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Abstract 
Stochastic models are appealing for mortality forecasting in their ability to generate intervals that quantify 
uncertainties underlying the forecasts. We present a fully Bayesian implementation of the age-period-cohort- 
improvement (APCI) model with overdispersion, which is compared with the Lee–Carter model with cohorts. 
We show that naive prior specification can yield misleading inferences, where we propose Laplace prior as an 
elegant solution. We also perform model averaging to incorporate model uncertainty. Our findings indicate that 
the APCI model offers better fit and forecast for England and Wales data spanning 1961–2002. Our approach 
also allows coherent inclusion of multiple sources of uncertainty, producing well-calibrated probabilistic intervals. 
Keywords: age-period-cohort-improvement (APCI), Laplace prior distribution, Lee–Carter, model averaging, mortality 
forecasting, overdispersion 

1 Introduction 
Mortality forecasting is crucial in the planning of social securities and in various life-related industries. 
A diversity of methodologies has been developed with the common aim to capture and project mor-
tality trends, accompanied by well-calibrated uncertainty bands. For a comprehensive overview of 
mortality forecasting approaches, see Tabeau et al. (2001) or Booth and Tickle (2008). Particularly 
well known is the Lee–Carter (LC) mortality model developed by Lee and Carter (1992), which has 
been the backbone of many of the existing stochastic mortality forecasting approaches. Various mod-
ifications that emerged thereafter seek to improve particular aspects of the LC approach. Brouhns et al. 
(2002), among others, proposed a Poisson-equivalent version of the LC model which better describes 
the distribution of the number of deaths. Renshaw and Haberman (2003) enhanced the LC model us-
ing an extra bilinear term to explain a greater proportion of the variation in the data, which was then 
refined by Renshaw and Haberman (2006) to incorporate cohort effects. Czado et al. (2005) imple-
mented a fully integrated Bayesian approach for fitting the Poisson LC model, which was further de-
veloped by Wong et al. (2018) to account for overdispersion. 

The LC family of mortality models has been widely used, but also encountered some criticisms 
(see, for example, Cairns et al., 2007; Girosi & King, 2008). In this paper, we explore the 
alternative model proposed by Continuous Mortality Investigation Bureau (2016a), the 
age-period-cohort-improvement (APCI) model. The APCI model was originally developed as a de-
terministic targeting approach to projecting mortality rates. This model is structurally simple and 
has been found to possess numerous advantages (see Continuous Mortality Investigation Bureau, 
2016a for more details). Continuous Mortality Investigation Bureau (2016b) illustrates the use of 
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the APCI model (together with the targeting method) on England and Wales male mortality data 
for ages 20–100, allowing implicitly for the presence of overdispersion using smoothing hyper-
parameters. Richards et al. (2019) present a stochastic implementation of the APCI model (with-
out overdispersion) for UK male mortality data for ages 50–104 and demonstrate that the APCI 
model offers the best fit among the competing models. Hilton et al. (2019) present a Bayesian ap-
proach (with vague priors) to forecast mortality using a generalized additive model with the APCI 
structure for majority of the age range, except infant and old age mortality. 

In this paper, we present a Bayesian implementation of the APCI model, explicitly accounting 
for overdispersion using additional parameters. We also show that this model is equally applicable 
to the entire age range even though it is more commonly used for ages above 20. The advantages of 
Bayesian mortality forecasting have been discussed in several articles (Czado et al., 2005; Pedroza, 
2006; Wong et al., 2018, to name a few). The primary advantage being the coherent inclusion of 
various sources of uncertainties for better calibration of data signals and errors, which also pro-
vides a natural framework for model comparison using posterior model probabilities. The signifi-
cance of incorporating cohort effects and overdispersion have been separately discussed (for the 
former, see Börger & Aleksic, 2014; Renshaw & Haberman, 2006; while for the latter, see  
Delwarde et al., 2007; Li et al., 2009; Wong et al., 2018). We illustrate in this paper that account-
ing for both cohort effects and overdispersion under a Bayesian paradigm leads to pronounced im-
provement in the calibration between data signals and errors. 

Before fully implementing the Bayesian APCI model, we focus on analysing the impact of prior 
specification. This is vital because naive prior specification using conventional diffuse priors can 
yield misleading inference, particularly for model comparison using Bayesian quantities. To mo-
tivate a better choice of prior distributions, we initially ignore the cohort components and perform 
a pairwise comparison to establish parameter correspondence relationships between the resulting 
age-period-improvement (API) and LC models. The aim is to tune the hyperparameters so that the 
information from the priors is compatible under both models. We show through some theoretical 
analysis that this can be achieved using Laplace priors on relevant parameters of the API model. 

The interest is then to compare the APCI model with the Bayesian LC model with cohorts 
(cohort-extended version of the approach by Wong et al., 2018). Similar comparison has been per-
formed by Richards et al. (2019) within a frequentist paradigm, where they focused on the age 
range 50–104 and the crucial cohort component was not included for the LC model. Cairns 
et al. (2007) also compared several stochastic mortality models quantitatively based on 
non-Bayesian criteria. Barigou et al. (2022) illustrated the use of some model averaging techniques 
(hence, model comparison implicitly), including Bayesian model averaging (BMA) by marginal 
likelihoods, stacking, and pseudo-BMA methods, to combine several stochastic mortality models 
for mortality forecasting. However, they did not consider the APCI with overdispersion model and 
did not include the entire age range. Their study also did not focus on the impact of prior specifi-
cation on Bayesian model comparison, where weakly informative priors were used throughout. In 
this paper, we explicitly focus on that impact in the context of mortality forecasting. 

Using the properly tuned priors, we conclude that our results agree to a reasonable extent with  
Richards et al. (2019) that the APCI model fits the mortality data better, even after including the 
entire age range and cohort effect for LC model. We also consider the use of two time series models 
for projecting the time trend of mortality. Finally, the BMA technique is applied to combine several 
models rather than selecting the best one. This produces well-calibrated probabilistic mortality 
forecasts that incorporate model uncertainty, on top of other sources of uncertainty such as par-
ameter uncertainty (in the form of priors) and forecast uncertainty. 

