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Abstract.17

Background: Alzheimer’s disease (AD) is a neurodegenerative condition driven by multifactorial etiology. Mild cognitive
impairment (MCI) is a transitional condition between healthy aging and dementia. No reliable biomarkers are available to
predict the conversion from MCI to AD.
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Objective: To evaluate the use of machine learning (ML) on a wealth of data offered by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and Alzheimer’s Disease Metabolomics Consortium (ADMC) database in the prediction of the MCI to AD
conversion.
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Methods: We implemented an ML-based Random Forest (RF) algorithm to predict conversion from MCI to AD. Data
related to the study population (587 MCI subjects) were analyzed by RF as separate or combined features and assessed for
classification power. Four classes of variables were considered: neuropsychological test scores, AD-related cerebrospinal
fluid (CSF) biomarkers, peripheral biomarkers, and structural magnetic resonance imaging (MRI) variables.
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2 N. Massetti et al. / A Machine Learning Approach for the AD Spectrum

Results: The ML-based algorithm exhibited 86% accuracy in predicting the AD conversion of MCI subjects. When assessing
the features that helped the most, neuropsychological test scores, MRI data, and CSF biomarkers were the most relevant in
the MCI to AD prediction. Peripheral parameters were effective when employed in association with neuropsychological test
scores. Age and sex differences modulated the prediction accuracy. AD conversion was more effectively predicted in females
and younger subjects.
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Conclusion: Our findings support the notion that AD-related neurodegenerative processes result from the concerted activity
of multiple pathological mechanisms and factors that act inside and outside the brain and are dynamically affected by age
and sex.
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INTRODUCTION28

Alzheimer’s disease (AD) is one of the most preva-29

lent causes of early-onset dementia [1]. Clinical and30

epidemiological evidence indicate that AD-related31

pathological changes occur decades before the onset32

of clinical symptoms [2–4]. Mild cognitive impair-33

ment (MCI) is a critical prodromal phase of AD34

that offers a window of opportunity for therapeutic35

intervention [5, 6]. A few highly debated disease-36

modifying options are becoming available [7–12]. On37

the other hand, a growing body of evidence shows38

that prevention strategies may delay AD onset and39

progression [13–21]. Therefore, the development of40

cost-effective approaches to identify MCI subjects at41

risk of conversion to dementia and who will benefit42

from early therapeutic intervention is paramount.43

To date, the clinical identification of the MCI stage44

has been achieved through the combined implemen-45

tation of neuropsychological tests, the use of brain46

magnetic resonance imaging (MRI) scans, and the47

evaluation of altered levels of AD-related proteins48

[(i.e., amyloid-� and tau in the cerebrospinal fluid49

(CSF) or brain parenchyma] [5, 6, 22].50

Machine learning (ML) is a computer science51

field that provides computational tools to perform52

automated data classification and generate event pre-53

dictions. ML is finding a variety of applications54

in medicine and neurology [23, 24]. Applied to55

dementia, the approach can help capture the com-56

plex molecular interactions of pathogenic events that57

occur in the early AD stages and/or facilitate disease58

progression [24, 25]. For instance, ML, fed with MRI59

data relative to subtle structural brain changes, has60

successfully helped unravel the disease continuum61

that spans from brain aging to AD via MCI [26–30].62

Accuracy higher than 80% has also been achieved by63

employing multimodal approaches that combine the64

computation of detailed MRI-based measurements,65

the analysis of brain or CSF alterations of amyloid- 66

� and tau levels, neuropsychological and behavioral 67

tests, and dementia-related omics [31–36]. 68

The use of such a wide array of biomarkers 69

has been mainly limited to changes occurring within 70

the central nervous system (CNS). However, promis- 71

ing alternative diagnostic venues are now offered 72

by using systems medicine and network-based ap- 73

proaches and evaluating peripheral and systemic 74

changes [37–40]. The implementation of this holistic 75

strategy relies on the notion that that chronic diseases, 76

including dementia, are likely the result of converg- 77

ing perturbations of complex intra- and intercellular 78

networks as well as alterations that occur at many 79

levels and are not limited to one organ or driven by 80

a single molecular factor or pathogenic mechanism 81

[41–46]. 82

Moving from this conceptual framework, we have 83

employed an ML-based approach to identify, in a 84

cohort of 587 MCI subjects, individuals more prone to 85

convert to dementia. To that aim by taking advantage 86

of the wealth of data that reflect pathogenic events 87

occurring inside as well as outside of the CNS. The 88

study evaluated data obtained from the Alzheimer’s 89

Disease Neuroimaging Initiative (ADNI) database 90

and implemented an ML-based Random Forest (RF) 91

algorithm [47]. 92

METHODS 93

Data used in the preparation of this article 94

were obtained from the ADNI database (http://adni. 95

loni.usc.edu). ADNI is a public-private reposi- 96

tory of clinical, imaging, genetic, and biochemical 97

biomarker data obtained from North American sub- 98

jects or patients (http://www.adni-info.org). ADNI 99

aims to identify the determinant processes leading to 100

AD and diagnose pathological changes occurring at 101

http://adni.loni.usc.edu
http://www.adni-info.org
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the earliest stage. All ADNI data collected at baseline102

