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Abstract—The problem of private data disclosure is studied
from an information theoretic perspective. Considering a pair of
dependent random variables (X,Y ), where X and Y denote the
private and useful data, respectively, the following problem is ad-
dressed: What is the maximum information that can be revealed
about Y , measured by mutual information I(Y ;U), in which
U denotes the revealed data, while disclosing no information
about X , captured by the condition of statistical independence,
i.e., X ⊥⊥ U , and henceforth called perfect privacy)? We analyze
the supremization of utility, i.e., I(Y ;U) under the condition of
perfect privacy for two scenarios: output perturbation and full
data observation models, which correspond to the cases where
a Markov kernel, called privacy-preserving mapping, applies to
Y and the pair (X,Y ), respectively. When both X and Y have
a finite alphabet, the linear algebraic analysis involved in the
solution provides some interesting results, such as upper/lower
bounds on the size of the released alphabet and the maximum
utility. Afterwards, it is shown that for the jointly Gaussian
(X,Y ), perfect privacy is not possible in the output perturbation
model in contrast to the full data observation model. Finally, an
asymptotic analysis is provided to obtain the rate of released
information when a sufficiently small leakage is allowed. In
particular, in the context of output perturbation model, it is
shown that this rate is always finite when perfect privacy is not
feasible, and two lower bounds are provided for it; When perfect
privacy is feasible, it is shown that under mild conditions, this
rate becomes unbounded.

I. INTRODUCTION

With the explosion of machine learning algorithms, and
their applications in many areas of science, technology, and
governance, data is becoming an extremely valuable asset.
However, with the growing power of machine learning algo-
rithms in learning individual behavioral patterns from diverse
data sources, privacy is becoming a major concern, calling
for strict regulations on data ownership and distribution. On
the other hand, many recent examples of de-anonymization
attacks on publicly available anonymized data (e.g., [2], [3])
show that regulation alone will not be sufficient to limit access
to private data. An alternative approach, also considered in this
paper, is to process the data at the time of release, such that no
private information is leaked, called perfect privacy. Assuming
that the joint distribution of the observed data, useful data
and the private data that should be kept private is known,
an information-theoretic study is carried out in this paper to
characterize the fundamental limits on perfect privacy.

Consider a situation in which Alice wants to release some
useful information about herself to Bob, represented by ran-
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dom variable Y , and she receives some utility from this
disclosure of information. This may represent data measured
and recorded by a health monitoring system [4], her smart
meter measurements [5], or the sequence of a portion of her
DNA to detect potential illnesses [6]. At the same time, she
wishes to conceal from Bob some private information which
depends on Y , represented by X . To this end, instead of
letting Bob have a direct access to Y , a privacy-preserving
mapping is applied, whereby a distorted version of Y , denoted
by U , is revealed to Bob. In this context, privacy and utility
are competing goals that result in the utility-privacy trade-off :
The more Y is distorted by the privacy-preserving mapping,
the less information can Bob infer about X , but also the less
the utility that can be obtained. This trade-off is the very result
of the dependencies between X and Y . An extreme point of
this trade-off is the scenario termed as perfect privacy, which
refers to the situation where nothing is allowed to be inferred
about X by Bob through the disclosure of U . This condition
is modelled by the statistical independence of X and U .

The concern of privacy and the design of privacy-preserving
mappings have been the focus of a broad area of research
in recent years, e.g., [7]–[10], while the information-theoretic
view of privacy has gained increasing attention more recently
[11]. In [12], the utility-privacy trade-off under the log-loss
cost function is considered, called as the privacy funnel, which
is closely related to the information bottleneck introduced
in [13]. In [14] and [15], the utility-privacy trade-off is
investigated from an information theoretic perspective, and
bounds on the optimal trade-off are derived. Measuring both
the privacy and the utility in terms of mutual information,
perfect privacy is fully characterized in [16] for the binary
case. Furthermore, a new quantity is introduced to capture
the amount of private information about the latent variable
X carried by the useful data Y . In [17]–[19], the authors
address this trade-off in a data-driven approach by setting an
adversarial game between the competing neural networks.

We study the information theoretic perfect privacy in this
paper, and our main contributions can be briefly summarized
as follows:

A. Non-asymptotic analysis - Sections III, IV and V
1) Output perturbation model (sections III and IV):
• Denoting the supremum of I(Y ;U) under perfect privacy

by g0(X,Y ), we analyze its solution through a linear
programming (LP) for finite alphabets to obtain upper
and lower bounds on the cardinality of the released data,
where the former is a sufficient condition, and the latter
is necessary.
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• From the LP solution, upper and lower bounds on
g0(X,Y ) are derived, which are tighter than any other
known bounds in the literature in some scenarios.

• For a jointly Gaussian (X,Y ), we obtain gε(X,Y ) for the
whole permissible range ε ∈ [0, I(X;Y )]. Furthermore,
we generalize this result for ε > 0 to any joint distribution
that satisfies smoothness, and for ε = 0 to the additive
case, i.e., X = Y +N , with N(⊥⊥ Y ) being Gaussian.

• In the same setting, in the case of a finite release alphabet,
say of cardinality M , we show that the utility reaches
its maximum of log2M for a vanishingly small leakage.
This is shown by using two types of practical filters:
equiprobable and uniform quantizers.

• We show that in the case of finite release alphabet, the
supremum in the definition of gε(X,Y ) is actually a
maximum, in spite of the non-compactness of the search
space.

• We establish the relationship between g0(X,Y ) and non-
private information about X carried by Y , DX(Y ), as
defined in [16], and provide the necessary and sufficient
conditions when the two aforementioned quantities are
equal.

2) Full data observation model (section V):
• We provide the necessary and sufficient condition for

the feasibility of perfect privacy. In this context, the
maximum utility is denoted by G0(X,Y ).

• We provide a lower bound on G0(X,Y ), which can
become relevant to the maximal leakage defined in [20].

• We show that for a jointly Gaussian (X,Y ), we have
G0(X,Y ) = ∞, which is the direct opposite of
g0(X,Y ) = 0. We actually state this result for the broader
class of additive noise, i.e., Y = X + N , in which, N
does not need to be independent of X , but it needs to
admit a density for each realization x of X .

B. Asymptotic analysis in the context of output pertaurbation
model - Section VI

• We show that when perfect privacy is not feasible, the
slope of gε(X,Y ) at the origin, i.e., ε = 0, is always
finite, and provide two lower bounds on this slope, which
are tighter than the previously known bounds in the
literature.

• We show that when perfect privacy is feasible, for a broad
range of cases, this slope at the origin is infinite.

• We provide a general lower bound on this slope when
perfect privacy is feasible.

Notation. Random variables are denoted by capital letters,
their realizations by lower case letters, and their alphabets by
capital letters in calligraphic font. Matrices and vectors are
denoted by bold capital and bold lower case letters, respec-
tively. For a matrix Am×k, the null space, rank, and nullity
are denoted by Null(A), rank(A), and nul(A), respectively,
with rank(A) + nul(A) = k. For integers m ≤ n, we have
the discrete interval [m : n] , {m,m + 1, . . . , n}, and the
tuple (am, am+1, . . . , an) is written in short as a[m:n]. The
set [1 : n] is written in short as [n]. For an integer n ≥ 1, the
notation 1n, and 0n denote the n-dimensional all-one, and

all-zero column vectors, respectively. For a random variable
X ∈ X , with finite |X |, the probability simplex P(X ) is the
standard (|X | − 1)-simplex given by

P(X ) =

{
v ∈ R|X |

∣∣∣∣1T|X | · v = 1, vi ≥ 0, ∀i ∈ [|X |]
}
,

whose interior is denoted by int(P(X )). Furthermore, to each
probability mass function (pmf) on X , denoted by pX(·),
corresponds a matrix PX = diag(pX), where pX is a
probability vector in P(X ), whose i-th element is pX(xi)
(i ∈ [|X |]). For a pair of random variables (X,Y ) with
joint pmf pX,Y , PX,Y is an |X | × |Y| matrix with (i, j)-
th entry equal to pX,Y (i, j). Likewise, PX|Y is an |X | × |Y|
matrix with (i, j)-th entry equal to pX|Y (i|j). FY (·) denotes
the cumulative distribution function (CDF) of random variable
Y , and if it admits a density, its probability density function
(pdf) is denoted by fY (·). Throughout the paper, for a random
variable Y with the corresponding probability vector pY ,
H(Y ) and H(pY ) are written interchangeably, and so are the
quantities D(pY (·)||qY (·)) and D(pY ||qY ). All logarithms in
this paper are in base 2. Given two positive integers a, b, a
modulo b is abbreviated as a mod b. Finally, dTV, b·c, and d·e
denote the total variation distance, the floor, and the ceiling
operators, respectively. 1

II. SYSTEM MODEL AND PRELIMINARIES

Consider a triplet of random variables (X,Y,W ) ∈ X ×
Y×W , distributed according to the joint distribution pX,Y,W .
Let X denote the private/sensitive data that the user/curator
wants to conceal, Y denote the useful data the user wishes
to disclose, and W denote the observable data that the
curator observes, which can be regarded as a noisy version
of (X,Y ). Assume that the privacy-preserving mapping/data
release mechanism takes W as input, and maps it to the
released data, denoted by U . In this scenario, (X,Y )−W−U
form a Markov chain, and the privacy-preserving mapping is
captured by the conditional distribution pU |W .

Definition 1. Perfect privacy is feasible if there exists a
privacy-preserving mapping pU |W whose output U is statisti-
cally dependent on the useful data Y , while being statistically
independent of the private data X; that is, Y 6⊥⊥ U and
X ⊥⊥ U .

Unless otherwise stated explicitly, we assume that all the
alphabets/supports X ,Y,W are finite. In this context, we
assume that pX(x), pY (y), pW (w) > 0,∀(x, y, w) ∈ X ×Y ×
W , since otherwise the alphabets could have been modified
accordingly. This equivalently means that the corresponding
probability vectors pX ,pY ,pW are in the interior of their
corresponding probability simplices, i.e., P(X ),P(Y),P(W),
respectively.

The following proposition states the necessary and sufficient
condition for the feasibility of perfect privacy.

1Due to space constraints, some of the proofs are provided in the extended
online version [21].
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Proposition 1. Perfect privacy is feasible for (X,Y,W ) ∈
X × Y ×W if and only if

dim
(

Null(PX|W )\Null(PY |W )

)
6= 0. (1)

Proof. The proof is a simple generalization of [22, Theorem
4], by noting that both X −W − U and Y −W − U form
Markov chains. In other words, we have X ⊥⊥ U if and only
if for all u ∈ U , pX = PX|WpW |u. On the other hand,
we have Y 6⊥⊥ U if and only if there exists a u′ ∈ U , such
that pY 6= PY |WpW |u′ . Equivalently, there exists a vector
v′ , pW − pW |u′ in Null(PX|W ) (v′ 6= 0) that does not
belong to Null(PY |W ), which is equivalent to (1).

