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Abstract— The common spatial pattern (CSP) algorithm is a
well-recognized spatial filtering method for feature extraction
in motor imagery (MI)-based brain–computer interfaces (BCIs).
However, due to the influence of nonstationary in electroen-
cephalography (EEG) and inherent defects of the CSP objective
function, the spatial filters, and their corresponding features
are not necessarily optimal in the feature space used within
CSP. In this work, we design a new feature selection method
to address this issue by selecting features based on an improved
objective function. Especially, improvements are made in sup-
pressing outliers and discovering features with larger interclass
distances. Moreover, a fusion algorithm based on the Dempster–
Shafer theory is proposed, which takes into consideration the
distribution of features. With two competition data sets, we first
evaluate the performance of the improved objective functions
in terms of classification accuracy, feature distribution, and
embeddability. Then, a comparison with other feature selection
methods is carried out in both accuracy and computational time.
Experimental results show that the proposed methods consume
less additional computational cost and result in a significant
increase in the performance of MI-based BCI systems.

Index Terms— Brain–computer interface (BCI), common spa-
tial pattern (CSP), feature selection, motor imagery (MI), spatial
filtering.
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NOMENCLATURE

X Electroencephalography (EEG) signals.
N Number of channels.
T Number of sampling points.
c(c̄) Class index.
n Number of trials in a class.
� Spatial filter matrix of EEG signals.
J Objective function.
w Spatial filter (eigenvector).
Wcsp Set of spatial filters in the feature space

of CSP.
Z Projection signal.
λ Eigenvalue.
m Number of pairs of features.
f Feature produced by CSP.
Sw Interclass distance.
Sb Within-class distance.
y ∈ {c, c̄} Class label.
m(A) Mass function of the focal element “A.”
ξ Slack variable of SVM.
b Bias of SVM.
C Penalty parameter of SVM.
l Average L1-norm of a class.
k Position of a feature in descending order of

the objective function value.

I. INTRODUCTION

BRAIN–COMPUTER interface (BCI) systems provide a
novel communication path that allows humans to control

external devices by using brainwaves only [1], [2]. In the
past few decades, great progress has been achieved for BCI
technology, and a range of BCI applications are beginning to
find uses in daily life applications, such as wheelchair control,
speller-based communication systems, and neurorehabilitation
equipment [3]–[5]. With the advantages in terms of price and
portability, electroencephalography (EEG) has become a com-
mon collection method in BCI systems. Currently, the most
widely used paradigms in BCI systems include event-related
potential (ERP), steady-state visual evoked potential (SSVEP),
and motor imagery (MI). MI-based BCI systems depend on the
phenomena of event-related synchronization (ERS) and event-
related desynchronization (ERD), which occurs in the mu and
beta rhythms during both actual movement and imaginary
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movement [6]. Moreover, compared with other paradigms, MI-
based BCI is more intuitive for users and does not rely on an
external stimulus.

The common spatial pattern (CSP) algorithm is an effective
spatial filtering method for feature extraction in MI-based
BCI systems [7], [8]. CSP computes spatial filters in a data-
driven manner, which maximizes the variance of one class
while minimizing the variance of the other class [9]. However,
CSP is easily affected by noise and is sensitive to parameters,
such as specific EEG time window used, operational frequency
band, and selected channels, which may produce suboptimal
results [10], [11]. Several extensions have been proposed to
address these problems. These solutions could be divided
into the following three categories. The first category is
summarized as an automatic selection for parameters. Filter
bank CSP (FBCSP) [12] is proposed for selecting the optimal
frequency bands automatically. The correlation-based time
window selection (CTWS) algorithm [13] is used to choose
a subject-specific time window for CSP. Correlation-based
channel selection (CCS) algorithm [14] sorts the importance
of channels based on the correlation among multichannel
EEG signals and then selects channels according to the order.
The methods of the second category change the goals of
optimization. Regularized CSP (RCSP) [15]–[17] is a typical
framework based on CSP, through which a variety of prior
knowledge could be used in the optimization of spatial filters.
CSP-L1 [18], [19] is another example that replaces L1-norm
with L2-norm in the objective function. KLCSP [20] adds
KL divergence to the optimization of CSP, in order to obtain
spatial filters with minimum within-class dissimilarities. The
third category uses information measure to select features. For
example, Fisher’s CSP (FCSP) [21] computes the Fisher ratio
of each feature produced by CSP and then selects features
based on the ratio size. In FBCSP, mutual information (MIN)
is used for the selection of multiband fusion features. All
the solutions improve the performance of the traditional CSP
algorithm to varying degrees.