were downloaded and managed with custom-made103

R-written codes.104

Subjects105

Subjects considered in this study were patients106

diagnosed with MCI extracted from the cohorts of107

ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. The108

inclusion criteria were the ones provided by the ADNI109

protocol. Thus, all subjects were classified as MCI110

based on memory deficits but the relative preser-111

vation of other cognitive domains and maintained112

autonomy in the activities of daily living (http://adni.113

loni.usc.edu/study-design). To be included in the114

analysis, the subjects need to have completed all the115

baseline neuropsychological assessments. Subjects116

were followed for at least 36 months. The timeframe117

was chosen considering that MCI subjects have a high118

probability of converting to AD within 30 months119

[48].120

All the variables included in the database were121

grouped into four classes: psychometric features,122

MRI-related data, AD-related biomarkers, and peri-123

pheral biomarkers.124

Psychometric variables125

Psychometric variables included neuropsycholog-126

ical test scores. For each subject, sixteen neuropsy-127

chological tests were employed to assess the status of128

different cognitive domains. The neuropsychological129

dataset included the Alzheimer’s Disease Assess-130

ment Scale-Cognitive (ADAS-Cog), subscales used131

to evaluate the severity of memory, learning, lan-132

guage (production and comprehension), praxis, and133

orientation deficits [49, 50]; the Mini-Mental State134

Examination [51] used to assess global cognition;135

the 30-item Boston Naming Test [52] and the Ani-136

mal Fluency [53] to evaluate semantic memory and137

language abilities; the Functional Activities Ques-138

tionnaire (FAQ) for the assessment of daily living139

activities [54]; the Rey Auditory Verbal Learning140

Test and Logical Memory II, subscales of the Wech-141

sler Memory Scale-Revised (WMS-R) to investigate142

recall and recognition [55, 56]; the Trail Making143

Test [57], part A and B (time to completion) to144

assess attention/executive functions; the Clock Draw-145

ing Test to evaluate attention, working and visual146

memory, and auditory comprehension [58]; the Clin-147

ical Dementia Rating Scale to quantify the patients’148

severity of cognitive impairment related to the auton-149

omy in daily living activities [59]. Supplementary150

Table 1 summarizes the domains and cognitive func- 151

tions investigated by each test. 152

AD-related biomarkers 153

AD-related biomarkers included CSF levels of 154

amyloid-� peptide 1–42 (A�42), total-Tau (t-Tau), 155

phosphorylated-Tau (p-Tau), and p-Tau/A�42 ratio. 156

The APOE �4 genotype [60] was included. The 157

procedures of acquisition, stocking, processing, and 158

analysis of the biospecimens are available online (see 159

http://adni.loni.usc.edu/methods/documents/). 160

Peripheral biomarkers 161

Peripheral biomarkers were obtained from the 162

human plasma and serum. Supplementary Table 2 163

shows all the biospecimens considered in this work. 164

The biospecimen selection—within the datasets 165

available on the ADNI database (Biospecimen 166

Inventory, http://adni.loni.usc.edu)—was made by 167

considering the number of samples and the consis- 168

tency of measurements within the different phases 169

of the ADNI project (ADNI-1, ADNI-GO, ADNI- 170

2, ADNI-3). To meet the second criterion and reduce 171

the incidence of human error, we considered only data 172

produced through automated techniques. 173

MRI variables 174

MRI variables included cortical thickness values 175

and normalized volumes of relevant deep structures, 176

as shown in Supplementary Table 3. Specifically, 177

the MRI data downloaded from the ADNI data- 178

base (Image Collections, http://adni.loni.usc.edu) 179

were acquired with a Philips 3T scanner (see details 180

at http://adni.loni.usc.edu/wp-content/uploads/2010/ 181

05/ADNI2 MRI Training Manual FINAL.pdf), th- 182

ereby limiting bias and technical issues related to 183

the use of different scanner types or brands. T1- 184

weighted images were acquired using 3D Turbo 185

Field-Echo sequences (slice thickness = 1.2 mm; rep- 186

etition time/echo time = 6.8/3.1 ms). The structural 187

MRI analysis was performed with Freesurfer (ver- 188

sion 6.0). Automatic reconstruction and labeling of 189

cortical and subcortical regions was achieved with the 190

“recon-all-all” command line, according to Desikan- 191

Killiany Atlas [61]. The volumes of the brain regions, 192

computed with asegstats2table, were normalized by 193

dividing to the total intracranial volume of each 194

patient, while the thicknesses of the brain areas 195

considered are those calculated automatically by 196

aparcstats2table.