The special cases of full data observation and output
perturbation ([23]) refer to the scenarios in which the privacy-
preserving mapping has direct access to both the private and
useful data (i.e., W = (X,Y )) and only to the useful data
(i.e., W = Y ), respectively. The whole paper is devoted to
these two models.

By adopting mutual information as the measure of both
utility and privacy (i.e., I(Y ;U), and I(X;U), respectively),
the optimal utility-privacy trade-off in the output perturbation
model is defined as2

gε(X,Y ) , sup
pU|Y :

X−Y−U
I(X;U)≤ε

I(Y ;U), (2)

and in the full data observation model, the trade-off can be
formulated as

Gε(X,Y ) , sup
pU|X,Y :

I(X;U)≤ε

I(Y ;U), (3)

where the effective range of ε is [0, I(X;Y )].
Finally, we can say that perfect privacy being feasible in

the output perturbation and full data observation models is
equivalent to having g0(X,Y ) > 0 and G0(X,Y ) > 0,
respectively.

III. OUTPUT PERTURBATION MODEL

In this model, we have X − Y − U form a Markov chain,
and in order to derive g0(X,Y ), we proceed as follows.
From the singular value decomposition of PX|Y , we have
PX|Y = UΣVT , where the matrix of right eigenvectors
is V =

[
v1 v2 . . . v|Y|

]
. By assuming (without loss

of generality) that the singular values are arranged in a
descending order, only the first rank(PX|Y ) singular values are
non-zero. Therefore, the null space of PX|Y can be written as
Null(PX|Y ) = Span{vrank(PX|Y )+1,vrank(PX|Y )+2, . . . ,v|Y|}.

In the Markov chain X−Y −U , the random variables X and
U are independent if and only if PX|Y (pY −pY |u) = 0, ∀u ∈
U , which is equivalent to (pY − pY |u) ∈ Null(PX|Y ), ∀u ∈
U . Let A be defined as A ,

[
v1 v2 . . . vrank(PX|Y )

]T
.

Therefore, we have X ⊥⊥ U in X − Y − U if and only if
A(pY − pY |u) = 0, ∀u ∈ U . Let SX,Y be defined as

SX,Y ,

{
t ∈ R|Y|

∣∣∣∣At = ApY , t ≥ 0

}
, (4)

2This is the same notation as in [16].

which is a convex polytope in P(Y), since it can be written
as the intersection of a finite number of half-spaces in P(Y).
With this definition, we have that having X ⊥⊥ U in X−Y −U
results in pY |u ∈ SX,Y , ∀u ∈ U . On the other hand, for any
pair (Y,U), for which pY |u ∈ SX,Y , ∀u ∈ U , we can simply
have X − Y − U and X ⊥⊥ U . Therefore, we can write

X − Y − U, X ⊥⊥ U ⇐⇒ pY |u ∈ SX,Y , ∀u ∈ U . (5)

Theorem 1. The supremum in (2) is attained, and hence, it
is a maximum. Furthermore, in the evaluation of g0(X,Y ),
the optimal privacy-preserving mapping is the solution to a
standard linear program (LP), and it is sufficient to have |U| ≤
nul(PX|Y ) + 1. Finally, if p∗Y,U corresponds to a maximizer
p∗U |Y , for any u ∈ U , we have

|{y ∈ Y|p∗(y|u) > 0}| ≤ rank(PX|Y ). (6)

Proof. The proof of the attainability of the supremum, and the
upper bound |U| ≤ nul(PX|Y ) + 13 are provided in Appendix
A. We have

g0(X,Y ) = H(Y )− min
pU (·), pY |u∈SX,Y , ∀u∈U :∑

u pU (u)pY |u=pY

H(Y |U), (7)

where in (7), since the minimization is over pY |u rather
than pU |Y , a constraint was added to preserve the marginal
distribution pY . The minimization of the concave functional
in (7) simplifies to an LP as stated in [24].

In order to prove the final claim in the statement of this
Theorem, we need to address the solution to this LP, whose
linear algebraic analysis (i.e., characterizations of the null
space, extreme points, etc.) is the basis for some of the main
results obtained in this paper. We address this solution as
follows.

Lemma 1. In minimizing H(Y |U) over {pY |u ∈
SX,Y |

∑
u pU (u)pY |u = pY }, it is sufficient to consider only

nul(PX|Y ) + 1 extreme points of SX,Y .

Proof. The proof is provided in [21, Appendix B].

From lemma 1, the solution to the minimization in (7)
can be obtained in two phases: in phase one, the extreme
points of set SX,Y are identified, while in phase two, proper
weights over these extreme points are obtained to minimize
the objective function.

For the first phase, we proceed as follows. The extreme
points of SX,Y are the basic feasible solutions (see [25],
[26]) of {x ∈ R|Y||Ax = b , x ≥ 0}, where b = ApY .
The procedure of finding the extreme points of SX,Y is as
follows. Pick a set B ⊂ [|Y|] of indices that correspond
to rank(PX|Y ) linearly independent columns of matrix A
defined prior to (4). Let AB be a rank(PX|Y )× rank(PX|Y )
matrix whose columns are the columns of A indexed by the
indices in B. Also, for any x ∈ SX,Y , define a corresponding

3The proof of this upper bound follows the application of cardinality
bounding technique and taking into account the convex polytope SX,Y in
(4). Although we are considering perfect privacy here, i.e, g0(X,Y ), in the
evaluation of gε(X,Y ), ∀ε > 0, it is sufficient to have |U| ≤ |Y|+ 1 as in
[15].
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vector x̃ ,
[
xTB xTN

]T
, where xB and xN are rank(PX|Y )-

dimensional and nul(PX|Y )-dimensional vectors whose ele-
ments are the elements of x indexed by the indices in B and
[|Y|]\B, respectively.

For any basic feasible solution x∗, there exists a set B ⊂
[|Y|] of indices that correspond to a set of rank(PX|Y ) linearly
independent columns of A, such that the corresponding vector
of x∗, i.e. x̃∗ =

[
x∗B

T x∗N
T
]T

, satisfies the following

x∗N = 0, x∗B = A−1
B b, x∗B ≥ 0, (8)

where the inequality is element-wise. On the other hand, for
any set B ⊂ [|Y|] of indices that correspond to a set of
rank(PX|Y ) linearly independent columns of A, if A−1

B b ≥ 0,
then

[
bTA−TB 0T

]T
is the corresponding vector of a basic

feasible solution. Hence, the extreme points of SX,Y are
obtained as mentioned above, and their number is at most( |Y|

rank(PX|Y )

)
, which is justified as follows. Since an extreme

point is identified if and only if A) the rank(PX|Y ) selected
columns are linearly independent, B) the corresponding xB has
all non-negative elements, it is concluded that the total number
of extreme points is upper bounded by the total number of
ways to choose rank(PX|Y ) linearly independent columns out
of |Y| columns. The latter is also upper bounded by the total
number of ways to choose rank(PX|Y ) columns out of |Y|
columns, which is

( |Y|
rank(PX|Y )

)
. Furthermore, each extreme

point has at most rank(PX|Y ) non-zero elements correspond-
ing to xB, which is equivalent to |{y ∈ Y|p∗(y|u) > 0}| ≤
rank(PX|Y ) for any u ∈ U .

For the second phase, we proceed as follows. Assume that
SX,Y has K (a positive integer) extreme points, denoted by
p1,p2, . . . ,pK , which were identified in the first phase. Then,
(7) is equivalent to

g0(X,Y ) = H(Y )−min
w≥0

[
H(p1) H(p2) . . . H(pK)

]
·w

s.t.
[
p1 p2 . . . pK

]
w = pY ,

(9)

where w is a K-dimensional weight vector, and it can be
verified that the constraint

∑K
i=1 wi = 1 is satisfied if the

constraint in (9) is met. The problem in (9) is a standard LP.

Corollary 1.1. In the evaluation of g0(X,Y ), it is necessary
to have |U| ≥

⌈
|Y|

rank(PX|Y )

⌉
.

Proof. In the proof of Theorem 1, in order to write the |Y|-
dimensional probability vector pY as a convex combination
of the extreme points of SX,Y , that have at most rank(PX|Y )

non-zero elements, at least
⌈

|Y|
rank(PX|Y )

⌉
points are needed,

which results in |U| ≥
⌈

|Y|
rank(PX|Y )

⌉
.

Corollary 1.2. We have the following bounds on g0(X,Y ).(
H(Y )− log rank(PX|Y )

)+ ≤ g0(X,Y ),

g0(X,Y ) ≤ min{log
(
nul(PX|Y ) + 1

)
, H(Y |X)}.

Proof. The first term in the upper bound is immediate from
I(Y ;U) ≤ H(U) ≤ log |U| ≤ log

(
nul(PX|Y ) + 1

)
, where

the last inequality follows from Theorem 1. The second term
in the upper bound follows from [14]. The lower bound is
proved as follows. As mentioned in the proof of Theorem 1,
each extreme point of SX,Y has at most rank(PX|Y ) non-zero
elements, which means that the entropy of each extreme point
is upper bounded by log(rank(PX|Y )). Hence,

min
pU (·), pY |u∈SX,Y , ∀u∈U :∑

u pU (u)pY |u=pY

H(Y |U) ≤ log(rank(PX|Y )),

which results in the lower bound on g0(X,Y ).

An example of the LP solution in Theorem 1 is provided
in [21].

Thus far, we have investigated perfect privacy when
|X |, |Y| < ∞. In what follows, i.e., Theorem 2, it is shown
that perfect privacy is not feasible for the (correlated) jointly
Gaussian pair. Part of the proof of Theorem 2 relies on using
a privacy-preserving mapping pU |Y that quantizes the useful
data Y with infinitely small quantization intervals, which in
turn, is based on the following lemma.

Lemma 2. Let Z be an r.v. distributed over an interval [a, b],
in which a, b ∈ R (a < b), with a bounded smooth pdf denoted
by fZ(·)4. For positive integers M,n, define a partition a =
a0 < a1 < a2 < . . . < aMn−1 < aMn = b. Let Ii ,
[ai−1, ai), ∀i ∈ [Mn− 1], and IMn , [aMn−1, b]. Let U be
a function of Z defined as

u(z) , (i− 1) mod M, if z ∈ Ii, for some i ∈ [Mn]. (10)

If for all i ∈ [Mn], we have (ai − ai−1) → 0 with n → ∞,
then

lim
n→∞

H(U) = logM. (11)

Proof. Let pU denote the pmf of U , whose realizations are
given in (10). Also, let Ji , ∪iMk=(i−1)M+1Ik, ∀i ∈ [n]. Let
Ẑ be an r.v. whose pdf is a piecewise uniform approximation
of fZ over the intervals Ji, i ∈ [n]. Hence, we have

fẐ(ẑ) =
1

l(Ji)

∫
Ji
fZ(z)dz, ∀ẑ ∈ Ji, ∀i ∈ [n], (12)

where l(Ji) = aiM − a(i−1)M denotes the length of the
segment Ji, i ∈ [n].