In this work, we will focus on feature selection for the
feature space used within CSP. In the field of machine
learning, feature selection refers to selecting some of the
most effective features from the available feature set to
reduce data set dimensions while improving algorithm per-
formance. Feature selection methods can be divided into
three categories: filter methods, wrapper methods, and embed-
ded methods [22]. The feature selection methods mentioned
earlier, including the Fisher ratio and MIN, are both filter
methods. Meng et al. [6] proposed a wrapper method where
a series of feature subsets is input to the classifier, and
then, the best feature subset is selected corresponding to
the maximum classification accuracy. Least absolute shrink-
age and selection operator (Lasso) is a commonly used
embedded feature selection method. Kumar et al. [23] used
a lasso to select features from the tangent space, which is
produced by the mapping of the manifold of spatial covariance
matrices.

In the traditional CSP algorithm, the objective function is
represented as a Rayleigh quotient between the class aver-
age covariance matrices, which is equal to the ratio of the

class average power of the EEG signals [24]. The spatial
filters, which produce features, are formed by the eigenvectors
corresponding to the maximum and minimum eigenvalues of
a joint covariance matrix appearing in the optimization of
the Rayleigh quotient, and the selected eigenvalues are the
extreme values of the CSP objective function. Hence, as shown
in Fig. 1, traditional CSP can be viewed as consisting of
three phases: extraction, internal selection, and generation. The
extraction phase is represented as obtaining eigenvectors from
a joint spatial covariance matrix, while the internal selection
phase is described as selecting spatial filters corresponding to
the maximum and minimum objective function values. Finally,
the generation phase refers to projecting EEG signals through
spatial filters and then using the logarithm variance of the
projection signals as features.

However, there are some drawbacks to the CSP objective
function. One is that the feature distribution will not be taken
into consideration when only using average values, which has
a significant impact on the classification accuracy. To address
this problem, both Fisher’s ratio spatial pattern (FSSP) [25]
and FCSP use the Fisher ratio to analyze the distribution
of features. The difference between the two is during the
extraction phase, where the former uses the Fisher ratio as
the objective function and the latter uses the CSP objective
function.

This difference also leads to changes in the feature space.
Since the objective function of FSSP cannot be expressed
by the Rayleigh quotient, the optimization of the spatial
filter must be based on an iterative algorithm (e.g., gradient
descent), which increases the computational time required by
the method considerably, with the final results depending,
in part, on the initial value used at the start of the search
process. Although FCSP is almost the same as the traditional
CSP in computational time, in the feature space produced
by CSP, only using the Fisher ratio to discriminate features,
sometimes, yields worse results than those achieved by the
traditional CSP algorithm. Another drawback is that the CSP
objective function only maximizes the ratio of the two-class
average power, without considering the difference between
the two classes. Thus, even if there is a large power ratio
between two classes, the interclass distance of the correspond-
ing features is still short if the power difference is small. For
example, consider 3/1 versus 8/3; though the former has a
larger ratio, the interclass distance of the latter is clearly larger.
In addition, the variance ratio (power ratio) is quite sensitive to
outliers, which may result in the selected features that are not
expected.

Since the selected features correspond to the extreme values
of the CSP objective function, the abovementioned problems
mean that the selected features may not be optimal in the
feature space used within CSP. In other words, features not
selected may achieve better classification results.

To address the abovementioned issue, while retaining the
efficiency of CSP algorithm, we suggest still using CSP
in the extraction phase then changing the feature selec-
tion rules of the internal selection phase based on an
improved objective function. This work made the following
contributions.
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Fig. 1. Schematic of the traditional CSP algorithm.

1) A new design is proposed for the objective functions
to solve defects inherent in traditional CSP. Especially,
improvements are made in suppressing outliers and
discovering features with larger interclass distances.

2) A new fusion algorithm for internal feature selection
based on the Dempster–Shafer theory (DST) is pro-
posed, which fuses different feature selection rules.

