] Left and right Inferior Frontal Gyrus: syllabification. 

• [248-312ms] Left inferior, and Superior Parietal Cortex [160]: Goal-driven 

executive control, by suppressing the Primary Motor Cortex, and activating 

an internal perceptual planning process [5, 29, 30, 212].  
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The syllabification stage is completed sooner than estimated, and the 312ms 

trials contain the very early stages of perceptual planning. However, the covert 

articulation stage, which occurs after the activation of the Supplementary Motor 

Area [39, 213], is excluded from shortened trials as intended. In the 312ms trials, 

the spatial, temporal, and spectral properties of the 4e5 most valuable Gabor 

features identified from 10 participants, correspond to the automatic linguistic 

processing stages of word production prior to articulation, and are supported by 

a substantial body of evidence [23-25, 27, 39-43, 46, 47, 187, 212].  

 
 

4.5. Discussion  
 
 
In chapter three, trials were recorded in a mixed randomised sequence 

[214]. In this chapter, trials were recorded in 4 blocks (30 trials of one class per 

block) to reduce recording time (7-8 mins) and prevent user fatigue, as recording 

120 trials in a single run, required 25-30 minutes.  

To demonstrate there are no drifts in the EEG signal (i.e. change of an 

electrode’s impedance) , the distribution properties (mean, STD, rang, ...) of the 

raw EEG recordings for each user should be virtually identical in all four blocks. 

This is indeed the case. Figure 4.18 presents the distribution properties of the 

recorded blocks from user 1.  

 

106



 
 
 
 

 

 

 

 

Figure 4.18: The distribution properties of raw EEG recordings in each block for user 1. In 
all blocks, the mean is 0, STD is 10, the 25% and 75% quartiles are -20 and 20 respectively, 
and range is near 180. They all have Gaussian distribution. With classification accuracy of 
96.7%, no signs of signal drifting exist, suggesting that recording in blocks has little, if any 

effect on classification accuracy for this data. 
 

 Another issue can arise from the use of 10-fold cross validation, is 

dependencies between trials recorded in blocks. An alternative to 10-fold cross 

validation is HV-cross-validation, which uses large validation sets to sufficiently 

separate the training trials from the testing trials recorded in blocks [215]. Figure 

4.19 illustrates the application of HV-cross-validation for the 30 trials recorded 

in blocks in this chapter. For each fold, 21 trials are used for training, 3 trials are 

used for testing, and six trials are used as validation trials to separate the training 

trials from the testing trials.   
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Figure 4.19: Alternative to ten-fold cross-validation known as HV-cross-validation. In this 
method, an additional validation buffer zone (6 trials) is excluded from the training set (21 
trials) to remove trials that are closest to the testing set (3 trials) and reduce the possible 
effects of temporal correlation between training and testing sets. All 30 trials are used at 

least once for testing. 
 
 

To reject the hypothesis that the results were achieved by chance, the 

analysis was also performed for randomised labels, and for pre-cue idle state, for 

all participants. Table 4.2 presents the results of HV-cross validation, randomised 

labels, and pre-cue rest state, compared to the original results in the first column.  

 
 10-fold cross 

validation 
HV cross 
validation 

Randomised 
labels 

312ms pre-cue 
(idle state) 

User 1 96.7±7 84.1±15.4 25.8±13.2 28.3±8 
User 2 94.1±8.8 92.5±10.7 31.6±14.5 19.1±18.8 
User 3 100 91.6±9.6 24.1±13.2 25.8±15.4 
User 4 97.5±5.6 98.3±3.5 22.5±9.6 24.1±7.2 
User 5 92.5±10 81.6±16.5 27.5±13.6 24.2±9.2 
User 6 89.1±9.6 65.8±19 25±10.3 20±9.8 
User 7 91.6±11.1 94.1±8.8 18.3±11.6 20.8±8 
User 8 89.1±8.8 80±13.1 23.3±11.6 21.7±13.7 
User 9 100 97.5±7.9 16.6±11.1 25±13 
User 10 94.1±7.9 89.1±13 25±9.6 26.6±12.2 
Average 94.5±4 87.4±11.7 24±11.8 23.5±11.5 

 
Table 4.2: The results of using HV-cross validation, randomised labels, and pre-cue rest 

state, compare to the original reported results in the first column. 
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As seen in table 4.2, it is clear that the original ten-fold cross validation 

was upwardly biased. The HV-cross-validation scheme, which uses validation 

folds to separate the testing trials from training trials, is more realistic. The 

upward bias is a result of using block recordings. By comparing the performance 

of the online system in the next chapter and comparing that to the estimated 

performance using HV-cross validation in table 4.2, the exact amount of upward 

bias can be determined.  

From table 4.2, the performance of the system using randomised labels, 

and pre-cue rest date is close to chance level. The hypothesis that the reported 

results were achieved by chance is rejected. In addition to the pre-cue rest data, 

trials from the resting state after covert speech tasks are used for classification 

and presented in table 4.3. The performance for these trials is also near chance 

level, which strengthen the above conclusion.  

 
 

 1 to 1.312 sec 2 to 2.312 sec 3 to 3.312 sec 
User 1 27.5±16.2 27.5±10.4 35±5.5 
User 2 20±6.8 12.5±12.5 22.5±18.5 
User 3 17.5±11.2 22.5±16.2 10±5.6 
User 4 20±18.9 35±10.4 22.5±20.5 
User 5 32.5±14.2 22.5±5.6 30±11.2 
User 6 22.5±10.4 10±10.5 25±8.8 
User 7 17.6±14.2 15±13.6 10±5.5 
User 8 20±14.2 32.5±14.3 25±8.8 
User 9 35±13.6 15±5.5 32±14.2 
User 10 22.5±13.6 23±10.4 25±8.8 
Average 23.5±13.3 21.5±10.9 23.7±10.7 

 
Table 4.3: Time-coarse of classification accuracy after task trial, during the rest state before 

the presentation of next task. The performances are near chance level.  
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Table 4.4 presents the classification accuracy for fewer valuable Gabor 

features. As seen, the performance increases steadily as the number of features 

grow, and no evidence of overfitting is observed. 

 30 features 100 features 300 features 1K features 2K features 3K features 4K features 
User 1 68.3±10.9 35±16.5 84.1±11.4 95.8±5.8 98.3±5.2 98.3±5.2 96.7±7 
User 2 55±18 40.8±14.9 83.3±15.2 90.8±12.6 93.3±10.24 94.1±10.4 94.1±8.8 
User 3 65.8±14.9 49.1±15.9 86.6±10.5 93.3±8.6 90.8±8.2 91.6±9.6 100 
User 4 65±17.9 54.1±14.8 94.1±7.9 96.6±8 98.3±3.5 98.3±3.51 97.5±5.6 
User 5 51.6±20.3 45.8±11.9 75.8±14.9 80.8±11.8 89.1±11.1 91.7±9.6 92.5±10 
User 6 30.8±10.4 37.5±10.5 64.1±11.8 75.8±6.1 82.5±11.4 85.8±5.6 89.1±9.6 
User 7 51.6±14.5 41.6±15.2 85±12.2 90±10.2 94.1±8.8 94.2±8.8 91.6±11.1 
User 8 56.6±18.3 40±14.5 78.3±15.3 81.6±13.4 85.8±11.1 86.6±9.8 89.1±8.8 
User 9 70.8±13.7 40±16.6 96.6±8 97.5±7.9 97.5±7.9 97.5±7.9 100 
User 10 50.8±11.4 30.8±20 80.8±13.6 89.1±10.4 94.1±8.8 94.1±8.8 94.1±7.9 
Average 41.5±15 56.6±15 82.9±12 89.1±9.5 92.4±8.6 93.2±7.9 94.5±4 

Table 4.4: Classification accuracy using fewer valuable Gabor features 
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 Finally, to completely reject the Null Hypothesis, for each user, within each 

validation fold, 100 randomised lable tests are performed. the average of these 

100 randomised tests are compare with the correct lable test. These are shown in 

table 4.5. The grand average spectrogram for each user for each class in the 

central channel Cz are presented in figures 4.20 to 4.29. There are clear 

differences in the plots for each class for all users. Although feature power is not 

used for classification and the lower frequency bands are much more visible in 

the plots, there are still clear differences in the plots for each class. The rejection 

of null hypothesis and the grand average plots are completely aligned with the 

reported resuts and provide additional validation .



 
 

 CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10  

U1 Correct 58 83.3 83.3 91.7 100 91.7 100 91.7 83.3 66.7   P=1.73e-4 
  h=1 Random 24.65 26.4 23.2 25.75 22.65 27.4 22.15 23.85 27.2 24.9 

      

U2 Correct 91.7 91.7 91.7 100 100 100 100 83.3 100 66.7   P=1.59e-4 
  h=1 Random 27.25 26.8 25.15 31.2 24.65 30.75 24.35 28.9 27.35 29.2 

      

U3 Correct 83.3 100 100 100 100 100 83.3 83.3 75 91.7   P=1.59e-4 
  h=1 Random 25.6 22.45 29.85 27.15 23.35 25.25 21.6 24.65 24.2 23.75 

      

U4 Correct 100 100 91.7 100 100 100 100 100 100 91.7   P=1.09e-4 
  h=1 Random 20.95 19.8 24.45 23.25 18.6 22.75 20.65 23.45 22.85 23.15 

      

U5 Correct 58.3 100 100 83.3 100 91.7 75 83.3 66.7 58.3   P=1.77e-4 
  h=1 Random 28.15 25.6 22.35 31.65 24.55 28.4 28.35 24.2 26.95 27.65 

 

U6 Correct 58.3 50 91.6 58.3 100 58.3 83.3 58.3 58.3 41.7   P=1.63e-4 
  h=1 Random 23.1 25.75 26.45 20.55 27.6 28.35 25.3 27.85 24.3 21.25 

      

U7 Correct 100 100 100 100 100 91.7 100 91.7 83.3 75   P=1.48e-4 
  h=1 Random 18.3 20.65 24.2 17.65 20.4 16.55 19.4 17.35 19.15 20.85 

      

U8 Correct 91.7 83.3 83.3 91.7 75 75 91.7 91.7 58.3 58.3   P=1.69e-4 
  h=1 Random 24.85 29.3 23.25 19.75 22.6 24.55 26.75 21.4 25.85 22.4 

      

U9 Correct 100 100 100 100 100 100 100 100 100 75   P=8.68e-5 
  h=1 Random 19.65 20.9 17.35 19.65 22.7 21.45 18.3 24.85 23.65 18.7 

      

U10 Correct 75 91.7 100 100 100 100 100 83.3 75 66.7   P=1.62e-4 
  h=1 Random 27.4 22.65 20.7 28.15 24.4 25.25 25.1 24.65 22.85 25.15 

 
 

Table 4.5: Rejecting Null Hypothesis: For each user, within each of the 10 cross-validation 
folds, the performance is tested with randomised labels 100 times. The average of these 100 
tests with randomised labels is shown under the performance with correct labels for each 

cross-validation fold. Wilcoxon rank-sum tests are performed. The value of h=1 rejects the 
null hypothesis suggesting the results are indeed statistically significant and have not been 

achieved by chance. 
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Figure 4.20: User 1: Grand average spectrogram of each class from all 30 trials and 
all channels.
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Figure 4.21: User 2: Grand average spectrogram of each class from all 30 trials and 
all channels. 

 
Table 4.6: The total P-value is calculated as the average of binary P-values. In addition 

to visible class differences in the Spectrogram plots, the small 
total P-value also supports class separability.
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Figure 4.22: User 3: Grand average spectrogram of each class from all 30 trials and 
all channels.
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Figure 4.23: User 4: Grand average spectrogram of each class from all 30 trials and 
all channels.
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Figure 4.24: User 5: Grand average spectrogram of each class from all 30 trials and 
all channels.
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Figure 4.25: User 6: Grand average spectrogram of each class from all 30 trials and 
all channels.
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Figure 4.26: User 7: Grand average spectrogram of each class from all 30 trials and 
all channels.
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Figure 4.27: User 8: Grand average spectrogram of each class from all 30 trials and 
all channels.
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Figure 4.28: User 9: Grand average spectrogram of each class from all 30 trials and 
all channels.
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Figure 4.29: User 10: Grand average spectrogram of each class from all 30 trials and 
all channels.



 
 
 
 

 

 

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Phonetic linguistic processing prior to articulation, elicits a unique and 

word-specific pattern of high-Gamma activity [40, 216], which does not change 

over time [42, 43] and is not affected by frequency [44] or priming [45]. Phonetic 

codes are set up and consolidated with the acquisition of language during 

childhood, and remain unchanged throughout a person’s life [45]. Phonetic codes 

are stored in the long term memory, and are processed automatically by the brain 

requiring no conscious effort from the user during trials, with immunity from any 

influence or modification [44, 45, 188, 216]. The experimental protocol and 

analysis pipeline for 312ms trials presented in this chapter is used as a framework 

to create an online EEG-based 4-class linguistic BCI in the next chapter.

4.6. Best settings for online system
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CHAPTER 5: 
ONLINE APPLICATION OF BCI 
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5.1. Design of the Online Linguistic BCI  

 
The online Linguistic BCI presented in this chapter, is in fact based on the 

experimental protocol and analysis pipeline for 312ms trials, presented in chapter 

four. This experiment was conducted with the help of six neurologically healthy 

volunteers in the age group of 21-33. All volunteers signed a consent form based 

on the recommendations of the Ethical Committee of the University of Essex. 