http://adni.loni.usc.edu/study-design
http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_MRI_Training_Manual_FINAL.pdf
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ML analysis197

Our ML approach used an RF algorithm as imple-198

mented by the scikit-learn library [62] written in199

Python. The RF is a supervised non-linear classifier.200

Its operation is based on the construction of binary201

decision trees obtained with the Bagging sampling202

method (an acronym for bootstrap aggregating) [63].203

This model was chosen due to its robust performance204

and stableness over an extensive range of parameters.205

Furthermore, the model is independent of the distri-206

bution of data and exhibits significant multi-class and207

advanced data-mining capabilities [64].208

During the training phase, the algorithm explored209

the non-linear interactions between ADNI variables210

(or features) of the study subjects divided into two211

classes: individuals who converted to AD during212

the follow-up (cMCI) or not (ncMCI). The goal213

at this stage was to identify the best subdivision/214

classification strategy.215

In the training phase, the RF analyzed 85% of the216

dataset’s subjects (who were randomly extracted). We217

used grid search and random search as hyperparam-218

eters optimization techniques [65]. Specifically, we219

focused on the number of trees, the depth of each220

tree, the number of samples for leaf, and the number221

of variables. Once the training phase was completed,222

we assessed feature importance to understand the role223

of each variable in the production of the classification224

and decision process. After the training, we entered225

the testing phase, and the RF strategy was applied to226

the remaining 15% of the dataset.227

After a global analysis of the entire sample of228

MCI patients, the cohort was divided into four groups229

according to age quartiles (age brackets: 55–68,230

69–74, 75–78, 79–88 years old). The RF was then231

repeated on the four groups separately. Differences232

due to sex were evaluated by analyzing separately233

male and female subjects.234

RF performance in classifying cMCI and ncMCI235

subjects was assessed by taking into account accu-236

racy values (ACC), positive predictive values (PPV),237

negative predictive values (NPV), sensitivity, and238

specificity.239

RESULTS240

Demographics and baseline data241

Of the overall sample of 587 MCI patients, 236242

(40%) converted to AD (cMCI) within the 36-month243

follow-up. Of these, 42% were males, and the mean244

Table 1
Demographics and baseline features of the cohort. The table illus-

trates the demographics of the MCI cohort at baseline

MCI (n = 587)

Sex (female/male) 235/352
Age (y)∗ 72.9 ± 7.4
Education (y)∗ 15.9 ± 2.7
MMSE∗ 27.5 ± 1.8
ADAS13∗ 17.0 ± 6.7
APOE �4 (Non-carrier/Het/Homo) 290/229/68

Age and sex stratification Numerosity (% of converters)

55–68 years old
F 72 (32%)
M 74 (23%)

69–74 years old
F 68 (47%)
M 100 (38%)

75–78 years old
F 37 (43%)
M 83 (43%)

79–88 years old
F 58 (47%)
M 95 (49%)

ADAS13, Alzheimer’s Disease Assessment Scale-Cognitive
subscale-13 items score at baseline; APOE �4 (Non-carrier / Het-
erozygous carrier / Homozygous carrier), apolipoprotein E �4
allele status; MCI, mild cognitive impairment; MMSE, Mini-
Mental State Examination score at baseline. The asterisk indicates
mean values followed by standard deviations. The other values
represent the number of subjects falling in each category.

age was 74.0 ± 7.1 years. The remaining 351 (39% 245

males, mean age 72.2 ± 7.4 years) remained clini- 246

cally stable (ncMCI). The demographics and baseline 247

data of the study cohort are summarized in Table 1. 248

Global analysis 249

The use of RF allows the analysis of the fea- 250

tures that offer the best predictive power. In our 251

study, the RF-related features that had the higher 252

impact in helping to identify cMCI subjects were 253

psychometric data in combination with AD-related 254

biomarkers (ACC = 0.86, sensitivity = 0.73 and speci- 255

ficity = 0.93) or MRI parameters (ACC = 0.83, 256

sensitivity = 0.70 and specificity = 0.93) (Table 2). 257

The combined use of AD biomarkers and MRI data 258

also generated good accuracy (ACC = 0.81, sensitiv- 259

ity = 0.69 and specificity = 0.89). 260

Furthermore, on a ranking scale, psychometric 261

variables at baseline were the most accurate classi- 262

fiers (ACC = 0.80, sensitivity = 0.81 and specificity = 263

0.79), followed by MRI-related data (ACC = 0.75, 264

sensitivity = 0.64 and specificity = 0.85) and AD- 265

related biomarkers (ACC = 0.70, sensitivity = 0.77 266
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Table 2
Random forest (RF) prediction performance for MCI conversion to AD within 36 months. The table depicts the RF ability to correctly
classify converter and non-converter MCI subjects (cMCI and ncMCI, respectively) in the test dataset (15% of the total sample size). The