II. PRELIMINARIES FOR INTERNAL FEATURE SELECTION

A. Common Spatial Pattern

To explain the variables more clearly, the relevant nomencla-
ture is shown in Nomenclature. The CSP algorithm is an effec-
tive spatial filtering method commonly used to extract features
in MI-based BCI systems. The spatial filters are considered as
projection vectors and are calculated to maximize the variance
of one class while minimizing the variance of the other class.
Consider two classes of EEG signals Xi,1, Xi,2 ∈ RN×T from
the experimental i th trial, where N is the number of channels
and T denotes the number of sampling points. The spatial
covariance matrix of class c is computed as follows:

�c = 1

nc

nc∑
i=1

Xi,cXT
i,c (1)

where nc represents the number of trials in class c. Then,
the spatial filter that maximizes the variance of one class and

minimizes the variance of the other can be calculated by

JC(w) = wT �cw

wT �c̄w
s.t. �w�2 = 1 (2)

where w is the spatial filter. The optimization of the Rayleigh
quotient can be converted to the generalized eigenvalue
problem

�cw = λ� c̄w (3)

where λ and w are the generalized eigenvalue and eigenvector,
respectively. The spatial filters Wcsp are formed by eigenvec-
tors corresponding to m maximum and minimum eigenvalues.

The projection signal Z of the single trial is given by

Z = WT
cspX. (4)

Then, the pth feature of the single trial can be obtained as
follows:

f p = log
(
ZpZT

p

)
(5)

where Zp is the pth row of Z (p = 1, 2, . . . , 2m).

B. Dempster–Shafer Theory

DST, which was established by Dempster [26] and improved
by Shafer [27], is also known as evidence theory and was
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first used in expert systems. DST may be considered to be
a generalization of classical probability theory, which is a
framework that combines evidence from different sources [28].
A brief introduction to this theory is given as follows.

Let X be a finite set (frame of discernment) that contains
all possible answers to a question. The power set of X is
represented by 2X , which includes all possible subsets of X .
DST assigns a probability for each subset. This probability
is called the basic probability assignment (BPA) or mass
function, which satisfies the following conditions:

m(φ) = 0 (6)∑
A∈2X

m(A) = 1 (7)

0 ≤ m(A) ≤ 1, A ∈ 2X (8)

where φ denotes the empty set. The focal element represents
the subset of 2X whose mass function is not zero. The focal
element “A” is considered as a hypothesis, which may include
one or more answers. DST defines a belief function and a
plausibility function to determine the probability range of
element “A,” which is expressed by mass functions as follows:

Bel(A) =
∑
B⊆A

m(B) (9)

Pl(A) =
∑

B∩A �=φ

m(B) (10)

where “B” is another focal element, and “B ” satisfies the rela-
tionship in (9) and (10) with “A.” Therefore, the probability
range of “A” (interval belief) is obtained by

Bel(A) ≤ P(A) ≤ Pl(A). (11)

Next, a framework provided by DST is presented, which
combines independent evidence from different sources. Sup-
pose that m1 and m2 are two mass functions associated with
focal element “A” in the same frame of discernment, which
are from different sources. The fusion rules of the two sets of
evidence are as follows:

m1,2(A) =

⎧⎪⎨
⎪⎩

∑
B∩C=A m1(B) · m2(C)

1 − ∑
B∩C=φ m1(B) · m2(C)

, A �= φ

0, A = φ.

(12)

Based on DST, a fusion algorithm for internal feature selection
is proposed in Section III.

C. Classification Tool

The support vector machine (SVM) is used as a classifica-
tion tool in this work. SVM finds a hyperplane to segment two
classes of samples, and this hyperplane can be represented as
wT x + b = 0, where w ∈ Rd denotes the weight vector and b
denotes the bias [29]. The principle of the segmentation is to
maximize margins between two classes and, finally, transform
the problem into a convex quadratic programming problem
[30], in which

min
b,w,ξ

1

2
�w�2 + C ·

n∑
i=1

ξi

s.t. yi
(
wT x (i) + b

) ≥ 1 − ξi , ξi > 0, i = (1, . . . , n) (13)

where x (i) denotes the feature vector of the i th training sample,
ξ denotes the slack variable, C denotes the penalty parameter
of the error term, and y denotes the class label [31]. A radial
basis function (RBF) kernel was used in this work.

III. DESIGN OF INTERNAL FEATURE

SELECTION METHODS

A. Internal Feature Selection Based on the Difference and
Ratio of Average L1-Norm for CSP (DRL1-CSP)

Equation (2) can be rewritten as

JC(w) =
1
nc

∑nc
i=1
yi =c

wT Xi,cXT
i,cw

1
nc̄

∑nc̄
j=1
y j =c̄

wT Xi,c̄XT
i,c̄w

=
1
nc

∑nc
i=1
yi =c

∥∥wT Xi,c

∥∥2
2

1
nc̄

∑nc̄
j=1
y j =c̄

∥∥wT X j,c̄

∥∥2
2

.