Participants were seated in a comfortable armchair in front of a screen during 

training the BCI and playing a game of “whack a mole”. In this game, an image 

appears on the screen for one second, in which a mole pops its head out of one 

four holes in the ground (left, right, back, forward). The user is informed of the 

task before each run. As a result, Conceptual Preparation, and Lemma selection 

are completed before onset. The user then waits for an auditory cue to covertly 

speak a command and move a hammer to the correct location to whack the mole. 

The four chosen covert speech tasks are “BA”, “FO”, “LE”, and “RY”, which are 

Phonetically very dissimilar [196, 214, 217] and can be used as intuitive shortened 

directional commands. For example, the hammer can hit the left hole by using the 

covert speech task “LE”. For all classes, an identical “Beep” sound was used as 

the auditory cue. After task presentation, a random rest period between 1 and 3 

seconds was placed before the auditory cue to prevent the user from anticipating 

onset time based on rhythm. This ensures the following linguistic activities begin 

exactly after auditory cue recognition (trigger driven executive control), and the 
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system is perfectly synchronized. By using 312ms epochs, the only analyzed 

Linguistic functions are Phonological Code Retrieval and Syllabification, which 

are performed automatically by the brain and have an unchangeable duration 

unique to each individual participant. The experiment has two stages: training and 

testing. During the training stage, 15 trials of each of the four classes (60 trials in 

total) are presented to the user in a mixed randomised order. For the testing stage, 

5 trials of each of the four classes (20 trials in total) are presented to the user in a 

mixed randomised order. Figure 5.1 illustrates the experimental protocol. 

 

 

Figure 5.1: Imagination protocol. An image presented for 1 second shows the mole in one of 
the holes (left in this case). The user chooses the correct direction for landing the hammer 

and the correct covert speech task to perform (in this case “LE”). After the task image 
disappears the user waits to hear the beep sound to begin covertly speaking the correct word. 

In the testing stage the result is also shown in an image, completing the cycle. 

 

5.2. Data Acquisition and analysis pipeline 

The EEG recording system, data acquisition, preprocessing, feature 

generation and subset selection, training and testing are identical in this 

experiment to those for the 312ms trials in chapter four. The only differences are 

that trials are recorded in randomized order in a single recording run, and that there 
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5.3. Classification Accuracy 

            

         

  

 Classification Accuracy 

User 1 85% 

User 2 80% 

User 3 75% 

User 4 90% 

User 5 85% 

User 6 80% 

Mean 82.5 ± 4.1% 

 
Table 5.1: Classification Accuracy for all 6 users. 

 

 The performance of the six participants are presented in Table 5.1. In 

average, all users got more than 16 out of 20 correct predictions (average 

performance 82.5%). PLDA was used for classification.

are 15 trials per class recorded for training. No cross validation is implemented, 

and all 15 trials are used at the same time for training. Like chapter four, 4k most 

valuable Gabor features are identified in the training stage, and vectors of these 

Gabor features in the 5 online test trials are used for classification.
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5.4. Important Times, Frequencies, and Locations 

 The outstanding times, frequencies, and brain locations based on the 

number of instances they have been identified in the most valuable 4K Gabor 

features, for all 6 users (24K in total) have been presented in figure 5.2. The most 

important activity begins ~100ms post-onset corresponding to Auditory cue 

recognition and is concentrated in the 70-128Hz frequency range corresponding 

to Linguistic functions. Most important regions: Prefrontal Cortex, left STG 

(Wernicke’s area), right, and left IFG (Broca’s area). These correspond with 

Linguistic Phonetic activity prior to articulation. 

 

 

Figure 5.2: (Left) The cumulative colour-coded joint time-frequency representation of 24K 
best Gabor features from all users. The most important activity begins ~100ms post-onset 
corresponding to Auditory cue recognition and is concentrated in the 70-128Hz frequency 
range corresponding to Linguistic functions. (Right) The topographical plot of the brain 
using same Gabor features. The top of the plot is the front of the head. Most important 

regions: Prefrontal Cortex, left STG (Wernicke’s area), right, and left IFG (Broca’s area). 
These correspond with Linguistic Phonetic activity prior to articulation. 
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5.5. Discussion  

As seen in figure 5.2, the key activity begins ~100ms post-onset. This 

corresponds with the time of Auditory cue recognition. The highest concentration 

is in the 70-128Hz range, which corresponds with Phonetic Linguistic activities. 

The most important brain regions are the Prefrontal Cortex (related to trigger-

driven executive control, waiting for time cue to begin task), Wernicke’s area 

(related to Phonological code retrieval), and right IFG and Broca’s area (related 

to Syllabification). The spatial, temporal, and spectral properties of the 24K most 

valuable feature vectors identified from 6 participants, correspond to the 

automatic linguistic processing stages of word production prior to articulation, 

and are supported by a substantial body of evidence [23-25, 27, 39-43, 46, 47, 

187, 212]. The only conscious effort required from the user to operate this BCI is 

paying attention and waiting for the Auditory cue to covertly speak the desired 

command. All brain activities after auditory cue recognition (Phonetic Linguistic 

functions) are performed automatically by the brain and cannot be modified by 

the user. In fact, the 312ms trials end before conscious activity of any sort can 

begin in the brain.  

The Linguistic BCI presented in this chapter is just as fast as a traditional 

P300 system. However, unlike the P300, this novel Linguistic BCI does not 

require constant gaze and attention to operate correctly. It is impossible to use MI 

for such a short trial duration.  
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For operating this novel BCI we used only those Linguistic functions that 

are completely automatic (Linguistic Phonetic functions) and temporally 

consistent. It is difficult to maintain perfect consistency for MI tasks, even during 

the same experiment. Considering these factors, Linguistic BCIs can potentially 

render MI systems obsolete.  
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 In the present chapter, we only use a fraction of the time-frequency window 

containing Linguistic activity (up to 170Hz lasting over 2000ms) to successfully 

classify 4 covert speech tasks. By expanding the time and frequency of analysis, 

the number of word classes may be increased in future studies. Finally, the 

performance of the Linguistic BCI may improve by increasing the number of 

trials used for training [9] with the downside of increasing training duration and 

greater user fatigue. 

 

To conclude this chapter, plots of the grand average spectrogram for each class 

from the central channel Cz are presented for all sex users in figures  5.3 to 5.8. 

Although feature power is not what we use for classification, these plots clearly 

show differences in each class for all users. Only user 4 perferms over 90 

percent (figure 5.6) and the difference  between classes in clear in this figure.  
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Figure 5.3: User 1: Grand average spectrogram of each class from all 20 trials 
(15 training, 5 online testing) and all channels.
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Figure 5.4: User 2: Grand average spectrogram of each class from all 20 trials 
(15 training, 5 online testing) and all channels.
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Figure 5.5: User 3: Grand average spectrogram of each class from all 20 trials 
(15 training, 5 online testing) and all channels.
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Figure 5.6: User 4: Grand average spectrogram of each class from all 20 trials 
(15 training, 5 online testing) and all channels.
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Figure 5.7: User 5: Grand average spectrogram of each class from all 20 trials 
(15 training, 5 online testing) and all channels.
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Figure 5.8: User 6: Grand average spectrogram of each class from all 20 trials 
(15 training, 5 online testing) and all channels.



 
 
 
 

 

 

 

Appendix A: Matlab Code 
 
MATLABÔ code for training the BCI 
 
 

 
 
 