We begin this paper by introducing the general formulation of our model with two specification 
for mortality rates (initially without cohort components) in Section 2. The relationships between the 
parameters of the two models are then illustrated. In Section 3, we present an extensive analysis of 
prior specification, with the aim of providing compatible prior information for the competing mod-
els. We tune both the form of the prior distribution (using Laplace priors for certain parameters of 
the API model) and the corresponding hyperparameters so that they lead to compatible implied pri-
ors on mortality rates. Section 4 briefly discusses related computations involved for posterior estima-
tion and Bayesian model comparison. In Section 5, cohort parameters are introduced to form the 
APCI and LC with cohort models, which are then estimated and compared using the priors previous-
ly formulated. Model averaging and some numerical results are also presented.  
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1.1 Data and notation 
We denote the observed number of deaths of age group x in year t by dxt, where x = x1, x2, . . . , xA 

and t = t1, t2, . . . , tT represent a set of A different age groups and T years, respectively. Also we 
define ext and μxt to be the corresponding central exposed to risk and central mortality rate of 
age group x in year t. 

The data chosen for illustrative purposes are the female death data and the corresponding ex-
posures for England and Wales, extracted from the Human Mortality Database (HMD). They 
are classified by single year of age from 0 to 99, and years ranging from 1961 to 2002. Hence, 
we have {x1, . . . , xA} = {0, . . . , 99} and {t1, . . . , tT} = {1961, . . . , 2002} with A = 100 and 
T = 42. We intentionally held back the data for years 2003–2016 as a validation data set. 

2 Models 
Let Dxt be the random variable denoting the number of deaths age x year t. As in Brouhns et al. 
(2002), we impose a conditional Poisson distribution for Dxt, i.e., 

Dxt | μxt ∼ Poisson(extμxt) (1) 

The rate model is then defined as 

log μxt = Mxt + log νxt (2) 

where Mxt is to be specified and νxt characterize overdispersion. We incorporate overdispersion 
into the model for μxt to capture extra variabilities due to heterogeneity (which ensures that mar-
ginally E[Dxt] ≠ Var[Dxt]). As discussed in Wong et al. (2018), this prevents over-fitting and also 
avoid over-optimistic forecast intervals. Following the recommendation by Wong et al. (2018), we 
assume that 

νxt | ϕ ind∼ Gamma(ϕ, ϕ) (3) 

mainly for computational ease as the latent variable can be integrated out to give 

Dxt | ϕ ∼ Neg − Bin ϕ,
ϕ

ext exp (Mxt) + ϕ

 

(4) 

Hence, we have 

E[Dxt] = ext exp (Mxt) and Var[Dxt] = E[Dxt] × [1 + E[Dxt]/ϕ] > E[Dxt] (5) 

where 1/ϕ represents the magnitude of overdispersion. 

2.1 Two rate models 
We are first interested in comparing two models for μxt. The first one is the well-known LC model 
(Lee & Carter, 1992) given by 

Mxt = αx + βxκt (6) 

where αx, βx, κt are model parameters. For model identifiability, the constraints 


x βx = 1 and 


t κt = 0 are adopted. We will refer this model as the negative-binomial LC model. 
The second rate model is given by 

Mxt = αx + βxt + κt (7)  
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where αx, βx, κt are model parameters. Here the constraints, 


t

κt =


t

tκt = 0 (8) 

are adopted for identifiability. This model has an advantage of being structurally simpler, and more eas-
ily interpretable, because μxt are log-linear with respect to the model parameters, in contrast to the log- 
bilinear specification in the LC model, which can cause computational instability. Also notice that 

log
μxt

μx t−1

 

= βx + κt − κt−1 + log
νxt

νx t−1

 

= βx + κ′t + log ν′xt 

meaning the mortality improvement is essentially an age-period model. Hence, we will call this second 
model the negative-binomial API model. Note that the inclusion of cohort effect would lead to the mod-
el proposed by Continuous Mortality Investigation Bureau (2016a), the Bayesian implementation of 
which will be detailed in Section 5. 

2.2 Projection models 
The time-varying parameter κt in equation (6) typically demonstrates a linearly decreasing trend, 
where a random walk with drift has been empirically observed to provide adequate fit (see  
Tuljapurkar et al., 2000). Following the formulation of Czado et al. (2005), we set 

κt − ηt = ρ(κt−1 − ηt−1) + ϵt for t = 2, 3, . . . , T

κ1 = η1 + ϵ1



(9) 

where ηt = ψ1 + ψ2t denotes the linear drift and ϵt
ind∼ N(0, σ2

κ ) are random innovations. Then, de-
pending on the value of ρ, this forms either a first-order autoregressive (AR(1)) model (|ρ| < 1) or a 
random walk model (ρ = 1) for κt. Equivalently, this model could be expressed multivariately (to-
gether with the constraints) as 

κ−1 | ρ, ψ, σ2
κ ∼ N(μκ, σ2

κV)

κ1 = −
T

t=2

κt

⎫
⎪⎪⎬

⎪⎪⎭

(10) 

where κ−1 = (κ2, . . . , κT)⊤, μκ = (IT−1 − B21B−1
11 1⊤

T−1) × Y−1ψ, Y−1 = 1 1 · · · 1
2 3 · · · T

 ⊤

, 1n and In 

denote, respectively, a length−n vector of ones and an identity matrix of dimension n × n, 
ψ = (ψ1, ψ2)⊤, and V is chosen such that the marginal distribution implied for κt is equivalent to 
that of (9) (see Online Supplementary Material, Appendix A for details). 

According to Richards et al. (2019), κt of the API model behaves like that of the LC model but 
with linear drift extracted, and hence, appear as (driftless) residuals. Therefore, an appropriate 
model for κt of the API model is the model in (9) without the linear drift, that is 

κt = ρκt−1 + ϵt for t = 2, 3, . . . , T
κ1 = ϵ1



(11) 

where ϵt
ind∼ N(0, σ2

κ ). Applying the constraints 


t κt =


t tκt = 0 on the model in (11), we have 
(multivariately) 

κ−{1,2} | ρ, σ2
κ ∼ N(0, σ2

κW)

κ1 =
T

t=3

(t − 2)κt

κ2 = −
T

t=3

(t − 1)κt

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)  
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where κ−{1,2} = (κ3, . . . , κT)⊤, and W is chosen such that the marginal distribution of κt as in (11) is 
maintained (see Online Supplementary Material, Appendix A). 