(14)

The objective function of the traditional CSP algorithm could
also be considered as the ratio between the average L2-norm
squared of the two classes, whose extreme values are equal
to the λ obtained in (3). However, the L2-norm is quite
sensitive to outliers, which can be replaced with a more robust
L1-norm [18]. Hence, we replace the L2-norm squared ratio
with the ratio of L1-norm in the internal selection phase of
CSP, in which

lc(w) = 1/nc

nc∑
i=1
yi =c

∥∥wT Xi,c

∥∥
1 (15)

J (w) = lc(w)

lc̄(w)
(16)

where l(w) denotes the average L1-norm of a class of pro-
jection signals. Equation (16) only maximizes the ratio of
two L1-norm, without considering the difference between the
two, which may make the interclass distance of the selected
features not the largest. This could be solved by modifying the
objective function as the product of the difference and ratio
between the average L1-norm of the two classes, in which

JD(w) = (lc(w) − lc̄(w)) ·
(

lc(w)

lc̄(w)

)sgn
(

lc (w)
lc̄ (w)

−1
)

(17)

where sgn(·) is the symbolic function. After the sequence
sorted by JD(w) is obtained, we select features with the largest
and smallest JD(w) values. In the traditional CSP algorithm,
the maximum and minimum eigenvalues are not comparable,
so the spatial filters are always formed by the same number
of two types eigenvectors that correspond to the largest and
smallest eigenvalues, respectively. However, in the proposed
method, the objective function values correspond to all features
that can be compared with each other after taking absolute
values, in which

J̃D(w) =
∣∣∣∣∣∣(lc(w) − lc̄(w)) ·

(
lc(w)

lc̄(w)

)sgn
(

lc (w)
lc̄ (w) −1

)∣∣∣∣∣∣. (18)

In (18), only the features corresponding to the maximum
values are selected, instead of being equally selected between
the maximum and minimum values. The methods represented
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Fig. 2. Schematic of the internal selection phase for the proposed methods.
Notice the position where the objective function is zero for each subgraph.
(a) Internal feature selection by DRL1-CSP1. (b) Internal feature selection by
DRL1-CSP2.

by (17) and (18) are named DRL1-CSP1 and DRL1-CSP2,
respectively. Fig. 2(a) shows the schematic of the internal
selection phase of DRL1-CSP1, while Fig. 2(b) shows the
internal selection phase of DRL1-CSP2.

B. Fisher’s Common Spatial Pattern

As mentioned in Section I, FCSP follows the CSP objective
function in the extraction phase of CSP and then uses the
Fisher ratio for each feature in the feature space, in which:

JF (w) = Sw

Sb
(19)

where Sw and Sb are the interclass and within-class distances
of a feature, respectively

Sw = (μc − uc̄ )
2 (20)

Sb = (σc)
2 + (σc̄)

2 (21)

where μc is the mean of class c in a feature and μc̄ is that
of the other class, (σc)

2 denotes the variance of class c in a
feature, and (σc̄)

2 denotes that of the other class

μc = 1

nc

nc∑
i=1
yi =c

fi (22)

(σc)
2 = 1

nc

nc∑
i=1
yi =c

( fi − μc)
2 (23)

where y denotes the label. After calculating the Fisher ratio
for all features, we select features with the largest Fisher ratio
values.

C. Fusion Algorithm for Internal Feature Selection Based
on Dempster–Shafer Theory

In Section I, we have discussed the advantages and dis-
advantages of using the Fisher ratio for feature selection.

Algorithm 1 Fusion Algorithm for Internal Feature Selection
Based on DST
Input: Two classes training data set Xi,1, Xi,2 ∈ RN×T , and

the dimension of the required feature set Nr .
Output: Optimal spatial filters.
begin
Calculate all features of each trial by Eq. (1) to Eq. (5);
Calculate J̃D(w) of each feature by Eq. (18);
Calculate JF (w) of each feature by Eq. (19) to Eq. (23);
Calculate m D(·) and m F (·) of each feature by Eq. (25)
and Eq. (26);
Calculate m D·F (·) of each feature by Eq. (27);
Sort features by the descending order of fused mass
function value, then select the first Nr eigenvectors as
optimal spatial filters.

End

The instability of performance is where there is the greatest
need for improvement. On the other hand, both traditional
CSP and DRL1-CSP do not consider the feature distribution.
To solve these problems, we use DST to fuse two different
feature selection rules that are FCSP and DRL1-CSP.