Let Û be a function of Ẑ in exactly the same way that U is
defined as a function of Z, i.e., as in (10). Since fẐ is flat over
Ji, i ∈ [n], Û is uniform over [0 : M−1]. Since (ai−ai−1)→
0 as n → ∞, ∀i ∈ [Mn], we conclude that l(Ji) → 0 as
n → ∞, ∀i ∈ [n]. As a result, fẐ(·) converges pointwise
to fZ(·), due to the smoothness of the latter. Therefore, we
have dTV(fẐ , fZ) =

∫
|fẐ − fZ |dz → 0 as n→∞, which is

a direct consequence of Lebesgue’s Dominated Convergence
Theorem. Hence, by viewing Z and Ẑ as the inputs to a (de-
terministic) channel in (10), with the corresponding outputs U

4Note that since Z admits a density, its support being a segment, as (a, b),
or an interval, as [a, b], or a mixture does not change the result in this
lemma. Hence, with a slight abuse of notation, segment and interval are used
interchangeably.
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and Û , respectively, we get limn→∞ dTV(pU , pÛ ) = 0, which
follows from the data processing inequality of f-divergences,
i.e., dTV(pU , pÛ ) ≤ dTV(fẐ , fZ). Finally, from the fact that
H(Û) = logM , and by the continuity of entropy, (11) is
proved.

Theorem 2. Let (X,Y ) ∼ N (µ,Σ) be a pair of jointly
Gaussian random variables, where

µ =

[
µX
µY

]
,Σ =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
, (13)

in which ρ 6= 0, since otherwise X ⊥⊥ Y . We have

gε(X,Y ) =

{
0 ε = 0
∞ o.w. (14)

Proof. First, it is shown that g0(X,Y ) = 0. If there exists a
random variable U such that X−Y −U form a Markov chain
and X ⊥⊥ U , we must have FX(·) = FX|U (·|u), ∀u ∈ U ; and
hence, fX(·) = fX|U (·|u), ∀u ∈ U , since X has a density.
Equivalently, we must have

fX(·) =

∫
fX|Y (·|y)dFY |U (y|u), ∀u ∈ U . (15)

Also, to have g0(X,Y ) > 0, there must exist u1, u2 ∈ U , such
that

FY |U (·|u1) 6= FY |U (·|u2). (16)

In what follows we show that if (15) holds, (16) cannot be
satisfied; and therefore, perfect privacy is not feasible for a
jointly Gaussian (X,Y ) pair.

It is known that X conditioned on {Y = y} is also
Gaussian, given by

X|{Y = y} ∼ N
(
ρσX
σY

(y − µY ) + µX︸ ︷︷ ︸
αy+β

, (1− ρ2)σ2
X︸ ︷︷ ︸

σ2

)
.

(17)
From (15), (17), and for u1, u2 ∈ U , we have

fX(x) =

∫
e−

(x−αy−β)2

2σ2

√
2πσ2

dFY |U (y|u1)

=

∫
e−

(x−αy−β)2

2σ2

√
2πσ2

dFY |U (y|u2), ∀x ∈ R,

or, equivalently,∫
e−

(x−αy−β)2

2σ2

√
2πσ2

d

(
FY |U (y|u1)−FY |U (y|u2)

)
= 0, ∀x ∈ R.

(18)
Multiplying both sides of (18) by ejωx, and taking the integral
with respect to x, we obtain∫
ejωx

[ ∫
e−

(x−αy−β)2

2σ2

√
2πσ2

d

(
FY |U (y|u1)−FY |U (y|u2)

)]
dx = 0.

By Fubini’s theorem5, we can write∫ [ ∫
ejωx

e−
(x−αy−β)2

2σ2

√
2πσ2

dx

]
d

(
FY |U (y|u1)−FY |U (y|u2)

)
= 0,

5Note that
∫
|fX|U (x|u1) − fX|U (x|u2)|dx ≤

∫
[|fX|U (x|u1)| +

|fX|U (x|u2)|]dx = 2 < +∞.

and after some manipulations, we get∫
ejωαyd

(
FY |U (y|u1)− FY |U (y|u2)

)
= 0. (19)

Since ρ 6= 0, from (17), we have α 6= 0. Hence, the LHS
of (98) is a Fourier transform. Due to the invertiblity of the
Fourier transform, i.e.

∫
ejωtdg(t) = 0 ⇐⇒ dg(t) = 0, we

must have FY |U (·|u1) = FY |U (·|u2). Therefore, (16) does not
hold and perfect privacy is not feasible for the (correlated)
jointly Gaussian pair (X,Y ).

In order to show gε(X,Y ) = ∞, ∀ε > 0, two
proofs/methods are provided. Both of them aim to construct
a privacy-preserving mapping pU |Y as an M -level quantizer
(for an arbitrary integer M > 0), which satisfies the privacy
constraint, and results in a utility that grows with M . Hence,
the proof is completed by letting M →∞. In the first method,
this is done by quantizing the support of Y into equiprobable
intervals, while in the second method, a uniform quantizer is
employed, which partitions the support of Y into intervals of
the same length (denoted by ∆). The advantages/disadvantages
of these two methods are elaborated further in the remarks that
follow the Theorem.

In what follows, without loss of optimality, we consider that
both X and Y have the standard Normal distribution6.

A. First method for showing gε(X,Y ) = ∞, ∀ε > 0:
Equiprobable quantizer

Fix ε > 0, and a positive integer M . For each integer n > 1,
define

Bn ,

[
Φ−1(

1

n
),Φ−1(1− 1

n
)

]2

, (20)

pn , Pr
{

(X,Y ) 6∈ Bn
}
, (21)

where Φ−1(·) is the inverse function of standard Normal CDF
Φ(x) , 1√

2π

∫ x
−∞ e−

t2

2 dt.
As n → ∞, we have pn → 0, and hence,

(pn logM +Hb(pn)) → 0. Therefore, there exists a positive
integer N0 such that pn logM +Hb(pn) ≤ ε

2 , for all n ≥ N0.
Let N1(ε) denote the minimum N0 for which the previous
statement holds.

Let E , 1(X,Y )∈BN1(ε)
be a binary indicator which is 1

when (X,Y ) ∈ BN1(ε), and 0 otherwise. For a positive integer
n, let {Φ−1( i

MN1(ε)n )}MN1(ε)n−1
i=1 be a set of points that divide

the support of a standard Normal into MN1(ε)n equiprobable
intervals, which are denoted by I1 =

(
−∞,Φ−1( 1

MN1(ε)n )
)

,

and Ii =
[
Φ−1( i−1

MN1(ε)n ),Φ−1( i
MN1(ε)n )

)
for i ∈ [2 :

MN1(ε)n), with the convention Φ−1(1) =∞. Define U as a
function of Y according to

u(y) , (i− 1) mod M, if y ∈ Ii, for some i ∈ [MN1(ε)n].
(22)

6This is due to the fact that for the tuple (X,Y, U), I(aX + b;U) =
I(X;U), and I(cY + d;U) = I(Y ;U) for constants a, b, c and d.
Furthermore, the set of mappings from Y has a one-to-one correspondence
with the set of mappings from cY + d.
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From the construction in (22), we have that U is uniform over
[0 : M − 1], and I(Y ;U) = logM for any positive integer n.
In the sequel, we show that there exists a positive integer N ,
such that I(X;U) ≤ ε, ∀n ≥ N , which results in gε(X,Y ) ≥
logM . Since M is arbitrary, we get gε(X,Y ) = ∞, which
concludes the proof.

Conditioned on the event {E = 1}, we have H(U |E =
1) = logM , since Y |{E = 1} with pdf fY |E(·|1),
which is a scaled version of fY (·), is distributed over
[Φ−1( 1

N1(ε) ),Φ−1(1 − 1
N1(ε) )], which has been divided into

Mn(N1(ε)−2) equiprobable intervals, i.e., {Ii}Mn(N1(ε)−1)
i=Mn+1 ,

and from (22), U |{E = 1} becomes uniform over [0 : M−1].
For each realization x ∈ [Φ−1( 1

N1(ε) ),Φ−1(1 − 1
N1(ε) )] of

X , the conditional pdf fY |X,E(·|x, 1) is a bounded smooth
density. Hence, from lemma 2, there exists a positive integer
N(x, ε), such that

H(U |X = x,E = 1) ≥ logM − ε

2
, ∀n ≥ N(x, ε). (23)

Furthermore, since [Φ−1( 1
N1(ε) ),Φ−1(1− 1

N1(ε) )] is a compact
subset of the real line, we can define

N2(ε) , max
x∈[Φ−1( 1

N1(ε)
),Φ−1(1− 1

N1(ε)
)]
N(x, ε).

Therefore, for all n ≥ N2(ε), we have

I(X;U |E = 1) = H(U |E = 1)−H(U |X,E = 1)

= logM −H(U |X,E = 1) (24)

≤ ε

2
, (25)

where (24) and (25) follow, respectively, from U |{E = 1}
being uniform, and (23).

Finally, we have that for n ≥ max{N1(ε), N2(ε)},

I(X;U) ≤ I(X;U,E)

≤ H(E) + I(X;U |E) (26)
= H(Pr{E = 0}) + Pr{E = 0}I(X;U |E = 0)

+ Pr{E = 1}I(X;U |E = 1)

< H(Pr{E = 0}) + Pr{E = 0} logM

+ I(X;U |E = 1) (27)

≤ ε

2
+
ε

2
(28)

= ε,

where (27) follows from the trivial upper bound I(X;U |E =
0) ≤ logM ; (28) results from (25) and the fact that pn logM+
Hb(pn) ≤ ε

2 for n ≥ N1(ε), in which pn = Pr{E = 0}.
Therefore, for any ε > 0, we have constructed a privacy-
preserving mapping pU |Y for which I(Y ;U) = logM , and
I(X;U) ≤ ε. Finally, letting M → ∞ completes the first
proof.
B. Second method for showing gε(X,Y ) = ∞, ∀ε > 0:
Uniform quantizer

Fix ε > 0. Fix a positive integer M , and set U∆
M ,⌊

MY
∆

⌋
mod M, ∀∆ > 0. From lemma 2, we have

lim
∆→0

I(Y ;U∆
M ) = lim

∆→0
H(U∆

M ) = logM, (29)

which follows from H(U∆
M |Y ) = 0. Therefore, we have that

for any δ > 0, there exists ∆0 > 0, such that I(Y ;U∆
M ) ≥

logM − δ, for all ∆ ≤ ∆0. Since the conditional distribution
of Y given {X = x} still satisfies the conditions of lemma 2
(i.e., replace fZ with fY |X ), we obtain that for any x ∈ R,
there exists ∆x > 0, such that H(U∆

M |X = x) ≥ logM − ε
2 ,

for all ∆ ≤ ∆x.