2.3 Relationships between the LC and API model parameters 
Here, we establish the relationships between the negative-binomial LC and API model parameters 
by performing a term-by-term comparison. This is useful for our prior specification later in 
Section 3. Where necessary, we use superscripts LC and API to denote parametrization under LC 
and API models, respectively. 

For simplicity, we ignore the constraints of the autoregressive integrated moving average 
(ARIMA) models for κLC

t and κAPI
t momentarily, and consider their marginal distributions, given 

respectively by 

κLC
t = ψLC

1 + ψLC
2 t + ϵ′ LC

t

κAPI
t = ϵ′ API

t



(13) 

where 

ϵ′ LC
t ∼ N 0,

(σLC
κ )2

1 − (ρLC)2

 

and ϵ′ API
t ∼ N 0,

(σAPI
κ )2

1 − (ρAPI)2

 

are Gaussian errors. Hence, we can write 

log μLC
xt = αLC

x + βLC
x ψLC

1 + βLC
x ψLC

2 t + βLC
x ϵ′ LC

t + log νLC
xt

log μAPI
xt = αAPI

x + βAPI
x t + ϵ′ API

t + log νAPI
xt



(14) 

The following parameter correspondence can be established: 

αLC
x + βLC

x ψLC
1 ←→αAPI

x , βLC
x ψLC

2 ←→βAPI
x , βLC

x ϵ′ LC
t ←→ϵ′ API

t , νLC
xt ←→νAPI

xt (15) 

Expressions in (15) reiterate that βLC
x and βAPI

x are of reverse signs, since ψLC
2 is the slope of the de-

creasing linear drift of κLC
t . Note that the correspondence relationship in (15) is not unique, but is 

chosen such that pairwise comparison is sensible in terms of parameter interpretation. 

3 Prior specification 
Although conventional diffuse priors are typically used when a data-driven inference is of interest, 
caution needs to be exercised when model comparison using Bayesian quantities is to be under-
taken (Weakliem, 1999). Specifically, using overly diffuse priors has a higher tendency to induce 
Lindley–Bartlett Paradox (Bartlett, 1957). This may lead to unreliable model comparison proced-
ure by inherently favouring one of the models. In particular, we demonstrate how a naive prior 
specification produces results that misleadingly favour the LC model over its counterpart in 
Section 3.1. We remedy this issue by first modifying the hyperparameters such that the implied pri-
ors for log μxt are plausible in Section 3.2, which enables a clearer picture as to why the LC model is 
inherently favoured. Second, we propose the use of Laplace priors for relevant parameters, ensur-
ing compatibility in terms of the prior information specified for both models. 

3.1 Naive prior specification 
Vague priors implemented in Wong et al. (2018) are first used. Briefly, posterior samples are gen-
erated using Markov chain Monte Carlo (MCMC) methods with a burn-in phase of 1,000 itera-
tions and a thinning by 100, resulting in samples of size 10,000 for both models. Bridge sampling 
(Meng & Wong, 1996) is then applied to obtain estimated log marginal likelihoods of −23729.06 
and −23769.77, respectively, for the LC and API models. This result is in contrast to that sug-
gested by the Bayesian information criterion (BIC), where the API model (BIC: 47169.48) is found 
to be superior to the LC model (BIC: 47217.47). While it is mathematically plausible for the  
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conclusion from Bayes factors to disagree with that of BIC, it potentially indicates that the diffuse 
priors have a strong influence on the comparison procedure. 

3.2 Compatible prior specification 
To understand the influence of the prior specification, we examine in detail the prior distribution 
implied for μxt, as μxt have identical interpretation under both models (and also because μxt are 
generally the determining factor for mortality projections). This is achieved by monitoring the im-
plied prior distributions for μxt, using their kernel density estimates based on samples generated 
from the associated prior distributions. For instance, the generation of prior μxt for the API model 
proceeds in two steps: 

1. Generate κAPI
t from equation (12), where samples from the priors of ρAPI and (σAPI

κ )2 are sub-
stituted appropriately.  

2. Generate μxt from μxt ∼ Gamma(ϕAPI, ϕAPI/exp (αAPI
x + βAPI

x κAPI
t )), where κAPI

t are from step 1 
and (αAPI

x , βAPI
x , ϕAPI) are samples from their corresponding priors.  

The implied prior distributions for log μxt under the naive prior specification (see Section 3.1) 
are presented in Figure 1. Clearly, the implied priors of log μxt under both models are so diffuse 
that nonnegligible probabilities are given to unrealistic values of mortality rates. Hence, we first 
aim to tune the prior specification such that the implied priors for log μxt have most of their dens-
ities within a reasonable range in the sense of realistic mortality rate, typically around (−15, 0). 
This imposition of prior mortality knowledge enables a better visualization to assess properly 
the impact of prior specification on the Bayes factor. 

Figure 1. A plot of kernel density estimates of the implied priors of several chosen log μxt for the Lee–Carter (black) 
and age-period-improvement (red) models, using the naive specification.   

6                                                                                                                                                      Wong et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlad021/7083938 by guest on 28 M
arch 2023



The priors chosen for the LC model are as follows: 

αLC
x

ind∼ N( − 5, 4)

βLC
−1 ∼ N

1
A

× 1A−1, 0.005 × IA−1 −
1
A

JA−1

  

(σLC
β )2 = 0.005

ρLC + 1
2

∼ Beta(3, 2) where ρLC ∈ ( − 1, 1)

(σLC
κ )−2 ∼ Gamma(1, 0.0001)

ψLC ∼ N
0

0

 

,
2000 0

0 2

  

ϕLC ∼ Gamma(25, 0.05)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16) 

where βLC
−1 = (βLC

2 , . . . , βLC
A )⊤, 1A−1 is a vector of ones with length A − 1, IA−1 and JA−1 are the iden-

tity matrix and matrix of ones, respectively, with dimension (A − 1) × (A − 1). Note that the trans-
formed beta prior on ρLC implies that a stationary AR(1) model with drift is fitted to κLC

t , which has 
a computational advantage of avoiding |ρLC| > 1 (that can result in explosive behaviour in projec-
tion and unstable MCMC computation). A random walk with drift model can be separately fitted 
to κLC

t by setting ρLC = 1 deterministically. The two projection models for κLC
t can then be com-

bined using model averaging (see Section 5.1). For the purpose of prior analysis here, we focus 
on the transformed beta prior since the case with ρLC = 1 follows trivially. 