There have been some examples of DST applied in the
field of BCI. Without exception, these examples used DST
to fuse the classification results of multiple classifiers [32],
[33]. An important reason for this use is that the results of
the classifier could be represented by a probabilistic structure,
which could be directly used in DST. Therefore, if we want
to use DST to fuse feature selection rules, we also need to
convert the rules into probabilistic structures.

Assume that each feature in the feature space has been
assigned weight. Since the sum of the normalized weight
coefficients of all features is one, the normalized weight
coefficient could be regarded as the probability that the feature
is selected, which is thought of as the mass function value
in the DST framework. Note that we only assign values to
all the individual features in the power set, and all the mass
functions of combined features are set to 0. In subsequent
formulas, these zero items will no longer appear. This is
done to simplify the parameters required for DST and then
to simplify the calculation. We do not have enough prior
knowledge to estimate the mass function of the combined
features.

Next, we need to think about how to weight the features
reasonably. A natural idea is to use the objective function
value [i.e., the function value obtained by (18) or (19)]
corresponding to the feature as a weight coefficient. However,
this solution has a major defect: Since the values of different
features are not of the same order of magnitude, it is possible
that very few features contribute most of the weight, which
will cause the weight of the remaining features to be too small.

The purpose of using DST is to comprehensively evaluate
features from different views (i.e., different objective func-
tions). If the distribution of a view’s mass function values is
severely polarized, the order of magnitude of the mass function
value may not be changed after fusion, which will weaken the
effect of DST.
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Fig. 3. Comparison diagram of different mapping relationships.

We notice that the objective function value is only used for
comparison between different features, and its numerical value
has no practical significance. What is important is the order
of the features. Thus, the position labels of ordered feature
sequences for the reverse assignment are used, which can also
avoid the polarization of the distribution of the mass function.
For example, after sorting the objective function in descending
order of value, ten features are assigned values decreasing
from 10 to 1, and then, the normalized weight coefficient is
10/55–1/55.

As mentioned earlier, the performance of FCSP is unstable,
and the fundamental reason is that the Fisher ratio cannot
reasonably evaluate the features in the cases of small interclass
distances. In order to reduce the impact of this instability,
we further modify the weighting strategy. Especially, a non-
linear mapping is added, in which

f (x) = exp(x) − 1 s.t. 0 ≤ x ≤ 1 (24)

where x denotes the normalized weight coefficient obtained by
reverse assignment. As shown in Fig. 3, through the nonlinear
mapping, larger weights will increase, and smaller weights
will decrease. For example, the normalized sequence of weight
coefficients [0.4, 0.3, 0.2, 0.1], after being nonlinearly mapped
and normalized, becomes [0.42, 0.30, 0.19, 0.09]. According
to (19), the interclass distance is positively correlated with
the Fisher ratio. Therefore, the nonlinear mapping reduces
the weight of those features whose interclass distance may be
small, thereby suppressing the probability that such features
are selected.

The complete assignment strategy for the mass function
(normalized weight coefficient) of the pth feature is as follows:

m D(p) = 1∑n
i=1 i

(N + 1 − k p) (25)

m F (p) =
exp

(
1∑n
i=1 i

(N + 1 − k p)
)

− 1
∑N

j=1 exp
(

1∑n
i=1 i

(N + 1 − k j)
)

− N
(26)

where m D(·) and m F (·) denote the mass function of DRL1-
CSP and FCSP, respectively, and k denotes the position of a

feature in descending order of the objective function value. N
denotes the number of channels. Note that only DRL1-CSP2 is
used in (25) since not all objective function values of DRL1-
CSP1 can be compared with each other.

After completing the assignment of the mass function to all
features, the framework of DST could be used, in which

m D·F (p) =
∑

B∩C=p m D(B) · m F(C)

1 − ∑
B∩C=φ m D(B) · m F(C)

= m D(p) · m F (p)∑
1≤i, j≤N
i= j

m D(i) · m F ( j)
. (27)

Finally, sort features by descending order of m D·F (·), and
select features from front to back in the sequence. The whole
framework of the proposed fusion algorithm is shown in Fig. 4,
and the flow of the fusion algorithm is shown in Algorithm 1.