ranking is based on accuracy values

Accuracy PPV NPV Sensitivity Specificity Total
sample size

Psychometric + AD-related biomarkers 0.86 0.84 0.87 0.73 0.93 422
Psychometric + MRI 0.83 0.88 0.81 0.70 0.93 318
AD-related biomarkers + MRI 0.81 0.82 0.81 0.69 0.89 209
Psychometric + peripheral biomarkers 0.80 0.72 1.00 1.00 0.58 266
Psychometric 0.80 0.68 0.88 0.81 0.79 587
MRI 0.75 0.77 0.73 0.64 0.85 318
AD-related biomarkers 0.70 0.54 0.85 0.77 0.67 422
MRI + peripheral biomarkers 0.70 0.64 0.88 0.93 0.47 194
AD-related biomarkers + peripheral biomarkers 0.65 0.63 1.00 1.00 0.12 128
Peripheral biomarkers 0.60 0.57 0.80 0.95 0.21 266

Measurements of accuracy, predictive values, sensitivity, and specificity refer to performances obtained from the test dataset. AD,
Alzheimer’s disease; AD-related biomarkers, CSF biomarkers of neurodegeneration + APOE �4; MCI, mild cognitive impairment; MRI,
magnetic resonance imaging biomarkers; NPV, Negative Predictive Value; Peripheral biomarkers, amino acids + bile acids + energetic sub-
strates + purines + systemic indices + triglycerides and cholesterol; PPV, Positive Predictive Value; Psychometric, neuropsychological tests.
See Supplementary Tables for detailed variables enclosed in each category.

and specificity = 0.67). Peripheral biomarkers exhib-267

ited lower predicting accuracy (0.60) and PPV (0.57)268

but retained very high sensitivity (0.95) and NPV269

(0.80). Single variables, ranked by their prediction270

value, are shown in Fig. 1. Baseline neuropsycholog-271

ical test scores relative to memory deficits and global272

cognitive functioning were the most relevant factors273

to help predict the conversion to AD. As for the MRI274

structural data, the evaluation of the degrees of atro-275

phy (as assessed in terms of cortical thickness and276

subcortical volumes of temporal lobe structures) was277

associated with the most predictive value. As for the278

AD-related biomarkers, the p-Tau/A� ratio generated279

the highest informative value. Interestingly, periph-280

eral features also helped the RF decision process. Of281

note, in this group, bile acids (BA) were found to282

provide the most significant aid to predict conversion.283

Supplementary Figure 1 depicts the ranking scale284

for combinations of feature groups that generated285

accuracy values greater or equal to 0.80.286

Age stratification287

RF results, stratified according to four age brack-288

ets, indicated that the prediction process was always289

more effective in the younger group (Table 3). In the290

case of some features (i.e., MRI data and AD-related291

biomarkers), a “plateau” phase could be identified.292

Conversely, the prediction accuracy based on psy-293

chometric variables steadily declined over time (from294

0.86 to 0.70). Figure 2 depicts the variable stratifica-295

tion upon the four age brackets.