To formulate prior distributions with compatible information for the API model, the following 
priors are chosen by matching the first two moments (see Online Supplementary Material, 
Appendix B for details) of the parameters based on the correspondence relationship in (15): 

αAPI
x

ind∼ N( − 5, 14)

βAPI
x

ind∼ N(0, 0.01)

ρAPI + 1
2

∼ Beta(3, 2) where ρAPI ∈ ( − 1, 1)

(σAPI
κ )2 ∼ Gamma(0.1, 5 × 10−7)

ϕAPI ∼ Gamma(25, 0.05)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17) 

It is evident from Figure 2 that the priors specified for both models are incompatible even after the 
moment-matching procedure. The priors of log μxt under the LC model have sharper peaks around 
the region (−15, 0), where the likelihood is expected to dominate. Being an integrated likelihood 
with respect to prior, there is the potential for the marginal likelihood to artificially favour the LC 
model. Conversely, the priors under the API model over-penalize the likelihood by allocating ex-
cessive weight to regions where likelihood is known a priori to be essentially negligible. 

An investigation using quantile-quantile (Q-Q) plot also reveals that the priors of log μxt under 
the LC model are more heavy-tailed due to a mismatch of family of distribution. For example, the 
relationship βLC

x ψLC
2 ←→βAPI

x matches a product of two normally distributed random variables to a 
single normal random variable (similarly for αx and κt). More precisely, suppose that U ∼ N(0, σ2

u) 
and V ∼ N(0, σ2

v) are two independent variables, then X = UV has a probability density function 
given by 

f (x) =
1
πσ

K0
|x|
σ

 

(18) 

where σ = σuσv and K0() is the modified Bessel function of the second kind of order zero (see Craig, 
1936). Henceforth, a distribution with density function as in (18) is called a Bessel distribution with  
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parameter σ, Bess (σ). A Bessel distribution possesses a significantly heavier tail than a normal distribu-
tion (kurtosis of nine compared to three). Thus, to better satisfy the correspondence relationships in 
terms of prior specification, Bessel priors should be imposed on the relevant parameters of the API model. 

3.3 Compatible prior specification: Laplace priors 
Rather than using the structurally more complex Bessel distribution, we propose to use a Laplace 
(double-exponential) distribution with location parameter −∞ < a < ∞ and scale parameter 
b > 0. This is denoted by Laplace (a, b), the density of which is 

f (x) =
1
2b

exp −
|x − a|

b

 

The Laplace distribution is a compound normal distribution, formed by specifying an exponential 
distribution on the variance of a normal random variable (see, for example, Johnson et al., 1995). 
That is, if 

X | σ2 ∼ N(μ, 2σ2) with σ2 ∼ Exp(λ) (19) 

where μ is a known constant, then marginally X ∼ Laplace(a = μ, b = λ−(1/2)). Thus, the normal 
priors suggested previously can be easily modified into Laplace priors by allowing the variances 
to be hyperparameters with exponential distributions. 

The Laplace distribution is sometimes used as a heavy-tailed replacement for the normal distribu-
tion (see Chen et al., 2012; Puig & Stephens, 2000). Our preliminary study also indicates that a 
Laplace distribution provides a reasonable approximation to the Bessel distribution in terms of match-
ing the tail decay rate and the density around the peak. Consider three distributions which have the 

Figure 2. A plot of kernel density estimates of the implied priors of several chosen log μxt for the Lee–Carter (black) 
and age-period-improvement (red) models, using the specification in (16) and (17).   
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same variance σ2
uσ2

v , Bess(σuσv), Laplace(0, σuσv/
��
2
√

), and N(0, σ2
uσ2

v), with density functions de-
noted, respectively, by fB, fL, fN. The asymptotic expansion provided by Dempsey and Benson 
(1960) shows that K0(|x|/σuσv) is dominated by the term (πσuσv/2|x|)

1/2 × exp ( − |x|/σuσv) for large 
values of |x|. We also know fL(x) ∝ exp ( −

��
2
√
|x|/σuσv) and fN(x) ∝ exp ( − x2/2σ2

uσ2
v) as |x| →∞. 

This indicates that fB and fL demonstrate similar tail decay rates; while fN decays at a much faster rate. 
This phenomenon can be observed via the illustrative plots in Figure 3. 

Our findings also suggest that a Laplace distribution is better at characterizing the dramatic 
peak around the centre of the Bessel distribution than the more commonly used Student 
t-distribution, which has difficulty matching sharpness of the peak and the heavy tail weight sim-
ultaneously (see also Balanda, 1987; Claus, 1968; Horn, 1983). 