IV. EXPERIMENTAL STUDY

A. Description of EEG Data

To evaluate the performance of the proposed methods for
internal feature selection, two public data sets from the BCI
Competition have been used in this study:

Data Set 1 (BCI Competition III Data Set IVa) [34]: This
data set was recorded from five healthy participants who
performed MI of their right hand and foot during cued trials;
each participant conducted 280 trials (half for each class). The
data were measured from 118 channels and subsampled at
100 Hz. In each trial, a visual cue was displayed on screen
for 3.5 s to indicate to participants to perform MI. Participants
were then given a rest time between 1.75 and 2.25 s. More
details can be found at http://www.bbci.de/competition/iii/.

Data Set 2 (BCI Competition IV Data Set I) [35]: This
data set includes seven healthy participants, each participant
conducted 200 trials (half for each class) without feedback.
In each trial, there was a fixation cross at the center of the
screen for the first 2 s. Then, an arrow pointing left or right
or down was displayed on the screen for 4 s, which cued
participants to perform corresponding MI. Finally, a blank
screen was displayed for 2 s. This data set was measured
from 59 channels and subsampled at 100 Hz. See website
http://www.bbci.de/competition/iv/ to find more details. Note
that there were three artificially generated participants (named
“c,” “d,” and “e”), and we only use the remaining four data
sets recorded from real participants for testing.

B. Preprocessing and Experiment Setting

In this work, data set 1 has been extracted from 0.5 to 2.5 s
for each trial after the visual cue, while data set 2 has been
extracted from 0 to 3 s for each trial after the visual cue. The
raw EEG signals were filtered with a fifth-order Butterworth
filter between 8 and 30 Hz. Tenfold cross-validation was
used in all experiments. Please note that the accuracy of the
algorithm shown in the experiment is the highest accuracy
that the algorithm can achieve under a different number
of features.
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Fig. 4. Block diagram of the proposed fusion algorithm.

TABLE I

COMPARISON OF CLASSIFICATION ACCURACY (%) AMONG PROPOSED

METHODS AND TRADITIONAL CSP

C. Performance of Proposed Objective Function in Internal
Feature Selection of CSP

1) Comparison of Classification Accuracy: To evaluate the
performance of the proposed methods, we compare the classifi-
cation accuracies among the proposed methods and traditional
CSP for the two data sets. As shown in Table I, the proposed
methods achieve higher classification accuracies in all cases,
which indicates that the proposed methods could select better
features at the same feature space. Especially, in data set 1,
the average classification accuracies are 79.3% (with CSP),
86.7% (with DRL1-CSP1), and 85.1% (with DRL1-CSP2);
the average classification accuracies of data set 2 are 54.6%
(with CSP), 68.0% (with DRL1-CSP1), and 68.4% (with
DRL1-CSP2). Test results from two data sets indicate that
the proposed methods are superior to traditional CSP (paired
t-test, p < 0.05, with eight degrees of freedom).

2) Embeddability Analysis of the Proposed Methods: Since
the proposed methods only change the rules of feature selec-
tion inside the CSP, it can be easily embedded into other
types of extensions of CSP. In this work, we embed the
proposed methods in CSP-rank [36]. CSP-rank is a filtering
channel selection algorithm [37], which is used to remove

redundant channels while improving the performance of BCI
systems. It sorts the importance of channels according to
the coefficients of spatial filters, and the optimal channel
sets correspond to the highest cross-validation accuracy. The
algorithms after embedding are named DRL1-CSP1-rank and
DRL1-CSP2-rank, respectively. The classification accuracies
and their corresponding numbers of channels are shown
in Table II, and the classification accuracies of the proposed
methods are significantly higher than that of CSP-rank (paired
t-test, p < 0.05, with eight degrees of freedom), which
proves the effectiveness and practicality of the proposed
methods.

3) Comparison of Feature Distributions: To further observe
the differences in features selected by the different methods,
the feature distributions are displayed from all participants
except “al.” Due to dimensional constraints, only the two
features preferred by each method are shown. Note that each
subgraph uses all the trials belonging to a participant to plot the
feature distributions. As shown in Figs. 5 and 6, it is obvious
that the features selected by the proposed methods have feature
distribution that can be more easily discriminated than those
produced by traditional CSP.