Let I0 , [−Φ−1(1− ε
4 logM ),Φ−1(1− ε

4 logM )], and define
E0 , 1{X∈I0} as an r.v. indicating if X belongs to I0. Finally,
set ∆1 , minx∈I0 ∆x, where ∆x is given in the previous
paragraph. Note that since ∆x > 0, and the minimization is
over a compact set, i.e., I0, we have ∆1 > 0. For any ∆ ≤ ∆1,
we can write

I(X;U∆
M ) = I(X,E0;U∆

M ) (30)

= H(U∆
M )− Pr{E0 = 1}H(U∆

M |X,E0 = 1)

− Pr{E0 = 0}H(U∆
M |X,E0 = 0)

≤ logM − (1− ε

2 logM
)(logM − ε

2
) (31)

=
ε

2
(2− ε

2 logM
)

≤ ε,

where (30) follows from having E0 as a deterministic function
of X; (31) results from H(U∆

M ) ≤ logM , Pr{E0 = 1} =
1 − ε

2 logM , and the non-negativity of entropy. Hence, it is
shown that for any ε, δ > 0 and integer M > 0, there exists
∆2 , min{∆0,∆1}, such that

I
(
X;U∆

M

)
≤ ε,

I
(
Y ;U∆

M

)
≥ logM − δ, ∀∆ ∈ (0,∆2).

Finally, by letting M →∞, the proof is completed. 7

Remark 1. (Generalization of g0(X,Y ) = 0.) It is important
to note that in the first claim of (14), i.e., g0(X,Y ) = 0,
Gaussianity of Y is not used, and the proof relies solely on
the characteristics of the conditional pdf fX|Y (·|·). Therefore,
for an arbitrary pair of random variables (X,Y ), in which
X = Y +N , with N being Gaussian and independent of Y ,
we have g0(X,Y ) = 0. This means that perfect privacy for
an additive Gaussian noisy version of any random variable
comes at the cost of zero utility.

Remark 2. It is important to note that in the second claim
of (14), i.e., gε(X,Y ) = ∞, ∀ε > 0, Gaussianity of the pair
(X,Y ) is not necessary. Hence, for an arbitrary pair (X,Y ),
gε(X,Y ) = ∞, ∀ε > 0, if Y conditioned on {X = x}, i.e.,
Y |{X = x}, admits a bounded smooth pdf for any x ∈ X .

7As it can be observed, in the first method of showing gε(X,Y ) =
∞, ∀ε > 0 (i.e., equiprobable quantization), which is more complicated
than the second one, we have I(Y ;U) = logM , while in the sec-
ond method (i.e., uniform quantization), I(Y ;U) approaches logM , since
I
(
Y ; bMY

∆
c mod M

)
< logM, ∀∆ > 0 in general. This advantage of

the first method is used in the proof of Remark 4, i.e., replacing the supremum
with maximum when U is a finite set. However, the second method is simpler
and has a fixed quantization interval.
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Definition 2. For a positive integer M , the utility-privacy
trade-off with an M -ary release alphabet is defined as

gMε (X,Y ) , sup
pU|Y :|U|≤M
I(X;U)≤ε
X−Y−U

I(Y ;U). (32)

Remark 3. For any pair (X,Y ) that satisfies the condition
in Remark 2, from the proof of Theorem 2, we get

gMε (X,Y ) = logM, ∀ε > 0. (33)

Therefore, the fact that mutual information may not be a
suitable measure of utility (or privacy8) for the continuous
alphabet scenarios is not only because the utility can be
unbounded. Even when constrained to a finite alphabet U ,
it can reach its supremum of log |U| for arbitrarily small
leakage, rendering the term “trade-off” pointless. 9 Therefore,
in order to fully capture the utility-privacy trade-off for con-
tinuous alphabets, we can either use mutual information but
impose additional constraints (such as the restrictions on the
set of permissible pU |Y in (2) as in [27]), or adopt a different
measure .

Remark 4. For an arbitrary pair (X,Y ), where Y |{X = x}
admits a bounded, and positive smooth pdf for any x ∈ X , the
supremum in (32) can be replaced by maximum10 for ε > 0
as

gMε (X,Y ) = max
pU|Y :|U|≤M
I(X;U)≤ε
X−Y−U

I(Y ;U) = logM, ∀ε > 0.

This follows similar steps as in the first method in the prrof
of Theorem 2 with the modification of replacing Φ−1(·) with
the inverse function of FY (·).

IV. NON-PRIVATE INFORMATION VS. g0(X,Y )

For a pair of random variables (X,Y ) ∈ X ×Y , the private
information about X carried by Y is defined in [16] as

CX(Y ) , min
W :X−W−Y,
H(W |Y )=0

H(W ). (34)

Since H(W |Y ) = 0 implies that W is a deterministic function
of Y , (34) means that among all the functions of Y that make
X and Y conditionally independent, we want to find the one
with the lowest entropy. It can be verified that I(X;Y ) ≤
CX(Y ) ≤ H(Y ), where the first inequality is due to the data
processing inequality applied on the Markov chain X−W−Y ,

8For example, if mutual information is used as the privacy measure, while
the total variation (TV) distance is used as the utility measure, i.e., T (Y ;U) ,
dTV(FY,U , FY ·FU ), the maximum utility (which is 2 for TV distance) can be
achieved for any ε > 0 for jointly Gaussian (X,Y ). Hence, this phenomenon
is not restricted mutual information as a utility measure. This, however, is not
the case when MMSE or the probability of error is used as the utility measure.

9In general, gMε (X,Y ) is not a continuous function of ε, which results
from two facts i) relative entropy is lower semi-continuous, and so is mutual
information, ii) supremum of continuous functions is itself lower semi-
continuous. Hence, having gM0 (X,Y ) = 0, while gMε (X,Y ) = logM
for ε > 0 is permissible. However, for the finite alphabet scenarios, all the
probability simplices are compact, and it can be shown that gε is continuous.

10This holds in spite of the non-compactness of the search space.

i.e., I(W ;Y ) ≥ I(X;Y ), and the second inequality is a direct
result of the fact that W = Y satisfies the constraints in (34).

The non-private information about X carried by Y is
defined in [16] as

DX(Y ) , H(Y )− CX(Y ). (35)

Let TX : Y → P(X ) be a mapping from Y to the probability
simplex on X defined by y → pX|Y (·|y). It was shown in [16,
Theorem 3] that the minimizer in (34) is W ∗ = TX (Y ); and
hence,

DX(Y ) = H(Y )−H(TX (Y )). (36)

Furthermore, it was proved in [16, lemma 5] that CX(Y ) =
H(Y ), i.e., DX(Y ) = 0, if and only if there do not exist
y1, y2 ∈ Y such that pX|Y (·|y1) = pX|Y (·|y2).

In [16], three examples were provided, where in two of
them g0(X,Y ) = DX(Y ), while in the last one g0(X,Y ) >
DX(Y ). Finally, a question was raised regarding the condition
on the joint distribution pX,Y under which g0(X,Y ) =
DX(Y ) holds. In Theorem 3, we characterize the relation be-
tween DX(Y ) and g0(X,Y ). To this end, some preliminaries
and two lemmas are needed, as explained in the sequel.

If PX|Y has at least two identical columns, we define P̂X|Y
as follows11. Let Em ⊂ [|Y|],∀m ∈ [B], for some integer B ≥
1, be a set of indices corresponding to the columns in PX|Y
that are equal, i.e., pX|yi = pX|yj , ∀i, j ∈ Em,∀m ∈ [B],
and pX|yi 6= pX|yk , ∀i ∈ Em,∀k ∈ [|Y|]\Em, ∀m ∈ [B]. Let
G ,

∑B
i=1 |Ei|. We construct a corresponding |X | × (|Y| −

G+B)-dimensional matrix P̂X|Y from PX|Y by eliminating
all the columns in each Em, except one. For example, we have
the following pair

PX|Y =

0.3 0.3 0.4 0.5 0.4
0.2 0.2 0.5 0.5 0.5
0.5 0.5 0.1 0 0.1

 , P̂X|Y =

0.3 0.4 0.5
0.2 0.5 0.5
0.5 0.1 0

 ,
(37)

where B = 2, G = 4, E1 = {1, 2}, and E2 = {3, 5}.
Since pX|yi = pX|yj ,∀i, j ∈ Em,∀m ∈ [B], we have

TX (yi) = TX (yj),∀i, j ∈ Em,∀m ∈ [B]. Hence, TX (Y ) is a
random variable whose support has the cardinality |Y|−G+B
and whose mass probabilities are the elements of the following
set{∑

i∈E1

pY (yi), . . . ,
∑
i∈EB

pY (yi)

}
∪
{
pY (yi)

∣∣∣∣i 6∈ ∪Bm=1Em
}
.

(38)
Let S′X,Y be a set of

∏B
i=1 |Ei| probability vectors in the

simplex P(Y) given by

S′X,Y =

{
sm[B]

∣∣∣∣∀m[B] ∈
B∏
i=1

Ei
}
, (39)

where the tuple (m1,m2, . . . ,mB) is written in short as m[B]

and the probability vectors sm[B]
are defined element-wise as

sm[B]
(k) =


∑
t∈Ei pY (yt) k = mi, i ∈ [B]
pY (yk) k 6∈ ∪Bi=1Ei

0 otherwise
, (40)

11If this is not the case, let P̂X|Y , PX|Y .
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for all k ∈ [|Y|], and ∀m[B] ∈
∏B
i=1 Ei.

Lemma 3. For the set S′X,Y in (39) and the set SX,Y in (4),
we have S′X,Y ⊆ SX,Y and H(s) = H(TX (Y )), ∀s ∈ S′X,Y .
Furthermore, the probability vector pY can be written as a
convex combination of the points in S′X,Y , i.e.

pY =
∑

m[B]∈
∏B
i=1 Ei

αm[B]
sm[B]

, (41)

where αm[B]
≥ 0,∀m[B] ∈

∏B
i=1 Ei and∑

m[B]∈
∏B
i=1 Ei

αm[B]
= 1.

Proof. The proof is provided in [21].

For example, assume that in the example in (37),
we have pY =

[
0.1 0.2 0.15 0.25 0.3

]T
. We

can write pY = 1
9s1,3 + 2

9s1,5 + 2
9s2,3 + 4

9s2,5,
where s1,3 =

[
0.3 0 0.45 0.25 0

]T
,

s1,5 =
[
0.3 0 0 0.25 0.45

]T
, s2,3 =[

0 0.3 0.45 0.25 0
]T

, and s2,5 =[
0 0.3 0 0.25 0.45

]T
.