The priors we propose are αAPI
x

ind∼ Laplace(aα, bα) and βAPI
x

ind∼ Laplace(aβ, bβ), where we set aα = 
−5 and aβ = 0 by directly matching the modes, while bα and bβ are chosen on the basis of quantile- 
matching (because moment-based comparison is unable to recognize the dominant features of a 
Laplace distribution). Specifically, bα is such that bα = −( − 5 − Lα;0.05)/log (2 × 0.05), where 
Lα;0.05 is the (lower) 5th percentile of αLC

x + βLC
x ψLC

1 ; while bβ = −(0 − Lα;0.05)/log (2 × 0.05), where 
Lβ;0.05 is the (lower) 5th percentile of βLC

x ψLC
2 . The numerically determined values are given by bα = 

2.5 and bβ = 0.03. 
Similarly, the projection model for κAPI

t can be extended to be 

κAPI
t | κ

API
t−1, ρAPI, (σAPI

κ )2 ∼ N(ρAPIκAPI
t−1, 2(σAPI

κ )2)

(σAPI
κ )2 | λAPI ∼ Exp(λAPI) 

where λAPI is a hyperparameter to be given a prior distribution. This model could also be expressed 
marginally as 

κAPI
t | κ

API
t−1, ρAPI, λAPI ∼ Laplace(ρAPIκAPI

t−1, (λAPI)−1
2) (20) 

which is an AR(1) model with Laplace innovations as described in Wolf and Gastwirth (1967). 
A summary of the compatible priors we propose for the API model is as follows: 

αAPI
x

ind∼ Laplace( − 5, 2.5)

βAPI
x

ind∼ Laplace(0, 0.03)

κAPI
−{1,2} | ρ

API, (σAPI
κ )2 ∼ N(0, 2(σAPI

κ )2W)

ρAPI + 1
2

∼ Beta(3, 2) where ρAPI ∈ ( − 1, 1)

(σAPI
κ )2 ∼ Exp(λAPI)

λAPI ∼ Gamma(1, 2.5 × 10−7)

ϕAPI ∼ Gamma(25, 0.05)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21) 

The kernel density estimates of the implied priors for several log μxt under specifications (16) and 
(21) are illustrated in Figure 4. The resulting priors of log μxt for the two models are now practic-
ally the same, particularly for the region of interest (−15, 0) (they cannot be exactly the same be-
cause of the naturally distinct model structures and constraints). Marginal likelihoods (and hence 
Bayes factors) computed can now serve as a fair model comparison criterion. Note that despite the 
major impact on marginal likelihoods, the change in prior distributions is not consequential in the 
estimation of the parameters, given the size of our mortality data. 

4 Computation 
4.1 Posterior sampling 
MCMC methods are employed in posterior sample generation, from which subsequent inferences 
are drawn. The MCMC algorithm we adopt is the variable-at-a-time Metropolis–Hastings (MH)  

J R Stat Soc Series C: Applied Statistics, 2023, Vol. 00, No. 0                                                                   9 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlad021/7083938 by guest on 28 M
arch 2023



updating as described in Hastings (1970), where each component of the parameters is updated se-
quentially in each iteration, conditional on the rest. Where conditional posterior distributions are 
tractable, the Gibbs sampling algorithm is used; where they are intractable, the random walk MH 
algorithm is used. 

For the API model, we will primarily apply the random walk MH updating as priors are mostly 
nonconjugate (see Online Supplementary Material, Appendix C). For the LC model, the MCMC 

Figure 4. A plot of kernel density estimates of the implied priors for several chosen log μxt under the Lee–Carter 
(black) and age-period-improvement (red) models, using the compatible priors.  

Figure 3. Plots of density (left) and log density (right) functions of Bess(σuσv ), N(0, σ2
uσ2

v ), and Laplace(0, σuσv/
��
2
√

), 
where σ2

u = σ2
v = 10.   
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updating scheme as developed by Wong et al. (2018) can be implemented with appropriate modi-
fication to account for the different prior specification and constraint. Online Supplementary 
Material, Appendix D provides some technical details to highlight the changes made, specifically 
for (σLC

κ )2, ρLC, and κLC
−1 . 

Note that the constraints on κt induce (time-varying) correlation among the κt for both models, 
the effect of which is more notable for the API model due to the additional constraint 


t tκt = 0. 

Hence, we update κt in blocks rather than univariately to facilitate posterior exploration (again, 
see Online Supplementary Material, Appendices C and D for details). 

The initial values recommended by Wong et al. (2018) are adopted for both models, with an 
additional λAPI = 1. A burn-in phase of 10,000 iterations is applied, with a posterior sample thin-
ning (collecting one realization every 500 iterations) for each parameter. A sample of size 10,000 is 
obtained for each of the models. Before making any inferential comparisons, trace and auto- 
correlation plots are checked to ensure sample trajectories demonstrate proper mixing. 

4.2 Bayesian model comparison 
Bridge sampling, developed by Meng and Wong (1996), is adapted to compute the marginal like-
lihood of each model. Following the empirical investigation of Wong et al. (2020), the cross- 
splitting approach is implemented within the bridge sampling algorithm to improve the accuracy 
of our estimates (see Online Supplementary Material, Appendix E for details). Table 1 gives the 
estimated log marginal likelihoods of four of the models fitted and the associated posterior model 
probabilities (assuming equal prior model probabilities). Here, we let API-AR1 and API-RW be 
abbreviations for the API model with AR(1) and random walk with drift models on κt, respective-
ly. LC-AR1 and LC-RW are defined analogically. Overall, the conclusion from this table is now in 
agreement with that of BIC, that the API models outperform the LC models by a considerable mar-
gin. Rather than selecting the best model (API-RW), the models can be combined using BMA. 
However, this is not the focus now but will become relevant in Section 5.1. 

5 Cohort models 
Cohort or year-of-birth effects refer to the phenomenon where individuals born in the same time 
period exhibit similar health characteristics due to common exposures to factors such as smoking 
behaviours, diets, socio-economic factors, etc. (Wadsworth, 1991). The existence of cohort effects 
is a prominent feature of the UK mortality data (thoroughly discussed by Willets, 2004), and has 
been found to be more significant than period effects (Kermack et al., 1934; Richards et al., 2006). 
These generational effects have strong explanatory and predictive potentials for mortality patterns 
(Cairns et al., 2007; Willets, 1999), and hence, should not be ignored. 