Sex stratification 296

Finally, we investigated sex differences in the pre- 297

dictive performance of the algorithm. As shown in 298

Table 4, the accuracy was higher in female sub- 299

jects. Differences in RF accuracy were modest for 300

some classes (i.e., MRI data, AD-related biomark- 301

ers, psychometric scores). They became more robust 302

in the case of peripheral biomarkers (ACC = 0.73 for 303

females versus 0.57 for males). When considering 304

the order of importance (Fig. 3), higher anatom- 305

ical and functional relevance were observed for 306

frontal lobe-related data (i.e., MRI and TRAIL-B 307

scores) of male patients. RF also showed differ- 308

ences in peripheral biomarker relevance (Fig. 3). In 309

that respect, glutamine was the most significant vari- 310

able in both groups. Sex-related differences emerged. 311

HDL cholesterol and butyrate were more helpful in 312

predicting the conversion process of females, while 313

pyruvate was most helpful in male subjects. BA levels 314

were highly relevant in both groups. 315

DISCUSSION 316

This study investigated which combination of 317

ADNI-related data was the most effective for pre- 318

dicting the MCI conversion to dementia. To that aim, 319

we took into account neuropsychological test scores, 320

CSF levels of AD-related proteins, detailed structural 321

MRI features, and peripheral biomarkers (Table 2). 322

The ADNI database has been used by many authors to 323

classify patients using ML algorithms [66–71]. In line 324
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Fig. 1. (Continued)
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Fig. 1. Global analysis. Features importance obtained in the Random Forest performed on the train dataset (85% of MCI subjects). The
figure contains the classes which showed an accuracy value greater or equal to 0.80 in the test dataset (i.e., psychometric tests, AD-related
biomarkers, structural MRI and peripheral biomarker, see Table 2). For each class, the histograms depict the weight, or importance, of
each feature in the training phase of the machine learning. The importance scores range from 0 to 1, with higher values indicating greater
weight in the classification process. AD biomarkers, Alzheimer’s disease-related biomarkers including cerebrospinal fluid biomarkers
of neurodegeneration + APOE �4; MCI, mild cognitive impairment; MRI, magnetic resonance imaging; Peripheral biomarkers, amino
acids + bile acids + energetic substrates + purines + systemic indices + triglycerides and cholesterol; Psychometric, neuropsychological tests.
See Supplementary Tables for detailed variables enclosed in each category.

Table 3
Random Forest (RF) prediction performance for MCI conversion to AD within 36 months, after age stratification. The table depicts the RF
ability to correctly classify converter and non-converter MCI subjects (cMCI and ncMCI, respectively) in the test dataset (15% of the total

sample size), after the division of the whole cohort in four age quartiles. The ranking is based on accuracy values

Age Accurary PPV NPV Sensitivity Specificity Total
sample size

Psychometric 55–68 0.86 0.86 86.7 0.75 0.93 146
69–74 0.81 0.63 88.9 0.71 0.84 168
75–78 0.72 0.40 84.6 0.50 0.79 120
79–88 0.70 0.60 76.9 0.67 0.71 153

MRI 55–68 0.85 1.00 0.83 0.33 1.00 86
69–74 0.77 0.78 0.75 0.88 0.60 84
75–78 0.80 1.00 0.71 0.60 1.00 65
79–88 0.77 1.00 0.57 0.67 1.00 83

Peripheral biomarkers 55–68 1.00 1.00 1.00 1.00 1.00 43
69–74 0.75 0.57 1.00 1.00 0.62 75
75–78 0.62 0.67 0.50 0.80 0.33 50
79–88 0.53 0.50 0.67 0.86 0.25 98

AD-related biomarkers 55–68 0.84 1.00 0.83 0.25 1.00 123
69–74 0.72 0.43 0.91 0.75 0.71 118
75–78 0.71 0.80 0.67 0.57 0.86 92
79–88 0.71 0.67 0.80 0.86 0.57 89

Psychometric + AD-related biomarkers 55–68 0.94 100 0.94 0.75 1.00 123
69–74 0.89 57.1 1.00 1.00 0.79 118
75–78 0.85 100 0.78 0.71 1.00 92
79–88 0.85 100 0.78 0.71 1.00 89

Psychometric + MRI 55–68 1.00 1.00 1.00 1.00 1.00 86
69–74 0.84 0.88 0.80 0.88 0.80 84
75–78 0.90 1.00 0.83 0.80 1.00 65
79–88 0.77 0.88 0.60 0.78 0.75 83

Psychometric + peripheral biomarkers 55–68 0.86 0.75 1.00 1.00 0.75 43
69–74 0.50 0.38 0.75 0.75 0.38 75
75–78 0.87 0.83 1.00 1.00 0.67 50
79–88 0.80 0.70 1.00 1.00 0.62 98

Measurements of accuracy, predictive values, sensitivity, and specificity refer to performances obtained from the test dataset. AD,
Alzheimer’s disease; AD-related biomarkers, CSF biomarkers of neurodegeneration + APOE �4; MCI, mild cognitive impairment; MRI,
magnetic resonance imaging biomarkers; NPV, Negative Predictive Value; Peripheral biomarkers, amino acids + bile acids + energetic sub-
strates + purines + systemic indices + triglycerides and cholesterol; PPV, Positive Predictive Value; Psychometric, neuropsychological tests.
See Supplementary Tables for detailed variables enclosed in each category.