Lemma 4. If nul(P̂X|Y ) = 0, we have ext(SX,Y ) = S′X,Y .
Otherwise, none of the elements in S′X,Y belongs to ext(SX,Y ),
where ext(SX,Y ) denotes the set of extreme points of SX,Y .

Proof. The proof is provided in [21].

Theorem 3. For a pair of random variables (X,Y ) ∈ X ×Y ,
we have

g0(X,Y ) ≥ DX(Y ), (42)

where the equality holds if and only if either of the following
holds:

1) Perfect privacy is not feasible, i.e., nul(PX|Y ) = 0,
2) Perfect privacy is feasible, and nul(P̂X|Y ) = 0.

Proof. The proof of the inequality in (42) is as follows.
It is obvious that when there exist no y1, y2 ∈ Y such
that pX|Y (·|y1) = pX|Y (·|y2), we have DX(Y ) = 0, and
(42) holds from the non-negativity of g0(X,Y ). Assume that
there exist index sets Em,∀m ∈ [B], corresponding to equal
columns of PX|Y , as defined before. We can write

g0(X,Y ) = H(Y )− min
FU (·), pY |u∈SX,Y , ∀u∈U :∫

U pY |udF (u)=pY

H(Y |U) (43)

≥ H(Y )−
∑

m[B]∈
∏B
i=1 Ei

αm[B]
H(sm[B]

) (44)

= H(Y )−
∑

m[B]∈
∏B
i=1 Ei

αm[B]
H(TX (Y )) (45)

= H(Y )−H(TX (Y ))

= DX(Y ), (46)

where (43) is from (7); (44) is justified as follows. According
to lemma 3, S′X,Y ⊆ SX,Y , and pY is preserved from (41).
Hence, the vectors in S′X,Y belong to the constraint of the
minimization in (43), and the inequality follows. (45) is from
lemma 3, and (46) is due to (36). This proves the inequality
(42).

The proof of the sufficient conditions for the equality in
(42) is as follows. If nul(P̂X|Y ) = 0, from lemma 4, we can
say that for any vector s that is an extreme point of SX,Y , we
have H(s) = H(TX (Y )), which means that

min
FU (·), pY |u∈SX,Y , ∀u∈U :∫

U pY |udF (u)=pY

H(Y |U) = H(TX (Y )).

This is equivalent to g0(X,Y ) = DX(Y ), from (7) and (36).
The proof of the necessary conditions for the equality in (42)

is as follows. Assume that g0(X,Y ) = DX(Y ). If g0(X,Y ) =
0, we have that perfect privacy is not feasible and the proof is
complete. However, if g0(X,Y ) > 0, we must have DX(Y ) >
0, according to our assumption of g0(X,Y ) = DX(Y ). In
this case, as in [16], there must exist index sets Em,∀m ∈
[B], corresponding to equal columns of PX|Y . We prove that
nul(P̂X|Y ) = 0 by contradiction. Assume that nul(P̂X|Y ) 6=
0. From Proposition 4, we conclude that none of the elements
in S′X,Y is an extreme point of SX,Y . In other words, for
any s in S′X,Y , which is also a member of SX,Y according
to lemma 3, we can find the triplet (s′, s′′, β), such that s =
βs′+(1−β)s′′, where s′, s′′ ∈ SX,Y (s′ 6= s′′) and β ∈ (0, 1).
Therefore,

H(TX (Y )) =
∑

m[B]∈
∏B
i=1 Ei

αm[B]
H(sm[B]

)

=
∑

m[B]∈
∏B
i=1 Ei

αm[B]
H

(
βm[B]

s′m[B]
+ (1− βm[B]

)s′′m[B]

)
>

∑
m[B]∈

∏B
i=1 Ei

βm[B]
αm[B]

H(s′m[B]
)

+
∑

m[B]∈
∏B
i=1 Ei

(1− βm[B]
)αm[B]

H(s′′m[B]
) (47)

≥ min
FU (·), pY |u∈SX,Y , ∀u∈U :∫

U pY |udF (u)=pY

H(Y |U), (48)

where (47) is due to the strict concavity of the entropy; (48)
comes from the fact that s′m[B]

and s′′m[B]
with corresponding

mass probabilities βm[B]
αm[B]

and (1−βm[B]
)αm[B]

, ∀m[B] ∈∏B
i=1 Ei, belong to the constraints of minimization in (48).

This results in g0(X,Y ) > DX(Y ), which is a contradiction.
Hence, we must have nul(P̂X|Y ) = 0.

V. FULL DATA OBSERVATION MODEL

In this section, we assume that the curator has access to
both X and Y , and investigate Gε(X,Y ), as defined in (3),
at ε = 0.

Define the support of a given pair (X,Y ) as

supp(X,Y ) ,

{
(x, y) ∈ X × Y

∣∣∣∣pX,Y (x, y) > 0

}
.

Proposition 2. In the evaluation of G0(X,Y ), we must have

max
x
|{y ∈ Y|p(y|x) > 0}| ≤ |U| ≤ |supp(X,Y )| − |X |+ 1,

(49)
where the first and second inequalities are necessary and
sufficient conditions, respectively.
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Proof. The proof is provided in Appendix B.

Theorem 4. Perfect privacy is feasible in the full data
observation model, i.e., G0(X,Y ) > 0, if and only if Y is
not a deterministic function of X .

Proof. If Y is a deterministic function of X , we have Y −
X−U form a Markov chain. From data processing inequality,
I(X;U) = 0 results in I(Y ;U) = 0. This proves the first
direction of the theorem.

For the second direction, we proceed as follows. If Y is
not a deterministic function of X , there must exist x1 ∈ X
and y1, y2 ∈ Y (y1 6= y2) such that pX,Y (x1, y1) > 0 and
pX,Y (x1, y2) > 0. Let U = {u1, u2} and pU (u1) = 1

2 . Choose
a sufficiently small ε > 0 and let

pX,Y |U (x, y|u1) =

 pX,Y (x1, y1) + ε (x, y) = (x1, y1)
pX,Y (x1, y2)− ε (x, y) = (x1, y2)
pX,Y (x, y) otherwise

,

pX,Y |U (x, y|u2) = 2pX,Y (x, y)− pX,Y |U (x, y|u1), ∀(x, y).

It can be verified that pX,Y is preserved in pX,Y,U . Also,
pX|U (·|u) = pX(·), ∀u ∈ U , and pY |U (y1|u1) 6= pY (y1),
where the former indicates that X ⊥⊥ U , and the latter shows
that Y 6⊥⊥ U .

In the light of Proposition 2, an alternative proof for this
Theorem is provided as follows. If Y is a deterministic
function of X , we have |supp(X,Y )| = |X |, which results
in |U| ≤ 1 according to Proposition 2, which in turn results in
G0(X,Y ) = 0. If Y is not a deterministic function of X , we
have |{y ∈ Y|p(y|x) > 0}| ≥ 2 for some x ∈ X , which results
in the necessity of having |U| ≥ 2 according to Proposition
2, which in turn results in G0(X,Y ) > 0 (since otherwise,
|U| = 1 is sufficient, and |U| ≥ 2 is not necessary, which is a
contradiction).

In Theorem 5, a lower bound is provided on the utility of
the full data observation model. Prior to that, a quantity, which
is used in the sequel, needs to be defined and investigated.

Definition 3. For a given pair (X,Y ), define the mapping
J : X × int(P(Y)) −→ (0, 1] as

J(x, qY ) ,
1

maxy∈Y
pY |X(y|x)

qY (y)

. (50)

Therefore, we have that J(x, qY ) = qY (x), if X = Y , and
J(x, qY ) = miny

qY (y)
pY (y) , if X ⊥⊥ Y . The following Proposition

relates the above quantity to the maximal leakage from Y to
X defined as ( [20])

L(Y → X) , log
∑
x∈X

max
y∈Y

pY (y)>0

pX|Y (x|y). (51)

Proposition 3. For a given pair (X,Y ), we have

EX [J(X, pY )] ≥ 2−L(Y→X), (52)

where equality holds if and only if maxy∈Y
pY |X(y|x)

pY (y) does
not vary with x ∈ X , which includes the special cases of i)
X ⊥⊥ Y , and ii) X = Y and uniformly distributed.

Proof. The proof is provided in Appendix C.

Theorem 5. For a given pair (X,Y ) ∈ X × Y , we have

G0(X,Y ) ≥ (EX [J(X, q∗)] log |Y| − 1)
+
, (53)

where q∗ denotes the uniform pmf over Y .

Proof. Fix an arbitrary pmf in the interior of P(Y) and denote
it by q∗. A privacy-preserving mapping pU |X,Y is designed
such that the conditional pmf of U conditioned on {X = x}
is the same as q∗ for any x ∈ X . Therefore, for this privacy-
preserving mapping, we have that X ⊥⊥ U , and the resulting
I(Y ;U) serves as a lower bound on G0(X,Y ). The only
reason for selecting q∗ as the uniform pmf over Y is that
its corresponding I(Y ;U) can be further lower bounded in a
closed form way.

Let ΘX ∈ {0, 1} be a Bernoulli r.v., parametrized by X ,
with Pr{ΘX = 1|X = x} = J(x, q∗), ∀x ∈ X . The privacy-
preserving mapping is designed as U , ΘXY +(1−ΘX)ỸX ,
where for each x ∈ X , Ỹx is an r.v. over Y , which is distributed
according to q∗(·)−J(x,q∗)pY |X(·|x)

1−J(x,q∗) , when J(x, q∗) < 1, and
arbitrarily distributed when J(x, q∗) = 1.12 Conditioned
on each realization x ∈ X , we have that pU |X(·|x) is a
convex combination of pY |X(·|x) and q∗(·)−J(x,q∗)pY |X(·|x)

1−J(x,q∗)

with weights J(x, q∗), and 1− J(x, q∗), respectively. Hence,
U conditioned on {X = x}, i.e., U |{X = x}, is distributed
according to q∗ for each x ∈ X , and therefore, X ⊥⊥ U . Since
q∗ is an arbitrary point in int(P(Y)), we have

G0(X,Y ) ≥ max
q∗

I(Y ;U)

= max
q∗
{H(U)−H(U |Y )}

≥ max
q∗
{H(q∗)−H(U |Y,ΘX)−H(ΘX |Y )}

≥ max
q∗
{H(q∗)−H(U |Y,ΘX)} − 1 (54)

= max
q∗
{H(q∗)−H(ΘXY + (1−ΘX)ỸX |Y,ΘX)} − 1

= max
q∗
{H(q∗)− Pr{ΘX = 1}H(ỸX |Y,ΘX = 0)} − 1

(55)
≥ Pr{ΘX = 1} log |Y| − 1 (56)
= EX [J(X, q∗)] log |Y| − 1,

where (54) follows from ΘX being binary, and (55) results
from H(U |Y,ΘX = 1) = 0. In (56), we pick the uniform q∗,
and use the fact that H(ỸX |Y,ΘX = 0) ≤ log |Y|. 13

Considering the output perturbation model, Theorem 2
proved that perfect privacy is not feasible for the (correlated)
jointly Gaussian pair. This is not the case in the full data
observation model. By using the following Theorem, which
includes a broad range of joint distributions on X × Y , we
show that G0(X,Y ) is actually unbounded, which is stated in
corollary 6.1.