The API model can be easily extended to account for cohort effects. Mathematically, we fit equa-
tions (1)–(3) with 

Mxt = αx + βxt + κt + γc (22) 

where γc are cohort parameters, c = t − x ∈ {1, . . . , C} is the cohort index representing cohorts 
born in {1861, . . . , 2001}, and C = A + T − 1. For model identifiability, the following constraints, 



t

κt =


t

tκt =


c

γc =


c

cγc =


c

c2γc = 0 (23) 

Table 1. The log marginal likelihoods of each model approximated by bridge sampling, and the corresponding 
posterior model probabilities 

Model Log marginal likelihood Posterior model probability  

API-AR1  −23,690.51  0.4110 

API-RW  −23,690.15  0.5890 

LC-AR1  −23,800.20  0.0000 

LC-RW  −23,798.61  0.0000 

Note. API = age-period-improvement; AR1 = autoregressive; RW = random walk; LC =  Lee–Carter.   
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are adopted. We call this model the negative-binomial APCI model. 
For γc, we use an ARIMA(1,1,0) as adopted by Villegas et al. (2018), i.e., 

(γc − γc−1) = ργ(γc−1 − γc−2) + ϵγ
cfor c = 3, . . . , C

γ2 − γ1 =
1
�������
1 − ρ2

γ

 ϵγ
2

γ1 = 100ϵγ
1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(24) 

where ϵγ
c
ind∼ N(0, σ2

γ ) for c = 1, . . . , C, and ργ and σ2
γ are hyperparameters. Applying the con-

straints 


c γc =


c cγc =


c c2γc = 0 on (24), we write 

γ′ ∼ NC−3(0, σ2
γ Wγ) (25) 

where γ′ = (γ2, . . . , γ71, γ73, . . . , γC−1)⊤, and Wγ is chosen such that the model structure in (24) 
with the constraints is maintained (see Online Supplementary Material, Appendix A). For compu-
tational stability, {γ1, γ72, γC} are removed from the parameter space (rather than {γ1, γ2, γ3}) and 
can be derived as 

γ1 =
1

71 × (C − 1)



c≠1,72,C

(c − 72)(C − c)γc

γ72 = −
1

69 × 71



c≠1,72,C

(C − c)(c − 1)γc

γC =
1

69 × (C − 1)



c≠1,72,C

(c − 1)(72 − c)γc 

Similarly, the LC model can be extended by including the cohort parameters, i.e., 

Mxt = αx + βxκt + γc (26) 

along with the constraints in (23). We call this the negative-binomial Lee-Carter with cohorts 
(LCC) model. We remark that the choice of constraints was to ensure compatibility between 
the competing models. When using the different constraints and the priors below, we did not en-
counter any convergence issues as reported by, for example, Hunt and Villegas (2015) and Cairns 
et al. (2007). 

To facilitate Bayesian model comparison, the model in (25) is used for the cohort parameters 
under the LCC model. The compatible priors established in Section 3.3 are also imposed for rele-
vant parameters under the APCI and LCC models. For complete model specification, we set priors 

ργ ∼ N(0, 1) and σγ ∼ Uniform(0.1) 

The uniform prior on σγ was motivated by Gelman (2006) to avoid computational issues. 
Specifically, our pilot study indicates that the use of the conditionally conjugate inverse gamma 
prior on σ2

γ causes convergence issues in the MCMC runs, and the results are also very sensitive 
to the parameters chosen for the prior. 

For posterior sample generation, the MCMC schemes described in Section 4.1 are used, with 
the additional updating steps for γ′, σ2

γ , and ργ provided in Online Supplementary Material, 
Appendix F.  
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5.1 Bayesian model comparison and averaging 
As before, we fit both stationary AR(1) and random walk models on κt, forming the LCC-AR1, 
LCC-RW, APCI-AR1, and APCI-RW models correspondingly. The estimated marginal likeli-
hoods and the associated posterior model probabilities (assuming equal prior model probabilities) 
of all the cohort models are provided in Table 2. This indicates that the APCI models offer a sub-
stantially better fit in the prior predictive sense to the data than the LCC models. Hence, we elim-
inate the LCC models and only consider the APCI models hereon. 

BMA (see, for example, Hoeting et al., 1999) is then applied to combine the two projection 
models to form the model-averaged APCI model. From a sampling perspective, this can be 
achieved by combining the posterior samples using the posterior model probabilities in Table 2. 
Specifically, a sample of size 10,000 for the model-averaged APCI model can be obtained by com-
bining 9,364 and 636 posterior samples, ,respectively from the APCI-AR1 and APCI-RW models 
(readily available from the MCMC output). A similar technique can be applied for the API-AR1 
and API-RW models to form the model-averaged API model using the probabilities in Table 1. 
Model uncertainty in light of the projection models is then incorporated into the model-averaged 
results. Another advantage of model averaging in this context is the ability to generate sensible 
projections, which avoid the explosive behaviour by random walk model and also overly optimis-
tic prediction intervals by the stationary AR(1) model. In what follows, results illustrated are based 
on the model-averaged outcome. 

5.2 Results 
In presenting the results of the APCI model, we include those of the API model to illustrate the im-
portance of including cohort effects. Where relevant, results of the classical-APCI (c-APCI) model 
by Richards et al. (2019) are also included to highlight the difference due to overdispersion and 
Bayesian methods. 

5.2.1 Estimated parameters 
Figure 5 depicts the posterior medians of α, β, κ, and γ, accompanied by 95% credible intervals. 
For the c-APCI model, point estimates (no parameter uncertainty) are computed using the max-
imum likelihood algorithm by Richards et al. (2019), where the projected values with 95% inter-
vals of κ and γ are, respectively, given by extrapolating equations (11) and (24). Notice that the 
estimated γ are slightly smoother under the APCI model, with narrower prediction intervals. 
Smoother γ is advantageous for avoiding major fluctuations for projected death rates as cohort ef-
fects propagate into the future (see the next subsection). This is sensible because cohorts born in 
nearby periods are expected to possess similar generational characteristics, hence similar mortality 
experiences. Moreover, any irregular jumps, notably the cohort effects around 1918 and 1945, 
where a strong dip is immediately followed by a sudden surge, are mildly mitigated. These irregu-
larities are often associated with major world events such as 1918 Influenza Pandemic and World 
Wars, which were identified by Cairns et al. (2016) as a consequence of miscalibrated exposures 
due to uneven birth patterns. We do not address this issue here. Instead, we hope that the mild 
smoothing manage to weaken the impact of the anomalies on subsequent projections. 