function varargout = Training(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
'gui_Singleton',  gui_Singleton, ... 
'gui_OpeningFcn', @Training_OpeningFcn, ... 
'gui_OutputFcn',  @Training_OutputFcn, ... 
'gui_LayoutFcn',  [] , ... 
'gui_Callback',   []); 
if nargin && ischar(varargin{ 1}) 
gui_State.gui_Callback = str2func(varargin{1}); 
end 
if nargout 
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
gui_mainfcn(gui_State, varargin{:}); 
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end 
end 
function Training_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
end 
function varargout = Training_OutputFcn(hObject, eventdata, handles)  
varargout{1} = handles.output; 
end 
% --- Executes on button press in BA. 
function BA_Callback(hObject, eventdata, handles) 
t = timer('TimerFcn','ff=0;'); 
beep on 
start(t); 
paraport=digitalio('parallel','LPT1'); 
addline(paraport,0:7,'out'); 
for s=1:20 
putvalue(paraport.line(1),0) 
pause(ceil(5*rand (1,1))) 
beep 
putvalue(paraport.line(1),1) 
pause(3) 
putvalue(paraport.line(1),0) 
end 
delete (t); 
end 
% --- Executes on button press in FO. 
function FO_Callback(hObject, eventdata, handles) 
t = timer('TimerFcn','ff=0;'); 
beep on 
start(t); 
paraport=digitalio('parallel','LPT1'); 
addline(paraport,0:7,'out'); 
for s=1:20 
putvalue(paraport.line(1),0) 
pause(ceil(5*rand (1,1))) 
beep  
putvalue(paraport.line(1),1) 
pause(3) 
putvalue(paraport.line(1),0) 
end 
delete (t); 
end 
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% --- Executes on button press in LE. 
function LE_Callback(hObject, eventdata, handles) 
t = timer('TimerFcn','ff=0;'); 
beep on 
start(t); 
paraport=digitalio('parallel','LPT1'); 
addline(paraport,0:7,'out'); 
for s=1:20 
putvalue(paraport.line(1),0) 
pause(ceil(5*rand (1,1))) 
beep  
putvalue(paraport.line(1),1) 
pause(3) 
putvalue(paraport.line(1),0) 
end 
delete (t); 
end 
% --- Executes on button press in RY. 
function RY_Callback(hObject, eventdata, handles) 
t = timer('TimerFcn','ff=0;'); 
beep on 
start(t); 
paraport=digitalio('parallel','LPT1'); 
addline(paraport,0:7,'out'); 
for s=1:20 
putvalue(paraport.line(1),0) 
pause(ceil(5*rand (1,1))) 
beep  
putvalue(paraport.line(1),1) 
pause(3) 
putvalue(paraport.line(1),0) 
end 
delete (t); 
end 
% --- Executes on button press in Train. 
function Train_Callback(hObject, eventdata, handles) 
eeglab 
ltfatstart 
g=gabwin('gauss',8,128,768); 
%% Preprocess BA 
EEG = pop_biosig('/Users/Amir/Documents/MATLAB/eeglab/Online/BA.bdf', 
'channels',[1:64] ); 
EEG = pop_reref( EEG, []); 
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EEG = pop_resample( EEG, 256); 
EEG = pop_eegfiltnew(EEG, 49,51,5000,1,[],0); 
EEG = pop_epoch( EEG, {  '32767'  }, [0  3], 'newname', 'BDF file resampled 
epochs', 'epochinfo', 'yes'); 
EEG = pop_rmbase( EEG, [0      2996.0938]);  
EEG = eeg_checkset( EEG ); 
pop_export(EEG,'/Users/Amir/Documents/MATLAB/eeglab/Online/BA','elec','
off','time','off','precision',4); 
c=zeros(4096,1920); 
for CHANNEL=1:64 
for TRIAL=1:20 
f=BA(CHANNEL,((TRIAL-1)*768+1):1:TRIAL*768); 
CC=dgtreal(f,g,8,128); 
c(((CHANNEL-1)*64+1):CHANNEL*64,((TRIAL-
1)*96+1):TRIAL*96)=CC(1:64,1:96); 
end 
end 
GC_BA=abs(c); 
%% Preprocess FO 
EEG = pop_biosig('/Users/Amir/Documents/MATLAB/eeglab/Online/FO.bdf', 
'channels',[1:64] ); 
EEG = pop_reref( EEG, []); 
EEG = pop_resample( EEG, 256); 
EEG = pop_eegfiltnew(EEG, 49,51,5000,1,[],0); 
EEG = pop_epoch( EEG, {  '32767'  }, [0  3], 'newname', 'BDF file resampled 
epochs', 'epochinfo', 'yes'); 
EEG = pop_rmbase( EEG, [0      2996.0938]); 
EEG = eeg_checkset( EEG ); 
pop_export(EEG,'/Users/Amir/Documents/MATLAB/eeglab/Online/FO','elec','
off','time','off','precision',4); 
c=zeros(4096,1920); 
for CHANNEL=1:64 
for TRIAL=1:20 
f=FO(CHANNEL,((TRIAL-1)*768+1):1:TRIAL*768); 
CC=dgtreal(f,g,8,128); 
c(((CHANNEL-1)*64+1):CHANNEL*64,((TRIAL-
1)*96+1):TRIAL*96)=CC(1:64,1:96); 
end 
end 
GC_FO=abs(c); 
%% Preprocess LE 
EEG = pop_biosig('/Users/Amir/Documents/MATLAB/eeglab/Online/LE.bdf', 
'channels',[1:64] ); 
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EEG = pop_reref( EEG, []); 
EEG = pop_resample( EEG, 256); 
EEG = pop_eegfiltnew(EEG, 49,51,5000,1,[],0); 
EEG = pop_epoch( EEG, {  '32767'  }, [0  3], 'newname', 'BDF file resampled 
epochs', 'epochinfo', 'yes'); 
EEG = pop_rmbase( EEG, [0      2996.0938]); 
EEG = eeg_checkset( EEG ); 
pop_export(EEG,'/Users/Amir/Documents/MATLAB/eeglab/Online/LE','elec','
off','time','off','precision',4); 
c=zeros(4096,1920); 
for CHANNEL=1:64 
for TRIAL=1:20 
f=LE(CHANNEL,((TRIAL-1)*768+1):1:TRIAL*768); 
CC=dgtreal(f,g,8,128); 
c(((CHANNEL-1)*64+1):CHANNEL*64,((TRIAL-
1)*96+1):TRIAL*96)=CC(1:64,1:96); 
end 
end 
GC_LE=abs(c); 
%% Preprocess RY 
EEG = pop_biosig('/Users/Amir/Documents/MATLAB/eeglab/Online/RY.bdf', 
'channels',[1:64] ); 
EEG = pop_reref( EEG, []); 
EEG = pop_resample( EEG, 256); 
EEG = pop_eegfiltnew(EEG, 49,51,5000,1,[],0); 
EEG = pop_epoch( EEG, {  '32767'  }, [0  3], 'newname', 'BDF file resampled 
epochs', 'epochinfo', 'yes'); 
EEG = pop_rmbase( EEG, [0      2996.0938]); 
EEG = eeg_checkset( EEG ); 
pop_export(EEG,'/Users/Amir/Documents/MATLAB/eeglab/Online/RY','elec','
off','time','off','precision',4); 
c=zeros(4096,19200); 
for CHANNEL=1:64 
for TRIAL=1:20 
f=RY(CHANNEL,((TRIAL-1)*768+1):1:TRIAL*768); 
CC=dgtreal(f,g,8,128); 
c(((CHANNEL-1)*64+1):CHANNEL*64,((TRIAL-
1)*96+1):TRIAL*96)=CC(1:64,1:96); 
end 
end 
GC_RY=abs(c); 
%% DBI MATRIX 
mean_BA=zeros(4096,96); 
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std_BA=zeros(4096,96); 
mean_FO=zeros(4096,96); 
std_FO=zeros(4096,96); 
mean_LE=zeros(4096,96); 
std_LE=zeros(4096,96); 
mean_RY=zeros(4096,96); 
std_RY=zeros(4096,96); 
for i=1:4096, 
for j=1:96, 
ba=GC_BA(i,j:96:j+1824); 
mean_BA(i,j)=mean(ba); 
std_BA(i,j)=std(ba); 
fo=GC_FO(i,j:96:j+1824); 
mean_FO(i,j)=mean(fo); 
std_FO(i,j)=std(fo); 
le=GC_LE(i,j:96:j+1824); 
mean_LE(i,j)=mean(le); 
std_LE(i,j)=std(le); 
ry=GC_RY(i,j:96:j+1824); 
mean_RY(i,j)=mean(ry); 
std_RY(i,j)=std(ry); 
end 
end 
DBI_BA_vs_FO=zeros(4096,96); 
for i=1:4096, 
for j=1:96, 
DBI_BA_vs_FO(i,j)=(std_BA(i,j)+std_FO(i,j))/(abs(mean_BA(i,j)-
mean_FO(i,j))); 
end 
end 
DBI_BA_vs_LE=zeros(4096,96); 
for i=1:4096, 
for j=1:96, 
DBI_BA_vs_LE(i,j)=(std_BA(i,j)+std_LE(i,j))/(abs(mean_BA(i,j)-
mean_LE(i,j))); 
end 
end 
DBI_BA_vs_RY=zeros(4096,96); 
for i=1:4096, 
for j=1:96, 
DBI_BA_vs_RY(i,j)=(std_BA(i,j)+std_RY(i,j))/(abs(mean_BA(i,j)-
mean_RY(i,j))); 
end 
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end 
DBI_LE_vs_FO=zeros(4096,96); 
for i=1:4096, 
for j=1:96, 
DBI_LE_vs_FO(i,j)=(std_LE(i,j)+std_FO(i,j))/(abs(mean_LE(i,j)-
mean_FO(i,j))); 
end 
end 
DBI_LE_vs_RY=zeros(4096,96); 
for i=1:4096, 
for j=1:96, 
DBI_LE_vs_RY(i,j)=(std_LE(i,j)+std_RY(i,j))/(abs(mean_LE(i,j)-
mean_RY(i,j))); 
end 
end 
DBI_RY_vs_FO=zeros(4096,96); 
for i=1:4096, 
for j=1:96, 
DBI_RY_vs_FO(i,j)=(std_RY(i,j)+std_FO(i,j))/(abs(mean_RY(i,j)-
mean_FO(i,j))); 
end 
end 
DBI_ALL=zeros(4096,96); 
for i=1:4096, 
for j=1:96, 
DBI_ALL(i,j)=0.25*(max([DBI_BA_vs_FO(i,j) DBI_BA_vs_LE(i,j) 
DBI_BA_vs_RY(i,j)])+max([DBI_BA_vs_FO(i,j) DBI_LE_vs_FO(i,j) 
DBI_RY_vs_FO(i,j)])+max([DBI_BA_vs_LE(i,j) DBI_LE_vs_FO(i,j) 
DBI_LE_vs_RY(i,j)])+max([DBI_BA_vs_RY(i,j) DBI_RY_vs_FO(i,j) 
DBI_LE_vs_RY(i,j)])); 
end 
end 
%% INDEXES OF BEST FEATURES  
b=sort(DBI_ALL(:,3),'ascend'); 
ref=b(4001,1); 
sum=0; 
indexes=zeros(4000,3); 
for i=1:4096, 
for j=1:96, 
if DBI_ALL(i,j)<ref, 
sum=sum+1; 
indexes(sum,:)=[i j DBI_ALL(i,j)]; 
end 
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end 
end 
indexes=sortrows(indexes,3); 
indexes=indexes(:,1:2); 
fname=['indexes']; 
save(fname,'indexes'); 
%% TRAINING THE CLASSIFICATION OBJECT 
num_of_resols=4000; 
Training_set=zeros(80,num_of_resols); 
y={1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;
2;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4}
; 
for n=1:num_of_resols, 
i=indexes(n,1); 
j=indexes(n,2); 
for k=1:20, 
p=(k-1)*96; 
Training_set(k,n)=GC_BA(i,j+p); 
Training_set(k+20,n)=GC_FO(i,j+p); 
Training_set(k+40,n)=GC_LE(i,j+p); 
Training_set(k+60,n)=GC_RY(i,j+p); 
end 
end 
obj=ClassificationDiscriminant.fit(Training_set,y); 
fname=['Classification_Object']; 
save(fname,'obj'); 
%% FILES AND VARIABLES NEEDED FOR ONLINE CODE 
percent=0; 
I=1; 
score=0; 
BA=imread ('BA.jpg'); 
BA_BA=imread ('BA_BA.jpg'); 
BA_FO=imread ('BA_FO.jpg'); 
BA_LE=imread ('BA_LE.jpg'); 
BA_RY=imread ('BA_RY.jpg'); 
FO=imread ('FO.jpg'); 
FO_BA=imread ('FO_BA.jpg'); 
FO_FO=imread ('FO_FO.jpg'); 
FO_LE=imread ('FO_LE.jpg'); 
FO_RY=imread ('FO_RY.jpg'); 
LE=imread ('LE.jpg'); 
LE_BA=imread ('LE_BA.jpg'); 
LE_FO=imread ('LE_FO.jpg'); 
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LE_LE=imread ('LE_LE.jpg'); 
LE_RY=imread ('LE_RY.jpg'); 
RY=imread ('RY.jpg'); 
RY_BA=imread ('RY_BA.jpg'); 
RY_FO=imread ('RY_FO.jpg'); 
RY_LE=imread ('RY_LE.jpg'); 
RY_RY=imread ('RY_RY.jpg'); 
Blank=imread('Blank.jpg'); 
[Y,Fs] = audioread('Beep.wav'); 
[K,FS] = audioread('Cheering.wav'); 
[J,fS] = audioread('Laugh.wav'); 
paraport=digitalio('parallel','LPT1'); 
lines=addline(paraport,0:7,'out'); 
putvalue(paraport.line(1),0); 
putvalue(paraport.line(2),0); 
putvalue(paraport.line(3),0);  
%% 
end 
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MATLABÔ code for testing  
 

     
function varargout = online(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
'gui_Singleton',  gui_Singleton, ... 
'gui_OpeningFcn', @online_OpeningFcn, ... 
'gui_OutputFcn',  @online_OutputFcn, ... 
'gui_LayoutFcn',  [] , ... 
'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
gui_State.gui_Callback = str2func(varargin{1}); 
end 
if nargout 
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
gui_mainfcn(gui_State, varargin{:}); 
end 
function online_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = online_OutputFcn(hObject, eventdata, handles) 
varargout{1} = handles.output; 
end 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
function start_message(~,~) 
axis([-10 10 -10 10]); 
t=text(-7,0, 'your score is 
',num2str(percent),'%','FontSize',50,'Color','red','Visible','on'); 
end 
function next_message(~,~) 
t.Visible='off'; 
u=text(-7,0,'Prepare for next task','FontSize',50,'Color','red','Visible','on'); 
delete (T1); 
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end 
function first_image(~,~) 
u.Visible='off'; 
if target==1 
imshow(BA); 
end 
if target==2 
imshow(FO); 
end 
if target==3 
imshow(LE); 
end 
if target==4 
imshow(RY); 
end 
delete (T2); 
end 
function blank_image(~,~) 
imshow(Blank); 
delete (T3); 
end 
function start_recording(~,~) 
putvalue(paraport.line(2),1); 
delete (T4); 
end 
function send_trigger(~,~) 
putvalue(paraport.line(1),1); 
beep 
delete (T5); 
end 
function stop_recording_classify(~,~) 
putvalue(paraport.line(3),1); 
% preprocess data 
EEG = 
pop_biosig('/Users/Amir/Documents/MATLAB/eeglab/Online/TEST_IN.bdf', 
'channels',[1:64] ); 
EEG = pop_reref( EEG, []); 
EEG = pop_resample( EEG, 256); 
EEG = pop_eegfiltnew(EEG, 49,51,5000,1,[],0); 
EEG = pop_epoch( EEG, {  '32767'  }, [0  3], 'newname', 'BDF file resampled 
epochs', 'epochinfo', 'yes'); 
EEG = pop_rmbase( EEG, [0      2996.0938]); 
EEG = eeg_checkset( EEG ); 
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pop_export(EEG,'/Users/Amir/Documents/MATLAB/eeglab/Online/TEST','ele
c','off','time','off','precision',4); 
% calculate GC_IN matrix 
c=zeros(4096,96); 
for CHANNEL=1:64 
f=TEST(CHANNEL,:); 
CC=dgtreal(f,g,8,128); 
c(((CHANNEL-1)*64+1):CHANNEL*64,1:96)=CC(1:64,1:96); 
end 
GC_IN=abs(c); 
% classify 
test_data=zeros(1,4000); 
for a=1:4000, 
i=indexes(a,1); 
j=indexes(a,2); 
test_data(1,a)=GC_IN(i,j); 
end 
label=predict(obj,test_data); 
delete (T6); 
end 
% 
function give_feedback(~,~) 
if target==1 
if label==1 
score=score+1; 
sound(K,FS); 
imshow(BA_BA) 
end 
if label==2 
imshow(BA_FO) 
end 
if label==3 
imshow(BA_LE) 
end 
if label==4 
imshow(BA_RY) 
end 
end 
if target==2 
if label==1 
imshow(FO_BA) 
end 
if label==2 
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score=score+1; 
sound(K,FS); 
imshow(FO_FO) 
end 
if label==3 
imshow(FO_LE) 
end 
if label==4 
imshow(FO_RY) 
end 
end 
if target==3 
if label==1 
imshow(LE_BA) 
end 
if label==2 
imshow(LE_FO) 
end 
if label==3 
imshow(LE_LE) 
sound(K,FS); 
score=score+1; 
end 
if label==4 
imshow(LE_RY) 
end 
end 
if target==4 
if label==1 
imshow(RY_BA) 
end 
if label==2 
imshow(RY_FO) 
end 
if label==3 
imshow(RY_LE) 
end 
if label==4 
imshow(RY_RY) 
sound(K,FS); 
score=score+1; 
end 
end 
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%calculate percent 
percent=score/I*100; 
delete (T7); 
end 
function save_reset(~,~) 
imshow(Blank); 
%reset lines 
putvalue(paraport.line(1),0); 
putvalue(paraport.line(2),0); 
putvalue(paraport.line(3),0); 
%save BDF file for next trial 
EEG = 
pop_biosig('/Users/Amir/Documents/MATLAB/eeglab/Online/SHORT_FILE.b
df'); 
EEG = eeg_checkset( EEG ); 
pop_writeeeg(EEG, 
'/Users/Amir/Documents/MATLAB/eeglab/Online/TEST_IN.bdf', 
'TYPE','BDF'); 
%save GC_IN 
fname=['GC_IN_',num2str(I)]; 
save(fname,'GC_IN','target','label'); 
delete (T8); 
delete (T9); 
end 
% The sequence of task which are presented to the user 
task=[1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3 4 3 2 1 1 4 3 2 2 1 4 3 3 2 1 4 2 3 4 1 3 4 1 
2]; 
for I=1:40 
target=task(I); 
T1 = timer('TimerFcn',@start_message); 
T2 = timer('TimerFcn',@next_message,'StartDelay',2); 
T3 = timer('TimerFcn',@first_image,'StartDelay',4); 
T4 = timer('TimerFcn',@blank_image,'StartDelay',7); 
T5 = timer('TimerFcn',@start_recording,'StartDelay',7.9); 
T6 = timer('TimerFcn',@send_trigger,'StartDelay',8); 
T7 = timer('TimerFcn',@stop_recording_classify,'StartDelay',11.1); 
T8 = timer('TimerFcn',@give_feedback,'StartDelay',13); 
T9 = timer('TimerFcn',@save_reset,'StartDelay',15); 
start([T1 T2 T3 T4 T5 T6 T7 T8 T9]); 
end 
end 
end 
end 
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Appendix B: Hardware setup, Data acquisition, Pre-
processing 
 
 

B.1. Hardware and software setup for the BioSemi system 

The EEG signals were recorded using a 64 channel “Biosemi Active-Two” 

system [76]. The user is seated comfortably in front of a large screen 

approximately two meters away. A cap is fitted onto the user’s head, and 64 

electrodes are connected to the cap according to the 10-10 system. The sampling 

frequency is initially set to 2048 Hz. Figure B.1 shows the setup of the laboratory. 