with our study, some studies had used an RF-based325

classification strategy on structural MRI features [67,326

68]. However, contrary to our study, these single-327

modality reports had used, in the training phase,328

mixed cohorts of healthy controls, ncMCI/cMCI and329

AD subjects [67, 68]. Conversely, we employed a330

multimodal approach and embraced a holistic view-331

point of the disease. Our prediction model supports332

the notion of neurodegenerative processes as the con-333

verging point of pathological processes occurring334

inside and outside the brain, factors also affected by 335

age and sex-related factors. 336

ML is a powerful tool that significantly helps the 337

diagnostic and therapeutic process, but care should 338

be applied to maximize its heuristic power [24, 339

26–29, 31–35]. Applied to AD, evidence indicates 340

that ML performances are greatly influenced by the 341

time extent of the conversion process. Indeed a recent 342

systematic review [72] assessing ML approaches 343

employed to predict the conversion to AD of MCI 344
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Fig. 2. Age stratification. Features importance for psychometric tests obtained in the Random Forest performed on the train dataset (85%
of MCI subjects). The figure shows the results of the whole cohort stratification according to four age quartiles. For each age bracket, the
histograms depict the weight, or importance, of the psychometric tests’ features in the training phase of the machine learning. The importance
scores range from 0 to 1, with higher values indicating greater weight in the classification process. See Supplementary Table 2 for detailed
variables enclosed in the Psychometric category.

Table 4
Random Forest (RF) prediction performance for MCI conversion to AD within 36 months, after sex stratification. The table depicts the RF
ability to correctly classify converter and non-converter MCI subjects (cMCI and ncMCI, respectively) in the test dataset (15% of the total

sample size), after the division of the whole cohort in two groups (male and female subjects). The ranking is based on accuracy values

Sex Accuracy PPV NPV Sensitivity Specifity Total
sample size

Psychometric Female 0.86 0.86 0.87 0.75 0.93 235
Male 0.81 0.63 0.89 0.71 0.84 352

MRI Female 0.79 0.57 0.92 0.80 0.79 121
Male 0.73 0.70 0.75 0.58 0.83 197

Peripheral biomarkers Female 0.73 0.71 1.00 1.00 0.20 96
Male 0.57 0.47 0.78 0.80 0.44 170

AD-related biomarkers Female 0.81 0.64 1.00 1.00 0.72 175
Male 0.79 0.83 0.77 0.62 0.91 247

Psychometric + AD-related biomarkers Female 0.89 0.80 0.94 0.89 0.89 175
Male 0.87 0.92 0.84 0.75 0.95 247

Psychometric + MRI Female 0.95 1.00 0.93 0.80 1.00 121
Male 0.80 0.73 0.87 0.85 0.76 197

Psychometric + Peripheral biomarkers Female 0.87 0.83 1.00 1.00 0.60 96
Male 0.58 0.47 0.78 0.8 0.44 170

Measurements of accuracy, predictive values, sensitivity, and specificity refer to performances obtained from the test dataset. AD,
Alzheimer’s disease; AD-related biomarkers, CSF biomarkers of neurodegeneration + APOE �4; MCI, mild cognitive impairment; MRI,
magnetic resonance imaging biomarkers; NPV, Negative Predictive Value; Peripheral biomarkers, amino acids + bile acids + energetic sub-
strates + purines + systemic indices + triglycerides and cholesterol; PPV, Positive Predictive Value; Psychometric, neuropsychological tests;
See Supplementary Tables for detailed variables enclosed in each category.
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Fig. 3. Sex stratification. Features importance obtained in the Random Forest performed on the train dataset (85% of MCI subjects).
The figure contains some classes shown in Table 4 (i.e., psychometric tests, structural MRI and peripheral biomarkers) which showed
differences following sex stratification. For each class, the histograms depict the weight, or importance, of each feature in the training
phase of the machine learning. The importance scores range from 0 to 1, with higher values indicating greater weight in the classification
process. MCI, mild cognitive impairment; MRI, magnetic resonance imaging: Peripheral biomarkers, amino acids + bile acids + energetic
substrates + purines + systemic indices + triglycerides and cholesterol; Psychometric, neuropsychological tests. See Supplementary Tables
for detailed variables enclosed in each category.

subjects indicates that optimal results can be pro-345

duced with the implementation of a 3-year follow-up.346

The same review [72] suggested that the composition347

of the cohort should be carefully chosen accordingly348

to the ML-based approach that one is implementing.349

In the final analysis, we employed longitudinal data350

to test the RF accuracy to predict AD progression,351

taking advantage of a dataset of MCI patients not352

previously used in the ML training phase. The 353

analysis did not consider possible confounders like 354

baseline comorbidities, ethnicity, lifestyle, living 355

environment (i.e., urban versus rural areas), gener- 356

ating accuracy bias. 357

Combining baseline psychometric variables and 358

AD-related biomarkers produced significant (> 0.85) 359

accuracy (Table 2). Overall, “classic” AD biomarkers 360
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(i.e., psychometric test scores, CSF levels of361