Participant “aw” is used here to explain the differences in
selected features between CSP and DRL1-CSP1. Especially,
the highest accuracy of both algorithms is achieved when
m = 1 (i.e., the number of features is 2). As shown in Fig. 5,
after calculation, it is found that the features corresponding
to the horizontal axis of the two are the same, and the
difference lies in the vertical axis, and we use fC and
fD to represent the features selected by the vertical axis of CSP
and DRL1-CSP1, respectively. In traditional CSP, the feature
selected by the vertical axis corresponds to the minimum
value of the CSP objective function, so the CSP objective
function value of fC is smaller than fD (JC( fC) = 0.412
versus JC( fD) = 0.514). In DRL1-CSP1, the feature selected
by the vertical axis also corresponds to the minimum value
of the DRL1-CSP1 objective function. Thus, the DRL1-CSP1
objective of fD is smaller than fC (JD( fC) = −231.7 versus
JD( fD) = −236.7), which also indicates that fD has a larger

Authorized licensed use limited to: Carleton University. Downloaded on August 26,2020 at 00:31:31 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II

COMPARISON OF CLASSIFICATION ACCURACY (%) AND SELECTED
NUMBER OF CHANNELS FOR DIFFERENT METHODS

Fig. 5. Comparison of feature distributions from four participants of data set 1 (“aa,” “av,” “aw,” and “ay”). The columns from left to right are feature
distribution for participants “aa,” “av,” “aw,” and “ay” with three different methods, respectively. Small circles of different colors represent the trials of different
classes, while the large circles reflect the feature distribution range of most trials in the class of the corresponding color.

interclass distance than fC . The difference in the features,
corresponding to the vertical axis, means that the average
accuracy of the two methods differs by 6.1% (85.0% with
CSP versus 91.1% with DRL1-CSP1, paired t-test, p = 0.074,
with nine degrees of freedom), which proves that the feature
selected by DRL1-CSP1 is better.

D. Comparison of Fusion Algorithm With Different Feature
Selection Methods

With the two data sets described in Section IV, the com-
parison is carried out in the proposed fusion method and the
following algorithms.

MIN-CSP: MIN is used to select features in the feature
space used within CSP.

Lasso-CSP: Lasso is used to select features in the feature
space used within CSP.

FCSP: The objective function of the Fisher ratio is used to
select features in the feature space used within CSP.

DRL1-CSP: Adopt DRL1-CSP2 that is presented in
Section III.

1) Comparison of Classification Accuracy: The classifica-
tion accuracy of each method is shown in Table III. The
average accuracy of the fusion method is 6.8% and 15.4%
higher than that of the traditional CSP for the two data sets and
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Fig. 6. Comparison of feature distributions from four participants of data set 2 (“a,” “b,” “f,” and “g”).

is the highest among the algorithms used in the comparison
(paired t-test, p < 0.05, with eight degrees of freedom).

The advantages of the proposed fusion algorithm can also be
seen in the table: in some cases, the performance of the fusion
algorithm is equal to the higher of DRL1-CSP and FCSP,
which guarantees the performance of the fusion algorithm.
In other cases, the performance of the fusion algorithm is
higher than both algorithms before the fusion, indicating that
a better feature combination is found. Through the fusion
algorithm, the interclass distance and feature distribution can
be considered at the same time so that the pros and cons of
the features can be judged more comprehensively.

2) Comparison of Computational Time: When evaluating
our proposed extension of CSP for internal feature selection,
the computational time is extremely important. A number
of other algorithms treat CSP as a base algorithm and run
it over multiple iterations (e.g., channel selection algorithms
[38]). We first calculate the time complexity of the feature
extraction process of different methods, in which the time
complexity of CSP is O(M), the time complexity of DRL1-
CSP, FCSP, fusion algorithm, and MIN-CSP is O(M + N),
and the time complexity of lasso is O(M ∗ N). Here, M
represents the number of trials, and N represents the number
of channels. Table IV shows the specific computational time
(in seconds) of algorithms used in the comparison. Each
algorithm is run within a 10×10-fold cross-validation scheme
on all participants’ data, and then, the average running time
is calculated over the data set. The calculations are made

on a Windows computer with i5-6300HQ 2.3-GHz CPU/16-
GB RAM. It may be clearly seen that the computational
time of MIN-CSP is about two times longer than traditional
CSP, and Lasso-CSP takes dozens of times longer, while the
computational times of FCSP, DRL1-CSP, and their fusion
algorithm are close to that of traditional CSP. Hence, the latter
three methods are more suitable for internal feature selection
in terms of efficiency.

V. DISCUSSION

CSP is a commonly used algorithm for feature extraction
in MI-BCI systems that achieved a good balance between the
effectiveness and computational cost [39]. In recent years, lots
of extensions have been proposed to improve the shortcomings
of CSP, such as common spatiospectral pattern (CSSP) [40],
SCSP [9], FBCSP [12], and RCSP [16], but few studies
focus on the selection rules for the feature space used within
CSP, which is closely related to the optimization of the CSP
objective function. However, due to some drawbacks of the
CSP objective function (mentioned in Section I), the selected
features are not necessarily optimal in the feature space.
In this work, efficient feature selection methods are designed
to discover features that may have better classification results.