 

Figure B.1:. Brain-Computer-Interface laboratory, School of Computer Science and 

Electronic Engineering, University of Essex. 

 

The Active-Two system requires trigger signals via a parallel port. These 

triggers are visible in the recorded EEG data and can be used to identify the exact 
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moment the user is presented with a queue. To avoid problems with 

synchronization, the triggers are generated by the same computer (clock) that runs 

the graphical user interface. The GUI was created with MATLABÔ and the same 

section of the code initiates the trigger signal for the ActiveTwo, and the cue for 

the user. In the case of visual cues, the desired word will appear on the screen in 

front of the user. The word will disappear after one second. The user is asked to 

perform the covert speech task as soon as they see the word on the screen. Figure 

B.2 illustrates the GUI and what the user sees. The command appears for one 

second and disappears before onset. 

 

 

Figure B.2: The MATLABÔ generated graphical user interface showing the next task 

before screen goes blank and audio cue is generated. 

 

A second computer records the EEG signals. This computer is connected to 

the Active-Two system via USB port. The BioSemi acquisition software 

(ActiView) is also installed on this computer. The ActiveTwo has a pre-amplifier 

stage on the electrode and can correct for high impedances. However, the offset 
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voltage between the A/D box and the body was kept between 25mV and 50mV as 

recommended by the manufacturer.  

 

B.2 Data acquisition and pre-processing 

The pre-processing was done with the use of the EEGLAB package [122], 

a MATLABTM toolbox created by BioSemi. The recorded EEG data is saved by 

the BioSemi software in a format called “BDF”. These files contain the raw data 

for at least 64 channels, at a sampling rate of 2048Hz. So, the first step is to select 

only the 64 channels, which are connected to the user’s scalp. Figure B.3 shows 

the dialogue box generated by EEGLAB. 

 

 

Figure B.3: selecting only the first 64 channels from all possible 256. 

 

After the correct channels have been selected, the first thing to do is to 

reduce the sampling rate. A good sampling frequency would be 256 Hz, providing 

152



 
 
 
 

 

 

 

a frequency content of 1-128 Hz for the data. Figure B.4 shows the dialogue box 

generated by EEGLAB to adjust sampling rate. 

 

Figure B.4: adjusting the sampling rate from 2048 to 256Hz. 

 

EEG data is in the form of sampled voltage from the probe electrodes. To 

analyse these values, the voltages need a reference point. In the measurement and 

recording stage two extra electrodes provide the ground. However, for the signal 

processing stage, an average reference is selected. Figure B.5 illustrates the 

dialogue box generated by EEGLAB for computing average references. 

 

Figure B.5: The options for re-referencing the data in EEGLAB 
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The next step is to filter the data. The frequency range I selected to study is 

5-100Hz. Although, there are suggestions that there may be useful information in 

EEG data in higher frequencies. If the results do not show promise, the frequency 

range may be increased beyond 100 Hz. Figure B.6 illustrated the use of a finite 

impulse response filter of order 100 to select the (5-100) Hz band.  

 

Figure B.6: FIR order 100 filter to select the 5-100 Hz range. 

 

As seen in figure B.7, the filter amplitude response has a sharp cut-off with no 

ripples in the selected data range and this is the reason for selecting this filter. 

 

Figure B.7: The magnitude and phase response of the FIR filter. 
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The electricity cables in the lab generate 50 Hz noise (in the UK). This noise 

has greater amplitude than the EEG signals and could lead to errors in later 

computations. The next step is to notch filter the (49-51) Hz band out of the signal 

with a FIR order 100 filter. As before, the acceptable performance is the reason 

for selecting this type and order of filter. Figure B.8 illustrates the setup of the 

dialogue box in EEGLAB.  

 

Figure B.8: Setting a FIR order 100 notch filter for (49-51) Hz. 

Figure B.9 presents the magnitude and phase response of the notch filter. 

 

Figure B.9: Magnitude and phase response of the FIR notch filter. 
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EOG and EMG artifacts were removed by the Automatic Artifact Rejection 

(AAR) utility in EEGLAB [123]. In cases where EOG electrodes are not used, the 

AAR toolbox uses Blind Source Separation [198] for decomposition of correlative 

EEG frames with sliding windows. The default BSS algorithm for EOG removal, 

is the “Second Order Blind Identification” or SOBI [218, 219]. In this case, the 

EEG can be found by minimizing cross-correlations and maximizing auto-

correlations. EOG artifacts are identified by their small Fractal Dimension [198] 

and removed. The default setup, for removing EOG using the AAR toolbox id 

presented in figure B.10. 

 

Figure B.10: EEG decomposition with SOBI [219] and removing EOG artefacts by FD [198]. 

 

EMG artifacts cover a broad frequency range, and like white noise, have 

lower autocorrelation compared to EEG signals. For elimination of EMG 

artefacts, the default BSS algorithm is Canonical Correlation Analysis [199] or 
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CCA. EMG artefacts are identified by their low spectral power density and 

removed.  Figure B.11 Presents the default setup in the AAR toolbox. 

 

 
Figure B.11: EEG decomposition with CCA [199] and removing EMG artefacts PSD [123].  

 

Now it is time to epoch the data.  From each of the 5 recording runs, 12 

trials with a 2 second duration are selected for each word. Word-specific time 

locking events, which are visible as vertical lines over the EEG signals are 

generated at the exact instant the user is presented with a cue. Figure B.12 

illustrates the dialogue box in EEGLAB for selecting epochs.  

 

Figure B.12: Selecting trials of length 2 seconds, using the word-specific time locking event. 
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One of the best software platforms for signal processing is MATLABÔ. 

However, EEGLAB does not provide a direct export facility to MATLABÔ to 

save the data in the form of a 64x15360 matrix. The data is exported to a text file, 

and then converted into a matrix with the use of MATLAB’s data import facility. 

Figure B.13 demonstrates the setup of the EEGLABÔ export tool. The data is 

organized correctly and there is no need to add time stamps and channel stamps. 

The location of each sample contains this information. The number of significant 

digits is chosen to be 4. Figure B.14 shows MATLAB’s data import tool. 

 

 

Figure B.13: Exporting the data to a text file by EEGLAB. 

 

 

Figure B.14: Importing data from text file and saving it as a numeric matrix in MATLABÔ.
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Abstract— Several recent studies demonstrate the possibility 
of using user initiated covert speech mental tasks in brain 
computer interfaces with varying degrees of success, but details 
of the best frequency features had not been investigated. In this 
work, ten volunteers in the age range of 22-70 years participated 
in the experiment. Eight of them were neurologically healthy, 
one user was dyslexic, and another was autistic. The four words 
“back”, “forward”, “left”, and “right” were shortened into 
“BA”, “FO”, “LE”, and “RY”, which are phonetically dissimilar 
and cognitively relevant directional commands. Participants 
were asked to covertly speak each as soon as the letters appeared 
on a screen. Volunteers completed five recording runs. During 
each run the four words were presented in random succession to 
avoid sequence bias. The recorded EEG data from the ten users 
were analysed to discover the best features within a Gabor 
Transform of the signals, i.e., those yielding the highest word-
pair classification accuracy for this specific type of linguistic 
mental activity. Using this BCI, suitable class separability of 
covert speech tasks is confirmed for all, including disabled users, 
with consistently high classification accuracy from 72% to 88% 
in all cases. Like motor imagery tasks, Alpha and Beta band 
activity were found to contain 12% and 31% of the most 
important features respectively. Gamma band activity, which 
indicates high mental functions, contains 57% of the most 
important features in this study. 

I. INTRODUCTION 
Brain-Computer Interface systems (BCIs) measure a user’s 
brain activity by employing a range of devices and methods, 
to determine the intent of the user. The measured brain 
activity may be consciously generated by the user, or may be 
an unconscious neural response to stimuli. Among the 
different measurement methods, EEG has many advantages, 
namely it is non-invasive, relatively cheap, and it provides 
relatively high time resolution [1]. The most commonly used 
cognitive task in EEG based BCIs is motor imagery, in which 
the cortical somatotopic representation of different parts of 
the body is measured. In theses systems, the user imagines 
moving a limb in a specific way, to generate a command [2, 
3]. Although motor imagery provides a useful way to 
consciously generate distinguishable brain activity, it requires 
user training and changes in the imagined movement usually 
occur in time, which could lead to frequent errors in 
classification [4]. In addition, some disabled users may 
experience difficulty with motor tasks even if they are 
imagery-based [5].  

Other cognitive tasks such as mental navigation, covert 
tone production, solving a multiplication problem, imagining 
a 3D object, and covert syllable production (speech which is 
 
  

internally generated, but not articulated) have also been 
shown to generate distinct, task specific EEG patterns for BCI 
use [5, 6].  

Language and cognition are closely related processes, and 
speech is the most natural and intuitive form of human 
communication. A BCI system designed to understand 
commands covertly spoken in the user’s mind, is highly 
desirable. Some researchers have used a combination of 
covert syllable production and motor imagery [7-9]. In recent 
years, more attention has been dedicated to BCIs based on 
linguistic tasks alone [10-18]. However, these studies only 
focus on the motor imagery of covert articulation, and have 
ignored preceding linguistic processing stages. most 
neocortical territories in both hemispheres, as well as many 
subcortical brain regions, are involved in language [19]. Based 
on the unique cognitive neuroanatomy of an individual, the 
spatial and temporal activities may vary [20]. Studies 
conducted with the use of intra-cranial implants confirm high 
gamma band activity during covert speech tasks [21-23], 
which has been previously neglected.  

In this study, the shortened name of the four directions, 
back, forward, left, and right, in the form of “BA”, “FO”, 
“LE”, and “RY” were chosen for covert speech tasks. Rather 
than using these phonemes as “non-words”, participants are 
informed of the meaning. These words are cognitively 
appropriate and different from each other and are suitable for 
a BCI controlled mouse. Like using diverse limbs in motor 
imagery, the words are chosen to be phonetically dissimilar, 
each using a unique combination of language muscles when 
articulated covertly. In order to demonstrate these differences 
in a quantitative manner, the properties of each consonant and 
vowel, such as place of articulation and manner of articulation 
[24] are presented in Fig. 1. For example, the consonant /b/ is 
voiced, plosive, and bilabial. 

Figure 1. Properties of the consonants and vowels in the word classes 
such as place of articulation and manner of articulation. 
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II. METHODS 

A. Experiment Protocol 
In this work, experiments were conducted with ten 

volunteers in the age range of 22-70. One of the volunteers was 
dyslexic and another was autistic. All volunteers signed a 
consent form based on the recommendations of the Ethical 
Committee of the University of Essex. Users were seated in a 
comfortable armchair facing a 52-inch screen placed 
approximately two meters away. A graphical user interface 
was used to give visual timing cues, and task instruction with 
the display of a word on the screen, which remains visible for 
one second. The user was asked to covertly speak the word as 
soon as it appeared on the screen. Each volunteer completed 
five recording runs. The users were given a few minutes to rest 
and move their body between runs. Every run contains 12 trials 
for every word presented in random order, culminating to 60 
trials per word in total. For each word, data from three seconds 
after the timing cue were used for analysis, and a random idle 
period of 1-5 seconds occurred before the next cue. Fig. 2 
illustrates the imagination protocol used in this experiment. 

B. Data Acquisition 
The EEG signals were recorded using a 64 channel 

“Biosemi Active-Two” system [25]. One computer generated 
the graphical user interface and sent trigger signals to the 
ActiveTwo device at the instant a time cue was presented to 
the user. The triggers were sent via the parallel port and were 
visible in the recorded data. A second computer saved the EEG 
recordings and was connected to the ActiveTwo’s A/D box via 
USB. Electrode placement was done per the international ABC 
system, which for 64 channels, this corresponds to the 10/10 
system. The ActiveTwo has a pre-amplifier stage on the 
electrode and can correct for high impedances. However, the 
offset voltage between the A/D box and the body was kept 
between 25mV and 50mV as recommended by the 
manufacturer. Data was recorded at a sampling rate of 2048 
Hz to ensure sufficient frequency content, unaffected by the 
hardware cut-off. 