12Note that when J(x, q∗) = 1, we have Θx = 1, and therefore, the
coefficient of Ỹx in U becomes zero.

13Note that if Ỹx and Y are not independent, the bound H(ỸX |Y,ΘX =
0) ≤ log |Y| can be further tightened. This, in turn, calls for an algorithmic
approach to this problem that aims to maximize I(Y ; Ỹx) over the joint
distribution for fixed marginals.
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Theorem 6. For the class of additive noise, i.e., when Y =
X+N (where N is not necessarily independent of X), if there
exists α, β ∈ R, and ∆ > 0 such that I , (X ∩ [α, α+ ∆])×
[β, β + ∆] ⊂ X × N , and N |{X = x} admits a bounded
smooth density over [β, β + ∆] for each x ∈ X ∩ [α, α+ ∆],
we have

G0(X,Y ) =∞. (57)

Proof. The sketch of the proof is as follows. A privacy-
preserving mapping pU |X,Y is designed whose output, i.e., U
is independent of X . Therefore, we conclude that G0(X,Y )
is lower bounded by the utility, i.e., I(Y ;U), of this privacy-
preserving mapping. By showing that the latter can grow
unboundedly, the proof of (57) is complete.

Define the Bernoulli r.v. E, which is 1 when (X,N) ∈ I,
and 0 elsewhere. Define

f∗x , max
n∈[β,β+∆]

fN |X,E(n|x, 1), ∀x ∈ X ∩ [α, α+ ∆]. (58)

which is defined by the assumption of having a bounded
fN |X,E(·|x, 1) over [β, β + ∆] for each x ∈ X ∩ [α, α + ∆].
Moreover, we have f∗x ≥ 1

∆ , since otherwise fN |X,E(·|x, 1)
will not integrate to 1 over its support, i.e., [β, β + ∆]. Also,
we have f∗x = 1

∆ if and only if fN |X,E(·|x, 1) is uniform.
Let Ñx be a continuous r.v., independent of (X,N), with

the following density

fÑx(t) =
f∗x − fN |X,E(t|x, 1)

∆f∗x − 1
,

for all (x, t) ∈ (X ∩ [α, α+ ∆])× [β, β + ∆], when f∗x >
1
∆ ,

and arbitrarily distributed when f∗x = 1
∆ .

Define the Bernoulli r.v. ΘX ∈ {0, 1}, with Pr{ΘX =
1|X = x} = 1

∆f∗x
, and set R , ΘXN+(1−ΘX)ÑX . We have

R ∼ Uniform[β, β+∆], since for each x ∈ X ∩[α, α+∆], the
pdf of R, which is a convex combination of fN |X,E(·|x, 1) and
fÑx(·), with the corresponding weights of 1

∆f∗x
and 1− 1

∆f∗x
,

is equal to 1
∆ over [β, β + ∆].

Let M be an arbitrary positive integer and set

U , E

(⌊
M(X +R)

∆

⌋
mod M

)
+ (1− E)Ũ , (59)

where Ũ is a uniform pmf over [0 : M − 1].
With some simple calculations, it can be verified that the

conditional distribution of U conditioned on {X = x} remains
uniform over [0 : M − 1] for any realization x ∈ X .14 Hence,
U ⊥⊥ X .

We can write

I(X +N ;U) = I(X +N,ΘX ;U |E) + I(E;U)

I(E;U |X +N,ΘX)− I(ΘX ;U |X +N)

≥ I(X +N,ΘX ;U |E)− 2 (60)

14The fact that U |{X = x,E = 1} is uniform over [0 : M − 1] is
immediate from noting that

(
bMA

∆
c mod M

)
is uniform if A is uniform.

The uniform distribution of U |{X = x,E = 0} is immediate from
construction.

≥ pE(1)I(X +N,ΘX ;U |E = 1)− 2 (61)

= pE(1)

(
H(U |E = 1)−H(U |X +N,ΘX , E = 1)

)
− 2

≥ pE(1)Pr{ΘX = 1} logM − 2

− pE(1)Pr{ΘX = 1}H(U |X +N,ΘX = 1, E = 1)
(62)

≥ pE(1)Pr{ΘX = 1} logM − 2, (63)

where (60), and (61) follow, respectively, from the facts
that E,ΘX are binary (having a maximum entropy of 1),
and mutual information is non-negative; (62) and (63) result,
respectively, from having H(U |X + N,ΘX = 0, E = 1) ≤
logM , and H(U |X +N,ΘX = 1, E = 1) = 0.

Finally, as Pr{ΘX = 1} =
∫
x∈X∩[α,α∆]

1
∆f∗x

dFX(x) > 0,
by letting M →∞ in (63), (57) is proved 15.

Corollary 6.1. For the jointly Gaussian pair (X,Y ),
G0(X,Y ) is unbounded.

VI. ASYMPTOTIC ANALYSIS

In the previous sections, we have mainly focused on one ex-
treme point of the utility-privacy trade-off curve, correspond-
ing to perfect privacy either in the output perturbation or full
data observation models. In general, characterizing the whole
of this trade-off curve is analytically challenging. Therefore, to
better understand the fundamental trade-off between utility and
privacy, we will next consider the output perturbation model,
and study the slope of gε(X,Y ) as ε → 0. This will reveal
us how much utility we can gain at the expense of a small
amount of privacy leakage. The analysis depends on whether
perfect privacy is feasible or not.

Consider a pair of random variables (X,Y ) ∈ X × Y
distributed according to PX,Y , with the marginals pX and
pY . The matrix PX|Y can be viewed as a channel with
input Y and output X . When the input of this channel is
distributed according to qY , the output is distributed according
to qX = PX|Y qY .

Define r : P(Y)\{pY } → [0, 1] as

r(qY ) ,
D(qX ||pX)

D(qY ||pY )
. (64)

Let V ∗ ∈ [1,+∞] be defined as

V ∗ , sup
qY :

qY 6=pY

1

r(qY )
= sup

qY :
qY 6=pY

D(qY ||pY )

D(qX ||pX)
, (65)

with the convention that if for some qY ( 6= pY ), we have
qX = pX , then V ∗ = +∞.

Proposition 4. We have g0(X,Y ) = 0 if and only if V ∗ <
+∞.16

Proof. The proof is provided in [21].
15Note that the set of all mappings pU|{X,N} can be put into a one-to-one

correspondence with the set of all mappings qU|{X,X+N}.
16A claim, similar to this proposition, is provided in [14]; however, the

proof is incomplete as elaborated in [21].
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A. Perfect privacy is not feasible.

If perfect privacy is not feasible, i.e., g0(X,Y ) = 0, then
the slope of gε(X,Y ) at ε = 0 is equal to V ∗ as shown in
[14]. However, V ∗ itself is written as a supremization, and
hence, practical approximations of the this slope based on the
properties of the joint distribution pX,Y is of interest. The
following Theorem provides a lower bound on this slope.

Let Ŷ denote the set of all the subsets of Y excluding the
empty set and Y , i.e., Ŷ , {V|V ⊂ Y} − {Y, ∅}.

Theorem 7. We have

lim
ε→0

gε(X,Y )

ε
≥ max{A(X,Y ), B0(X,Y )} (66)

≥ H(Y )

I(X;Y )
, (67)

where

A(X,Y ) , max
B:B∈Ŷ

− log
(∑

y∈B pY (y)
)

D

(∑
y∈B pY (y)pX|Y (·|y)∑

y∈B pY (y)

∣∣∣∣∣∣∣∣pX(·)
) , (68)

Bα(X,Y ) ,
(H(Y )− 1)+ − α

I(X;Y )−maxx∈X p(x)D(pY |X(·|x)||pY (·))
,

(69)

for α ≥ 0.

Proof. It is known that the LHS of (66) equals V ∗ (see [14]).
Fix an arbitrary B ∈ Ŷ , and define the pmf q′Y as

q′Y (y) ,
pY (y)∑
t∈B pY (t)

· 1{y∈B}. (70)

From (65), we have

V ∗ ≥ D(q′Y ||pY )

D(PX|Y q′Y ||pX)
(71)

=
− log

(∑
y∈B pY (y)

)
D

(∑
y∈B pY (y)pX|Y (·|y)∑

y∈B pY (y)

∣∣∣∣∣∣∣∣pX(·)
) , (72)

where (71) follows from the definition in (65) and the fact
that q′Y (·) 6= pY (·), since Y 6∈ Ŷ . Since (72) is valid for any
B ∈ Ŷ , by taking its maximum over B ∈ Ŷ , we have

lim
ε→0

gε(X,Y )

ε
≥ A(X,Y ). (73)

Let x∗ , arg maxx∈X p(x)D(pY |X(·|x)||pY (·)). Define the
binary r.v. X̂ as a deterministic function of X given by
x̂(x) , 1{x=x∗}. Hence, we have X̂ − X − Y form a
Markov chain. From Corollary 1.2, we have g0(X̂, Y ) ≥
(H(Y ) − log rank(PX̂|Y ))+ = (H(Y ) − 1)+. Therefore,
there exists a privacy-preserving mapping pU |Y , such that
X̂−X−Y −U form a Markov chain, I(Y ;U) ≥ (H(Y )−1)+,
and I(X̂;U) = 0. We have

I(X;U) =
∑
x∈X

p(x)D
(
pU |X(·|x)||pU (·)

)

= p(x∗)D
(
pU |X(·|x∗)||pU (·)

)
+

∑
x∈X\{x∗}

p(x)D
(
pU |X(·|x)||pU (·)

)
= pX̂(1)D

(
pU |X̂(·|1)||pU (·)

)
+

∑
x∈X\{x∗}

p(x)D
(
pU |X(·|x)||pU (·)

)
(74)

=
∑

x∈X\{x∗}

p(x)D
(
pU |X(·|x)||pU (·)

)
(75)

≤
∑

x∈X\{x∗}

p(x)D
(
pY |X(·|x)||pY (·)

)
(76)

= I(X;Y )− p(x∗)D
(
pY |X(·|x∗)||pY (·)

)
, (77)

where (74) follows from x̂(x) , 1x=x∗ , which results in
pX̂(1) = pX(x∗), and pU |X̂(·|1) = pU |X(·|x∗); (75) follows
from having U ⊥⊥ X̂ , and hence, pU |X̂(·|1) = pU (·), and (76)
results from the data processing inequality by viewing two
pmfs pY |X(·|x) and pY (·) entering the channel pU |Y .