Table 2. The log marginal likelihoods (estimated using bridge sampling) and posterior model probabilities of the 
cohort models 

Model Log marginal likelihood Posterior model probability  

LCC-AR1  −22,629.20  0.0000 

LCC-RW  −22,634.78  0.0000 

APCI-AR1  −22,414.12  0.9364 

APCI-RW  −22,416.81  0.0636 

Note. AR1 = autoregressive; RW = random walk; APCI = age-period-cohort-improvement.   
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Estimated hyperparameters under the APCI and API models are presented in Figure 6. The mar-
ginal posterior of ρ is a combination between the continuous distribution in the region ρ ∈ (0, 1) (a 
stationary AR(1) model) and the discrete peak at ρ = 1 (a random walk model), where the peaks 
are weighted according to the posterior model probabilities. This result has a resemblance with the 
bimodal marginal posterior for ρ by Wong et al. (2018), where their ‘proxy’ peak at ρ = 1 corre-
sponds to the MCMC algorithm accepting values close to one. Our representation here has the 
advantage of explicitly distinguishing the peak at exact value of ρ = 1 from the peak for  
ρ ∈ (0, 1) with appropriate proportions. Here, a smaller weight of 0.0636 is allocated for the 

peak at ρ = 1 under the APCI model as compared to that of the API model (0.5890), suggesting 
that a stationary AR(1) projection model for κt is preferred over the random walk model. This at-
tributes to the relatively narrower prediction intervals for κ (see Figure 5) and other mortality 
quantities under the APCI model (see later). 

The level of overdispersion implied by the APCI model is smaller than the API model, as indi-
cated by posterior medians of approximately 3.1 × 10−4 and 1.4 × 10−3 for 1/ϕ respectively under 
the APCI model and its counterpart. We also note from equation (5) that the term E[Dxt]/ϕ can be 
viewed as relative increase in the variance of Dxt with respect to its mean, which measures the de-
gree of overdispersion. As a quantitative illustration, substituting the mean observed number of 
deaths as E[Dxt] and the posterior median of ϕ gives 2846.95/3228.55 ≈ 0.88 and 

Figure 5. Plot of the medians (solid lines) and 95% intervals (dotted lines) of fitted and projected model parameters 
under the age-period-cohort-improvement [APCI (black)], age-period-improvement (red), and classical-APCI models 
(blue).   
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2846.95/701.28 ≈ 4.06, respectively, for the APCI and API models, confirming a smaller magni-
tude of overdispersion for the APCI model. This is expected because in the absence of cohort com-
ponents, uncaptured mortality trends are misregarded as extra variations which overestimates 
overdispersion. By preventing the model from misidentifying the cohort effect as a form overdis-
persion, the dispersion parameter fitted under the APCI model provides a more precise description 
of the mortality heterogeneity present in the data. 

5.2.2 Fitted and projected crude mortality rates 
We also assess the performances of the models using crude mortality rates (observable) rather than 
the underlying mortality rates, μxt (unobservable). To obtain the fitted crude mortality rates, the 
fitted number of deaths, DF

xt, are first generated through equation (4), where joint posterior sam-
ples of αx, βx, κt, γc, and ϕ are substituted as appropriate. The fitted crude mortality rate for each 
x = 1, . . . , A and t = 1, . . . , T is then computed as μ̂xt = DF

xt/ext. 
For mortality projection, we note that the posterior predictive distribution of 1-year ahead 

number of deaths for each age (with age parameters held fixed), under the APCI model for in-
stance, is 

f (Dx T+1 |d) = ∫ f (Dx T+1 | αx, βx, κT+1, ϕ) × f (κT+1 | κT , ρ, σ2
κ )

× f (γT+1−x | γT−x, γT−x−1, ργ, σ2
γ )

× f (αx, βx, κT, ρ, σ2
κ , γT+1−x, ργ, σ2

γ , ϕ |d) dαx . . . dϕ

(27) 

Figure 6. Kernel density plots of the hyperparameters under the age-period-cohort-improvement (black) and 
age-period-improvement (red) models.   
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where f (αx, βx, κT, ρ, σ2
κ , γT+1−x, ργ, σ2

γ , ϕ |d) is the joint posterior distribution. This suggests the 
following generation procedure for the projected crude mortality rates:  

1. Generate κT+1 from equation (11) where joint posterior samples of (ρ, κT, σ2
κ ) are substituted 

appropriately. 
2. Generate γT from equation (24) where joint posterior samples of (γT−1, γT−2, ργ, σ2

γ ) are sub-
stituted. Other ‘observed’ cohort components (γT−99, . . . , γT−3) are also available from the 
posterior samples.  

3. Generate for each x the forecasted number of deaths using (4), i.e., 

DF
x T+1 ∼ Neg-Bin ϕ,

ϕ
ex T+1 exp (αx + βx(T + 1) + κT+1 + γT+1−x) + ϕ

 

where ex T+1 are holdout central exposed to risks, joint posterior samples of (αx, βx, ϕ) are sub-
stituted, κT+1 and γT+1−x are, respectively, from steps 1 and 2.  

4. Compute for each x the projected crude mortality rates as μ̂x T+1 = DF
x T+1/ex T+1. 

By analogy, h-year ahead projections can be obtained by recursive implementation of the above 
algorithm. Having generated samples for μ̂xt for x = 1, . . . , A and t = 1, . . . , T + h, sample per-
centiles can be constructed to form median and 95% intervals. 

Figure 7. Plots of observed and holdout log crude death rates, fitted log crude death rates, and the associated 
14-year ahead projection of the crude log death rates for several chosen ages under the age-period-cohort- 
improvement [APCI (black)], age-period-improvement (red), and classical-APCI (blue) models, accompanied by 95% 
intervals.   
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Under the c-APCI model, we generate DF
xt ∼ Poisson(ext exp (αx + βxt + κt + γc)) using max-

imum likelihood estimates of relevant parameters, and then compute the fitted crude mortality 
rates as μ̂xt = DF

xt/ext. Similar to above, projection for the c-APCI model proceeds as:  

1. Generate κT+1 and γT , respectively, from equations (11) and (24) using maximum likelihood 
estimates of relevant parameters.  