C. Pre-Processing 
The pre-processing was done with the use of the EEGLAB 

package [26], a MATLABTM toolbox. At first, the data were 
down-sampled from 2048 to 256 Hz, and referenced using 
scalp averages. A band-pass finite impulse response (FIR) 
filter of order 100, with pass band of (2,100) Hz was then 
applied. To remove any remaining 50 Hz noise from power 
lines, an FIR notch filter of order 100, with rejection band of 
(49,51) Hz was used. EOG and EMG artifacts were removed 
the Automatic Artifact Rejection (AAR) utility in EEGLAB. 
Figure 2. Imagination protocol. The user imagines speaking a word when it 

appears on the screen. Three seconds after each cue are used for analysis, and 
a random rest period of 1-5 seconds occurs between trials. 

 

In the final stage, epochs were extracted from the EEG data by 
and for each word, the 60 epochs were saved as a numerical 
matrix in MATLAB. 

D. Feature Extraction 
This work is a novelty search with an exploratory approach. 

The experiment data are processed offline with no restriction 
on computational cost. The discrete Gabor transform [27, 28] 
generates a high-resolution feature space, with no information 
loss in the time domain, or frequency domain. The definition 
of the Gabor transform, which is a windowed Fourier 
transform with a Gaussian window is presented in Fig. 3. For 
each channel, a 3-second EEG epoch (768 samples), is 
transformed into a GC matrix with dimensions of 50x96. 
There are 50 frequency bands of 2 Hz and 96 time steps of 
0.03125 seconds. 

E. Feature Selection and classification 
In this work, the mean and standard deviation of a ten-fold 

Block Jack-knife [29] validation method are used to estimate 
classification accuracy. The data is divided into 10 equal 
subsets. For each validation fold a different subset is reserved 
for testing. 9 subsets are used for training the classification 
object, and the test subset is kept separate and only used to 
test the performance of the classifier.  

Dimensionality reduction of training data and feature 
selection with clustering algorithms is proven to be extremely 
effective [30-32]. The Calinski-Harabasz cluster validation 
criterion was used to determine the potential suitability of 
each feature in the training data (filter approach) for 
classification [33]. The most distinct features with best class 
separation have the largest Calinski-Harabasz indexes, and 
these values were used to identify an initial subset of the most 
valuable 1000 features. Definition of the Calinsky-Harabsz 
index is presented in Fig. 4. The initial subset was further 
analysed using a cascaded cross validation (wrapper 
approach) process [34], resulting in a smaller, optimised final 
subset of best features. The combination of the CHI and CCV 
methods form a hybrid feature selection process. Using 
MATLABTM, Pseudo-Linear discriminant analysis was 
applied for classification of testing data as it consistently out-
performed all other supervised machine learning methods for 
EEG recorded covert speech.  
 

Figure 3. Definition of Gabor coefficients by implementation of the 
direct discrete Gabor transform and a Gaussian window function. 

 

GCmn = signal (l+1) e (-2π lm /M )conj (g(l -an+1))
l = 0

L−1
∑

      L  =  length of signal  =  768 samples = 3 seconds

      a  =  time step  =  8 samples  

      M =  number of frequency channels = 50

      m = 0 , ... , 49    frequency index

       n = 0 , ... , 95    time index

       g (l) =  2
T

 * e-π (l/T)   Gaussian window ,  T = a*M
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Figure 4.  Definition of the Calinski-Harabasz index. Real and imaginary 
parts of the features are used to determine the class separation for each 

feature. More Distinctive features have larger CHIs. 

 

III. RESULTS 

A.  Classification Accuracy 
There are four words, thus six pairs of word combinations 

(i.e. “BA” vs. “LE”.) The results of pseudo-linear LDA 
classification true positive rates for the six word combinations 
are presented in Fig. 5. Classification accuracy for all users in 
all cases is high (72-88%). The performance of this linguistic 
BCI is comparable to any system based on motor imagery [7-
18]. Participant average performance for all task pairs does 
not deteriorate; even for users 3, and 5, which are dyslexic and 
autistic respectively. 

B. Frequency of best features 
The indexes of each Gabor Coefficient, link it to a 2 Hz 

frequency band. The most important features identified by the 
hybrid feature selection process, from all users, all word 
combinations, and all validation folds (a total of 112,353 
features) are each placed in their linked band. The sum of 
features in each band is defined, here, as classification power 
of that band. Fig. 6 illustrates the classification power of each 
frequency using all the most important features in this study. 
The dotted horizontal lines represent one standard deviation, 
and two standard deviations above mean value. In addition to 
activity in the Alpha and Beta bands, higher frequencies in the 
Gamma band are also extremely important. This result 
confirms recent studies in neurology, linguistics, and 
psychology, which state that higher mental and cognitive 
functions such as covert speech require the brain to operate at 
higher frequencies than motor imagery tasks [35-37]. 

Figure 5. LDA true positive classification accuracy estimated by 10-fold 
Block Jack-knife validation. Each user completes five recording sessions 

containing 60 trials for each word. User 3 is dyslexic, and user 5 is autistic. 

Figure 6. The classification power of each frequency band within the most 
valuable features. The most important band is Alpha. In addition to alpha 

and beta band activity, which are also seen in motor imagery, the high 
gamma band, which indicates higher mental functions, is prominent. The 

dotted lines show one standard deviation and two standard deviations above 
mean value. 

 

IV. CONCLUSION 

The Alpha band has the highest classification power 
followed by the Beta band. However, only 12% of the most 
important features (13,894 in total) are in the Alpha, and 31% 
(34,654 in total) in the Beta band. Although the Gamma band 
has lower classification power, 57% of the most important 
features (63,814 in total) are in this band.  

Many previous studies on covert speech tasks filter the 
Gamma band in the pre-processing stage, and eliminate a 
significant proportion of class dependent information. Thus, 
the classification accuracy deteriorates. Any future studies in 
the use of language for BCIs must include the Gamma band. 

Within the Gamma band, the classification power increases 
and peaks at 94 Hz. This may indicate that frequencies above 
100 Hz may also contain class dependent activity. However, 
EEG susceptibility to EOG and EMG artifacts, and limitations 
of the recording hardware must be carefully considered in 
future studies if the frequency range of analysis is to be further 
increased.  

V. DISCUSSION 
In this study, the range of analysis in time and frequency 
domains, and the resolution of Gabor features, represent the 
absolute minimum requirements of a covert speech BCI. If the 
frequency range is reduced to 0-90 Hz, the performance of the 
classifiers deteriorates by 20%. For a range of 0-80 Hz 
performance falls to level of chance, which is also true if the 
time range is reduced to 0-2 seconds.  

Increasing the resolution of the Gabor transform may 
potentially improve the performance of the classifier. The 
Gabor resolution of 2 Hz by 0.03125 seconds provides an 
acceptable tradeoff between classification performance and 
available computational power. For any lower Gabor 
resolution, the performance of the classifier is no better than 
chance.  

                            CHI = SSB
SSW

× (N −k)
(k−1)

          

SSB = ni
i =1

k
∑ mi −m

2   ,    SSW =    x −mi
2

x ∈ xi
∑

i =1

k
∑

                   k :  clusters = 2   ,     N : observations

                           mi :  Centroid of cluster "i"  

                               m : Mean of all data

                       mi −m :  Euclidean distance

 BA-FO BA-LE BA-RY LE-FO LE-RY RY-FO 
U1 80.8±7.9 82.4±7.2 81.6±5.2 86.6±8 85±5.2 76.7±7.6 
U2 80±9.7 85.8±7.9 83.3±7.8 82.4±7.2 84.1±6.1 79.1±8 
U3 76.6±6.5 80±8 76.6±7.6 83.3±7.8 80±4.3 83.3±7.8 
U4 82.5±9.1 78.3±4.3 75.8±6.1 83.3±5.5 85±5.2 79.1±5.8 
U5 80.8±4 80.8±7.9 75.8±8.2 78.3±5.8 85.8±7.9 81.6±12.2 
U6 80.8±5.6 79.1±7 78.3±7 83.3±7.8 80.8±6.8 76.6±7.6 
U7 75.8±4.7 80±8.9 82.4±8.2 77.5±7.9 79.1±9 82.4±9.1 
U8 80±8 83.3±8.7 81.6±8.6 75.8±6.1 80.8±7.9 80±5.8 
U9 80.8±4 72.4±9.6 80.8±5.6 88.3±7 80±7 82.4±7.2 

U10 82.4±10.7 82.4±4.7 75.8±8.2 83.3±7.8 81.6±8.6 81.6±10.2 
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Abstract— In this study a single experimental protocol and 

analysis pipeline is used: once for MI tasks, and once for covert 

speech tasks. The goal of this study is not to maximizing 

classification accuracy; rather the main objective is to provide 

an identical environment for both paradigms, while identifying 

the most important activities related to the most class 

dependent features. Four volunteers participated in this 

experiment. With four classes, the average classification 

accuracy for covert speech tasks is 82.5%, and for motor 

imagery is 77.2%. The average performance is significantly 

higher than chance level for both paradigms, suggesting that 

the results are meaningful, despite being imperfect. For motor 

imagery tasks the most important activities are the execution of 

imagined movements, and goal driven executive control for 

suppression of overt movements, which also occur for covert 

speech tasks. However, the most important activity for covert 

speech tasks is the linguistic processing stages of word 

production prior to articulation, which does not occur in motor 

imagery. These high-Gamma linguistic processes are extremely 

class dependent, which contribute to the higher performance of 

covert speech tasks, compared to motor imagery in an 

otherwise identical environment. 

I. INTRODUCTION 

 

Motor imagery is a well-established paradigm in BCIs. 
The low-frequency oscillations (< 35 Hz) elicited by “MI” 
activity, have been detectable by EEG for many decades. MI 
does not occur independently and is the end-result of many 
cognitive functions. For example, anticipating an onset cue 
and initiating “imagined” movement after cue recognition 
requires stimulus-driven executive control, with high-Gamma 
activity in regions such as the pre-frontal cortex [1, 2]. To 
take advantage of such class dependent cognitive activity [3, 
4], the entire data bandwidth of the EEG system must be 
utilized [5] (and not only Alpha and Beta bands). Covert 
word production begins with high-Gamma (>70 Hz) 
linguistic processing stages [6-8], followed by motor imagery 
of articulation [9, 10]. Language is exceedingly more 
complex than movement [11] and requires analysis with 
much higher resolution than traditional MI band power [12]. 
However, covert speech is more intuitive and natural for BCI 
communication compared to MI. In this study, a single 
experimental protocol and analysis pipeline is used: once for 
MI tasks, and once for covert speech tasks. The performance 
of the system for each paradigm is calculated and the results 
are discussed.       

 
 

II. METHODS 

 

A. Experiment Protocol 

  In this study, each recording run contains four classes, 

which are shown in the user interface by four arrows: up, 

down, left, and right. Within a recording run, 10 examples of 

each task are presented in a random order (each run has 40 

trials) to avoid user fatigue. During recording, a new task is 

determined by an arrow appearing on the screen for 3 

seconds. After the arrow disappears, there is a 3 second 

standby state. Task onset is presented as a beep sound for all 

classes. A second beep indicates a rest period before the next 

trial. The experimental protocol is presented in figure 1.  

  Each user completes two recording runs, which are 

identical in every way with the exception of type of mental 

task (MI, covert speech). For MI tasks, the four arrows 

represent left hand movement (left arrow), right hand (right 

arrow), left foot (down arrow), and right foot (up arrow). In 

covert speech tasks, the user imagines speaking the 

phonemic structures: BA (back/down arrow), FO 

(forward/up arrow), LE (left arrow), and RY (right arrow), 

which are phonetically very dissimilar tasks [13]. 

 

B. Data Acquisition 

  Four neurologically healthy volunteers participated in 

this experiment. The EEG signals were recorded using an 

Enobio dry electrode system with 20 channels and 10/10 

configuration [14]. Data was recorded at a sampling rate of 

500 Hz and saved in “gdf” format. Compared to wet 

electrode systems, setting up the Enobio is extremely easy. 

However, the quality of recorded signals may restrict the 

number of classes it can use simultaneously. This study 

provides an evaluation of the system’s capability.  

 

 
Figure 1. The experiment protocol for recording four randomly presented 

trials. Each class corresponds to a directional arrow. After task presentation, 
a beep sound is used for all classes as task onset. A second beep indicates a 

rest period before the next task. 
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C. Pre-Processing 

  Recorded data was pre-processed using EEGLAB [15]. 

Data was down-sampled to 256Hz and re-referenced using 

common average. Line noise was removed with an FIR 

notch filter (49.5,50.5Hz). The AAR toolkit [16] was used 

for artefact rejection. EOG and EMG artifacts were reduced, 

with SOBI [17] and CCA algorithms [18] respectively. 

These methods outperform ICA, which is ineffective beyond 

70 Hz [19, 20]. One-second epochs were extracted from the 

pre-processed data and saved as a numeric matrix for further 

analysis.  

 

D. Feature Extraction 

  The discrete Gabor transform [21, 22] was used to 

generate features. The original data can be reconstructed 

from the features with no information loss. Each Gabor 

feature contains information on both time and frequency. In 

this study, a time step of 0.015625 seconds (4 time samples) 

and a frequency band of 2Hz is used. A one-second epoch 

from one channel (256 time samples) is converted into a 

64x64 feature matrix. Figure 2 presents the definition of the 

discrete Gabor transform. This method of feature selection 

makes it possible to identify the type of neural activity from 

the indexes of the features used in classification.  