AD-related biomarkers + APOE status, and brain362

MRI data) were the most accurate predictors for363

conversion.364

Our RF-based approach indicated that, among psy-365

chometric data, verbal memory test scores, ADAS366

scales, and FAQ parameters were the most significant367

classifiers. It should be stressed that ADAS scales368

evaluate in great detail the overall cognitive status369

[73]. However, in routine clinical settings, the MMSE370

is preferred to the ADAS13 or 11 tests. Surprisingly,371

our RF found that MMSE scores were the least valu-372

able classifiers. MMSE became relevant only after373

the age stratification of the cohort (as shown by374

Fig. 2). The different predictive weights of the two375

tests can be explained by their distinct score struc-376

ture and overall purpose. The MMSE was created377

as an easy-to-use clinical tool, while the ADAS is378

more research-oriented [73]. The score range is also379

different, more granular (0–70 points) in the ADAS380

than the limited MMSE 30 points. Thus, the ADAS is381

more sensitive and specific and offers a more detailed382

scale of values to assess subtle cognitive abnormali-383

ties [74].384

Our RF fed with CSF biomarker values and MRI385

data confirmed the higher relevance of the p-Tau/A�386

ratio and levels of temporal lobe atrophy (Fig. 1).387

These results are in line with a large body of evi-388

dence supporting the temporal lobe’s strategic role389

for memory-related tasks [75–78].390

Sex-related analysis revealed that data relative391

to the atrophy of the medial orbital cortex were392

helping the predictive process only for the male393

group, thereby suggesting the presence of sex-related394

differences in the regional trajectories of the neurode-395

generative processes [79, 80].396

The combination of peripheral biomarkers and397

psychometric measures showed the same predictive398

power of psychometric test scores alone but exhib-399

ited greater sensitivity and predictive values (both400

positive and negative). Thus, one can speculate that,401

in the future, a matrix of peripheral biomarkers and402

neuropsychological tests may be employed as a first-403

line practical and cost-efficient way to facilitate the404

diagnostic process of the early stages of the disease.405

Among all peripheral biomarkers, variations of lev-406

els of glutamine, purine, lipids, and BA were the407

most significant feature to help the RF-based deci-408

sion process (Fig. 1). The results are in accordance409

with findings based on graph modeling that suggest410

that glutamine is a central hub of metabolic imbal-411

ance in the context of dementia [81, 82]. Normal412

glutamate-glutamine cycling (GGC) plays a piv- 413

otal role in cognitive processes, as indicated by the 414

presence of severely disrupted memory processes 415

in hepatic encephalopathy (where high ammonium 416

levels interfere with astrocytic GGC) [83]. Altered 417

levels of glutamine have been frequently found in 418

AD patients’ serum and CSF [84, 85]. The reduced 419

activity of glutamine-synthase in AD patients has also 420

been reported, a phenomenon deemed to impair the 421

glutamate conversion to glutamine [81, 82]. On a 422

speculative note, processes affecting glutamate accu- 423

mulation in astrocytes [85] can concur to induce 424

AD-related excitotoxicity [86–89]. At the same time, 425

the imbalance of the glutamate-glutamine cycle may 426

impinge on other AD-related alterations like the 427

impaired �-aminobutyric acid (GABA) synthesis or 428

changes in anaplerotic reactions that generate mito- 429

chondrial bioenergetic dysfunctions [82]. 430

Lipid and energy-related dysmetabolism have also 431

been previously reported in AD patients [36, 90–92]. 432

Altered blood [93] and brain levels of BA [94] have 433

been described. Interestingly, these metabolites were 434

found to be highly relevant to drive our RF-based 435

predictive process. This intriguing finding is in line 436

with a growing body of evidence supporting the 437

presence of a gut-brain connection in neurodegen- 438

eration [95–100] and the role played by the liver in 439

AD-related processes [96, 97]. The notion is also 440

supported by a recent study indicating the associa- 441

tion between altered BA profiles with higher degrees 442

of brain atrophy, brain hypometabolism (as assessed 443

by FDG-PET), and alterations of CSF AD-related 444

biomarkers in AD patients [93]. 445

These findings also agree with a study in which 446

AD patients exhibited significantly low plasma levels 447

of several medium-chain acylcarnitines [101]. These 448

changes indicate underlying hepatic dysfunctions as 449

most of the fatty acid oxidation, the mechanism that 450

regulates acylcarnitine production [102] is controlled 451

by the liver. Defective hepatic fatty acid oxidation 452

impairs ketogenesis and produces lower levels of 453

plasma ketones [103]. As ketones are the brain’s 454

energy substrates alternative to glucose, the impair- 455

ment of hepatic ketogenesis found in AD patients may 456

exacerbate energetic brain deficits and be a critical 457

aggravating factor in the disease progression. Inter- 458

estingly, in preclinical AD models as well as in MCI 459

or AD patients, ketogenic diets and/or pharmacologic 460

manipulations set to favor ketogenesis have been 461

shown to improve cognitive performances [104–108]. 462

Given the high concentration of lipids within the 463

CNS and the role played by these molecules in 464
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several neurodegenerative disorders, including AD465