The traditional CSP algorithm could be divided into
three phases: extraction, internal selection, and generation.
As shown in Fig. 2, new feature selection methods are
achieved by calculating improved objective functions during
the internal selection phase. These feature selection methods
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TABLE III

COMPARISON OF CLASSIFICATION ACCURACY (%) FOR DIFFERENT FEATURE SELECTION ALGORITHMS

TABLE IV

COMPARISON OF COMPUTATIONAL TIME FOR DIFFERENT METHODS (IN SECONDS, MEAN ± STD)

can search for features that are more in line with the new
objective function from the feature space used within CSP,
which is especially suitable for the objective functions that are
difficult to optimize through gradient descent. In the proposed
objective functions, improvements are made in suppressing
outliers and discovering features with larger interclass dis-
tances (DRL1-CSP). As shown in Table I, both the proposed
methods significantly improve the classification accuracies
(p < 0.05). Moreover, the objective function values in DRL1-
CSP2 could be compared with each other, where only features
with the largest objective function values need to be selected.
We also compare the feature distributions from all trials in
the two data sets (except participant “al”). As shown in Figs.
5 and 6, it is obvious that the features selected by the proposed
methods have better feature distributions than those selected
by the traditional CSP algorithm. In addition, as extensions of
CSP that only change the rules of internal feature selection,
the proposed methods could be easily embedded in other type
extensions of CSP. To test this, we evaluate the performance
of the proposed methods after embedding them in CSP-rank.
As shown in Table II, the proposed methods have a significant
improvement compared to unembedded CSP-rank (p < 0.05),
which proves the effectiveness and great potential of proposed
methods.

Both DRL1-CSP and traditional CSP do not consider the
distribution of features in their objective functions, while
FCSP only uses the Fisher ratio to discriminate features that,
sometimes, yield worse results. We use DST to fuse two
different feature selection rules (DRL1-CSP2 and FCSP) so
that the distribution of features could be taken into consider-
ation in DRL1-CSP and the performance of FCSP could be
more stable. As shown in Table III, the average classification
accuracy of the proposed fusion algorithm is superior
to other algorithms used in the comparison ( p < 0.05).
The computational time is another important indicator

of feature selection rules. As shown in Table IV,
the computational time of the proposed methods is close
to traditional CSP, while MIN-CSP and Lasso-CSP are
several times greater than traditional CSP. This is because
the proposed methods perform simple computation only
for the projected signals. Although it has achieved good
results, the assignment of the mass function in this work
only adopts one combination scheme (see Fig. 3). In future
work, we will try other assignment strategies to get better
performance.

The proposed methods consume less computational cost in
exchange for a more significant increase in the performance
of MI-based BCI systems, but there are several limitations
to these methods. One of the main limitations is that the
proposed methods rely on the feature space used within CSP.
In other words, if the candidate spatial filters from the feature
space lack diversity, the performance of the MI-BCI system
may not be significantly improved by proposed methods.
We can expand the dimensions of the feature space to solve
this problem, which is worthy of more in-depth study in
the future. Another limitation is that the performance can
only be evaluated offline when using competition data set.
Although the cross-validation has been used, overfitting may
still happen, which raises concerns about the generalizability
of the results. In future work, we will evaluate the method
online and test its generalization ability.

VI. CONCLUSION

In this work, several methods are proposed to solve the
problems existing in the feature space used within CSP,
wherein the selected features may not be optimal. By changing
the objective function during the internal selection phase, new
feature selection methods are realized. Especially, we first
replace the average L2-norm squared ratio with the ratio of
the average L1-norm so that the influence of outliers on the
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feature distribution could be suppressed. Then, we upgrade it
to the product between the difference and ratio of the average
L1-norm (DRL1-CSP) to discover the features with larger
interclass distances. DRL1-CSP could be divided into two
methods (one-side selection or two-side selection). Moreover,
we use DST to fuse DRL1-CSP with FCSP so that the
distribution of features could be taken into consideration in
DRL1-CSP. The experimental results show that the proposed
methods effectively improve the performance of the BCI sys-
tem with a small increase in computational time. In summary,
the proposed methods can make full use of the feature space
of CSP, which contributes to the development of feature
extraction for MI-based BCI systems.
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