 

E. Feature Selection and classification 

  Classification true positive rate is estimated by a 5-fold 

cross validation process [23]. In each fold, 8 trials are used 

for feature selection and training the classification object, 

and 2 trials are set aside for testing. The most valuable 

features for distinguishing four classes are discovered by the 

Davies-Bouldin index [24]. Initially, all pair-wise DBI 

matrices are calculated (6 binary combinations with 4 

classes). The four-class DBI is a conservative approximation 

based on the two-class DBIs, which is defined in figure 3. In 

this experiment, 91% of the total computational cost is spend 

on generating the DBI matrix. However, the dimensionality 

of the feature space is significantly reduced. In this study, 

the 3K most valuable features (from a total of 81920) are 

identified and used to train the LDA classifier. Features in 

the test data with the same indexes are used to test the 

performance of the classifier.  
 

 
Figure 2. Definition of Gabor coefficients by implementation of the direct 

discrete Gabor transform and a Gaussian window function. 

 

 
Figure 3. Definition of the Davies-Bouldin index for 4 classes. The most 

valuable features have the smallest DBI. 

 

III. RESULTS 

 

A. Classification Accuracy 

  The true positive rates for one class vs. all, are 

estimated as the mean and standard deviation of the five-fold 

cross validation process. Table 1 contains these results for 

the four participants and both types of cognitive task. The 

reader should kindly consider that the objective of this study 

is not to maximize classification accuracy. The experimental 

protocol and analysis pipeline provided identical 

environments for both paradigms, while identifying the most 

important activities related to the selected features. With 

four classes, the classification accuracy is significantly 

higher than chance level for both paradigms, suggesting that 

the results are meaningful, despite being imperfect.  

 

B. Time-frequency distribution of best features 

  The 60K features identified in the motor imagery 

experiments, are shown in a cumulative joint time-frequency 

plot of the feature space and presented in figure 4. As 

expected, valuable class dependent activity is not limited to 

the Alpha and Beta bands. In addition, the nominal 

bandwidth of (1-125) Hz given by Enobio is confirmed, as 

valuable features are identified in the entire frequency range.  

 

Table 1. True positive rates of one class vs. all. These are estimated using a 
five-fold cross validation process. With four classes, the average 

performance is significantly higher than chance level for both paradigms, 

suggesting that the results are meaningful, despite being imperfect. 
 

 

 

 

 

 

 

 

 

 

 
 

 Covert Speech Motor Imagery 

User 1 85 ± 33.3 80.1 ± 32.7 

User 2 80.5 ± 30.8 68.5 ± 28.1 

User 3 87.3 ± 21.2 83.4 ± 33.4 

User 4 78 ± 18.9 78 ± 30.9 

Average 82.5 ± 24.1 77.2 ± 31.2 
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  Figure 4. The cumulative joint time-frequency plot of the feature 

space containing the most valuable 60K features identified in the motor 

imagery experiments (4 users, five validation folds, and 3K features per 
fold). The (0.73,0.875) second band contains 15.1% of features.  

 

  For motor imagery tasks in this experiment 15.1% of all 

the most valuable features are significantly concentrated 

within the (0.73-0.875) second range. This time period 

corresponds with performing imagined movements and the 

suppression of the Primary Motor Cortex (stopping actual 

movements) via “goal driven executive control”. Such 

executive control involves high-frequency cognitive activity 

in brain regions such as the Superior Parietal Cortex and the 

Pre-Frontal Cortex [1, 2]. 23.2% of all the most valuable 

features are within the Alpha and Beta bands (MI). The other 

76.8% of the features are in the Gamma, and high-Gamma 

bands (cognitive functions). This suggests that in motor 

imagery tasks, cognitive functions generate a significantly 

greater amount of class dependent activity compared to the 

execution movement. 

  Figure 5 presents the cumulative joint time-frequency 

plot of the feature space containing the most valuable 60K 

features identified in the covert speech experiments. 48.8% 

of these features are above 70 Hz, which correspond with the 

linguistic processing functions [8]. These linguistic 

functions, which are entirely class dependent, do not exist in 

motor imagery. This provides a possible explanation for the 

higher classification accuracy of covert speech tasks (82.5%) 

compared to motor imagery tasks (77.2%) in an identical 

environment, considering there is a direct positive 

correlation (with R=0.8822 and P=0) between their 

performances. 

  Considering that tasks are identified before trials begin, 

the cognitively demanding linguistic functions (conceptual 

preparation, Lemma selection) are completed before onset. 

The linguistic functions occurring within trials (phonological 

code retrieval, syllabification) are performed automatically 

by the brain [9] and require no user effort. All other 

cognitive functions within trials (executive control, 

imagined movement) are also present in MI tasks. As a 

result, the cognitive effort of using covert speech tasks and 

MI tasks are virtually identical in this study. 

 
Figure 5. The cumulative joint time-frequency plot of the feature space 

containing the most valuable 60K features identified in the covert speech 

experiments (4 users, five validation folds, and 3K features per fold). 48.8% 
of these features are above 70 Hz. The (0.73,0.875) second band is not as 

prominent as the MI paradigm from figure 4. 

 

IV. DISCUSSION 

 

  The linguistic processing stages of word production 

prior to articulation, which are entirely class-dependent, 

consist of conceptual preparation, Lemma selection, 

phonological code retrieval, and syllabification [25]. By 

incorporating difference in meaning, and difference in 

phonetic structure, for selecting selected covert speech tasks, 

class separability can be significantly enhanced.  

  In this experiment, linguistic class separability is 

maximized by selecting phonetically dissimilar covert 

speech classes [13]. This explains the superior performance 

of covert speech tasks compared to MI tasks in the otherwise 

identical environment designed in this study.  

  Linguistic studies using intra-cranial implants have 

demonstrated that these linguistic processing stages have 

high-Gamma signatures in the (70-170Hz) range [10, 26-

29]. As bandwidth of EEG systems increases and EMG 

removal algorithms become more reliable, covert speech 

BCIs will become much more capable. Although other BCI 

systems (such as MI) will also improve, language, which is 

the most intuitive and natural form of human 

communication, would logically be the preferred paradigm 

of choice for a BCI.  
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Abstract
Word production begins with high-Gamma automatic linguistic processing functions followed by speech motor planning and
articulation. Phonetic properties are processed in both linguistic and motor stages of word production. Four phonetically dissim-
ilar phonemic structures BBA^, BFO^, BLE^, and BRY^ were chosen as covert speech tasks. Ten neurologically healthy volun-
teers with the age range of 21–33 participated in this experiment. Participants were asked to covertly speak a phonemic structure
when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. Initially, one-second trials were used,
which contained linguistic andmotor imagery activities. The four-class true positive rate was calculated. In the next stage, 312ms
trials were used to exclude covert articulation from analysis. By eliminating the covert articulation stage, the four-class grand
average classification accuracy dropped from 96.4% to 94.5%. The most valuable features emerge after Auditory cue recognition
(~100 ms post onset), and within the 70–128 Hz frequency range. The most significant identified brain regions were the
Prefrontal Cortex (linked to stimulus driven executive control), Wernicke’s area (linked to Phonological code retrieval), the right
IFG, and Broca’s area (linked to syllabification). Alpha and Beta band oscillations associated with motor imagery do not contain
enough information to fully reflect the complexity of speech movements. Over 90% of the most class-dependent features were in
the 30-128 Hz range, even during the covert articulation stage. As a result, compared to linguistic functions, the contribution of
motor imagery of articulation in class separability of covert speech tasks from EEG data is negligible.

Keywords Brain-computer interfaces . EEG . Linguistic processing stages . Motor imagery of articulation . Gabor transform .

Davies-Bouldin index

Introduction

Speech is the most natural and intuitive form of human
communication. Language and cognition are closely

related processes. A BCI system designed to understand
commands covertly spoken in the user’s mind, is highly
desirable. Most neocortical territories in both hemi-
spheres, as well as many subcortical brain regions are
involved in language [1]. EEG signals can successfully
identify 200–600 Hz cortical spikes [2–4] for medical
diagnostic applications. In artefact-free conditions, EEG
signals accurately measure induced/evoked high-Gamma
brain activity, up to 150 Hz [5–8]. Based on the unique
cognitive Neuroanatomy of each individual, the spatial,
temporal, and spectral patterns of activity may vary from
person to person [9].

Word production begins with semantic (conceptual
preparation), lexical (Lemma retrieval), and phonetic
(phonological code retrieval and syllabification) linguistic
processes, followed by planning the movements of
language muscles (phonetic encoding) for articulation
[10, 11].
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Linguistic phonetic processing is an automatic brain func-
tion, which elicits high-Gamma (70–160 Hz) oscillations [12,
13]. In each individual, Phonetic processing activity for a spe-
cific word does not change over time [14, 15] and is not
affected by priming, cognitive activity, or task frequency
[16, 17]. In contrast, semantic and lexical processing, is affect-
ed by task frequency, priming, and cognitive activity [18–20],
which would also arbitrarily shift the temporal course of all
following functions. These problems can be avoided by using
a suitable experimental protocol.

In covert speech, the manner of articulation in an individual
(their ‘accent’) is consolidated over time. Covert articulation
tasks activate the same language motor centres as their overt
form [21, 22]. As a result, covert speech is produced with the
same consistency as overt speech. However, in covert speech,
the activity of the Primary Motor Cortex is greatly attenuated
[23] and may be difficult to detect by EEG. Figure 1, illus-
trates the functional division of the primary motor cortex, also
known as the BHomunculus^. Speech production is the most
complex motor skill, which takes many years to learn and
master. Almost one third of the Primary Motor Cortex is allo-
cated to muscles producing speech, which reflects this com-
plexity [24].

Phonetically dissimilar covert speech tasks create distinc-
tive neural activity associated with the phonological code re-
trieval and syllabification stages of linguistic processing [25]
and involve different language muscle combinations during
covert articulation. A linguistic BCI with four classes is suffi-
ciently capable of controlling a smart device with a suitable
user interface. In this study, the four directions (back, forward,
left, and right) are shortened into Phonemic structures BBA^,
BFO^, BLE^, and BRY^and used as covert speech tasks. These
covert speech classes are cognitively appropriate directional
commands, have little or no overlap with typical mind-
wandering states, and provide an intuitive method of

communication. For example, the user can move a cursor to
the left by covertly speaking BLE^. In addition, these
Phonemic structures are phonetically dissimilar. To demon-
strate these phonetic differences in an accurate and quantita-
tive manner, the properties of each consonant and vowel [26],
such as place of articulation and manner of articulation, are
presented in Fig. 2 [27]. For example, the consonant /b/ is
voiced, plosive, and bilabial.

If the word class is known by the user before the trials, the
conceptual preparation stage will be completed in advance.
The Lemma selection stage, with multiple competing lemmas
will have temporal inconsistencies. If trials are recorded in
blocks, only one Lemma is activated and selected. In block
recordings, the same auditory time cue, in the form of a Bbeep’
sound, can be used for task onset in all word classes, thus
eliminating class-dependent auditory evoked responses from
trials. By consolidated the semantic and lexical activities, con-
ceptual preparation and lemma selection are complete before
task onset. As a result, trials only contain automatic phonetic
linguistic processing stages, and will not be affected by the
temporal inconsistency of cognitive activity. Mental effort
causes activation of scalp and neck muscles [28], which can
mask high-Gamma cortical components. In this work, no
mental effort is required from the user during trials. These
conditions can be easily reproduced for the online application
of this Linguistic BCI, with the same block recordings used
for training.

After cue recognition (~100 ms post-onset), the following
stages are [23]: Lemma activation (~100-175 ms post-onset),
phonological code retrieval (~175-250ms post-onset) and syl-
labification (~250-300 ms post-onset). Covert articulation
(~500-800 ms post-onset) and the corresponding Motor imag-
ery activity, are separated from the linguistic stages by a
~200 ms interval, during which covert articulation is designed
by an internal perceptual process using the working memory
and the somatosensory association cortex [9]. Initially one-
second trials are used. By using shorter trials (0-312 ms
post-onset), the covert articulation stage can be excluded from
analysis to study its contribution to classification accuracy.

Methods

This study was conducted with 10 neurologically healthy vol-
unteers in the age group of 21–33. All volunteers signed a
consent form based on the recommendations of the Ethical
Committee of the University of Essex. Participants were
seated in a comfortable armchair. The experiment consists of
4 recording runs for a participant, each containing 30 trials of
only one class. For all classes, an identical Bbeep^ sound was
used as the auditory cue. The user was informed of the task
before each run and asked to covertly speak when they heard
the timing cue. As a result, Conceptual Preparation, and

Fig. 1 The functional division of primary motor cortex. A significant
proportion, controls muscles responsible for speech
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Lemma selection are completed before onset. A random rest
period between 3 and 7 s was placed between trials to prevent
the user from anticipating onset time based on rhythm. This
ensures the remaining linguistic activities (Phonological Code
Retrieval, Syllabification, Covert Articulation) begin exactly
after auditory cue recognition, and the system is perfectly
synchronised. Recent studies on the time windows of the pro-
cessing stages of language production provide evidence of
latent activities of over 2000 ms [9]. The 3–7 s idle period
sufficiently separates the trials. Figure 3 shows the imagina-
tion protocol of the experiment.