2. Generate for each x the forecasted number of deaths as 

DF
x T+1 ∼ Poisson(ex T+1 × exp (αx + βx(T + 1) + κT + γT+1−x)) 

where ex T+1 are holdout central exposed to risks; maximum likelihood estimates are substi-
tuted for αx and βx; κT+1 and γT+1−x are from step 1.  

3. Compute for each x the projected crude mortality rates as μ̂x T+1 = DF
x T+1/ex T+1.  

4. Repeat steps 1–3 recursively to generate h-year ahead projections.  

Note that the above generation procedure of fitted and projected mortality rates for the c-APCI 
model only allows uncertainties due to Poisson random variation and forecast uncertainty. This 
highlights the difference due to parameter uncertainty and the presence of overdispersion in the 
Bayesian models. 

Figure 7 shows the fitted and projected crude death rates for several chosen ages when h = 14. 
Also included are the observed and holdout crude mortality rates. The incorporation of cohort ef-
fects generally leads to significantly better description of the underlying mortality trend for both 
fitted and projected rates. Crucially, the 95% prediction intervals of the (Bayesian) APCI model 
offer realistic coverage rates for including the holdout rates, despite their relatively narrow widths. 
By contrast, the API model generally fails to capture (and hence project) the mortality trends due to 
the lack of the crucial cohort components, necessitating wider prediction intervals to achieve ac-
ceptable coverage rates. This indicates that it is not sufficient to only include overdispersion when 
trend components are not adequately captured, since unexplained signals will be misidentified as 
model residuals, resulting in an overestimation of the degree of overdispersion which in turn, gen-
erates unnecessarily wide intervals. Appropriately incorporating cohort components improve the 
calibration between signals and errors, reducing the bias in the mortality projection with ad-
equately wide intervals to characterize uncertainty. 

Figure 8. Plots of observed and holdout life expectancy at birth and the associated 14-year ahead projection under 
the age-period-cohort-improvement [APCI (black)], age-period-improvement (red), and classical-APCI (blue) models, 
accompanied by the 95% intervals.   
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Another key thing to highlight is that median crude death rates (both fitted and projected) under 
APCI are smoother than the c-APCI model. This is a consequence of both the estimated γ being 
smoother with less dramatic fluctuations (see Figure 5), as well as the presence of dispersion par-
ameter to relax the rigid structural assumption of the model. More importantly, 95% prediction 
intervals of the APCI model are wider than the c-APCI model by construction, allowing most hold-
out rates to be included. The extra widths of the APCI intervals originate from the additional vari-
ation due to overdispersion, parameter uncertainty (through priors), and model uncertainty in the 
models for κ. The c-APCI model yields intervals that are noticeably too narrow (with poor cover-
ages) to adequately represent the variabilities of the holdout data. The difference between the pre-
dictive capabilities of the models can also be quantified by evaluating their mean absolute errors 
(e.g., Barigou et al., 2022), logarithmic scores (e.g., Gneiting & Raftery, 2007), and continuous 
ranked probability scores (Matheson & Winkler, 1976). All three measures, computed using 
the R package scoringRules (Jordan et al., 2019), indicated that the APCI model generates better 
out-of-sample forecasts than the c-APCI model. 

Similarly, in terms of life expectancy at birth as depicted in Figure 8, the APCI model produces 
the best prediction (with smallest bias and highest coverage rate) when validated against the hold-
out data. The API model underestimates the mortality improvement by a substantial margin, and 
is accompanied by excessively wide prediction intervals. The c-APCI model yields a median pro-
jection that aligns well with the APCI model, but fails to produce uncertainty bands that correctly 
represent the future variation by not having sufficiently wide intervals. 

6 Conclusion 
In this paper, a Bayesian implementation of the APCI model with overdispersion was presented 
and illustrated on UK mortality data for the entire age range. The interest was to compare this 
model with the widely used LCC model using posterior model probabilities. For the comparison 
procedure to be meaningful, initial analysis focused on specifying priors that are compatible for 
the competing models. Some theoretical investigations revealed that the Laplace distribution pro-
vides a good approximation to the Bessel prior distribution formed from the multiplication of two 
normal priors. This led to our proposed choice of Laplace priors for relevant parameters under the 
APCI model. The modified prior specification should not affect the estimation of posterior distri-
bution given the size of our mortality data, but has been shown to be consequential in Bayesian 
model comparison. The prior specification we have developed is recommended if users are inter-
ested in carrying out comparison of the same family of models, unless other models are to be con-
sidered where similar analytical work should be undertaken to ensure prior information is 
compatible under all models. After ensuring that the prior information is compatible, the posterior 
model probabilities computed are strongly in favour of the APCI model. In addition to fitting the 
data substantially better, the APCI model is also favourable on grounds of structural simplicity, 
and computational advantages over the LCC model. 

To increase the robustness against misspecification due to time series models, we considered two 
ARIMA models (random walk and AR(1)) for the time-varying parameter κt under both APCI and 
LCC models. The model averaging technique was applied to combine the models to generate prob-
abilistic forecasts that include model uncertainty. The model for γ, however, was assumed to be 
ARIMA(0,1,1). Future work could consider averaging across multiple time series models for γ in-
stead of using the default model. 

Subsequent analysis then focused on illustrating, using holdout data, the significance of 
Bayesian methods, together with the simultaneous inclusion of dispersion and cohort components. 
Results suggested that our proposed approach enabled the APCI model to better calibrate between 
essential mortality data signals and random variations, leading to a noticeable improvement in the 
qualitative fit and adequately wide prediction intervals. Models that ignore cohort effects are more 
prone to overestimate the degree of overdispersion, producing unnecessarily wide prediction inter-
vals (as in Wong et al., 2018). Comparing our results with Richards et al. (2019) also showed that 
allowing for overdispersion using Bayesian methods produces mortality projections with predic-
tion intervals of appropriate width. Even though the degrees of overdispersion implied by all mod-
els are less than that claimed by Wong et al. (2018) due to the ‘contamination’ effect (disregarding 
uncaptured mortality trends as random variations) by the cohort effects, the dispersion parameter  
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is required both intuitively for representing heterogeneity and quantitatively for better predictive 
properties. 
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