In this construction, we have X − Y − U form
a Markov chain and a point with utility of at least
(H(Y ) − 1)+, and privacy leakage of at most I(X;Y ) −
p(x∗)D

(
pY |X(·|x∗)||pY (·)

)
is achievable in the utility-

privacy trade-off curve. By noting the concavity of gε(X,Y )
in ε (see [15, lemma 2]), the slope at (0, 0) is lower bounded
by the slope of the straight line connecting this point to the
origin. Hence,

lim
ε→0

gε(X,Y )

ε
≥ B0(X,Y ). (78)

From (73), (78), the lower bound in (66) is proved. As a special
case, if in (68), B is restricted to the space of singletons, i.e.,
subsets of Y with only one element, we get a lower bound on
the slope at origin as

max
y∈Y

− log (pY (y))

D
(
pX|Y (·|y)||pX(·)

) ,
which is proved differently in [15, lemma 19], and shown to
satisfy the inequality in (67).

Thus far, we have observed that when perfect privacy is
not feasible, the slope of the trade-off curve is finite. In other
words, for a vanishingly small privacy leakage, only a linearly
proportional vanishingly small utility can be attained. This is
not necessarily the case when perfect privacy is feasible, which
is discussed next.

B. Perfect privacy is feasible.
For a given pair (X,Y ), assume that g0(X,Y ), obtained

through the LP formulation in Theorem 1, is achieved by

U∗ ∈ U∗ = {u∗1, u∗2, . . . , u∗|U∗|}, pY |u∗ ,∀u∗ ∈ U∗, (79)

where the vectors pY |u∗ , ∀u∗ ∈ U∗ belong to the extreme
points of the set SX,Y , as in (4).

Definition 4. Define

ψ(u∗) , sup
qY :

0<D(qY ||pY |u∗ )<+∞

D(qY ||pY |u∗)
D(qX ||pX)

, ∀u∗ ∈ U∗,

(80)
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and if for some u∗, there is no qY for which 0 <
D(qY ||pY |u∗) < +∞ (which happens exactly when pY |u∗ is
a corner point of the probability simplex), then let ψ(u∗) , 0.
Therefore, in order to evaluate ψ(u∗) for some u∗ ∈ U∗, the
search space in (80) includes the set of all probability vectors
in P(Y) such that i) they are not equal to the extreme point
pY|u∗ (equivalently, 0 < D(qY ||pY |u∗)), ii) if pY|u∗ has
a zero entry, they will also have a zero in the same entry
(equivalently, D(qY ||pY |u∗) < +∞).

The following lemma is needed in the sequel.

Lemma 5. We have ψ(u∗) < +∞, ∀u∗ ∈ U∗.

Proof. The proof is provided in [21].

Theorem 8. For a given pair (X,Y ), if perfect privacy is
feasible, we have

lim
ε→0

gε(X,Y )− g0(X,Y )

ε
≥

max

{
L(X,Y ), Bg0(X,Y )(X,Y ),

H(Y )− g0(X,Y )

I(X;Y )

}
,

(81)

where Bα(X,Y ) is defined in (69), and

L(X,Y ) , max
u∗∈U∗

ψ(u∗). (82)

Proof. First, we note that from lemma 5, L(X,Y ) is well
defined. Denote a/the maximizer of (82) by u∗j for some j ∈
[|U∗|]. From (80) and (82), for an arbitrary fixed δ > 0, there
exists qY 6= pY |u∗j , such that D(qY ||pY |u∗j ) < +∞, and

L(X,Y )− δ <
D(qY ||pY |u∗j )

D(qX ||pX)
≤ L(X,Y ). (83)

Construct the pair (Y, U) as follows. Let U =
{u1, u2, . . . , u|U∗|, ûj}, and for sufficiently small γ > 0,
let pU (ui) = pU∗(u

∗
i ), pY |ui = pY |u∗i , ∀i ∈ [|U∗|], i 6= j,

pU (uj) = γpU∗(u
∗
j ), pU (ûj) = (1 − γ)pU∗(u

∗
j ), and

pY |uj = qY , pY |ûj = 1
1−γ (pY |u∗j − γqY ). Note that for

sufficiently small γ > 0, pY |ûj is a probability vector, as we
have D(qY ||pY |u∗j ) < +∞. In other words, for any entry of
the vector pY |u∗j that is zero (note that it is an extreme point
of SX,Y ), the corresponding entry in qY is also zero. Finally,
it can be verified that the marginal probability vector pY is
also preserved.

With Iγ(Y ;U), and Iγ(X;U) denoting the corresponding
mutual information terms in this construction, and from the
concavity of gε(X,Y ) in ε (see [15]), the LHS of (81) is
lower bounded by

Iγ(Y ;U)− g0(X,Y )

Iγ(X;U)
=∑

u∈U pU (u)D(pY |u||pY )−
∑
u∗∈U∗ pU∗(u

∗)D(pY |u∗ ||pY )∑
u∈U pU (u)D(pX|u||pX)

=

∑
u∈{uj ,ûj} pU (u)D(pY |u||pY )− pU∗(u∗j )D(pY |u∗j ||pY )∑

u∈{uj ,ûj} pU (u)D(pX|u||pX)

(84)

=

γD(qY ||pY )+(1−γ)D

(
1

1−γ (pY |u∗j−γqY )

∣∣∣∣∣∣∣∣pY)−D(pY |u∗j ||pY )

γD(qX ||pX) + (1− γ)D

(
1

1−γ (pX − γqX)

∣∣∣∣∣∣∣∣pX) ,

(85)

where the numerator in (84) follows from the construction of
(Y,U); the denominator in (84) is from the fact that pX|ui =
pX|u∗i ,∀i ∈ [|U∗|], i 6= j and pX|u∗ = PX|Y pY |u∗ =
pX ,∀u∗ ∈ U∗; (85) follows from the construction of (Y, U).
For three generic pmfs p on Y , and q, r on Ỹ ⊂ Y , when
γ → 0, we can write

D

(
1

1− γ
(r− γq)

∣∣∣∣∣∣∣∣p)
=
∑
y∈Ỹ

r(y)− γq(y)

1− γ

[
log

1

1− γ
+ log

r(y)− γq(y)

p(y)

]

= − log(1− γ) +
∑
y∈Ỹ

r(y)− γq(y)

1− γ
log

r(y)

p(y)

(
1− γ q(y)

r(y)

)

≈ − log(1− γ) +
∑
y∈Ỹ

r(y)− γq(y)

1− γ

[
log

r(y)

p(y)
− γ q(y)

r(y)

]
(86)

=
1

1− γ

D(r||p)− γ
∑
y∈Ỹ

q(y) log
r(y)

p(y)
+O(γ2)

 , (87)

where in (86), the first order approximation, i.e., log(1+x) ≈
x for x→ 0, is used17.

Using the approximation in (87) for both of the second
terms in the numerator and denominator of (85), after some
manipulation, we get

lim
ε→0

gε(X,Y )− g0(X,Y )

ε
≥ lim
γ→0

Iγ(Y ;U)− g0(X,Y )

Iγ(X;U)
,

= lim
γ→0

γD(qY ||pY |u∗j ) +O(γ2)

γD(qX ||pX) +O(γ2)
,

=
D(qY ||pY |u∗j )

D(qX ||pX)
,

> L(X,Y )− δ, (88)

where (88) follows from (83). Since δ > 0 was chosen
arbitrarily, we have

lim
ε→0

gε(X,Y )− g0(X,Y )

ε
≥ L(X,Y ).

The second term in the RHS of (81) follows similarly to
the discussion in the proof of Theorem 7. In other words,
it is a lower bound for the slope of a straight line that
connects (0, g0(X,Y )) to a point with utility of at least
(H(Y ) − 1)+, and privacy leakage of at most I(X;Y ) −
p(x∗)D

(
pY |X(·|x∗)||pY (·)

)
. Finally, the second term in the

RHS of (81) is the slope of the straight line connecting the

17Note that this is true only if the logarithm is natural, i.e., to the base of the
mathematical constant e; however, since in this section, we are dealing with
the ratios of mutual information terms, and hence the ratios of logarithms,
this has no effect on the results, as we can multiply both the numerator and
denominator by loge 2.
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end points of the curve of gε(X,Y ) vs. ε, i.e., (0, g0(X,Y ))
and (I(X;Y ), H(Y )). The fact that these are lower bounds on
the slope at the origin follow from the concavity of gε(X,Y )
in ε.

Assume that the maximizer in g0(X,Y ), i.e., (79), induces
the joint distribution p∗Y,U (·, ·). In what follows, it is shown
that under certain conditions, when perfect privacy is feasible,
the slope at origin is infinite. The following lemmas are needed
in the sequel.

Lemma 6. Let p, q denote two pmfs on Y , and assume that
p(y) > 0, ∀y ∈ Y . We have∑

y

q2(y)

p(y)
≥ 1, (89)

with equality if and only if q = p.

Proof. We have
∑
y
q2(y)
p(y) = 1 +

∑
y

(q(y)−p(y))2

p(y) ≥ 1, with
equality if and only if p = q.18

Lemma 7. For a given pair (X,Y ), if there exists y0 ∈ Y , for
which pX|Y (·|y0) = pX(·), there must exist u∗0 ∈ U∗, defined
in (79), such that

pY |U∗(y0|u∗0) = 1, pY |U∗(y0|u∗) = 0, ∀u∗ ∈ U∗\{u∗0}.

Proof. The proof is provided in Appendix D.

Theorem 9. If there exist y0 ∈ Y , and u0, u1 ∈ U∗, such that
p∗(y0, u0), p∗(y0, u1) > 0, and p∗(y0|u0) 6= p∗(y0|u1), then

lim
ε→0

gε(X,Y )− g0(X,Y )

ε
=∞. (90)

Proof. Without loss of generality, assume that p∗(y0|u0) >
p∗(y0|u1). Consider the tuple (X,Y, U) distributed according
to pX|Y · p′Y,U , where p′(y, u) = p∗(y, u) + η · i(y, u), in
which i(y, u) is non-zero only for two cases: i(y0, u0) =
−i(y0, u1) = 1. The value of η > 0 is chosen arbitrarily
small such that p′(y, u) is a pmf19. Therefore, we have the
marginal pmf p′(u) = p∗(u) + η · i(y0, u), ∀u ∈ U . It can be
verified that with this construction, the marginal pmf pX,Y is
preserved in the tuple (X,Y, U).