The EEG signals were recorded using a 64 channel
Biosemi ActiveTwo™ system [29]. One computer generated
the graphical user interface and sent trigger signals to the
ActiveTwo device at the instant a time cue was presented to
the user. The triggers were sent via the parallel port and were
visible in the recorded data. A second computer saved the
EEG recordings and was connected to the ActiveTwo’s A/D
box via USB. Electrode placement was done per the interna-
tional ABC system, which for 64 channels corresponds to the
10/10 system. The ActiveTwo has a pre-amplifier stage on the
electrode and can correct for high impedances. However, the

offset voltage between the A/D box and the body was kept
between 25 mVand 50 mVas recommended by the manufac-
turer. The data were recorded at a sampling rate of 2048 sam-
ples/s, with guaranteed data frequency content of 0-409 Hz
according to BioSemi.

The pre-processing was done with the use of EEGLAB
[30], an open source MATLAB™ toolbox. Studies conducted
with the use of intra-cranial implants confirm high gamma
band activity during covert speech tasks [20, 31, 32]. One of
the main reasons that numerous studies have failed in achiev-
ing high classification accuracy, is that covert speech tasks are
treated as motor imagery, and information above the beta band
is often ignored or even filtered out [33]. A suitable frequency
range (0-128 Hz) for analysing Linguistic activity is achieved
by down-sampling the data to 256 Hz. This frequency range is
within the operating capability of the ActiveTwo system. The
data is then referenced using surface Laplacian. To remove
50 Hz noise from UK power lines, a FIR notch filter, with
rejection band of (49.2–50.8 Hz) was applied. Using the
Automatic Artifact Removal (AAR) toolbox in EEGLAB
[34], EOG and EMG artifacts were reduced, with SOBI [35]
and CCA algorithms [36] respectively. These methods

Fig. 3 Imagination protocol. The user imagines speaking a word when an
auditory cue in the form of a beep is presented. One second after each cue
are used for the first experiment, and 312 ms for the second. A random
rest period of 3–7 s occurs between trials. This sufficiently separated the

tasks from one another. Also, the random duration prevents the user from
anticipating the task onset based on rhythm. As a result, the next stages of
linguistic functions begin exactly after cue recognition and the system is
perfectly synchronised

Fig. 2 Properties of the
consonants and vowels in the
word classes, such as place of
articulation and manner of
articulation
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outperform ICA, which is ineffective beyond 70 Hz [37, 38].
Unfortunately, no algorithm can completely eliminate EMG,
which elicits 20-200 Hz oscillations in EEG [28, 39]. The
most effective solution is to reduce the possibility of recording
EMG by controlling the experiment protocol and the environ-
ment. The final stage of pre-processing is extracting epochs
from the continuous EEG recordings. Each epoch begins
when beep sound is generated and ends exactly one second
(or 312 ms for shortened trials) later.

This work is a novelty search with an exploratory ap-
proach. The experimental data were processed offline and
the main objective was to initially create a detailed feature
space, in such a way that little or no relevant information is
lost or excluded. Features must contain information on time
and frequency and should maintain their link to EEG channel
for possible topographical analysis. The discrete Gabor
Transform [40, 41] (presented in Fig. 4) was thus used as it
satisfies all these requirements. Although the Gabor transform
is computationally taxing, it has been successfully applied to
find hidden information in EEG data with muscle artefact
noise contamination to predict onset of seizures [42, 43] and
to identify the location of seizure sources [44]. The Gabor
transform has also been used for feature generation to classify
motor imagery tasks that are very similar, such as different
movements of the same hand [45, 46]. In the present study,
a time step of 0.03125 s (32 steps per second) and frequency
band of 2 Hz (64 frequency bands) were chosen to provide the
best tradeoff between classification performance and compu-
tational cost.

A 1-s epoch from a single EEG channel (256 samples) is
converted into a 64 × 32 feature matrix. For the 312 ms trials
(80 samples), one epoch from one channel is converted into a
64 × 10 feature matrix.

To maximise classification accuracy, it is necessary to iden-
tify the most distinctive features between the four covert
speech classes and use these features to train the classification

object. Dimensionality reduction and feature selection with
clustering algorithms is proven to be extremely effective
[47–49]. The Davies-Bouldin index [50] is a function of
within-cluster scatter to between-cluster separation [51, 52],
and can be used to determine most useful features to distin-
guish the four word classes. DBI matrices for all the six word-
pairs (e.g., BA vs. FO) are calculated, and used to assign a
conservative value to each feature in the Bone-vs-all^ DBI.
Features with the lowest DBI index are considered the most
valuable for class separation. Figure 5 shows the definition of
the Davies-Bouldin index with four one-dimensional clusters.

The mean and standard deviation of a 10-fold cross valida-
tion process [53] were used to estimate the true positive rate.
For each validation fold, 27 trials were used for training, and 3
remaining trials were set aside for testing only. Testing trials
change from one validation fold to the next, and over 10 folds,
all 30 trials are used in testing. The process of cross validation,
feature selection, training, and testing used in this work is
presented in Fig. 6.

Only the feature generation stage, using the discrete Gabor
transform, is applied to the entire dataset. All other calcula-
tions are unique and fold-dependent. In this study, for the 1-s
trials each DBI matrix has a dimension of 4096 × 32 (64 fre-
quency-bands, 64 channels, 32 time-steps). Based on the DBI,
features are ranked and sorted in order of importance. The
indexes of the most valuable 4000 features are saved, and
these features used for training the classification object. This
filtering approach for feature selection reduces the dimension-
ality of the feature space by 97%, with acceptable computa-
tional cost. The 312 ms trials use the same analysis pipeline as
1-s trials. For 64 channels, the dimension of the DBI matrix
for 312 ms trials is 4096 × 10 (64 frequency bands, 64 chan-
nels, 10 time-steps).

Pseudo-Linear discriminant analysis was applied for clas-
sification, as it consistently out-performed all other supervised
machine learning methods, for EEG recorded covert speech
data [54]. Compared to the training process, the computational
cost of testing is negligible.

Fig. 5 Definition of the Davies-Bouldin index for 4 one-dimensional
clusters. Most valuable features have the smallest DBI

Fig. 4 Definition of Gabor coefficients by implementation of the direct
discrete Gabor transform and a Gaussian window function
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Results

The true positive rates of one word vs. all, are generated by a
standard ten-fold cross validation method. Figure 7 presents
these values for 1-s epochs, and for 312 ms epochs. By elim-
inating the covert articulation stage from trials, the relative

contribution of Motor Imagery of speech and linguistic pro-
cessing stages, in classification accuracy can be determined.

The Wilcoxon rank-sum test on both columns returns a p
value of 0.9269. By using 312 ms trials instead of 1-s trials to
exclude covert articulation, the computational cost is reduced
to one third, with less than 2% penalty in classification accu-
racy. During covert speech, the language motor regions are
suppressed, but not completely deactivated [23]. As a result,
during the covert articulation stage, there will be minute in-
voluntary muscle movements related to each phonemic struc-
ture, which will create class-related, high-GammaMyoelectric
artefacts. The 312 ms trials are complete before the covert
articulation stage begins (~500 ms post onset) and are guar-
anteed to be free from class-related EMG. Possible involun-
tary early muscle ticks (i.e. lip movements ~160 ms after cue)
can cause significant EMG contamination. The CCA algo-
rithm used here, only removes such artefacts from the first
400 ms of data (312 ms trials included) [55].

From 10 users, 10 validation folds/user, and 4000 fea-
tures/fold, 4e5 best features are identified from the exper-
iment with 1-s trials, and 4e5 from the shortened 312 ms
trials. Each Gabor feature is linked to a frequency band,
time step, and EEG electrode. The 4e5 features identified
in the 1-s trials are cumulatively placed in the 64 × 32
feature space to create a colour coded time-frequency rep-
resentation of the most class-dependent Neural activity,
and to identify the electrodes recording this activity for
a topographical map of the brain [56, 57]. These plots are
illustrated in Fig. 8. The features are highly concentrated
in the 70-128 Hz band, even during the covert articulation
stage.

Fig. 6 The process of cross
validation, feature selection,
training, and testing used in this
work is presented here. The grand
average true positive rate is the
mean and standard deviation of
BAccuracy_1^ through
BAccuracy_10^

Fig. 7 The true positive rates of one word vs. all, estimated by a ten-fold
cross validation method. Eliminating the covert articulation stage from
analysis has less than 2% effect on grand average classification accuracy.
Considering the Wilcoxon p value of 0.9269, compared to the high-
Gamma linguistic processing stages, the contribution of motor imagery
of articulation in class separation of covert speech tasks from EEG data is
negligible
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The 4e5 features identified in the 312 ms trials are cumu-
latively placed in the 64 × 10 feature space to create a colour
coded time-frequency representation and used to create a to-
pographic brain map (Fig. 9). The most significant regions are
the Prefrontal Cortex [58] (stimulus driven executive control),
the left Superior Temporal Gyrus [9] (Wernicke’s area, pho-
nological code retrieval), the right, and left Inferior Frontal
Gyrus [9] (Broca’s area, syllabification). The same regions
are prominent in both Figs. 8 and 9.

Discussion

In a recent publication by these authors [59] an identical ex-
perimental protocol and analysis pipeline to this work were
used to record mixed randomised trials in a single run using an
Enobio dry electrode system with 20 channels. To achieve a
manageable recording duration (6–7 min), only 20 trials were
recorded per class, and the idle period between trials was
reduced to 1–3 s. A grand average classification accuracy of

Fig. 9 The cumulative colour-coded joint time-frequency representation of 4e5 features, 312 ms trials (Left). The associated topographical plot (Right).
Most important regions: Prefrontal Cortex, left STG (Wernicke’s area), right, and left IFG (Broca’s area)

Fig. 8 The cumulative colour-coded joint time-frequency representation of 4e5 features from 10 users, 1-s trials (Left). The associated topographical plot
(Right). The top of the plot is the front of the head. The greatest concentration is within 70–128 Hz
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85% was achieved. Despite using fewer channels, inferior
electrodes, and fewer trials compared to the current work,
the system performed extremely well for mixed randomised
recordings.

Recording 120 trials in a single run using the experimental
protocol presented in this work, requires 25–30 min.
Maintaining constant focus for such a long duration is
exhausting for the user. To reduce user fatigue, trials were
recorded in four blocks, each 7–8 min in duration. For each
user, the distribution properties (mean, std., rang, etc.) of the
raw EEG recordings are virtually identical in all four blocks.
Figure 10 presents the distribution properties of the recorded
blocks from user 1. The classification accuracy for user 1 is
96.7%. The raw recordings for all 4 blocks closely match each
other’s distribution properties. This indicates there are no
drifts in the recorded signals (i.e. change of an electrode’s
impedance) causing positive bias in classification accuracy.

The topographical map in Fig. 9 shows the overall activity
up to 312 ms post task onset. To demonstrate the sequence of
activations, topographical plots with 62 ms intervals are cre-
ated (Fig. 11). Each plot only contains features from the indi-
cated time range. The sequence of activation is as follows [9]:

& [0-62 ms] Left, and right Auditory Cortex: response to
auditory cue.

& [62-124 ms] Prefrontal Cortex [58]: Stimulus-driven ex-
ecutive control, initiating covert speech with auditory cue
recognition (100 ms). Left Middle Temporal Gyrus:
Lemma activation (100-124 ms).

& [124-186 ms] left Superior Temporal Gyrus: Phonological
code retrieval.

& [186-248 ms] Left and right Inferior Frontal Gyrus:
syllabification.

& [248-312 ms] Left inferior, and Superior Parietal Cortex
[58]: Goal-driven executive control, by suppressing the
Primary Motor Cortex, and activating an internal percep-
tual planning process [60–63].

The syllabification stage is completed sooner than estimat-
ed, and the 312 ms trials contain the very early stages of
perceptual planning. However, the covert articulation stage,
which occurs after the activation of the Supplementary
Motor Area [9, 64], is excluded from shortened trials as
intended. In the 312 ms trials, the spatial, temporal, and spec-
tral properties of the 4e5 most valuable features identified
from 10 participants (Figs. 9 and 11), correspond to the auto-
matic linguistic processing stages of word production prior to
articulation, and are supported by a substantial body of evi-
dence [9, 10, 12–15, 20–22, 25, 31, 32, 60]. This, in addition
to eliminating the possibility of drifts in the raw EEG record-
ings, confirm the validity of our findings.