[109–114], lipidomic-based approaches are becom-466

ing diagnostic tools of great potential. In that regard,467

further research on the interplay between lipid dys-468

metabolism and dementia should carefully consider469

sex differences, an emerging and promising area of470

investigation [80].471

Little is known about the imbalance of the purine472

metabolic pathway in AD. A study indicated that473

compared to healthy subjects, AD patients exhibit474

increased serum levels of xanthosine. The study also475

found a significant correlation between high CSF476

levels of purine and t-tau [115]. Reduced levels of477

xanthosine have also been found in the entorhinal478

cortex of deceased AD patients [116].479

To better understand the role of different disease480

modulators along with aging, we stratified the cohort481

into four age brackets and performed an ex-novo RF482

analysis. We found that the accuracy of all the clas-483

sifiers was better in younger patients (Table 3).484

These results support the notion that cognitive485

impairment in older patients results from the patho-486

logical convergence of multiple intermingled factors487

[117, 118].488

Also, it should be emphasized that lipids acting489

as energy substrates may differently affect the fuel490

economy of the brain accordingly with pre-existing491

comorbidity (diabetes, metabolic syndrome, etc.).492

Thus, a current limitation of our study is the lack493

of information on such comorbidity in the investi-494

gated study subjects. Nevertheless, our results align495

with the general view that energetic changes are criti-496

cal early biomarkers of the MCI-AD continuum even497

before the deposition of A� and expression of the498

cognitive decline [119, 120].499

Finally, intriguing findings were generated in an500

RF analysis applied after dividing the cohort accord-501

ing to sex. Predictive performances were better502

in female patients (Table 4), and the most strik-503

ing differences concerned the implementation of504

peripheral biomarkers (ACC = 0.73 for females ver-505

sus 0.57 for males). In that respect, differences506

related to HDL cholesterol levels were more rel-507

evant to help the prediction process in women.508

A potential limitation concerns differences in RF509

performances in the female sub-cohort. The better510

output in this group could be partially justified by511

the difference, when compared to males, in sam-512

ple size and conversion rates per age bracket. These513

results nevertheless support the research endeavor514

on sex-related neurobiology of neurodegeneration515

[79, 80].

CONCLUSIONS 516

AD is a complex and multifactorial condition. 517

The characterization of patients in a prodromal stage 518

of the disease like MCI represents a challenge for 519

biomedical research and unmet clinical and therapeu- 520

tic needs. 521

A monumental effort in financial and human 522

resources has been employed to reduce these aggre- 523

gated proteins in the past thirty years. The rationale 524

behind this strategy is that protein deposits are “toxic” 525

and their physical disaggregation halts the neurode- 526

generative progression [121]. Except for a few highly 527

debated clinical trials, the strategy has failed, thereby 528

casting some fundamental doubts on the construct’s 529

validity [122–126]. 530

Our study, based on a multimodal approach, pro- 531

vides support for a holistic viewpoint of the disease. 532

The valuable performance of our prediction model 533

supports the notion of neurodegenerative processes as 534

the converging point of pathological processes occur- 535

ring inside and outside the brain that are also affected 536

by age and sex-related factors. 537

ML techniques and big-data analysis can help 538

identify novel and unexpected disease features 539

and escape the dogmatic loop we are currently 540

entrapped. For instance, a surprising finding of our 541

study concerns the importance of peripheral bio- 542

markers. 543

This set of combined systemic alterations is the 544

gateway to precision medicine and offers fertile 545

ground for innovative research. Precision medicine, 546

systems medicine, and network-based approaches are 547

in a position to generate tailored diagnoses, predict 548

disease risks, and produce customized treatments that 549

maximize safety and efficacy [43, 46, 79, 117, 118, 550

127]. 551

Finally, a word of caution is needed when rest- 552

ing many diagnostic hopes in implementing AI-based 553

approaches. A bottleneck in using many clinical 554

parameters to be fed into ML is that most are phe- 555

notypic features with no precise alignment with 556

underlying biology. Indeed, as recently suggested 557

[128, 129], clinical phenotypes are considered the 558

phenotypical mirror of distinct, specific, and unique 559

underlying biological features. We believe that a 560

reverse order of development and a switch from 561

phenotypes to biotypes is required in precision 562

medicine-based approaches to neurodegenerative 563

conditions [129]. Indeed, AI-driven strategies may 564

greatly help shift the attention from phenotypes to 565

the importance of individualized biotypes.
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In that vein, we hope our study helps further566

explore ML-based models set to unravel the complex-567

ity of neurodegenerative processes and dementia.568
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