Let Iη(Y ;U) and Iη(X;U) denote the mutual information
terms induced by pX|Y · p′Y,U . When η → 0, we have

Iη(Y ;U) = D(p′Y,U ||pY · p′U )

= D

(
p∗(y, u) + η · i(y, u)

∣∣∣∣∣∣∣∣p(y) (p∗(u) + η · i(y0, u))

)
,

=
∑
y,u

(p∗(y, u) + η · i(y, u)) log
p∗(y, u) + η · i(y, u)

p(y) (p∗(u) + η · i(y0, u))
,

=
∑
y,u

(p∗(y, u) + η · i(y, u)) log
p∗(y, u)

(
1 + η i(y,u)

p∗(y,u)

)
p(y)p∗(u)

(
1 + η i(y0,u)

p∗(u)

) ,
18Alternatively, the LHS of (89) is 2D2(q||p), where Dα(·||·) is the Rényi

divergence of order α. By noting that Dα(p||q) ≥ 0, with equality if and
only if p = q, the proof is complete.

19To this end, a necessary condition is to have η ≤ min{p∗(y0, u1), 1−
p∗(y0, u0)}

≈
∑
y,u

(p∗(y, u) + η · i(y, u))

[
log

p∗(y, u)

p(y)p∗(u)
+ η

i(y, u)

p∗(y, u)

− η i(y0, u)

p∗(u)

]
, (91)

= D(p∗(y, u)||p(y)p∗(u)) + η

(∑
y,u

i(y, u)− i(y0, u)p∗(y|u)

)
+ η

∑
y,u

i(y, u) log
p∗(y, u)

p(y)p∗(u)
+O(η2),

= g0(X,Y ) + 0 + η(log p∗(y0|u0)− log p∗(y0|u1)) +O(η2),
(92)

where all the summations above are over the support of (Y,U),
i.e., supp(Y,U); in (91), the first order approximation, i.e.,
log(1 + x) ≈ x for x→ 0, has been used. Also, (92) follows
from having g0(X,Y ) = D(p∗(y, u)||p(y)p∗(u)), and the
properties of i(·, ·).

Similarly, when η → 0, we can write

Iη(X;U) = D(p′X,U ||pX · p′U )

= D

(
p∗(x, u) + η · p(x|y0)i(y0, u)

∣∣∣∣∣∣∣∣p(x)(p∗(u) + η · i(y0, u))

)
,

=
∑
x,u

(p∗(x, u)+η ·p(x|y0)i(y0, u)) log
p∗(x, u)+η ·p(x|y0)i(y0, u)

p(x)(p∗(u)+η ·i(y0, u))
,

=
∑
x,u

(p∗(x, u)+η ·p(x|y0)i(y0, u)) log
p∗(x, u)

(
1+η p(x|y0)i(y0,u)

p∗(x,u)

)
p(x)p∗(u)

(
1+η i(y0,u)

p∗(u)

) ,

≈
∑
x,u

(p∗(x, u) + η · p(x|y0)i(y0, u))

[
log

p∗(x, u)

p(x)p∗(u)
− η i(y0, u)

p∗(u)

− η2 p
2(x|y0)i2(y0, u)

2p∗2(x, u)
+ η

p(x|y0)i(y0, u)

p∗(x, u)
+ η2 i

2(y0, u)

2p∗2(u)

]
,

(93)

= η2
∑
x,u

(
p2(x|y0)i2(y0, u)

2p∗(x, u)
− p(x|y0)i2(y0, u)

p∗(u)
+
p(x)i2(y0, u)

2p∗(u)

)
+O(η3), (94)

= η2
∑
u

i2(y0, u)

2p∗(u)

∑
x

(
p2(x|y0)

p(x)
− 2p(x|y0) + p(x)

)
+O(η3),

= η2 ·
∑

u∈{u0,u1}

1

2p∗(u)

(∑
x

p2(x|y0)

p(x)
− 1

)
︸ ︷︷ ︸

,A

+O(η3),

(95)

where (93) follows from the second order approximation
log(1 + x) ≈ x − x2

2 for x → 0; (94) follows from having
p∗(x, u) = p(x)p∗(u), due to the condition of perfect privacy,
and the equality

∑
x,u i(y0, u) (p(x|y0)− p(x)) = 0. In (95),

we make use of the fact that i2(y0, u) = 1 for u = u0, u1,
and zero otherwise. Hence, from the construction of the tuple
(X,Y, U), we obtain a lower bound for the LHS of (90) as

lim
ε→0

gε(X,Y )− g0(X,Y )

ε
≥ lim
η→0

Iη(Y ;U)− g0(X,Y )

Iη(X;U)
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= lim
η→0

η(log(p∗(y0|u0))− log(p∗(y0|u1))) +O(η2)

Aη2 +O(η3)

= +∞, (96)

which is valid if it can be shown that A is a positive real
number. From lemma 6, we have that A ≥ 0. However, since
pX|Y (·|y0) 6= pX(·)20, we have A > 0. This proves (90).

VII. CONCLUSIONS

This paper addresses the problem of perfect privacy, where
the goal is to find the maximum I(Y ;U), while guaranteeing
I(X;U) = 0. This problem boils down to a standard linear
program when the utility is measured by the mutual informa-
tion between Y and U , as well as other utility measures such
as mean-square error and probability of error. By solving this
LP, upper and lower bounds for the cardinality of the disclosed
data and the maximum utility are obtained. It is shown that
when the private variable and the useful data form a jointly
Gaussian pair, utility can be obtained only at the expense
of privacy; that is, perfect privacy is not feasible. On the
other hand, when the privacy-preserving mapping has direct
access to both the useful data Y and the latent variable X ,
perfect privacy is feasible and the utility is actually unbounded.
Finally, we have investigated the slope of the optimal utility-
privacy trade-off curve as we approach to the perfect privacy
point, i.e., I(X;U) = 0. We observe that if perfect privacy is
not feasible, this slope is finite, and provide two lower bounds
on it. However, when perfect privacy is feasible, under mild
conditions, this slope is infinite, i.e., the rate of disclosing
information is infinite for a vanishingly small privacy leakage.

APPENDIX A

Let U be an arbitrary set. Let Q denote an index
set of rank(PX|Y ) linearly independent columns of PX|Y .
Hence, Qc = [|Y|]\Q. Let π : [nul(PX|Y )] → Qc
such that π(i) < π(j) for i < j,∀i, j ∈ [nul(PX|Y )].
Let r : SX,Y → Rnul(PX|Y )+1 be a vector-valued map-
ping defined element-wise as ri(p) = p(π(i)), ∀i ∈
[nul(PX|Y )] , rnul(PX|Y )+1(p) = H(p), where p(π(i)) de-
notes the π(i)-th element of the probability vector p. Since
SX,Y is a closed and bounded subset of P(Y), it is compact.
Also, r is a continuous mapping from SX,Y to Rnul(PX|Y )+1.
Therefore, from the support lemma [28], for every U ∼ F (u)
defined on U , there exists a random variable U ′ ∼ p(u′)
with |U ′| ≤ nul(PX|Y ) + 1 and a collection of conditional
probability vectors pY |u′ ∈ SX,Y indexed by u′ ∈ U ′ , such
that∫
U
ri(pY |u)dF (u) =

∑
u′∈U ′

ri(pY |u′)p(u
′), i ∈ [nul(PX|Y )+1].

It can be verified that by knowing the marginal pX , and the
nul(PX|Y ) elements of pY corresponding to index set Qc,
the remaining rank(PX|Y ) elements of pY can be uniquely

20Since otherwise, from lemma 7, this will contradict the assumption in
the statement of Theorem 9. In other words, if pX|Y (·|y0) = pX(·), no
u0, u1 ∈ U exist such that p∗(y0, u0), p∗(y0, u1) > 0.

identified by solving pX = PX|Y pY . Therefore, for an
arbitrary U in X − Y − U , that satisfies X ⊥⊥ U , the
terms pY (·), and I(Y ;U) are preserved if U is replaced
with U ′. So are the condition of independence X ⊥⊥ U ′ as
pY |u′ ∈ SX,Y ,∀u′ ∈ U∗. Since we can simply construct the
Markov chain X − Y − U ′, there is no loss of optimality in
considering |U| ≤ nul(PX|Y ) + 1. The attainability of the
supremum follows from the continuity of I(Y ;U), and the
compactness of SX,Y , since X ,Y are finite.

APPENDIX B

Let W , (X,Y ). For the binary matrix PX|W (all elements
being 0 or 1), which has |X | rows and |supp(X,Y )| columns,
we have rank(PX|W ) = |X |. Hence, the upper bound in
(49) follows similarly to the analysis in Appendix A. Fix
an arbitrary x0 ∈ X . We have that for each y′ ∈ {y ∈
Y|p(x0, y) > 0}, there must exist a corresponding u′ ∈ U such
that p(x0, y

′|u′) > 0, since otherwise, we get p(x0, y
′) = 0,

which is a contradiction. Moreover, from [21, lemma 5], for
this u′, we have p(x0, y|u′) = 0, ∀y 6= y′, which results in
|U| ≥ |{y ∈ Y|p(x0, y) > 0}|. Finally, by noting that x0 is
chosen arbitrarily, and p(x0) > 0, ∀x0 ∈ X , the lower bound
in (49) is obtained.

APPENDIX C

We have

EX [J(X, pY )] = EX

[
1

maxy∈Y
pY |X(y|X)

pY (y)

]
≥ 1

EX

[
maxy∈Y

pY |X(y|X)

pY (y)

] (97)

=
1

EX

[
maxy∈Y

pX|Y (X|y)

pX(X)

] (98)

=
1∑

x∈X maxy∈Y pX|Y (x|y)

= 2−L(Y→X), (99)

where (97) follows from Jensen’s inequality and the convexity
of f(t) = 1

t for t > 0; (98) follows from Bayes’s rule, and
pX(x) > 0, ∀x ∈ X ; in (99), we note that pY (y) > 0, ∀y ∈
Y . Since the function f(t) = 1

t for t > 0 is strictly convex,
the inequality in (97) is tight if and only if the term inside the
expectation does not vary with x.

APPENDIX D

Without loss of generality, assume that y0 is the first element

of Y . Hence, e1 ,
[
1 0T|Y|−1

]T
is an extreme point of SX,Y ,

since we have pX = PX|Y e1, and e1 cannot be written as
a convex combination of two distinct probability vectors in
SX,Y . Furthermore, the first element of all the other extreme
points of SX,Y is zero as proved by contradiction in what
follows. Let r =

[
α vT

]T
(α 6= 0, 6= e1) be an extreme

point of SX,Y , where v is a vector of probability masses that
sum to 1− α. Since r ∈ SX,Y , we must have pX = PX|Y r,
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which, from pX|Y (·|y0) = pX(·), results in pX = PX|Y r0,
where r0 =

[
0 1

1−αvT
]T

is a probability vector. Therefore,
r0 ∈ SX,Y . However, since r can be written as a convex
combination of e1 and r0, i.e., r = αe1 + (1 − α)r0, it is
concluded that r cannot be an extreme point of SX,Y . Finally,
by noting that in the evaluation of g0(X,Y ), only the extreme
points of SX,Y are involved, the proof is complete.
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