Conclusions

By excluding motor imagery, grand average classification ac-
curacy dropped from 96.4% to 94.5%. Compared to the high-

Fig. 10 The distribution properties of raw EEG recordings in each block
for user 1. In all blocks, the mean is 0, std. is 10, the 25% and 75%
quartiles are −20 and 20 respectively, and range is near 180. They all
have Gaussian distribution. With classification accuracy of 96.7%, no
signs of signal drifting exist, suggesting that recording in blocks has
little, if any effect on classification accuracy for this data

Fig. 11 Topographical maps of brain regions generating the most distinctive features within the indicated 62 ms interval. The plot for the 248-312 ms
interval indicates the early stages of perceptual planning, before activation of the SMA (~500 ms) and covert articulation

J Med Syst           (2019) 43:20 Page 7 of 9    20 

200



Gamma linguistic processing stages of word production, the
contribution of motor imagery of articulation in class separa-
bility of covert speech tasks is negligible. However, by using
312 ms trials instead of 1-s trials, the computational cost is
significantly reduced. The 312 ms trials used in this work,
only contain phonetic linguistic processing activity. Phonetic
linguistic processing prior to articulation, elicits a unique and
word-specific pattern of high-Gamma activity [12, 65], which
does not change over time [14, 15] and is not affected by
frequency [16] or priming [17]. Phonetic codes are set up
and consolidated with the acquisition of language during
childhood, and remain unchanged throughout a person’s life
[17]. Phonetic codes are stored in the long term memory, and
are processed automatically by the brain requiring no con-
scious effort from the user during trials, with immunity from
any influence or modification [16, 17, 65, 66]. The experi-
mental protocol and analysis pipeline for 312 ms trials pre-
sented in this work can be used as a framework to create an
online EEG-based 4-class linguistic BCI in future studies. The
raw EEG recordings for all ten participants in this work have
been published on BMendeley Data^ (https://doi.org/10.
17632/5c2z92vw3g.2) for the benefit of our readers.
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 

Abstract— In this work, we present a novel EEG-based 

Linguistic BCI, which uses the four phonemic structures “BA”, 

“FO”, “LE”, and “RY” as covert speech task classes. Six 

neurologically healthy volunteers with the age range of 

19-37 participated in this experiment. Participants were 

asked to covertly speak a phonemic structure when they 

heard an auditory cue. EEG was recorded with 64 

electrodes at 2048 samples/s. The duration of each trial is 

312ms starting with the cue. The BCI was trained using a 

mixed randomized recording run containing 15 trials per 

class. The BCI is tested by playing a simple game of 

“Wack a mole” containing 5 trials per class presented in 

random order. The average classification accuracy for 

the 6 users is 82.5%. The most valuable features emerge 

after Auditory cue recognition (~100ms post onset), and 

within the 70-128 Hz frequency range. The most 

significant identified brain regions were the Prefrontal 

Cortex (linked to stimulus driven executive control), 

Wernicke’s area (linked to Phonological code retrieval), 

the right IFG, and Broca’s area (linked to 

syllabification). In this work, we have only scratched the 

surface of using Linguistic tasks for BCIs and the 

potential for creating much more capable systems in the 

future using this approach exists. 

I. INTRODUCTION 

Language is the most natural and intuitive form of human 
communication. It is also the very mechanism responsible for 
cognition and thinking. A BCI system designed to function 
by understanding the words a user covertly speaks 
(generated, but not articulated) is highly desirable. However, 
compared to all other Neural functions used in previous 
BCIs, Language is the most complex, involving most 
neocortical territories in both hemispheres, as well as many 
subcortical brain regions [1]. Word production begins with 
semantic (conceptual preparation), lexical (Lemma retrieval), 
and phonetic (phonological code retrieval and syllabification) 
linguistic processes, followed by planning the movements of 
language muscles (phonetic encoding) for articulation [2, 3]. 
The duration of Semantic and Lexical functions is affected by 
priming, cognitive activity, or task frequency [4-6]. Such 
temporal inconsistencies can arbitrarily shift the course of all 
following Linguistic functions. This problem has been solved 
by using a suitable experimental protocol previously 
developed and proven by these authors [7-9].  
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Linguistic Phonetic processing is an automatic brain 
function, which is highly consistent for each individual and 
does not change over time [10, 11] and elicits high-Gamma 
(70-160 Hz) oscillations [12, 13]. This frequency range can 
be accurately measured by many modern EEG systems [14-
17], including the Biosemi ActiveTwoTM system [18] used in 
this work. The Covert Articulation stage is not analyzed in 
this experiment, as it has negligible effect on class 
separability compared to the previous linguistic functions and 
is highly susceptible to EMG contamination [8]. The novel 
Linguistic BCI presented here is used by six participants to 
play a simple 4-class game. The BCI performance is 
presented and results are discussed. 

II. METHODS 

A. Experiment Protocol 

This study was conducted with the help of six 

neurologically healthy volunteers in the age group of 21-33. 

All volunteers signed a consent form based on the 

recommendations of the Ethical Committee of the University 

of Essex. Participants were seated in a comfortable armchair 

in front of a screen during training the BCI and playing a 

game of “whack a mole”. In this game, an image appears on 

the screen for one second, in which a mole pops its head out 

of one four holes in the ground (left, right, back, forward). 

The user is informed of the task before each run. As a result, 

Conceptual Preparation, and Lemma selection are completed 

before onset. The user then waits for an auditory cue to 

covertly speak a command and move a hammer to the 

correct location to whack the mole. The four chosen covert 

speech tasks are “BA”, “FO”, “LE”, and “RY”, which are 

Phonetically very dissimilar [7-9] and can be used as 

intuitive shortened directional commands. For example, the 

hammer can hit the left hole by using the covert speech task 

“LE”. For all classes, an identical “Beep” sound was used as 

the auditory cue. After task presentation, a random rest 

period between 1 and 3 seconds was placed before the 

auditory cue to prevent the user from anticipating onset time 

based on rhythm. This ensures the following linguistic 

activities begin exactly after auditory cue recognition 

(trigger driven executive control), and the system is perfectly 

synchronized. By using 312ms epochs, the only analyzed 

Linguistic functions are Phonological Code Retrieval and 

Syllabification, which are performed automatically by the 

brain and have an unchangeable duration unique to each 

individual participant. The experiment has two stages: 

training and testing. During the training stage, 15 trials of 

each of the four classes (60 trials in total) are presented to 

the user in a mixed randomised order. For the testing stage, 5 

trials of each of the four classes (20 trials in total) are 

presented to the user in a mixed randomised order. Figure 1 

illustrates the experimental protocol. 
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Figure 1. Imagination protocol. An image presented for 1 second shows the 

mole in one of the holes (left in this case). The user chooses the correct 
direction for landing the hammer and the correct covert speech task to 

perform (in this case “LE”). After the task image disappears the user waits 

to hear the beep sound to begin covertly speaking the correct word. In the 

testing stage the result is also shown in an image, completing the cycle. 

 

B. Data Acquisition 

The EEG signals were recorded using a 64 channel 
Biosemi ActiveTwoTM system [18]. A computer generated 
the graphical user interface and sent trigger signals to the 
ActiveTwo device at the instant a time cue was presented to 
the user. The triggers were sent via the parallel port and were 
visible in the recorded data. In addition, special triggers start 
and stop recording, which enable the computer generating the 
GUI to also save and analyze the EEG recordings via USB 
connection to the ActiveTwo’s A/D box. Electrode placement 
was done per the international ABC system, which for 64 
channels corresponds to the 10/10 system. Two facial 
electrodes were used to detect ocular or other muscle 
artefacts. The ActiveTwo has a pre-amplifier stage on the 
electrode and can correct for high impedances. However, the 
offset voltage between the A/D box and the body was kept 
between 25mV and 50mV as recommended by the 
manufacturer. The data were recorded at a sampling rate of 
2048 samples/s, with guaranteed data frequency content of 0-
409Hz according to BioSemi.  

C.   Pre-Processing 

The pre-processing was done with the use of EEGLAB 
[19], an open source MATLABTM toolbox. Studies conducted 
with the use of intra-cranial implants confirm high gamma 
band activity during covert speech tasks [6, 20, 21]. One of 
the main reasons that numerous studies have failed in 
achieving high classification accuracy, is that covert speech 
tasks are treated as motor imagery, and information above the 
beta band is often ignored or even filtered out [22]. A suitable 
frequency range (0-128Hz) for analysing Linguistic activity 
is achieved by down-sampling the data to 256Hz. This 
frequency range is within the operating capability of the 
ActiveTwo system. The data is then referenced using surface 
Laplacian. To remove 50Hz noise from UK power lines, a 
FIR notch filter, with rejection band of (49.2-50.8 Hz) was 
applied. Using the Automatic Artifact Removal (AAR) 
toolbox in EEGLAB [23], EOG and EMG artifacts were 
reduced, with SOBI [24] and CCA algorithms [25] 
respectively. Finally, epochs are extracted beginning with the 
beep sound, ending 312ms later. 

D.  Feature Extraction and Selection 

 The discrete Gabor Transform [26, 27] was used to 
generate features as Gabor coefficients contain information 
on time and frequency and maintain their link to their source 
EEG channel for possible topographical analysis. Equation 1 
presents the definition of the Gabor transform.                     

 

Equation 1. Definition of Gabor coefficients by implementation of the direct 

discrete Gabor transform and a Gaussian window function. 

 

In the present work, a time step of 0.03125 seconds (32 
steps per second) and frequency band of 2Hz (64 frequency 
bands) were chosen to provide the best tradeoff between 
classification performance and computational cost [7-9]. A 
312ms epoch from a single EEG channel (80 samples) is 
converted into a 64x10 feature matrix. The Davies-Bouldin 
index [28] is a function of within-cluster scatter to between-
cluster separation [29, 30], and can be used to determine most 
useful features to distinguish the four word classes. DBI 
matrices for all the six word-pairs (e.g., BA vs. FO) are 
calculated, and used to assign a conservative value to each 
feature in the “one-vs-all” DBI.  Features with the lowest 
DBI index are considered the most valuable for class 
separation.  

In this study, 312ms trials are converted into a DBI 
matrix with a dimension of 4096x10 (64 frequency-bands, 64 
EEG channels, 10 time-steps). Equation 2 shows the 
definition of the Davies-Bouldin index with four one-
dimensional clusters.  

E.   Training the classification object and testing 

Based on the DBI values from the training section of the 

experiment, features are ranked and sorted in order of 

importance. The indexes of the most valuable 4000 features 

are saved, and these features used for training the LDA 

classification object. During testing, Gabor features from the 

new test epoch with the same indexes saved during training 

are used to test the classifier.  

 

 

Equation 2. Definition of the Davies-Bouldin index for 4 one-dimensional 

clusters. Most valuable features have the smallest DBI. 
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III. RESULTS  

A.  Classification Accuracy 

 The performance of the six participants are presented in 

Table 1. In average, all users got more than 16 out of 20 

correct predictions (average performance 82.5). 

B.  Time, Frequency, and Location of best features 

 From 6 users, and 4000 features/user, a total of 24K most 

valuable features were identified. The cumulative plots of 

the joint-time-frequency feature space, and the topographic 

map of the brain using these 24K features are presented in 

Fig. 2. Here, the top of the plot is the front of the head. 

IV. DISCUSSION 

As seen in Fig. 2, the key activity begins ~100ms post-

onset. This corresponds with the time of Auditory cue 

recognition. The highest concentration is in the 70-128Hz 

range, which corresponds with Phonetic Linguistic activities. 

The most important brain regions are the Prefrontal 

Cortex (related to trigger-driven executive control, waiting 

for time cue to begin task), Wernicke’s area (related to 

Phonological code retrieval), and right IFG and Broca’s area 

(related to Syllabification). The spatial, temporal, and 

spectral properties of the 24K most valuable features 

identified from 6 participants (Fig. 2), correspond to the 

automatic linguistic processing stages of word production 

prior to articulation, and are supported by a substantial body 

of evidence [2, 6, 10-13, 20, 21, 31-35].  

The only conscious effort required from the user to 

operate this BCI is paying attention and waiting for the 

Auditory cue to covertly speak the desired command. All 

brain activities after auditory cue recognition (Phonetic 

Linguistic functions) are performed automatically by the 

brain and cannot be modified by the user. In fact, the 312ms 

trials end before conscious activity of any sort can begin in 

the brain.  

The Linguistic BCI presented in this work is just as fast as 

a traditional P300 system. However, unlike the P300, this 

novel Linguistic BCI does not require constant gaze and 

attention to operate correctly.  

 
Table 1: Classification Accuracy for all 6 users. 

 Classification Accuracy 

User 1 85% 

User 2 80% 

User 3 75% 

User 4 90% 

User 5 85% 

User 6 80% 

Mean 82.5 ± 4.1% 

 

 
 

Figure 2. (Left) The cumulative colour-coded joint time-frequency 

representation of 24K best features from all users. The most important 

activity begins ~100ms post-onset corresponding to Auditory cue 

recognition and is concentrated in the 70-128Hz frequency range 

corresponding to Linguistic functions. (Right) The topographical plot of the 

brain using same features. The top of the plot is the front of the head. Most 

important regions: Prefrontal Cortex, left STG (Wernicke’s area), right, 

and left IFG (Broca’s area). These correspond with Linguistic Phonetic 

activity prior to articulation. 

 

In an earlier publication by these authors [8], a similar 

Linguistic BCI to this work, was compared with a Motor 

Imagery system, both using 1-second trials and the same 

experimental protocol and analysis pipeline. In an identical 

environment, the Linguistic BCI significantly outperformed 

the MI system. In addition, if trials are shortened from one 

second to 312ms, there is no significant loss of performance 

in the Linguistic BCI [9]. It is impossible to use MI for such 

a short trial duration.  

For operating this novel BCI we used only those 

Linguistic functions that are completely automatic 

(Linguistic Phonetic functions) and temporally consistent. It 

is difficult to maintain perfect consistency for MI tasks, even 

during the same experiment. Considering these factors, 

Linguistic BCIs can potentially render MI systems obsolete.  

In the present work, we only use a fraction of the time-

frequency window containing Linguistic activity (up to 

170Hz lasting over 2000ms) to successfully classify 4 covert 

speech tasks. By expanding the time and frequency of 

analysis, the number of word classes may be increased in 

future studies. Finally, the performance of the Linguistic 

BCI may improve by increasing the number of trials used for 

training [9] with the downside of increasing training 

duration and greater user fatigue.  
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